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Neutron scattering from fragmented frustrated magnets
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The fragmentation description is used to analyze calculated neutron scattering intensities from kagome ice
and spin ice systems. The longitudinal, transverse, and harmonic fragments produce independent contributions
to the neutron scattering intensity. This framework is used to analyze the ordering due to quantum fluctuations
in the topologically constrained phase of kagome ice and the monopole crystal phase of spin ice. Here, quantum
fluctuations are restricted to the transverse fragment, and they drive the system into a double-q structure in which
longitudinal and transverse fragments have a different ordering wave vector. The intensity reduction of the Bragg
peaks for the transverse fragments, compared with known classical limits, can be used as a diagnostic tool for
quantum fluctuations. Published quantum Monte Carlo data for spin ice in a [111] field are consistent with the
proposed protocol.

DOI: 10.1103/PhysRevB.107.214425

I. INTRODUCTION

Emergent gauge field descriptions [1] have revolutionized
our vision of frustrated magnetism, leading us far from our
expectations for microscopic systems. The monopole pic-
ture [2,3] of spin ice [4,5], the U(1) quantum spin liquid
phase [6–9], and, more recently, the possible emergence of
gauge fields of higher rank [10] are particularly remarkable
examples. In spin ice this emergent description is a good
approximation even at the microscopic level [11–14], so that
the magnetic moments represent elements of a lattice field
which, at low temperature and in zero external field, is the
curl of an emergent gauge field, �A [1,15]. This so-called
“transverse” field leads to dipolar spin correlations in the
low-temperature “Coulomb” phase [16]. The excitations of
magnetic monopoles out of this monopole vacuum requires
the syphoning off of a part of this magnetic flux reservoir to
create an orthogonal, or “longitudinal,” field, the gradient of a
scalar potential �. Application of an external magnetic field
or the presence of surface charges requires a further separation
giving the required harmonic field contribution [17,18], �h.
This fragmentation of the magnetic resources [15,19] cor-
responds to a Helmholtz-Hodge decomposition [18] of the
emergent vector field

�M = ∇� + ∇× �A + �h. (1)

In this paper we explore the consequences of fragmentation
for neutron scattering on spin-ice-like systems, concentrating
on those in which quantum fluctuations are in competition
with, or responsible for, the development of long-range mag-
netic order. In these systems, because of the separation in
energy scales associated with the transverse and longitudinal
fragments, quantum fluctuations are largely restricted to the
transverse fragment. As a result, the fragmentation picture is
extremely useful for the analysis. A characteristic of the or-
dered phases discussed is that the longitudinal and transverse
fragments order with different wave vectors giving examples

of “double-q” structures [20]. As our main example we con-
centrate on order driven from the “KII” phase, a topological
liquid phase of kagome ice [21–23]. We show that, while
the longitudinal fragment responsible for the charge orders in
a q = 0 structure, the transverse fragment orders at a finite
wave vector characteristic of the “dimer star phase” defined
in detail below. The KII phase is generated in models of
two-dimensional kagome ice that include long-range mag-
netostatic interactions and in the kagome spin planes lying
perpendicular to an external field placed along the [111] di-
rection in a spin ice material. Ordering out of the KII phase
can be driven either classically by potential energy [21,22]
or by quantum fluctuations in quantum spin models [24,25].
We make predictions for neutron scattering intensities from
classical and quantum ordered states and compare them with
published numerical data from quantum Monte Carlo simu-
lations on quantum spin ice in a [111] field [25]. We also
comment on the analogous three-dimensional system, the
monopole crystal phase of quantum spin ice [26] in which
a dense, ordered monopole structure would cohabit with a
quantum spin liquid superposition of the transverse fragments.

The problems considered map onto dimer problems via
their emergent field description [27]. In these phases, which
show magnetic charge order, the transverse fragment maps
exactly onto one of the Z2 sectors of these emergent fields. The
magnetic charge ordering explicitly breaks this Z2 symmetry
leaving a unique opportunity to observe dimer physics, quan-
tum or classical, with a dipolar probe. That is, using neutron
scattering within the dipole approximation, one can visualize
the correlations emerging from the fictive quadrupolar objects.

The rest of the paper is organized as follows: In the
next two sections we review the fragmentation picture for
spin ice and its two-dimensional equivalent. In Sec. IV we
show that neutron scattering data conveniently split into
identifiable contributions from the transverse, longitudinal,
and harmonic fragments. We illustrate this discussion using
the low-temperature, “

√
3×√

3” phase of classical dipolar
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FIG. 1. Pyrochlore lattice (blue) and its dual diamond lattice
(black). Tetrahedra of type A (B) are shown in shaded purple (green).
The cubic unit cell is delimited by the dashed lines and contains 16
sites. The gray arrows show the four �di vectors defined in the text.

kagome ice. In Sec. V we show how quantum fluctuations
quantitatively change the predicted neutron scattering pat-
terns as the classical phase changes to a quantum resonating
phase and illustrate how this can be used as a diagnostic
tool for detecting quantum fluctuations. In Sec. VI we relate
our discussion to published quantum Monte Carlo data [25].
Section VII deals with the monopole crystal in spin ice, and
the paper concludes with a general discussion. Throughout
this paper we refer to the kagome plateau region of spin ice
with an applied [111] field as the kagome plateau and to
the two-dimensional problem of a single kagome plane of
triangles as kagome ice.

II. A REVIEW OF FRAGMENTATION

Spin ice forms a pyrochlore lattice of corner-sharing tetra-
hedra, a four-sublattice face-centered cubic structure. The
convention in discussing this system is to use an overlying
cube of side ac containing 16 sites, as shown in Fig. 1.
A laboratory frame [x̂, ŷ, ẑ] is then defined with respect to
the basis vectors of the cube. The spins take discrete ori-
entations, pointing towards or away from the centers of the
tetrahedra, along one of the four body diagonals of the
cube: �Si = ±�di,

�d1 = 1√
3

[−1,−1, 1], �d2 = 1√
3

[1,−1,−1],

�d3 = 1√
3

[−1, 1,−1], �d4 = 1√
3

[1, 1, 1]. (2)

At the microscopic level, the monopole picture corresponds
to replacing the spins by needles carrying magnetic flux and
therefore dumbbells [2,28] of magnetic charges into the cen-
ters of the tetrahedra. The tetrahedra form a diamond lattice of
magnetic charge vertices, with a spin on each bond. The spins
and diamond lattice sites are labeled i, j and I, J , respectively.
The needles carry flux units of m/a, where m is the magnetic
moment associated with the spin and a =

√
3

4 ac is the diamond
lattice constant. They can thus be considered as elements of
a lattice field lying along the bonds of the diamond lattice:

MIJ = (�Si. �di ) m
a ηI . For the bipartite diamond lattice, ηI = 1 for

a tetrahedron of type A, in which the out-pointing spin �S1 falls
along �d1, and ηI = −1 for type B, which is the inverse. This
convention ensures that MIJ = −MJI . These scalar elements
can be converted into vector field elements by multiplying
once again by the unit vector �di lying on the bond IJ , �MIJ =
MIJ �di = − �MJI , which is proportional to the vector spin at the
center of the bond.

The magnetic charge associated with each vertex is given
by a discrete, on-lattice Gauss’s law;

∑
J MIJ = −QI , where

the sum goes over the four nearest neighbors J to site I . The
minus sign allows for the satisfaction of properties of both
the emergent field and the real magnetostatic problem of spin
ice [19]. The vertex charge takes values QI = 0,±Q,±2Q,
where Q = 2m/a is the monopole charge [2]. Labeling the
four field elements [MIJ ] in order 1 · · · 4 [see Eq. (2)], a vertex
satisfying the ice rule, with QI = 0 (two spins pointing in
and two pointing out) can be written [MIJ ] = [1, 1,−1,−1]
in units of m/a. Using the same notation, monopole-carrying
vertices are of the form [MIJ ] = ±[1,−1,−1,−1] for
QI = ±Q.

At this microscopic level, the Helmholtz-Hodge decom-
position implies that each vertex set [MIJ ] is cut into three
distinct parts indicated by Eq. (1):

[MIJ ] = [MIJ ]m + [MIJ ]d + [MIJ ]h. (3)

Here, m stands for monopole and represents the divergence-
full longitudinal part, d stands for the divergence-free
transverse part, and h stands for the harmonic contribution.

The decomposition can be calculated for any spin con-
figuration by first identifying the vertices carrying magnetic
charge and solving for the longitudinal field components via
the Poisson equation [29]. Assuming periodic boundary con-
ditions, the sum of the transverse and harmonic contributions
is then the difference [MIJ ] − [MIJ ]m, which should satisfy
Kirchoff’s current law at each vertex. A more practical alter-
native method [30] iteratively calculates the divergence-free
part [MIJ ]d + [MIJ ]h for a given charge distribution, yielding
[MIJ ]m by the appropriate subtraction.

The harmonic contribution can be understood by consider-
ing the solution to Poisson’s equation for charges distributed
on a torus. It is invariant on adding a term ψ ′(�r) = �h · �r to the
scalar potential, with �h being the spatially uniform harmonic
field. As a consequence, multivalued solutions are analytically
connected by winding a charged particle around the torus,
returning to its starting position [29,31]. Winding a charge q
along the ẑ axis of a torus of scale L in dimension d would
change �h by δ�h ∼ q

Ld−1 ẑ.
Moving these arguments directly to spin ice puts us on the

diamond lattice of charge vertices with the cubic axes lying
along the principal directions of the torus. The individual solu-
tions correspond to different topological sectors [32] which fix
the topological contribution to the magnetization. For simplic-
ity, here we consider a situation with monopole concentration
zero and magnetization maintained along the [001] direction
either by an external field or by a symmetry-breaking per-
turbation [33]. The average magnetization per spin is then
�M = m√

3
εẑ, from which we can identify a harmonic fragment

for each field element of amplitude ε in units of m/a. For
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any vertex lying on the A sublattice, the harmonic flux flows
out along elements 1 and 4 and in through elements 2 and 3
[see Eq. (2)]:

[MIJ ]h = m

a
[ε,−ε,−ε, ε], 0 � ε � 1. (4)

For a B sublattice the signs are reversed. As the magnetization
becomes saturated, ε → 1 and the harmonic fragment takes
on 100% of the magnetic resources.

The topological harmonic fragment remains defined even
in the presence of a finite monopole concentration [29]. In this
case, it will be dressed by a paramagnetic contribution to the
magnetization due to the statistics of monopole configurations
of finite extent. We choose to include this contribution as part
of the longitudinal fragment, but both ultimately contribute
to the magnetization and its fluctuations [32]. More realistic
boundaries, with fixed surface charges and defects [34], will
result in a harmonic component with some structure. Conse-
quently, this will generate some diffuse scattering at finite �q in
addition to the topological contribution at �q = 0.

The topological sectors are isoenergetic (unlike for a stan-
dard fluid of electric charges [29]), but in zero field the
sector straddling zero magnetization is selected entropically.
As a consequence, in the monopole fluid phase, in zero
external field, the harmonic contribution is zero to a good
approximation, so that the field built from the magnetic mo-
ments decomposes into two “orthogonal” fluids with elements
[MIJ ]m and [MIJ ]d [15].

As the monopole concentration goes to zero, only the trans-
verse fragment survives, [MIJ ] → [MIJ ]d , while crossing the
phase boundary into the all-in–all-out antiferromagnetic phase
(a double monopole crystal [35,36]), the field elements are
purely longitudinal, [MIJ ] → [MIJ ]m. The monopole crystal
phase [15,37–40] is intermediate between these two limits
[36] with [MIJ ] divided evenly between [MIJ ]m and [MIJ ]d.
The monopole part forms long-range all-in–all-out order, and
the dipolar part forms a Coulomb liquid with characteristic
dipolar correlations.

III. FROM THE KAGOME PLATEAU
OF SPIN ICE TO KAGOME ICE

Applying a magnetic field of modest strength along the
[111] body-centered cubic axis aligns the apical spins of each
tetrahedron along the field direction, as shown in Fig. 2. As
the monopole concentration goes to zero, the system enters
the kagome plateau region [41], in which kagome planes of
spins lying perpendicular to the field direction enter the KII
topological liquid phase with residual entropy at low temper-
ature. In each tetrahedron the ice rules of two spins in and two
out are satisfied, but as the apical spin is fixed to be out for
an A tetrahedron and in for B, the three remaining spins in the
in-plane triangles satisfy the kagome ice rule with two spins
in and one out on an A triangle and two out and one in on a B
triangle [42].

This evolution is well captured by fragmentation. A
magnetic moment along the [111] axis can be decom-
posed into three cubic contributions of equal amplitude,
each of which generates an independent harmonic fragment.

FIG. 2. Pyrochlore spin ice in a [111] field, showing the distinc-
tion between planes of pinned apical spins on a triangular lattice
(green) and kagome planes satisfying the kagome ice rules (red).

Following Eq. (2), a vertex of type A has harmonic fragment

[MIJ ]h = [MIJ ]x
h + [MIJ ]y

h + [MIJ ]z
h,

[MIJ ]h = [−ε, ε,−ε, ε] + [−ε,−ε, ε, ε] + [ε,−ε,−ε, ε],

[MIJ ]h = [−ε,−ε,−ε, 3ε], 0 � ε � 1
3 . (5)

The kagome plateau corresponds to ε = 1
3 , so that for one

of the three vertex configurations with spin 4 pointing along
[111]

[MIJ ] = [−1,−1, 1, 1]

= [0]m + [− 2
3 ,− 2

3 , 4
3 , 0

]
d + [− 1

3 ,− 1
3 ,− 1

3 , 1
]

h.

(6)

The longitudinal fragment is zero, and the transverse frag-
ment is restricted to the three spins in the plane with two
elements of amplitude 2/3 and one of 4/3, which together
satisfy Kirchoff’s law. The harmonic term is identical for each
tetrahedron or unit cell, spreading out evenly over the three
in-plane spins. The apical spin is purely harmonic, and the
sum over the contributions also satisfies the current law.

Spin ice fragmentation on the kagome plateau is inti-
mately related to the fragmentation of two-dimensional spins
in kagome ice. In this case the basic spin units are trian-
gles whose centers form a honeycomb lattice of vertices for
magnetic charge accumulation [15,21,22,43]. Considering the
spins in an isolated kagome layer on the kagome plateau, the
in-plane projection of the harmonic terms leaves a magnetic
charge accumulation at the honeycomb lattice sites corre-
sponding to the magnetic charge crystal observed in the KII
phase of kagome ice [21,22]. The three-dimensional harmonic
term therefore corresponds to a two-dimensional longitudinal
term. Using a similar notation to the one used above, the
two-dimensional three field elements entering a triangle of
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FIG. 3. Top: fragmentation of the
√

3×√
3 phase magnetic structure on a kagome plane. The magnetic unit cell extends over nine sites.

Colors illustrate the amplitude of each component, and green and purple spheres show the placement of positive and negative magnetic charges
within the dumbbell model. Left panel, full spin configuration. Middle panel, longitudinal fragment �Mm showing “all-spins-in–all-spins-out”
ordering. Right panel, transverse fragment �Md showing emergent ordering of the star phase. Bottom: SF neutron scattering intensities for
neutrons polarized perpendicular to the plane computed from the total spin structure and the corresponding fragment above. The total scattering
picture can also be computed by adding the separate intensities of the two fragments.

type A can be written

[MIJ ]2D = [−1,−1, 1]

= [− 1
3 ,− 1

3 ,− 1
3

]
m + [− 2

3 ,− 2
3 , 4

3

]
d + [0]h. (7)

The units of the field elements are 2m
a
√

2/3
, accommodating the

projection of the three-dimensional spin vectors onto the plane
[44], and the charge accumulation at the honeycomb vertices
is only one-half of the in-plane monopole charge [2,45]. An
example of such a decomposition is shown in Fig. 3 for the
ordered

√
3×√

3 phase discussed in more detail in the next
section.

IV. NEUTRON SCATTERING FROM
FRAGMENTED STATES

The fragmentation decomposition is particularly useful for
magnetic neutron scattering as the longitudinal and transverse
fragments, when transformed into reciprocal space, are mu-
tually orthogonal, while the topological harmonic fragment is
restricted to wave vector �q = �0 and subsequent Brillouin zone
centers. For a system of N spins the Fourier transform of a

magnetic configuration is defined

�M(�q) = m
∑

i=1,N

�Si exp(i �q · �ri )

= a
∑

I=1,N/4

∑
J=1,4

�MIJ exp (i �q · (�rI + �δJ )). (8)

The spin and tetrahedron centers are at positions �ri and �rI ,
respectively, and �δJ = a

2
�dJ .

Following the spin fragmentation, we can write �M(�q) =
�M(�q)m + �M(�q)d + �M(�q)h. The component �M(�q)d is “trans-

verse” in that it lies perpendicular to the wave vector �q∗ =
�q − �G, which is folded back into the first Brillouin zone by
the appropriate reciprocal lattice vector �G. Both the “longi-
tudinal” component, �M(�q)m, and the harmonic component,
�M(�q)h, lie parallel to �q∗ with the latter restricted to the Bril-

louin zone centers.
Neutron scattering within the static approximation gives

access to the Fourier transform of the two-site, one-time, spin-
spin correlation function

Sαβ (�q) = 〈Mα (�q)Mβ (−�q)〉, (9)
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where α, β are Cartesian indices x, y, z, �q is the wave vec-
tor transfer of the scattering process, and 〈· · · 〉 represents
a thermal average. The neutron scattering cross section is
proportional to the projection of the correlation tensor perpen-
dicular to �q

S(�q) = 〈| �M⊥(�q)|2〉, (10)

where �M⊥ is the projection of �M perpendicular to �q. For
simplicity we take the magnetic form factor to be a constant,
independently of �q.

As a consequence of the orthogonality condition the struc-
ture factor also decomposes into distinct parts

S(�q) = S(�q)m + Sd(�q), (11)

so that the scattering intensity divides into components from
the divergence-full fragment (plus the harmonic fragment at
the zone centers) and the divergence-free fragment of the mag-
netic moments with no interference terms. In the following
sections we will demonstrate this property by computing the
elastic scattering intensity of each fragment as well as of the
total spin structure for different fragmented magnetic states.
This property opens up the possibility of defining fragmenta-
tion order parameters by integrating the scattered intensity in
specific regions of reciprocal space.

Inside the first Brillouin zone the scattering is purely
transverse: S(�q) = Sd(�q). For larger �q, as the scattering cross
section lies perpendicular to �q rather than �q∗, S(�q) develops
contributions from the other two fragments. The separation of
these fragments has already been observed in magnetic charge
crystal phases [15,38,39,43,46]. In these phases the harmonic
component can be ignored, the longitudinal fragment gives
antiferromagnetic long-range order corresponding to the or-
dered array of magnetic charges, and the transverse part gives
diffuse scattering characteristic of the Coulomb spin liquid
phase [16].

In the case of polarized neutrons, S(�q) can be further
resolved into “spin flip” (SF) and “non-spin-flip” (NSF)
components corresponding to scattering events in which the
neutron spin direction is flipped or not [14]. The SF scattering
cross section lies in the plane perpendicular to the polarization
axis and projects out the component of �M⊥(�q) lying in this
plane. The NSF component projects �M⊥(�q) onto the polariza-
tion axis. This refinement leads to separate contributions to
the structure factor, S(�q)SF and S(�q)NSF, for scattering perpen-
dicular and parallel to the polarization axis, each of which can
be decomposed into the perpendicular fragmentation compo-
nents. For an unpolarized source the measurement averages
over all polarization directions leaving the total scattering
intensity proportional to S(�q). Polarized neutron refinement is
of particular interest for scattering from spin ice materials on
the kagome plateau. In this case, choosing the neutron polar-
ization along the [111] field direction allows for the resolution
of spin components parallel and perpendicular to the kagome
plane [44].

As a specific example we show the decomposition of
the scattering intensity from a two-dimensional sample of
kagome ice. A possible evolution of the classical KII phase, as
the temperature is lowered, is to the “

√
3×√

3” phase, whose
structure is illustrated in the top panels of Fig. 3 [21,22]. The
repetition distance for the unit cell is

√
3 larger than that of

the kagome lattice. As shown, the spins in the unit cell can
be fragmented. The longitudinal part gives the charge order
of alternate positive and negative charges, with a reduced unit
cell of three sites. The transverse part maintains the nine-site
unit cell, whose configuration maps onto the emergent field
of a dimer solid, the “star phase” in which a tiling of the unit
cells produces three distinct types of hexagonal ring. One out
of the three types of hexagon forms a sixfold-symmetric star
of dimers, from which the phase takes its name [47,48]. The
longitudinal, transverse, and total contributions to the scatter-
ing intensity from this ordered state are shown in the bottom
panels of Fig. 3. For the kagome plateau of spin ice, this
in-plane scattering intensity would correspond to S(�q)SF with
the neutron source polarized along the [111] direction. In this
case the longitudinal fragment corresponds to the projection
onto the plane of the three-dimensional harmonic component,
which is channeled out of each tetrahedron via the apical
spin (not included) [44] [see Eqs. (6) and (7)]. The data are
shown in the scattering plane of the kagome lattice in units
appropriate for spin ice and the kagome plateau: the in-plane
axes [k, k, 2k̄], [h, h̄, 0] lie perpendicular to the [111] field
axis and are in units of 2π/ac. The sixfold symmetry of the
spins lying in the plane is represented in the figure by scaling
the [k, k, 2k̄] axis by a factor of 1√

3
.

This analysis shows that rather surprisingly, this simplest
of phases, the classical

√
3×√

3 phase, is a fragmented
double-q structure whose scattering pattern is the sum of
intensities from the longitudinal and transverse parts. These
fragments have different ordering wave vectors and have no
communal Bragg peaks, so that the total scattering is made
up of resolvable contributions from the charge ordering and
the emergent field from the star phase. The charge ordering
from the longitudinal component corresponds to antiferro-
magnetic, “all-spins-in–all-spins-out” order. This is a “�q = 0”
order, with Bragg peaks at the centers of the kagome lattice
Brillouin zone starting at h = 2, k = 0 and symmetry-related
points, the scattering intensity being zero at the zone centers
with smaller wave vector transfer. The star phase from the
transverse component shows Bragg peaks at h = 2

3 , k = 0
and symmetry-related points. These correspond to the basis
vectors of the reciprocal space for the

√
3×√

3 unit cell with
magnitude q = 2π

ac
( 2

√
3

3 ). Peaks at larger q repeat in a distinc-
tive, sixfold-symmetric pinwheel pattern which we can take to
be characteristic of the star phase.

V. QUANTUM FLUCTUATIONS: THE SPIN-P
AND PLAQUETTE PHASES

In this section we consider the effect of quantum fluc-
tuations on the KII phase of kagome ice. It is known that
quantum fluctuations driven by a small transverse spin com-
ponent could drive the spins into a partially ordered phase at
low temperature [23–25]. In this resonating

√
3×√

3 phase,
which we refer to as the spin-P phase, two of the three types
of hexagonal spin arrangement provide a framework for res-
onating loops of six spins around the third class of hexagon.
This quantum resonance corresponds to a linear superposition
of the two states per unit cell with spin rotations around the
enclosed hexagon in opposite directions, leaving an effective
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FIG. 4. Top: fragmentation of the spin-P phase magnetic structure on a kagome plane. The magnetic unit cell extends over nine sites.
Colors illustrate the amplitude of each component, and green and purple spheres show the placement of positive and negative magnetic charges
within the dumbbell model. Left panel, full spin configuration. The quantum resonance on the hexagonal loop results in the effective absence of
spins around the loop. Middle panel, longitudinal fragment �Mm showing “all-spins-in–all-spins-out” ordering. Right panel, residual transverse
fragment �Md corresponding to the residual emergent field of the dimer plaquette phase (see top panel of Fig. 5). Bottom: SF neutron scattering
intensities for neutrons polarized perpendicular to the plane computed from the total spin structure and the corresponding fragment above.
The total scattering picture can be computed by adding the separate intensities of the two fragments. Note that the absolute intensity scale is
one-quarter of that in Fig. 3.

magnetic state with reduced total moment, as shown in the top
left panel of Fig. 4.

To show that the spin-P phase corresponds to the coexis-
tence of the classical charge ordered phase and an emergent
quantum dimer phase [47,48], one must first apply the frag-
mentation procedure to the effective reduced moments once
the quantum spin resonances have been taken into account.
From the top panels of Fig. 4, one can see that the residual spin
on each triangle can be written, using the previous notation, as
±[−1, 0, 0], arranged such that the charge order is preserved.
A vertex carrying a positive charge can thus be fragmented
into a longitudinal and a transverse part

[−1, 0, 0]=[− 1
3 ,− 1

3 ,− 1
3

]
m + [− 2

3 , 1
3 , 1

3

]
d + [0]h. (12)

This decomposition confirms that, on driving the
√

3×√
3

phase into the spin-P phase with quantum fluctuations, the
charge ordering and hence the longitudinal fields are un-
changed, while the amplitude of the transverse part is reduced
by a factor of 2. The quantum resonance is therefore limited
to the transverse fragment as announced. In dimer language,

adding quantum fluctuations to the star phase leads to res-
onating closed loops of dimers, which can lead to a quantum
phase transition to the “plaquette phase.” This is not a liquid
phase, as dimer translational symmetry remains broken such
that resonances are limited to plaquette flips of dimers around
one of the three types of hexagon of the star phase. The cor-
responding resonance of the emergent field for the dimers is
shown in the top panel of Fig. 5. Similarly to the residual spin
of the spin-P phase, it is constructed as the average of both
emergent field configurations around a plaquette. Despite the
resonance, the field retains a static residue which is precisely
that of the transverse spin fragment shown in Eq. (12). The
spin-P phase is therefore a superposition of the charge ordered
phase and the dimer plaquette phase represented by a single Z2

sector of its emergent field.
In the simplest quantum dimer models, quantum fluctua-

tions are generated through off-diagonal couplings between
classical configurations that generate the hexagonal plaquette
flips of dimers [47,48]. The off-diagonal energy scale, g, is
in competition with a classical, three-body interaction term,
μ, giving an energy scale for a three-dimer hexagon and an
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FIG. 5. Top: the quantum resonance of the emergent field for
dimers in the plaquette phase is modeled as the average of left
and right circulations. Emergent dimers are located on the purple
minority spins. The resultant quantum superposition is shown below,
with a purple shade illustrating the dimer resonance of the plaque-
tte phase. Colors illustrate the amplitude of each spin component.
Bottom: phase diagram of the dimer model given by Eq. (13) on the
honeycomb lattice [47].

internal energy for each dimer configuration. An effective
Hamiltonian for such a system can be written

(13)

where the sum over � is over all hexagonal loops containing
three dimers, depicted by double links. For g = 0 and μ < 0,
one finds the classical star phase dimer solid [47,48], and for
μ > 0, the columnar phase which maps onto the ferromag-
netically ordered phase for both kagome and spin ice [42].
As g increases from zero, the star phase order parameter is
progressively reduced from saturation [48] up to a threshold
and a discontinuous transition into a small window around
μ/g = 0, in which quantum fluctuations favor the plaquette
phase (see bottom panel of Fig. 5). In the mapping between
quantum spin ice and dimer problems, μ < 0 could be thought
of as representing the corrections to the dumbbell model from
the long-range interactions, which are characteristic of spin
ice materials [49,50] and artificial spin ice [51] as, in classical
kagome ice, they also drive the system into the

√
3×√

3 phase
at low temperature [22]. In the direct mapping from classical
nearest-neighbor models, μ is zero, but it is often left as a
renormalizable, free parameter [7].

Neutron scattering data from the spin-P phase are easily
interpreted using the fragmentation picture. We again ex-
pect the data to separate into independent longitudinal and
transverse components and predict that the transverse scatter-

FIG. 6. Unpolarized neutron scattering data in the kagome plane
from quantum Monte Carlo simulations of quantum nearest-neighbor
spin ice in a [111] field. Left: T

J = 1
20 . Right: T

J = 1
320 . Data are

reproduced from Ref. [25] with permission.

ing intensity will be reduced by a factor of 4 compared with
scattering from the classical

√
3×√

3 phase. This is confirmed
in Fig. 4, where we show calculated neutron scattering data
from the spin-P phase for neutrons polarized perpendicular to
the scattering plane. The intensity scale is reduced by a factor
of 4 compared with Fig. 3, highlighting the relative change
in the two intensities. The peak structure is identical for the
classical and quantum phases, but the intensity difference can
be used as a diagnostic to distinguish between them. For
example, in the classical limit for the

√
3×√

3 phase, the
intensity of the inner ring of star phase peaks at h = 2

3 , k = 0
and symmetry-related points, Is

d , is four times that of charge
ordering peaks at h = 2, k = 0 and related points, Im, while
in the spin-P phase, the two sets of peaks, I p

d and Im, have the
same intensity.

This difference could be used as the basis for an order
parameter:

Q =
√

4Im − Id

3Im
, (14)

which distinguishes between the two phases, with Q = 0 for
the classical

√
3×√

3 ground state and Q = 1 for a perfect
plaquette phase. This order parameter has the advantage over
the one used in quantum Monte Carlo simulations of dimers
[48] of being built from experimental observables.

The most recent numerical results suggest that the star-to-
plaquette quantum phase transition is first order [48]. As a
consequence we anticipate that Q will undergo a discontinu-
ous jump at the transition.

VI. QUANTUM SPIN ICE IN A [111] FIELD

In this section we review data from existing work in the
context of the fragmentation picture. Shown in Fig. 6 are
constructed unpolarized neutron scattering data in the kagome
plane from quantum Monte Carlo simulations. The data, for
nearest-neighbor quantum spin ice in a [111] field, are repro-
duced from Ref. [25]. They are taken in the intermediate field
region corresponding to the kagome plateau. The right-hand
panel shows data taken at T

J = 1
20 , where T is the temper-

ature and J is the coupling constant. It is consistent with
Coulomb phase spin liquid behavior, showing correlated dif-
fuse scattering with pinch point features [42,44]. Bragg peaks
at the Brillouin zone centers (h = 2, k = 0, for example) are
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masked. In an experiment these would also coincide with the
structural Bragg peaks. On the right we show data at much
lower temperature, T

J = 1
320 , where the development of order

is clearly observed. A different choice of scale along the
vertical axis distorts the sixfold symmetry of the scattering
pattern, but despite this, one can observe features similar to
those shown in Figs. 3 and 4. In particular, sharpening peaks at
h = 2

3 , k = 0 and symmetry-related points are clearly visible
at the lower temperature. These are the first elements of the
radial pattern of peaks characteristic of the pinwheel ordering
of the emergent dimers. Moving out along one of the spokes of
the pattern the characteristic alternation of high and low inten-
sity peaks is visible. Even here a diffuse scattering background
remains, due presumably to remnant incoherent or thermal
spin fluctuations about the ordered phase. The figures also
show additional peaks compared with Figs. 3 and 4. These
are due to scattering from the out-of-plane spin components
which appear as a consequence of simulating an unpolarized
neutron source.

The order parameter Q [Eq. (14)] could be used as a diag-
nostic tool to distinguish between the classical

√
3×√

3 and
quantum spin-P phases. For this, one would need to include
and analyze the magnetic peak intensities at the zone centers
coming from the harmonic fragment. Projections of the har-
monic sector parallel and perpendicular to the kagome planes
provide both the three-dimensional ferromagnetic order and
the two-dimensional charge order, which can be separated
using the analysis of Sec. III. In experiment the total intensity
at these points also includes a dominant structural contribu-
tion. An independent estimate of this intensity is necessary.
This would be subtracted from the total to give the magnetic
scattering intensity. However, in the present case of numer-
ical simulation, the simulated intensities could be compared
directly with predicted values.

VII. NEUTRON SCATTERING FROM THE MONOPOLE
CRYSTAL PHASE OF SPIN ICE

Similar logic involving the fragmentation protocol can be
applied to the ordering process out of the partially ordered
fragmented monopole crystal phase of spin ice in zero mag-
netic field [15,26], and this is the subject of this section. In
the monopole crystal phase a vertex carrying a south pole
(negative charge) takes the form

MIJ = [1, 1, 1,−1]

= [
1
2 , 1

2 , 1
2 , 1

2

]
m + [

1
2 , 1

2 , 1
2 ,− 3

2

]
d, (15)

and the transverse fragment maps onto one of the Z2 sectors of
the emergent field for hard-core dimers on a diamond lattice
[27]. In this case, the element carrying the flux of magnitude
( m

a )( 3
2 ), which is the minority spin of either the “three-in–

one-out” or the “three-out–one-in” vertex, corresponds to the
dimer position. Monopole charge ordering again coexists with
an effective classical dimer liquid represented by the trans-
verse spin fragment.

Complete ordering can again be induced either by quantum
fluctuations or by classical corrections to the monopole pic-
ture. As in the case of kagome ice, adding corrections to the
classical monopole picture through the use of the dipolar spin

ice Hamiltonian drives the system into the fully ordered phase
illustrated in the top panels of Fig. 7 [26], which we refer to
as the spin-R phase. The top middle and top right panels show
the longitudinal and transverse fragments, respectively. They
show that this can be represented as a classical superposition
of the “all-spins-in–all spins-out” order from the charges and
the emergent field from the phase of ordered dimers, the R
phase [52], and that these distinct phases emerge from the
two orthogonal spin fragments. The 16-fold degeneracy of
the spin-R phase can be divided into two sets of eight states
corresponding to the degeneracy of the R phase. The two sets
have reversed monopole ordering on the two sublattices of the
diamond lattice, each of which is tied to a Z2 sector of the
emergent dimer field.

The calculated unpolarized neutron scattering intensity
from the spin-R phase is shown in the bottom panels of Fig. 7
for the [hh0], [00l] plane. They confirm that the scattering
decomposes into a fragmented double-q structure with differ-
ent ordering wave vectors for the longitudinal and transverse
parts. The longitudinal fragment shows the characteristic q =
0 ordering of the ionic crystal, while the transverse part orders
with �q = [hhl] in units of the reciprocal cubic cell, 2π

ac
, and

with h + l being an odd number. The total intensity is again
built of the two independent fragments with no interference
terms.

Quantum fluctuations can be added to the dimer model
via ring exchange flips around closed hexagons for which
Hamiltonian (13) can be adapted. This model has been studied
both analytically [47,53] and numerically [52]. For large and
negative μ, the dimers crystallize into the classical R phase,
which maximizes the number of hexagonal loops or plaquettes
of dimers (top left panel of Fig. 7). Switching on the off-
diagonal term through finite g, the system is driven through
a quantum phase transition. In this case the transition is to a
quantum dimer liquid rather than to a resonating dimer solid.
For μ/g = 1, hexagonal plaquettes become unfavorable, and
the system passes discontinuously into a columnar phase [54]
with dimers aligned along one of the [111] axes. The full
dimer phase diagram is shown in the bottom panel of Fig. 8.

For the monopole crystal, such emergent dimer moves are
generated by small transverse spin coupling compared with
the nearest-neighbor exchange. Application of degenerate per-
turbation theory [53] yields a parameter ratio for the effective
dimers of μ/g = 0, which is deep in the classical R phase.
The critical threshold [47,53] for entry into the quantum dimer
liquid is estimated numerically to be μ/g ∼ 0.7 [52]. As a
consequence, we do not anticipate the appearance of an ef-
fective quantum dimer liquid in this system. In addition, as
the inclusion of dipolar corrections to the classical monopole
model sees the system order into the spin-R phase [26], this
would take a putative quantum system, inclusive of dipolar in-
teractions, even further from an emergent dimer liquid phase.

However, if one could push the system into the quantum
dimer liquid phase [55], the neutron scattering signature for
the emergent field would strongly resemble that of quantum
spin ice [7]. The emergent field for the quantum dimers maps
to lattice quantum electrodynamics (LQED) [52] with essen-
tially the same structure and the same emergent photons which
should show up in the inelastic neutron scattering spectrum.
Integrating over the photon bands to give static spin corre-
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FIG. 7. Top: fragmentation of the spin-R phase magnetic structure—a monopole crystal with ordered transverse fragment. Only half of the
tetrahedra are pictured for clarity. Left panel, spin configuration. The minority spins are indicated by a darker shade of blue. Middle panel,
longitudinal fragment �Mm showing “all-spins-in–all-spins-out” ordering. Right panel, transverse fragment �Md corresponding to the emergent
field for the ordered dimer phase (the R phase; see top panel of Fig. 8). The colors illustrate the amplitude of each spin component. Bottom:
unpolarized neutron scattering intensities in the [hh0], [00l] plane computed from the corresponding fragment above. The total scattering
picture can also be computed by adding the separate intensities of the two fragments.

FIG. 8. Top: R-phase dimer structure on the diamond lattice. The
tetrahedra shown in Fig. 7 for the spin-R structure are shaded in
mauve. The dimer representation is equivalent to the emergent field
representation shown in the top right panel of Fig. 7. Bottom: phase
diagram [52] for dimers on a diamond lattice as a function of the ratio
μ/g from Eq. (13). Also shown is the “spin ice” point corresponding
to the location of the monopole crystal plus small transverse quantum
spin fluctuations [53], deep within the spin-R phase.

lations, the pinch point structure of the classical system [15]
would evolve. The dipolar correlations of the classical sys-
tem map to correlations in four-dimensional space time with
projection onto three dimensions leading to a suppression of
the pinch point intensities at the Brillouin zone centers. These
predictions could be tested using configurations from the
quantum Monte Carlo simulations of Ref. [52] and working
backwards to construct the emergent transverse fragment of
a monopole crystal. In this partial quantum liquid phase these
modified spin correlations from the transverse fragment would
coexist with the [220] peaks from the longitudinal fragment
or charge order. The intensity of these Bragg peaks should
remain unchanged within the regime of emergent quantum
dimer fluctuations.

VIII. DISCUSSION

Any vector field can be separated, via a Helmholtz de-
composition, into a part with divergence (longitudinal part),
a divergence-free part (transverse part), and a harmonic part.
In the monopole picture of spin ice and related materials,
the magnetic moments play the role of an emergent lattice
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field in which such a decomposition or magnetic moment
fragmentation is of particular interest. In this description, both
ground state and excitation spectrum separate perfectly into
elements from the different fragments with well-separated
energy scales. The monopoles [2,3] are built from the lon-
gitudinal fragment and are high-energy objects, the classical
macroscopic degeneracy or quantum photon spectrum come
from the transverse fragment, and the topological properties
[33,42,44,56] are controlled by the harmonic fragment.

We have shown here that it is extremely useful to carry this
decomposition through to the analysis of neutron scattering
results, as each component gives a distinct contribution to
the neutron scattering intensity. Previous texts have concen-
trated on situations in which an ordered monopole fragment
coexists with the transverse fragment in the form of a cor-
related spin liquid [15,38,39,43,46]. Here we show that such
systems with magnetic charge ordering, when driven into a
fully ordered phase, either through quantum fluctuations or by
small corrections to the monopole picture, form fragmented
double-q structures in which each fragment orders with a
distinct ordering wave vector. Due to the separation in en-
ergy scales, quantum fluctuations are largely restricted to the
transverse fragment. In consequence the intensity reduction
of the transverse fragment compared with a known classical
limit can be used as a diagnostic tool for the level of quantum
fluctuations.

In the specific examples chosen, the KII phase of kagome
ice and the monopole crystal of spin ice, the transverse frag-
ment maps onto a Z2 sector of the emergent field for a
hard-core dimer system on hexagonal and diamond lattices,
respectively, so that the neutrons indirectly probe dimer solids,
both classical and quantum. The analysis we propose relies on
the existence of a gapped energy spectrum above the ground
state. In this case, the proposed quantum resonances of spins
or effective dimers around small closed loops will lead to
a quantifiable reduction in the observed neutron scattering
intensity. For this to hold, both the temperature scale and the
neutron energy resolution must be smaller than this gap.

Bojesen and Onoda [25] have argued that their quantum
Monte Carlo data for spin ice in a modest [111] field are con-
sistent with the development of an emergent quantum dimer
solid at low temperature. Our paper provides a protocol for
a detailed analysis allowing for the distinction between the
quantum phase and its classical analog. The energy scale as-
sociated with this quantum phase is extremely low—between
1/20 and 1/320 of the nearest-neighbor coupling strength—
so that quantitative measurement appears to be at the limit
of numerical resolution. However, a clearer quantum limit is
reached in dedicated quantum dimer simulations on a hexag-
onal lattice [48]. Our protocol could be tested in detail from
such simulations by reconstructing a single Z2 sector of the
emergent field from the dimers and constructing the corre-
sponding neutron scattering plots.

The low energy scales associated with quantum spin ice
have so far made identification of experimental systems ex-
tremely difficult. One promising example is Pr2Hf2O7 [57],
which shows some evidence of a quantum spin liquid ground
state from inelastic neutron scattering of single-crystal sam-
ples. Precision experiments in a [111] field would certainly be

of interest here as the first stage in the quest to observe di-
mensional reduction to the two-dimensional quantum phases
predicted in Ref. [25] and discussed in detail above. The
stacked kagome layer material Ho3Mg2Sb3O14 appears to
show quantum corrections to a classical fragmented magnetic
structure closely related to the KII phase of kagome ice [58],
although for the moment only powder samples exist and the
synthesis of pure samples appears challenging. In the absence
of single crystals, our analysis could be extended to treat a
powder sample. This would be of interest as the signal from
the quantum spin-P phase introduced above would be distinct
from the alternative quantum phases predicted by Dun et al.
[58]. However, at least in the short term, artificial systems,
such as cold-atom ice fabricated from Rydberg atoms [59],
could hold the advantage over materials and could provide
promising options for the observation of tunable quantum
fluctuations in systems with ice geometry.

Looking forward, open questions remain for the thermal-
to-quantum crossover for the phase transitions from ordered
to spin liquid phases. In two dimensions in the g = 0 limit of
Eq. (13), the thermal phase transition from the

√
3×√

3 phase
to the KII phase should map to a roughening transition and
hence be of Kosterlitz-Thouless type [60], although this could
change in the presence of monopole defects [22,23]. As quan-
tum fluctuations are switched on, the fate of the topological
transition is far from clear and open to further studies. In three
dimensions an evolution of tricritical form is predicted, taking
the thermal R-phase-to-dimer-liquid transition from topologi-
cal to first order as quantum fluctuations increase [53]. In the
context of this paper, the ultimate goal would be to prepare
experimental signatures of these subtle questions through use
of the fragmentation picture in the neutron scattering analysis.

As a final note, the more mathematically inclined reader
will notice that the Helmholtz decomposition can be expanded
further with regard to the transverse term. Any divergence-
free vector field can be decomposed into toroidal and poloidal
fields:

∇× �A = �T + �P
= ∇φ×r̂ + ∇×(∇χ×r̂), (16)

where r̂ is a radial unit vector, φ is the toroidal scalar poten-
tial, and χ is the poloidal scalar potential. Together with the
longitudinal potential �, they make up the Debye potentials
and allow the mapping of any vector field onto a set of three
scalar fields, up to a harmonic contribution [61,62]. The fields
from a single point dipole are purely poloidal, while toroidal
fields are characteristic of circular solenoids or toroids. The
complete decomposition of the transverse magnetic fragment
into poloidal and toroidal elements is beyond the scope of this
discussion, but pragmatically, one can assume that the exten-
sive loop network leading to pinch point scattering patterns
is due largely to the poloidal component, while short loops
contain a toroidal contribution. In modified spin ice models
with induced attractive interactions between monopoles of
like charge, low-energy excitations include like-charge clus-
ters characterized by loops of spin flips, identified as toroidal
loops [63–65]. Using the fragmentation picture, it is straight-
forward to show that such clusters lead to isolated loops in
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the transverse fragment, which indeed correspond to a pure
toroidal contribution. In a spin liquid phase dominated by
such loops, the diffuse neutron scattering is characterized
by half-moons of high-intensity straddling the Brillouin zone
center, rather than the pinch points of the Coulomb phase. This
strongly suggests that magnetic moment fragmentation could
be an essential tool for a complete description of such systems.
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N. Rougemaille, Nat. Commun. 7, 11446 (2016).

[44] A. A. Turrini, A. Harman-Clarke, G. Haeseler, T. Fennell, I. G.
Wood, P. Henelius, S. T. Bramwell, and P. C. W. Holdsworth,
Phys. Rev. B 105, 094403 (2022).

[45] P. Fulde, K. Penc, and N. Shannon, Ann. Phys. (Berlin) 514,
892 (2002).

[46] J. A. M. Paddison, H. S. Ong, J. O. Hamp, P. Mukherjee, X.
Bai, M. G. Tucker, N. P. Butch, C. Castelnovo, M. Mourigal,
and S. E. Dutton, Nat. Commun. 7, 13842 (2016).

[47] R. Moessner and S. L. Sondhi, Phys. Rev. B 63, 224401
(2001).

[48] T. M. Schlittler, R. Mosseri, and T. Barthel, Phys. Rev. B 96,
195142 (2017).

214425-11

https://doi.org/10.1103/PhysRevLett.93.167204
https://doi.org/10.1038/nature06433
https://doi.org/10.1134/1.2103216
https://doi.org/10.1103/PhysRevLett.79.2554
https://doi.org/10.1126/science.1064761
https://doi.org/10.1103/PhysRevB.69.064404
https://doi.org/10.1103/PhysRevB.86.075154
https://doi.org/10.1038/nature08917
https://doi.org/10.1088/0034-4885/77/5/056501
https://doi.org/10.1103/PhysRevLett.124.127203
https://doi.org/10.1103/PhysRevB.98.144413
https://doi.org/10.1103/PhysRevB.84.144435
https://doi.org/10.1126/science.1177582
https://doi.org/10.1103/PhysRevX.4.011007
https://doi.org/10.1146/annurev-conmatphys-070909-104138
https://doi.org/10.1038/s41467-017-02102-1
https://doi.org/10.1109/TVCG.2012.316
https://doi.org/10.1007/s10909-020-02521-3
https://doi.org/10.1016/j.aop.2022.169066
https://doi.org/10.1103/PhysRevB.80.140409
https://doi.org/10.1103/PhysRevLett.106.207202
https://doi.org/10.1103/PhysRevB.101.134414
https://doi.org/10.1103/PhysRevB.99.134440
https://doi.org/10.1103/PhysRevLett.119.227204
https://doi.org/10.1142/S2010324715400056
https://doi.org/10.1103/PhysRevLett.91.167004
https://doi.org/10.1103/PhysRevLett.96.237202
https://doi.org/10.1103/PhysRevB.91.155412
https://doi.org/10.1103/PhysRevB.100.020405
https://doi.org/10.1103/PhysRevLett.88.196402
https://doi.org/10.1103/PhysRevX.3.011014
https://doi.org/10.1103/PhysRevLett.105.087201
https://doi.org/10.1038/nphys2466
https://doi.org/10.1103/PhysRevB.90.184423
https://doi.org/10.1103/PhysRevB.99.224425
https://doi.org/10.1103/PhysRevLett.111.147204
https://doi.org/10.1038/s41467-017-00277-1
https://doi.org/10.1103/PhysRevResearch.2.032073
https://doi.org/10.1038/s41467-022-27964-y
https://doi.org/10.1103/PhysRevB.70.104418
https://doi.org/10.1103/PhysRevB.68.064411
https://doi.org/10.1038/ncomms11446
https://doi.org/10.1103/PhysRevB.105.094403
https://doi.org/10.1002/andp.20025141202
https://doi.org/10.1038/ncomms13842
https://doi.org/10.1103/PhysRevB.63.224401
https://doi.org/10.1103/PhysRevB.96.195142


MUSEUR, LHOTEL, AND HOLDSWORTH PHYSICAL REVIEW B 107, 214425 (2023)

[49] B. C. den Hertog and M. J. P. Gingras, Phys. Rev. Lett. 84, 3430
(2000).

[50] S. V. Isakov, R. Moessner, and S. L. Sondhi, Phys. Rev. Lett.
95, 217201 (2005).

[51] C. Nisoli, R. Moessner, and P. Schiffer, Rev. Mod. Phys. 85,
1473 (2013).

[52] O. Sikora, N. Shannon, F. Pollmann, K. Penc, and P. Fulde,
Phys. Rev. B 84, 115129 (2011).

[53] D. L. Bergman, G. A. Fiete, and L. Balents, Phys. Rev. B 73,
134402 (2006).

[54] Referred to as isolated states in Ref. [52].
[55] S. D. Pace, C. Castelnovo, and C. R. Laumann, Phys. Rev. Lett.

130, 076701 (2023).
[56] L. Pili, A. Steppke, M. E. Barber, F. Jerzembeck, C. W.

Hicks, P. C. Guruciaga, D. Prabhakaran, R. Moessner, A. P.
Mackenzie, S. A. Grigera, and R. A. Borzi, Phys. Rev. B 105,
184422 (2022).

[57] R. Sibille, N. Gauthier, H. Yan, M. Ciomaga Hatnean,
J. Ollivier, B. Winn, U. Filges, G. Balakrishnan, M.

Kenzelmann, N. Shannon, and T. Fennell, Nat. Phys. 14, 711
(2018).

[58] Z. Dun, X. Bai, J. A. M. Paddison, E. Hollingworth, N. P. Butch,
C. D. Cruz, M. B. Stone, T. Hong, F. Demmel, M. Mourigal, and
H. Zhou, Phys. Rev. X 10, 031069 (2020).

[59] A. W. Glaetzle, M. Dalmonte, R. Nath, I. Rousochatzakis, R.
Moessner, and P. Zoller, Phys. Rev. X 4, 041037 (2014).

[60] F. Alet, Y. Ikhlef, J. L. Jacobsen, G. Misguich, and V. Pasquier,
Phys. Rev. E 74, 041124 (2006).

[61] V. M. Dubovik and V. V. Tugushev, Phys. Rep. 187, 145 (1990).
[62] N. A. Spaldin, M. Fiebig, and M. Mostovoy, J. Phys.: Condens.

Matter 20, 434203 (2008).
[63] M. Udagawa, L. D. C. Jaubert, C. Castelnovo, and R. Moessner,

Phys. Rev. B 94, 104416 (2016).
[64] T. Mizoguchi, L. D. C. Jaubert, R. Moessner, and M. Udagawa,

Phys. Rev. B 98, 144446 (2018).
[65] D. Kiese, F. Ferrari, N. Astrakhantsev, N. Niggemann, P. Ghosh,

T. Müller, R. Thomale, T. Neupert, J. Reuther, M. J. P. Gingras,
S. Trebst, and Y. Iqbal, Phys. Rev. Res. 5, L012025 (2023).

214425-12

https://doi.org/10.1103/PhysRevLett.84.3430
https://doi.org/10.1103/PhysRevLett.95.217201
https://doi.org/10.1103/RevModPhys.85.1473
https://doi.org/10.1103/PhysRevB.84.115129
https://doi.org/10.1103/PhysRevB.73.134402
https://doi.org/10.1103/PhysRevLett.130.076701
https://doi.org/10.1103/PhysRevB.105.184422
https://doi.org/10.1038/s41567-018-0116-x
https://doi.org/10.1103/PhysRevX.10.031069
https://doi.org/10.1103/PhysRevX.4.041037
https://doi.org/10.1103/PhysRevE.74.041124
https://doi.org/10.1016/0370-1573(90)90042-Z
https://doi.org/10.1088/0953-8984/20/43/434203
https://doi.org/10.1103/PhysRevB.94.104416
https://doi.org/10.1103/PhysRevB.98.144446
https://doi.org/10.1103/PhysRevResearch.5.L012025

