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Orthoferrite with a hidden lanthanide magnetic motif: NdFeO3
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Scrutiny of an established monoclinic magnetic space group for NdFeO3 reveals hitherto unknown prop-
erties of the orthoferrite. Future experiments using neutron and x-ray diffraction techniques can verify them.
Neodymium ions possess Dirac multipoles, both time odd (magnetic) and parity odd (polar), that come with
unique diffraction conditions. Nonmagnetic polar Nd multipoles are permitted even though the monoclinic
space group is centrosymmetric. Dirac multipoles are forbidden by symmetry at sites occupied by ferric ions.
Available diffraction patterns have not been analyzed for Dirac multipoles, nor all permitted components of
the axial dipoles and quadrupoles. In the case of neutron diffraction, magnetic quadrupoles are correlations
between anapole and orbital degrees of freedom. We give conditions for the observation of Templeton-Templeton
scattering of x rays, created by angular anisotropy in the electronic charge distribution. Axial multipoles are the
sole providers of dichroic signals.
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I. INTRODUCTION

In the event that NdFeO3 harbors polar magnetism, it
will be a unique lanthanide orthoferrite. The possibility of
Kramers Nd Dirac multipoles that are magnetic and parity odd
is one outcome of the reported symmetry-informed analysis
based on an established magnetic space group for the material
[1]. Along with metal oxides CuO [2,3], α-Fe2O3 [4,5], and
CoTi2O5 [6], for example, it is a monoclinic space group
with ions in acentric sites. Other orthoferrites have unusual
properties, not least a ferroelectric ground state. Such is the
case of GdFeO3 with magnetostructural couplings associated
with rotations of corner-linked FeO6 octahedra, and ferroelec-
tric polarization and magnetization controlled by magnetic
and electric fields, respectively [7,8]. Evidently, a simple
orthorhombic structure is not correct for magnetic GdFeO3

although nonpolar Pnma is cited for the parent structure, as it
is with most lanthanide orthoferrites. Multiferroism has been
created by negative pressure in EuTiO3 using nanocomposite
films [9]. Likewise, a stabilized hexagonal TmFeO3 thin film
heterostructure enabled multiferroism to be artificially im-
posed on a naturally orthorhombic orthoferrite [10]. Magnetic
properties, including exchange interactions, of a non-Kramers
lanthanide orthoferrite (TbFeO3) have been derived from neu-
tron scattering, one of two experimental techniques that we
consider [11].

In more detail, NdFeO3 is a soft material with an
orthorhombically distorted structure derived from a cu-
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bic perovskite structure [12,13]. Weak Fe ferromagnetism
is attributed to a Dzyaloshinskii-Moriya interaction, as in
hematite. Spin switching, magnetization reversal, and mag-
netostructural coupling have been observed in single crystals
of NdFeO3, and the structure and magnetic properties of
nanoparticles have been reported [8,14–16]. Optical proper-
ties of orthoferrites have been investigated experimentally and
theoretically [17,18], and material characterization, structure
and preparation of NdFeO3 are thoroughly treated by Serna
et al. [19].

It is suggested that NdFeO3 has monoclinic magnetic sym-
metry at all temperatures below TN ≈ 760 K [1], in which
case there are many magnetic similarities between the ortho-
ferrite and binary Fe and O in the form of hematite (α-Fe2O3).
Current candidates for the magnetic space group for hematite
include monoclinic C2/c (magnetic crystal class 2/m) and
C2′/c′ (2′/m′) with ferric ions in sites devoid of symmetry
[4,5]. Both centrosymmetric structures permit the piezomag-
netic effect, and allowed terms in the thermodynamic potential
include H and HEE (H and E are magnetic and electric
fields); i.e., they are compatible with ferromagnetism and a
linear magnetoelectric effect is not permitted. Evidence in-
dicating that NdFeO3 complies with a polar crystal class is
reviewed in Ref. [20]. Such is the case for GdFeO3, for which
the polar magnetic crystal class m′m′2 is mentioned [7]. Ex-
periments proposed here for NdFeO3 on the basis of a favored
centrosymmetric space group might clinch the debate for a
different and polar magnetic structure.

While the monoclinic structure P2′
1/c′ proposed for

NdFeO3 belongs to the centrosymmetric magnetic crystal
class 2′/m′ ferric ions display both ferromagnetic and an-
tiferromagnetic continuous spin reorientations of ferric ions
[21]. Specifically, Fe3+ (3d5) dipole moments continuously
rotate around the crystal axis [0, 1, 0] with temperature
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T in the region 105 K < T < 180 K [13,22]. Moreover, Fe
ions occupy two independent centrosymmetric sites, whereas
Nd3+ (4 f 3) ions occupy sites devoid of symmetry, and ax-
ial and polar neodymium magnetic multipoles are permitted.
Polar magnetic multipoles include a scalar, with the same
discrete symmetries as Dirac’s monopole, and the dipole is
often referred to as an anapole [23].

In an atomic description, a monopole 〈S � R〉 represents
magnetic charge, where S and R are spin and orbital elec-
tronic degrees of freedom, respectively, and angular brackets
denote a time average (expectation value). Such a charge
contributes to the diffraction of x rays utilizing an electric
dipole–magnetic dipole event [24–26]. An anapole is the next
member along in a family of electronic Dirac multipoles and
it is equivalent to a dipole 〈(S × R)〉 and a like orbital en-
tity [23,27,28]. By dint of Neumann’s principle, electronic
multipoles are invariant with respect to all discrete symme-
tries possessed by their environment. An electronic structure
factor that represents a crystalline material complies with
all spatial and magnetic symmetries of the material; local
symmetries, and symmetries in the space group that involve
translations [27,29]. Such a structure factor defines a Bragg
diffraction pattern. Motifs of Dirac multipoles therein are
not occult order parameters because they diffract x rays and
neutrons, together with chargelike distributions of electrons
and nuclei [3,30,31]. Compton scattering of x rays is another
technique with potential to observe Dirac multipoles [32,33].
Theoretical methods that work in tandem with the men-
tioned experimental techniques include advanced simulations
of electronic structures. There are various established codes
by which to derive estimates of axial and Dirac multipoles
and their contributions to x-ray absorption spectra, dichroic
signals, and Bragg diffraction patterns [34–36]. Analytic ex-
pressions of Dirac multipoles for V and Cu ions in V2O3

and CuO, respectively, are found in Refs. [37,38], and axial
multipoles for Np4+ (5 f 3) are treated in Ref. [39].

The magnetic structure P2′
1/c′ for NdFeO3 [1,20,21] is

discussed in the following section. It is the basis of cal-
culated Bragg diffraction patterns presented in Secs. III–V.
Sections III and IV deal with neodymium and ferric ions,
respectively. Each section is subdivided into results for neu-
tron diffraction [12,13,40–42] and resonant x-ray diffraction
[24,27,43–45]. A Bragg diffraction pattern is composed of
core spots derived from neutron diffraction by nuclei or x-ray
diffraction by spherical distributions of electronic charge. The
core data define a chemical structure. Core data are over-
laid by weak, or timid, or basis-forbidden Bragg spots that
arise from angular anisotropy in the distribution of electronic
charge, and referred to as Templeton-Templeton (T&T) scat-
tering [46,47], and magnetic Bragg spots not indexed on the
chemical structure, which are the principal interest in the
present study. One such finding is neutron and resonant x-ray
diffraction by components of Nd and Fe axial dipoles parallel
to the unique axis of the monoclinic cell. The components in
question are not shown in Fig. 1, which instead depicts the
currently accepted configuration of axial dipoles [1,12,13].
There are Bragg spots unique to the motif of Nd Dirac mul-
tipoles. No such Bragg spots are permitted for ferric ions
because they occupy sites with a center of inversion symmetry.
Uniquely Nd Dirac Bragg spots appear in diffraction patterns

FIG. 1. The ground state configuration of Nd and Fe axial dipoles
in the plane normal to the η axis depicted as yellow and blue in the
standard setting Pnma (a, b, c) ≡ Pbnm (bo, co, ao) [13]. Repro-
duced from MAGNDATA [48].

gathered by magnetic neutron diffraction and resonant x-ray
diffraction. Our calculations for x-ray diffraction incorporate
the effect of rotation of the crystal about the reflection vector,
because the azimuthal-angle scans yield valuable informa-
tion about magnetic structure. Selection of the primary x-ray
energy in resonant diffraction selects contributions from dif-
ferent elements, which are Nd and Fe in our examples [43,45].
Section V describes nonmagnetic polar resonant x-ray diffrac-
tion by Nd ions, which is permitted even though P2′

1/c′ is
centrosymmetric [27,44,49].

II. MAGNETIC STRUCTURE

The parent structure of the lanthanide-iron perovskite
NdFeO3 is taken to be nonstandard orthorhombic Pbnm. Cell
edges a ≈ 5.451 02 Å, b ≈ 5.588 08 Å, and c ≈7.761 65 Å
[13]. The magnetic space group P2′

1/c′ (BNS setting,
No. 14.79, magnetic crystal class 2′/m′) accounts for mag-
netization studies and neutron powder diffraction data [1].
Axial dipoles in the standard Pnma setting are depicted in
Fig. 1 [13]. Basis vectors for P2′

1/c′ relative to Pbnm are
{(−1, 0, 0), (0, −1, 0), (1, 0, 1)} with unit cell parame-
ters a, b, and co = √

[a2 + c2] ≈ 9.484 56 Å, and an obtuse
angle = cos−1(−a/co) ≈ 125.08◦. Refinement of the Bragg
pattern excluded neodymium Dirac multipoles, and magnetic
contributions were deduced by subtraction of patterns col-
lected above and below the onset of long-range magnetic order
[12]. Greater sensitivity to the distribution of magnetization
can be achieved with diffraction by a single crystal, and neu-
tron polarization analysis [40,42,50,51], or the diffraction of
x rays tuned to an atomic resonance, which is a subject of
calculations reported herein [27,43–45]. Reflections (h, 0, l )
with l = 2n + 1, (0, k, 0) with k = 2n + 1 and (0, 0, l )
with l = 2n + 1 are absent in P21/c. Magnetic allowed re-
flections that have been observed are the principal evidence
in favor of P2′

1/c′ [12,13,20]. Therefore, intensities predicted
for systematic absence conditions in the diffraction pattern of
P2′

1/c′ are critical tests of its suitability for NdFeO3.
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FIG. 2. Primary (σ, π ) and secondary (σ ′, π ′) states of polar-
ization. Corresponding wave vectors q and q′ subtend an angle 2θ .
The Bragg condition for diffraction is met when q − q′ coincides
with the reflection vector indexed (h, k, l ). Orthogonal vectors a∗,
(0, −b, 0), and (a, 0, c) that define (ξ, η, ζ ) and depicted Carte-
sian (x, y, z) coincide in the nominal setting of the crystal.

The reciprocal lattice of P2′
1/c′ has a volume

vo = (abc), and vectors a∗ = (2π/vo) (−bc, 0, ab),
b∗ = (2π/vo) (0, −ac, 0), and c∗ = (2π/vo)(0, 0, ab).
The reflection vector for Bragg diffraction =
(2π )[−h/a, −k/b, (h + l )/c] with integer Miller indices
(h, k, l ). Local axes (ξ, η, ζ ) are derived from orthogonal
vectors a∗, (0, −b, 0) and (a, 0, c). Axes (x, y, z) in Fig. 2
for x-ray diffraction and (ξ, η, ζ ) coincide in the nominal
setting of the crystal in an azimuthal-angle scan. The principal
symmetry operation in the space group is an antidyad parallel
to the unique η axis (2′

η). Specifically, axial dipoles in the
plane normal to the η axis are permitted for neodymium and
ferric ions, as in Fig. 1, while Nd anapoles in the same plane
are revealed in basis-forbidden Bragg spots (0, 0, l ) with
odd l . However, Nd axial dipoles parallel to the η axis are
not forbidden since Nd ions occupy sites with no symmetry;
cf. Eq. (8), likewise for Fe ions that occupy centrosymmetric
sites with no additional symmetry constraints; cf. Eqs. (11)
and (13).

Atomic spherical multipoles 〈OK
Q〉, that have integer rank

K and projections Q in an interval −K � Q � K , encapsulate
electronic degrees of freedom [27,41]. For future use, the
outcome of a dyad operation on the unique η axis is 2η〈OK

Q〉 =
(−1)K+Q〈OK

−Q〉. Cartesian and spherical components of a
dipole R = (x, y, z) are related by x = (R−1 − R+1)/

√
2,

y = i(R−1 + R+1)/
√

2, z = R0. The complex conjugate is
defined as 〈OK

Q〉∗ = (−1)Q〈OK
−Q〉, with a phase convention

〈OK
Q〉 = [〈OK

Q〉′ + i〈OK
Q〉′′] for real and imaginary parts labeled

by single and double primes, respectively. Generic multipoles
〈OK

Q〉 are later replaced by specific forms for neutron and x-ray
diffraction.

Diffraction amplitudes presented here are specific to posi-
tion multiplicity, Wyckoff letter, and symmetry [27,41,43,45].
Multipoles that enter diffraction amplitudes are denoted
〈T K

Q 〉(〈GK
Q〉) in general discussions of axial (polar) contri-

butions with no specific type of radiation in mind. Axial
multipoles are 〈T K

Q 〉 and 〈tK
Q 〉 for neutron (Secs. III A and

IV A) and resonant x-ray (Secs. III B, IV B, and V) diffraction,
respectively. For the latter type of diffraction, Dirac multi-

poles are 〈gK
Q〉, and polar charge–like multipoles are 〈uK

Q〉 [27].
The Dirac dipole in neutron scattering is 〈D〉, with 〈H2〉 the
quadrupole of immediate interest. Ref. [41] contains a review
of all Dirac multipoles in the neutron scattering amplitude.

III. NEODYMIUM IONS

Neodymium ions (Nd3+, 4I, 4 f 3) use sites 4e in P2′
1/c′

that have no symmetry. Such acentric sites permit Dirac
atomic multipoles that change sign with respect to individual
reversals of time and space. Time and parity signatures are
denoted σθ and σπ , respectively; magnetic multipoles are time
odd σθ = −1, and σθσπ = −1(+1) for axial (Dirac) multi-
poles.

An electronic structure factor 	K
Q = [exp(iκ · d)〈OK

Q〉
d
]

where κ is the reflection vector, and the implied sum is over
the four Nd ions in a unit cell [27,41]. The significant result
for general sites 4e in space group P2′

1/c′ (No. 14.79; note the
Opechowski-Guccione (OG) settings used in [1,20] whereas
we use Belov-Neronova-Smirnova [21]) is

	K
Q (4e) = 〈

OK
Q

〉
[αβγ + σπ (αβγ )∗]

+ σθ (−1)K+Q(−1)k+l
〈
OK

−Q

〉

× [α∗βγ ∗ + σπ (α∗βγ ∗)∗]. (1)

The spatial phase factors are α = exp(i2πhx), β =
exp(i2πky), and γ = exp (iπ l/2), with general coordinates
x ≈ 0.2613 and y ≈ −0.048 [13]. A ferromagnetic structure
is permitted by the electronic structure factor. Inspection
of Eq. (1) shows that axial Nd multipoles 〈T K

Q 〉 contribute
to bulk ferromagnetism (h = k = l = 0), and permitted Nd
dipoles (K = 1) are 〈T 1

ξ 〉 and 〈T 1
0 〉 = 〈T 1

ζ 〉 depicted in Fig. 1.
Looking ahead, the Fe structure factor [Eq. (10)] possesses
identical properties.

The structure factor 	K
Q (Nd) evaluated for basis-forbidden

(0, k, 0) with odd k,

	K
Q (4e) = [β + σπβ∗]

× [〈
OK

Q

〉 + (−1)K+Q
〈
OK

−Q

〉]
, (0, k, 0) odd k,

(2)

reveals axial dipoles and anapoles parallel to the η axis. Di-
agonal (Q = 0) components of 〈OK

Q〉 that can be observed
have an even rank. Not surprisingly, basis-forbidden reflec-
tions (0, 0, l ) with odd l are more revealing. Indeed, the
corresponding structure factor,

	K
Q (4e) = [γ + σπγ ∗]

× [〈
OK

Q

〉 + σπ (−1)K+Q
〈
OK

−Q

〉]
, (0, 0, l ) odd l,

(3)

is different from zero for Dirac multipoles alone. Anapoles
are 〈G1

ξ 〉 and 〈G1
ζ 〉, for example. An array of Dirac multipoles

in a compound is an occult order parameter for many exper-
imental investigations, with magnetic neutron and resonant
x-ray diffraction notable exceptions. Lastly, spatial phases and
multipoles in 	K

Q (4e) also factor for (h, 0, l ) with odd l .
The reflection (1, 0, l ) is notable because sin(2πx) ≈ 1.0,
which gives a strong contribution to 	K

Q (4e) from 〈T 1
η 〉 and a

negligible contribution from Dirac multipoles.
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A. Neutron diffraction

Multipoles in neutron diffraction depend on the magnitude
of the reflection vector κ [40–42]. Radial integrals 〈 jc(κ)〉
in axial multipoles 〈T K

Q 〉 are averages of spherical Bessel
functions and integer c is even [52]. By definition, 〈 jc(0)〉 = 0
for c > 0, and 〈 j0(0)〉 = 1. Most simple models of magnetic
neutron scattering are based on the dipole 〈T1〉. A useful
approximation in terms of the rare-earth magnetic moment
〈μ〉 = g〈J〉 is

〈T1〉 ≈ (〈J〉/3){〈 j0(κ )〉gS + [〈 j0(κ )〉 + 〈 j2(κ )〉]gL}, (4)

where gS = 2(g−1) and gL = (2−g) [40]. The Landé fac-
tor g = 4/3 for Nd3+ with J = 9/2. An equivalent operator
[(S × R)R] for the quadrupole 〈T2〉 shows that it measures
the correlation between a spin anapole (S × R) and orbital
degrees of freedom [41].

The Dirac dipole 〈D〉 in neutron diffraction is the sum of
three contributions that include expectation values of spin and
orbital anapoles. Operators for the three contributions to D are
a spin anapole (S × R), orbital anapole � = [L × R − R ×
L], and (iR). Specifically, 〈D〉 = (1/2) [3(h1)〈(S × R)〉 −
( j0)〈�〉 + (g1)〈(iR)〉]. Form factors (h1), ( j0), and (g1) have
been calculated for several atomic configurations [38,53]. In
what follows, we retain 〈D〉 and a quadrupole 〈H2〉 that pos-
sess the largest atomic form factors. A quadrupole of this
type is a product of (h1) and a correlation function 〈{S ⊗ R}2〉
written in terms of a standard tensor product of two dipoles
[41]. Notably, 〈H2〉 ∝ [(h1)〈{S ⊗ R}2〉] accounts for magnetic
neutron diffraction by the pseudo-gap phase of ceramic super-
conductors [41,54,55].

Intensity of a magnetic Bragg spot = |〈Q⊥〉|2 when
the neutron beam is unpolarized [40,41]. Here, 〈Q⊥〉 =
{e × (〈Q〉 × e)} and e is a unit vector in the direction of the
reflection vector. Prefactors between |〈Q⊥〉|2 and a measured
intensity are discussed in Refs. [40,42]. The axial intermediate
amplitude 〈Q〉(+) = 〈μ〉/2 in the forward direction of scat-
tering (κ = 0), and the superscript (+) denotes parity even,
σπ = +1. In general, a polarized neutron diffraction signal
 = {P � 〈Q⊥〉}, where P is polarization of the primary neu-
trons [50,51]. A spin-flip intensity SF is a measure of the
magnetic content of a Bragg spot, and SF = {|〈Q⊥〉|2 − 2}
when P � P = 1 and (〈Q⊥〉∗ × 〈Q⊥〉) = 0 [56].

Reflections (0, 0, l ) with odd l possess an amplitude
〈Q⊥〉(−) ≈ (0, 〈Q⊥η〉(−), 0), e = [cos(χ ), 0, sin(χ )] with
cos(χ ) = [sign(l ) (a/co)] and

〈Q⊥η〉(−) ≈ 4sin(π l/2)
{
[cos(χ )〈Dζ 〉 − sin(χ )〈Dξ 〉]

+ (3/
√

5)
[
sin(χ )

〈
H2

+1

〉′′

− cos(χ )
〈
H2

+2

〉′′]}
, (0, 0, l ) odd l, (5)

on retaining the Dirac dipole 〈D〉 and a quadrupole 〈H2〉. The
quantity [cos(χ )〈Dζ 〉− sin(χ )〈Dξ 〉] is the component of the
Nd anapole normal to the reflection vector. The monoclinic
obtuse angle = cos−1(−a/co) ≈ 125.08◦ and χ = 54.92◦ for
positive l . Reversing the sign of the Miller index l reverses
the sign of cos(χ ) while sin(χ ) is unchanged. The spin-flip
intensity is zero for neutron polarization normal to the re-
flection vector. Neutron amplitudes for a centrosymmetric
structure are purely real. Equation (2) for (0, k, 0) with odd

k shows that axial and polar amplitudes are proportional to
cos(2πky) and sin(2πky), respectively. However, the axial
amplitude 〈Q⊥〉(+) ≈ 0, because 〈Q〉(+) is parallel to e. Like-
wise, 〈Q⊥〉(−) ≈ 0.

B. Resonant x-ray diffraction

Rotational anisotropy in multipoles is most pronounced
in the direct vicinity of an absorption edge whereas it is
negligible far from the edges. Sum rules for dichroic sig-
nals arise from quantum numbers of the core state embedded
in multipoles [27,37,57–59]. They can be calculated from a
ground state wave function for dichroism and scattering using
standard tools of atomic spectroscopy; see Refs. [37–39] for
worked examples. Tuning the energy of x rays to an atomic
resonance has two obvious benefits [43,45]. In the first place,
there is an enhancement of Bragg spot intensities and, sec-
ondly, spots are element specific. There are four scattering
amplitudes labeled by photon polarization states depicted in
Fig. 2, e.g., unrotated (σ ′σ ) and rotated (π ′σ ) scattering
amplitudes. Strong Thomson scattering, by spherically sym-
metric atomic charge, that overwhelms weak signals is absent
in rotated channels of polarization [44]. It is allowed in unro-
tated channels of polarization using a parity-even absorption,
but is absent in a parity-odd absorption, e.g., electric dipole–
electric quadrupole (E1-E2) events exploited to observe Dirac
multipoles. Diffraction amplitudes presented here include ro-
tation of the crystal through an angle ψ about the reflection
vector (azimuthal-angle scan).

The range of values of the rank K of multipoles is fixed
by the triangle rule, and K = 0–2 and K = 1–3 for E1-E1
and E1-E2 events, respectively. For parity-even multipoles
observed with an E1-E1 event the time signature σθ = (−1)K .
Scattering amplitudes are proportional to radial integrals. A
dipole radial integral (�|R|�) accompanies E1 in a scattering
amplitude, for example, where � is a valence state that carries
orbital angular momentum l and � is a core state that carries
angular momentum lc and the two angular momenta differ by
unity (parity odd). Dimensionless quantities  (E1 − E1) =
[(�|R|�)/ao]2,  (E1 − E2) = [q(�|R|�) (�′|R2|�)/ao]2,
and  (E2 − E2) = [q(�′|R2|�)/ao]2, with l + l ′ odd, are
useful measures of scattering amplitudes, where q is the pho-
ton wave vector and ao the Bohr radius [43,45].

Neodymium L edges have energies L2 ≈ 6.724 keV
(E1, 2p–5d ) and L3 ≈ 6.212 keV. Calculations of x-ray
absorption spectra and resonant diffraction intensities of in-
termetallic NdMg show E2 (2p–4 f ) contributions below the
Nd absorption edges [60]. With b∗ and the η axis antiparallel
at the start of an azimuthal-angle scan, and an E1-E2 event
[44],

(σ ′σ ) ≈ i sin(π l/2) cos(θ )sin(ψ )

× {
cos(χ )

[−〈
g1

ζ

〉 + (1/3)
√

10
〈
g2

+2

〉′′]

+ sin(χ )
[〈

g1
ξ

〉−(1/3)
√

10
〈
g2

+1

〉′′]
, (0, 0, l ) odd l.

(6)

A complete (σ ′σ ) for (0, 0, l ) odd l contains octupoles, and
it is relegated to the Appendix. On retaining anapoles and
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quadrupoles, as in Eq. (6), the rotated amplitude is [44]

(π ′σ ) ≈ i sin(π l/2)cos(θ )cos(ψ )
{
3
√

10 sin(θ )
[
cos(χ )

〈
g1

ζ

〉

− sin(χ )
〈
g1

ξ

〉] − [cos(θ ) sin(ψ )cos(χ )

+ 2 sin(θ )sin(χ )]
〈
g2

+1

〉′′ − [cos(θ ) sin(ψ ) sin(χ )

− 2 sin(θ )cos(χ )]
〈
g2

+2

〉′′}
, (0, 0, l ) odd l. (7)

Unlike the approximation for (σ ′σ ), the companion (π ′σ )
contains two harmonics of the azimuthal angle, namely,
cos(ψ) and sin(2ψ). Amplitudes (π ′σ ) and (σ ′π ) are related
by a change in the sign of the Bragg angle, θ .

Diffraction at space group forbidden (0, k, 0) is very dif-
ferent from the foregoing reflections, in part because now the
reflection vector coincides with an axis of crystal rotation
symmetry, namely, the unique η axis. Amplitudes in unro-
tated channels of polarization are identically zero, (σ ′σ ) =
(π ′π ) = 0 for (0, k, 0) with odd k, while the rotated channel
can be different from zero and displays twofold symmetry
in ψ . First, though, consider parity-even diffraction using an
E1-E1 absorption event.

Templeton-Templeton scattering is created by chargelike
quadrupoles 〈t2

Q〉 [27,46,47]. In the present case, T&T scatter-
ing is not present in unrotated channels of polarization. The
magnetic dipole 〈t1

η 〉 permitted in (π ′σ ) with enhancement
by an E1-E1 event is independent of the azimuthal angle,
because the dipole is parallel to the reflection vector. The
E1-E1 rotated channel of polarization contains an amplitude,

(π ′σ ) = (σ ′π ) = 4 cos(2πky)
{
(i/

√
2)sin(θ )

〈
t1
η

〉

+ cos(θ )
[
cos(ψ )

〈
t2
+1

〉′′

+ sin(ψ )
〈
t2
+2

〉′′]}
, (0, k, 0) odd k, (8)

with a∗ in the plane of scattering for ψ = 0. Magnetic and
T&T contributions differ in phase by 90 ° and intensities are in
quadrature; i.e., T&T intensity is a twofold periodic function
of the azimuthal angle. Miller indices k = 1, 3, and 5 satisfy
the Bragg condition for diffraction at the Nd L edges. How-
ever, cos(2πky) ≈ 0 for k = 5. An amplitude at the Nd M
edge (E1, 2d–4 f ) is ≈ 103 larger than an L-edge amplitude,
and the Bragg spot (0, 1, 0) is accessible at the M3 edge
(≈1.266 keV) [43,45].

Returning to diffraction enhanced by a parity-odd E1-E2
event that exposes Nd Dirac multipoles 〈gK

Q〉, we find (σ ′σ ) =
(π ′π ) = 0 for (0, k, 0) with odd k. Anapoles (K = 1) are
absent in the rotated channels of polarization (π ′σ ) = (σ ′π )
and the amplitude is twofold periodic in the azimuthal angle,

(π ′σ ) = (i/
√

5)sin(2πky)
{
[� + cos2(θ )cos(2ψ )]

〈
g2

0

〉

+ 2
√

(2/3)cos2(θ )sin(2ψ )
〈
g2

+1

〉′

+
√

(2/3)[3� − cos2(θ )cos(2ψ )]
〈
g2

+2

〉′

+ 2
√

(10/3)cos2(θ )
[−sin(2ψ )

〈
g3

+1

〉′′

+ 2
√

(2/5) cos(2ψ )
〈
g3

+2

〉′′

+
√

(3/5) sin(2ψ )
〈
g3

+3

〉′′]}
, (0, k, 0) odd k,

(9)

with a∗ being in the plane of scattering for ψ = 0, and � =
[3cos2(θ ) − 2]. At the Nd L2 edge, cos2(θ ) ≈ 0.973 and � ≈
0.918 for k = 1.

IV. FERRIC IONS

Sites 2b and 2c used by Fe ions are centers of inversion
symmetry. In consequence, all electronic multipoles are of the
axial type. Electronic structure factors for the two independent
sites differ by a spatial phase factor. Moreover, structure fac-
tors are similar to that for Nd ions in terms of content, apart
from inversion excluding Dirac multipoles. Specifically,

	K
Q (2b) = (−1)h+l	K

Q (2c)

= (−1)h
[〈

OK
Q

〉 + σθ (−1)K+Q(−1)k+l
〈
OK

−Q

〉]
. (10)

Evidently, the symmetry of bulk magnetization of Fe ions and
axial Nd ions is identical.

A. Neutron diffraction

We continue to focus on basis-forbidden reflections.
There is no magnetic neutron diffraction at (0, k, 0) with
odd k, because 〈Q〉(+) is parallel to the reflection vec-
tor. Reflections (0, 0, l ) with odd l possess an amplitude
〈Q⊥〉(+) = (0, 〈Qη〉(+), 0) with e = [cos(χ ), 0, sin(χ )]. Re-
taining dipoles and quadrupoles,

〈Qη〉(+) ≈ 3
〈
T 1

η

〉 +
√

3
{
sin(2χ )

[〈
T 2

+2

〉′ −
√

(3/2)
〈
T 2

0

〉]

+ 2 cos(2χ )
〈
T 2

+1

〉′′}
. (11)

An approximation to the transition-metal dipole,

〈T1〉 ≈ (〈μ〉/3)[〈 j0(k)〉 + 〈 j2(k)〉(g − 2)/g], (12)

is often used [40]. Here, the magnetic moment 〈μ〉 = g〈S〉 and
the orbital moment 〈L〉 = (g−2)〈S〉. Values of 〈 j0(κ )〉 and
〈 j2(κ )〉 for ferric ions are displayed in Fig. 2 of Ref. [61].
The quadrupole 〈T2〉 is proportional to 〈 j2(κ )〉, and a nonzero
value relies on an admixture of at least two values of J in the
ground state [41,62].

B. Resonant x-ray diffraction

Iron L edges have energies L2 ≈ 0.721 keV and L3 ≈
0.708 keV, and the wavelengths are too large to satisfy Bragg
conditions for reflections (0, k, 0) and (0, 0, l ). The Fe K
edge occurs at ≈7.115 keV and the wavelength λ ≈ 1.743 Å
allows resonance-enhanced Bragg diffraction at the cited re-
flections. Previous studies using resonant x-ray diffraction at
the K edge of 3d transition-metal compounds include V2O3,
α-Fe2O3, and NiO [30,45,63,64].

An E2-E2 event (1s–3d ) has null unrotated amplitudes for
(0, k, 0) with odd k. For the rotated channels of polarization
[44],

(π ′σ ) = (σ ′π ) ≈ (1/2
√

5)
{ − i

√
2 sin(3θ )

〈
t1
η

〉

+ i
√

(3/2) sin(θ )[� + 5cos2(θ )cos(2ψ )]
〈
t3
+1

〉′′

− 2
√

(15/7) cos(3θ )
[
cos(ψ )〈t2

+1〉
′′

+ sin(ψ )
〈
t2
+2

〉′′]}
, (0, k, 0) odd k. (13)
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Hexadecapoles 〈t4
Q〉 are omitted from Eq. (13) for brevity [44].

As might be expected, E2-E2 and E1-E1 amplitudes are very
similar. Replacement of θ in Eq. (8) by 3θ in Eq. (13) is one
main difference, together with magnetic octupoles in Eq. (13).
The amplitude (σ ′σ ) can be different from zero for (0, 0, l )
with odd l , unlike space group forbidden (0, k, 0). A notable
feature of (σ ′σ ) for an E2-E2 event is that it contains the
dipole moment, which is not so for an E1-E1 event. Retaining
multipoles with ranks K = 1, 2, and 3, as in Eq. (13), we find

(σ ′σ ) ≈ i sin(2θ )sin(ψ )
(−

√
(1/10)

〈
t1
η

〉

+
√

(3/10)[1 − 5cos2(χ )cos2(ψ )]
〈
t3
+1

〉′′

−
√

3 sin(2χ )cos2(ψ )
〈
t3
+2

〉′′

+ (1/
√

2){1 + [3cos2(χ ) − 4]cos2(ψ )}〈t3
+3

〉′′)

−
√

(3/7)sin2(θ ) sin(2ψ )
[
cos(χ )

〈
t2
+1

〉′′

+ sin(χ )
〈
t2
+2

〉′′]
, (0, 0, l ) odd l. (14)

As before in Eq. (6), b∗ and the η axis are antiparallel for
ψ = 0. The magnetic part of (σ ′σ ) is a linear combination
of odd harmonics sin (ψ ) and sin (3ψ ), while chargelike
quadrupoles are proportional to sin (2ψ ).

V. POLAR MULTIPOLES

Although the magnetic space group P2′
1/c′ belongs to a

nonpolar crystal class (2′/m′) polar Nd multipoles 〈uK
Q〉 are

permitted [27,44]. They contribute with K = 1, 2, and 3 to
diffraction patterns enhanced by an E1-E2 event. Dipoles 〈u1〉
behave as displacements with regard to symmetry. A dipole
〈u1

η〉 occurs in (π ′σ ) for (0, 0, l ) with odd l . There are no
dipoles in (σ ′σ ) and (π ′π ). The latter contain quadrupoles
〈u2

Q〉′ and octupoles 〈u3
Q〉′′ and the amplitudes are proportional

to sin(2ψ) and odd functions of the Bragg angle θ . Diffraction
at (0, k, 0) with odd k is simpler, with (σ ′σ ) = (π ′π ) = 0.
Dipoles 〈u1

ξ 〉 and 〈u1
ζ 〉 contribute to (π ′σ ) = (σ ′π ), which is

proportional to sin(2θ ) and a sum of sin(ψ) and cos(ψ) alone,
e.g., [sin(ψ )〈u1

ξ 〉] and [cos(ψ )〈u1
ζ 〉].

VI. CONCLUSIONS

A survey of magnetic properties of the lanthanide orthofer-
rite NdFeO3 has revealed significant unanswered questions.
Specifically, we pursued ramifications of a magnetic space
group for the material using calculated Bragg diffraction
patterns [1,20]. Our results point to future experiments that
can reveal hitherto unknown properties that make NdFeO3 a
unique orthoferrite. Likewise, future simulations of the elec-
tronic structure can develop our understanding of its magnetic
properties.

In common with several other metal oxides, the favored
magnetic space group for NdFeO3 is monoclinic (orthofer-
rites possess an orthorhombic chemical structure). Findings
include a motif of neodymium Dirac multipoles that are parity
odd (polar) and time odd (magnetic). The motif is visible
in the diffraction of neutrons, and x rays tuned in energy to
an Nd atomic resonance. Anapoles (Dirac dipoles) are con-
fined to the a-c plane that accommodates axial (conventional)

magnetic dipoles. Fortunately, reflection conditions for Nd
Dirac multipoles are unique, meaning that axial multipoles
are forbidden in diffraction under the conditions required
for Dirac multipoles. Our predicted amplitudes include Dirac
quadrupoles and octupoles in addition to anapoles, and x-ray
amplitudes include rotation of the NdFeO3 crystal about the
reflection vector (an azimuthal-angle scan). To date, axial
dipoles parallel to the unique axis of the monoclinic unit cell
have not been observed in diffraction experiments [12,13]. We
provide the reflection conditions, and those for Templeton-
Templeton scattering caused by angular anisotropy in the Nd
charge distribution [46,47]. Nonmagnetic polar Nd multipoles
are permitted even though the monoclinic space group is cen-
trosymmetric, and relevant x-ray diffraction amplitudes are
discussed in Sec. V.

Ferric ions occupy sites in the monoclinic unit cell that are
centers of inversion symmetry, and it forbids Dirac multipoles.
Diffraction by Fe axial dipoles is the main source of data for
the assignment of the monoclinic space group that we have
scrutinized [12,13]. No data have been reported for dipoles
parallel to the unique monoclinic axis, and we delineate con-
ditions for future diffraction experiments. The amplitude for
magnetic neutron scattering includes a quadrupole that can
exist if the Fe ground state uses two or more J states [41,62].
An equivalent quadrupole operator is a product of the spin
anapole and orbital operator, whose existence in the ground
state reveals currently unknown properties.

Dichroic signals are obtained from structure factors equa-
tions (1) and (10) for Nd and Fe ions, respectively, evaluated
with Miller indices h = k = l = 0. Parity-odd signals are for-
bidden for both ion types. Linear dichroism using electric
dipole (E1) and electric quadrupole (E2) absorption events is
created by real parts of quadrupoles and hexadecapoles with
projections ±2, namely, 〈t2

+2〉′ and 〈t4
+2〉′ [24,27]. Magnetic

circular dichroism from an E1 event is created by 〈t1
ζ 〉, the

component of the axial dipole parallel to the local ζ axis in the
a-c plane of the chemical structure; cf. Fig. 2 [24,27,65]. An
E2 absorption event reveals the same dipole and the diagonal
component of the octupole 〈t3

0 〉.
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APPENDIX

With the reflection vector (0, 0, l ) and −ξ aligned,
as in Fig. 2, the electronic structure factor becomes
(−1)QdK

Qq(χ )	K
q , with an implied sum on projections q. The

argument χ of the Wigner rotation matrix satisfies cos(χ ) =
[sign(l )(a/co)]. For the Nd reflection (0, 0, l ) with odd l , an
E1-E2 absorption event, and abbreviations C = cos(χ ), S =
sin(χ ),

(σ ′σ ) = (4i/5)
√

3 sin(π l/2)cos(θ )sin(ψ )

× {
C

[−〈
g1

ζ

〉 + (1/3)
√

10
〈
g2

+2

〉′′]

+ S
[〈

g1
ξ

〉 − (1/3)
√

10
〈
g2

+1

〉′′]
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+
√

(2/3)C[1 − 5C2cos2(ψ )]
〈
g3

0

〉

+ (1/3)
√

2S[1 − 15C2cos2(ψ )]
〈
g3

+1

〉′

+ (2/3)
√

5C[1 − 3(1 + S2)cos2(ψ )]
〈
g3

+2

〉′

−
√

(10/3)S[C2 + (1 − 4C2)cos2(ψ )]
〈
g3

+3

〉′}
.

(A1)

Anapole and quadrupole contributions feature in Eq. (6), and
numerical coefficients in Eq. (A1) comply with Ref. [44].
Evidently, octupole contributions to (σ ′σ ) modify the simple
sin(ψ) azimuthal-angle dependence that hallmarks anapoles
and quadrupoles. The reciprocal lattice vector b∗ and the η

axis are antiparallel at the start of an azimuthal-angle scan,
where (σ ′σ ) = 0.
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