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We present an experimental study of the strong to ultrastrong coupling regimes at room temperature in
frequency-reconfigurable three-dimensional reentrant cavities coupled with a yttrium-iron-garnet slab. The
observed coupling rate, defined as the ratio of the coupling strength to the cavity frequency of interest, ranges
from 12% to 59%. We show that certain considerations must be taken into account when analyzing the polaritonic
branches of a cavity spintronic device where the rf field is highly focused in the magnetic material. Our
observations are in excellent agreement with electromagnetic finite-element simulations in the frequency domain.
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I. INTRODUCTION

Cavity spintronics is an emerging research field that in-
vestigates light-matter interactions within magnetism, specif-
ically the interactions between cavity photons and the quanta
of spin waves based on the magnetic dipole interaction—
magnons. At the core of cavity spintronics are cavity-magnon
polaritons (CMPs), which are the associated bosonic quasi-
particles, i.e., hybridized cavity-magnon-photon states in the
strong-coupling regime. Cavity spintronics has drawn grow-
ing interest since the first theoretical prediction in 2010 [1],
and then shortly after experimental demonstration of CMPs
at both millikelvin (mK) temperatures [2,3] and room tem-
perature (RT) [4]. Cavity spintronics display a broad range of
applicability for quantum information systems and rf devices,
such as adjustable sensitive filters [5–7], isolators or circu-
lators [8], gradient memories [9] and for engineering chiral
states of electromagnetic radiation [10,11].

In a cavity–magnon system, when the magnon frequency
is tuned by an externally applied static magnetic field to-
wards the cavity resonance frequency, the system undergoes
hybridization (e.g., forms a CMP) with a characteristic anti-
crossing signature in the dispersion spectrum. The interaction
is quantified by the coupling strength g/2π and by its ratio
g/ω with the cavity frequency ω/2π . When the coupling g/2π

is larger than the system’s losses, there exist three differ-
ent coupling regimes. These have commonly been referred
to as: (i) strong coupling when g/ω < 0.1, (ii) ultrastrong
coupling (USC) for 0.1 < g/ω < 1, and (iii) deep-strong cou-
pling (DSC) for g/ω > 1, a regime that still remains largely
unexplored. The value of g/ω = 0.1 is considered as a thresh-
old between the SC and USC regimes, but this is only a
historical convention, supposedly indicating the cutoff beyond
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which the coupling rate g represents a “sizeable fraction” of
the system energy and therefore cannot be deemed to be a
slowly rotating term in the rotating-wave approximation.

The USC regime was predicted theoretically in intersub-
band cavity polaritons in 2005 [12] and first observed in
2009 [13] in n-doped GaAs quantum wells embedded in a
microcavity, with g/ω = 0.11. Since this experimental obser-
vation, several research groups have experimentally achieved
the USC regime [14,15] in different systems such as super-
conducting circuits [16], polaritons [17], and optomechanics
[18]. So far, the USC regime in cavity spintronics has been
experimentally achieved at low [19–23] and room [24,25]
temperatures, and investigated theoretically [26,27].

Very recently, Golovchanskiy et al. [23] proposed an
approach to achieve on-chip USC hybrid magnonic sys-
tems reaching g/ω = 0.6 and based on superconducting/

insulating/ferromagnetic multilayered microstructures oper-
ating below 10 K. They highlighted in particular the drastic
failure of currently adopted models in the USC regime.

Here, we present measurements and simulations of a
reconfigurable hybrid system that allows the study of the
transition from the SC to USC regimes at room temperature
in the 0.1–15 GHz frequency range. We utilize a magnetic
field-focusing double-post reentrant cavity first described by
Goryachev et al. [19]. A set of three different resonators (by
their dimensions and post shapes) allow us to follow the evo-
lution of the coupling strength through USC regime (starting
from the SC/USC limit). With these results we confirm that
it is necessary to add an extra term in the expression of the
ferromagnetic resonance (FMR) frequency equation to accu-
rately describe the observed hybridization (measurements and
simulations) with the commonly used Dicke model [28]. We
show that this additional term does not depend on the coupling
rate but on the level of confinement of the rf magnetic field
in the magnetic material. Moreover, this added term can be
negligible in the SC regime, while it is essential in the USC
regime.
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FIG. 1. Reentrant cavity with electromagnetic simulation over-
lay where |h|2 is displayed for the first two photonic modes: (a) the
DM and (b) the BM.

II. HYBRID SYSTEM DESCRIPTION

The hybrid system presented here is made of a commercial
single crystal of YIG (yttrium iron garnet, Y3Fe5O12) and a
modified reentrant cavity. The YIG is a slab of 3.82 × 6.09 ×
0.61 mm3.

The multiple post reentrant cavity [19] is a unique type of
microwave cavity. There are two first-order resonant modes,
termed the dark mode (DM) and the bright mode (BM). Both
contain the electric field of the mode between the top of
the post and the lid of the cavity. For the DM [as shown in
Fig. 1(a)], the rf electric fields (e-fields) focused above the
two posts are in phase, resulting in the circulating rf magnetic
fields (h-fields) destructively interfering in the region between
the posts (hence “dark”), while the opposite is true for the
BM [as shown in Fig. 1(b)]. The advantages of such a cavity
are threefold: First, the highly localized electric field results
in extremely large frequency sensitivity to any perturbations
inside this region (displacement of the containment area or
modification of the dielectric material). Second, the physical
separation of the electric and magnetic fields permits sepa-
rate interaction with both magnetic and electrically sensitive
devices at different locations, potentially simultaneously. Fi-
nally, the magnetic field focusing between the posts results in
extremely strong interactions with any magnetically suscepti-
ble material placed there.

The interaction between a single-cavity mode and the FMR
can be described by two coupled harmonic oscillators, for
which the Hamiltonian is read as

Ĥ = Ĥc + Ĥm + Ĥint, (1)

where Ĥc = h̄ωĉ†ĉ represents the photonic mode, Ĥm =
h̄ωmb̂†b̂ the magnon mode, and Ĥint is the Zeeman interaction
[21], which describes the coupling between the two oscillators
for this system. h̄ is the reduced Planck constant, ωc(m)/2π

is the cavity (magnon) frequency, and ĉ† and ĉ (b̂† and b̂)
are the creation and annihilation cavity (magnon) operators,
respectively.

Following [21], and as demonstrated in Appendix A, the
physics system is described by the Dicke model reading as

Ĥ/h̄ = ωĉ†ĉ + ωmb̂†b̂ + g(ĉ† + ĉ)(b̂† + b̂). (2)

An easy way to solve eigenvalues of the Dicke Hamiltonian
is to use the rotating-wave approximation (RWA), where the
counter-rotating terms, ĉ†b̂† and ĉb̂, are neglected. In the case
of a system being in the USC regime, it is well known [14,15]
that this approximation no longer describes this system. Using
the Hopfield-Bogoliubov transformation allows one to solve
for the system eigenfrequencies while considering corotating,
ĉ†b̂ and ĉb̂†, and counter-rotating terms:

ω± = 1√
2

√
ω2 + ω2

m ±
√(

ω2 − ω2
m

)2 + 16g2ωωm. (3)

Moreover, the coupling strength is defined as [29]

g
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4π
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√
μ

glμB
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where γ = 2π 28 GHz T−1 is the gyromagnetic ratio for YIG,
gl = 2 is the Landé g factor for an electron spin, μ0 is the
vacuum permeability, μB is the Bohr magneton, μ = 5μB is
the magnetic moment of the sample, ns = 4.22 × 1027 m−3 is
the spin density for YIG [29], and η is the filling factor, where

η =

√√√√(∫
Vm

h · x̂dV
)2 + (∫

Vm
h · ŷdV

)2

Vm
∫

Vc
|h|2dV

. (5)

The filling factor describes the proportion of the h field (x-
and y-axis components) perpendicular to the static magnetic
field (H field), named H0 in Fig. 1, compared to the h field for
all directions inside the entire cavity volume Vc.

III. OPTIMIZATION

An appropriate optimization of the cavity allows one to
maximize the coupling and to obtain a quasihomogeneous
h field inside the YIG slab. With the use of finite-element
modeling (FEM) and following the procedure described by
Bourhill et al. [29], we were able to precisely predict, and
therefore optimize prior to construction, the cavity frequency,
frequency tuning range, and the coupling strength considering
Eq. (4).

The optimization of the cavity design was based on the
maximization of the filling factor η and the h-field homo-
geneity at the first BM inside the YIG slab. For a correct
distribution of the rf field inside the cavity (seen as a per-
fect electric conductor, PEC), it is necessary to consider the
electrical property of the YIG, namely, a relative dielectric
permittivity of 15. Dynamic magnetic properties are not useful
at this stage, and instead of considering the magnetic perme-
ability with the Polder tensor, we consider it as that of vacuum.

The optimization was carried out for a fixed value of the
distance d between the posts and the lid of the cavity (d =
50 μm). Then there exist only three free parameters for the
optimization of the hybrid system, two for the size of the
posts, the width W , and the length L, and one for the cavity,
the radius R. The other parameters, such as the height of the
cavity and the distance between the posts, were fixed by the
constraints imposed by the YIG dimension and the cavity
manufacturing accuracy. The optimization step is described
in Appendix B, and the optimized values are W = 0.6 mm,
L = 6 mm, and R = 12 mm.
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FIG. 2. (a) Evolution of the ratio g/ω (with ω = ωBM ) in blue
and η in red vs d for eigenmode simulations (EM). Inset: Evolution
of simulated DM and BM frequencies vs d . (b) Evolution of g/ω vs
the BM frequency for η = 1 and η = 0.79.

The simulated evolution of the two eigenmodes (DM and
BM) are shown in the inset of Fig. 2(a) with respect to the
distance d , with a range from 1 to 100μm. Decreasing d will
decrease the frequency of the eigenmodes and the frequency
difference between the BM and the DM. Figure 2(a) shows
electromagnetic simulation results for η (right y axis) and
g/ω (left y axis) versus d for a cavity with the optimized
dimensions, where ω = ωBM , the frequency mode of interest
in our study. η is maximized for d = 9μm. The variation of η

over this range of d values is only is 2.7%, and therefore we
may consider it more or less invariant. The tunability of the
distance d plays a role on the g/ω ratio, as shown in Fig. 2(a).
Indeed, ω/2π is decreasing with d , and η is remaining almost
constant. Considering Eq. (4), g/2π is a function of η and the
square root of ω. Therefore, the ratio g/ω will increase with
the inverse of the square root of ω from 36.8% to 80.5% as d
decreases from 100 to 1μm.

Figure 2(b) illustrates the SC to DSC transition for YIG
with the frequency dependence of g/ω. The blue dots cor-
respond to the values extracted from EM simulation already
discussed in Fig. 2(a), and the solid line dependencies are
based on Eq. (4) for two constant values of η, 0.79 (blue) and
1 (green). The magnetic properties of YIG require working
in a specific frequency range in order to explore the DSC.
For the maximum reachable value of η (green line), which
corresponds to the entire h-field perpendicular to H0 and
fully confined to Vm, DSC is possible when the magnons are
coupled to a microwave mode below 1.72 GHz [29]. In our
case (with η close to 0.79), DSC is achievable but at a smaller
resonant frequency (1.07 GHz). Note that the optimized cavity

configuration of this work does not allow to reach the DSC
due to the presence of the dark mode, which prevents clear
identification of the coupling signature in the spectra when the
DM and BM are close, and the difficulty to control distance d
lower than 3μm.

IV. RESULTS AND DISCUSSION

A. Simulation details

To compare the experimental results, simulations in the fre-
quency domain (FD), solving for the S21 scattering parameter,
were conducted for different values of d from 2 to 100μm.
For these simulations we considered the excitation probes and
hence the coupling losses. Losses due to finite conductivity of
the cavity walls are also taken into consideration.

The static and dynamic magnetic properties of YIG are
used to solve the frequency response of the entire system
as a function of the applied magnetic field. The spin dy-
namics of ferrimagnetic systems can be described by the
Landau-Lifshitz-Gilbert (LLG) equation, and the frequency
dependence of the coupled dynamics can be accurately es-
timated by using a linear solution of the LLG equation in
solving Maxwell’s equations. Some consideration regarding
the shape of the YIG sample must be taken into account. The
FMR dispersion for a relatively thick slab geometry requires
careful consideration. Based on the works of Kittel [30], and
Joseph and Schlömann [31], the demagnetizing field expres-
sion has been adapted to our nonellipsoidal sample of YIG (as
described in Appendix B). From these results it is determined
that the demagnetizing field is significantly different from the
thin-film form, and therefore for accurate simulations proper
consideration of this difference must be taken into consider-
ation. Hence, the effective static magnetic field in the YIG is
different from the applied one and is read as

Hi = H0 − Nzz(x, y, z)M0, (6)

where Hi is the internal static magnetic field along the z axis,
and Nzz is the spatially dependent demagnetizing component
along the z axis, and is described in Eq. (C3) in Appendix C.

B. Experimental setup

To reach the specifications described above, an aluminum
cavity with an accuracy of 20μm has been machined.

For the applied static magnetic field, we used an electro-
magnet where the produced field is aligned along the z axis
(see Fig. 1) in the direction of the height of the posts. H0

aligns all the spin moments along the z axis and to saturate
the macroscopic YIG magnetization. With the shape of the
cavity, the h field for the BM, considered as the perturbative
field, is only along the x axis inside the YIG slab between
the two posts, as shown in Fig. 1(b), due to the constructive
interference of the two h fields around each post. A gauss me-
ter allows one to measure in situ H0 magnitudes. S parameters
are measured with a two-port vector network analyzer (VNA),
with the magnitude and phase of the scattering parameters
recorded between 0.1 and 15 GHz with an input power of −10
dBm. All measurements were conducted at RT.

The magnitudes of the S21 transmission spectra as a func-
tion of H0 are displayed in Fig. 3 for measurement and
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FIG. 3. Transmission spectra vs frequency and H0 for (a), (c), (e) measurements at RT, and (b), (d), (f) simulations. Comparison spectra
between measurement and simulations are shown for different distances d as labeled. A fit with the Dicke model with a shifted magnon
frequency is shown superimposed on (c) and (d) where the FMR frequency ( fFMR = ωFMR/2π ) is shown in black, the DM frequency ( fDM =
ωDM/2π ) in red, the BM frequency ( fBM = ω/2π ) in orange, and the two polariton frequencies ( f± = ω±/2π ) in white.

simulation, with differing sized gaps between the top of the
posts and the roof of the cavity. Experimentally, this is varied
by using different cavity lids which had recesses of differing
heights machined into them.

C. Results

Measurement and simulation results of magnetic spec-
troscopy of the cavity-magnon system are shown in Fig. 3 as
the first and second row, respectively, for different values of
d . Each column represents a comparison between a measure-
ment and a simulation with a distance close to the measured
value. The latter can be determined by the unperturbed value
of fDM , which acts as a calibration for d .

The external magnetic field was always applied symmet-
rically for negative and positive values. This allows us to
improve the fit accuracy on measurements, because we have
twice as many data points. All measurements with complete
frame are shown in Appendix F.

We can easily distinguish the two hybrid eigenfrequencies
f+ = ω+/2π (for the higher branch) and f− = ω−/2π (for
the lower branch) from either side of the BM frequency. It
should be noted that at low H0 values the BM is not visible,
while we can clearly see the DM which is the lowest frequency
mode and has a negligible coupling with the magnon mode
and hence is constant versus H0.

Some minor discrepancies between simulation and exper-
iment should be pointed out: (i) an inflection point on the
curvature of the upper CMP in frequency at low H0 (observed
only in the USC regime) for measurements, appearing nei-
ther in simulation nor analytic fits; (ii) antiresonances only
appearing either in measurement, the horizontal one around

4.3 GHz in Figs. 3(a) and 3(e), or in simulation with a S-like
shape, around 10, 4, and 2 GHz in Figs. 3(b), 3(d), and 3(f),
respectively. Let us notice that this antiresonance does not ap-
pear in measurements when a cavity mode is overlapping with
this transmission dip, as shown for d = 10 μm in Fig. 3(c)
and Fig. 9(e), and for d = 116 μm in Fig. 9(a); (iii) another
magnon mode exists near the upper CMP in simulations. It
is clear that it is another magnon mode because its H field’s
frequency dependence does not change as d is varied.

Differences given in the two last points could be explained
by the fact that the YIG sample is a perfect rectangular prism
in simulation whereas the real sample is not. The imperfec-
tions of the YIG geometry could result in a weak transmission,
which could be not detected in measurement.

Despite these minor deviations, the agreement between
simulations and measurements on the magnon-photon cou-
pling and the resulting CMPs is excellent. In particular, we
validated the spatial distribution of the demagnetizing field,
hence the expression of the FMR for a slab and the ability of
the Maxwell’s equations to describe the system. This permits
one to conduct a simulation with a magnetic field larger than
experimentally possible in order to extract the BM frequency.
Indeed, it is impossible to measure the unperturbed BM fre-
quency fBM in the USC regime even when applying a high
magnetic field near 2 T.

D. Model description

In the USC regime, the Tavis-Cummings model becomes
no longer applicable [13,32], as g/ω > 0.1 leads to a failure of
the rotating-wave approximation as the interaction term of the
Hamiltonian can no longer be assumed to be “slowly rotating”
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FIG. 4. g/ω vs d for fitted FD simulations (in black) and for
fitted measurements (in blue). The simulation trend is plotted in the
black, dashed line. Inset: DM and BM frequencies vs the distance
d in the black dashed line are shown DM and BM reading values
from simulations at extremely high applied H field. Eigenmode (EM)
simulations are shown as the red dashed line.

compared to the system terms. The standard model for cavity
magnonics is the Dicke model [see Eq. (2)]. However, we have
noticed that in the coupling regime of our system, even the
Dicke model cannot describe observed polariton frequency
dispersion for measurements and simulations, as shown in
Fig. 7 in Appendix D. Another standard model describing
light-matter interactions is the Hopfield model [33], similar
to the Dicke model with an additional diamagnetic term. This
well-known model also did not fit the measured data, as shown
in Appendix E.

To remedy these issues, it has been proposed to modify
the Dicke model with the addition of an H field in the FMR
dispersion equation [22]. We also modified the term of the
FMR frequency dependence in Eq. (3) to

ωm → ωm + �m, (7)

where �m = 2π f� is a frequency shift, which is further dis-
cussed in Sec. IV E. This modified Dicke model was found
to fit best the experimental and simulation spectra, as seen in
the white dashed lines of Fig. 3 for d = 75 μm in (a) and
(b), d = 10 μm in (c) and (d), and d = 3 μm in (e) and
(f). Measurement fit, shown in Figs. 3(a), 3(c), and 3(e), is
achieved with the BM frequency fBM (in orange), the cou-
pling strength g/2π , and the added frequency f� as fitting
parameters. For simulation fit, shown in Figs. 3(b), 3(d), and
3(f), the BM frequency is considered as a fixed parameter.
Indeed, simulations were performed at an artificially high H
field (H0 = 10 T) in order to tune the magnon mode many
orders of coupling strength away and clearly distinguish the
two photonic modes.

An offset far detuned from the BM frequency at a zero
H field arises for high g/ω when the FMR is shifted. When
the FMR is not shifted, in the standard Dicke model, no BM
frequency detuning at zero H field exists for any g/ω value.
See Appendix G for more details about the frequency detuning
at zero H field.

All values of fit parameters, for measurements and simula-
tions, are available in Appendix F and are pooled in Fig. 4.
For the measurements (shown in blue), the distance d has

TABLE I. Operating range of the cavities.

Cavity fBM [GHz] g/2π [GHz] �m/2π [GHz]

CAV01 2.80–7.65 1.64–2.68 2.27–2.59
CAV02 7.63–9.79 2.42–2.72 1.63–1.74
CAV03 2.35–5.53 0.58–0.69 0.29–0.50

been estimated from the measured DM frequency. The fitted
BM frequencies of the measurements are in good agreement
with simulations (shown in black in the inset of Fig. 4).
Regarding the coupling strength g/ω, we achieve a ratio g/ω
ranging from 0.35 to 0.59, corresponding to d = 116 μm to
d = 4 μm, respectively. As mentioned in Sec. III, the values
of g/ω are different from the optimization step values (dotted
red curve), mainly due to the different estimated frequencies,
shown in the inset. Once again, the correlations between fitted
simulations and measurements for the ratio g/ω are also good.
This clearly demonstrates the validity of the simulations.

E. Discussion

We discuss here the physical meaning of the frequency
shift in the modified Dicke model. For a deeper understanding
of the behavior of this added term, we investigated the transi-
tion between the SC and the USC regimes. In order to study a
wide range of g/ω values, we have used two other cavities
with the same YIG sample. The first described machined
cavity will be named “CAV01” in the following. This cavity
operates in a g/ω range from 0.35 to 0.59, as mentioned in
Table II in Appendix F.

The second cavity, “CAV02,” has been 3D printed and has
the same shape as CAV01 but with smaller height posts. This
cavity is performing in a certain range of g/ω, from 0.28 to
0.32 (see Table III in Appendix F).

The third cavity, “CAV03,” is also a double reentrant 3D-
printed cavity with cylinder posts, adjustable in height. This
cavity was used in a previous work [29] to experimentally
verify a reworked theory that predicts coupling values from
simulations alone. The cavity has radius Rcav = 20 mm and
height Hcav = 4.6 mm, while the posts have radius Rpost =
2.05 mm and are spaced to 2.7 mm. The operating ratio g/ω is
lower than the two other cavities and enables us to have exper-
imental results at the SC/USC threshold, with g/ω comprised
between 0.12 and 0.25 (see Table IV in Appendix F).

The operating range in BM frequencies, coupling
strengths, and added frequencies for the three cavities are
summarized in Table I.

Thanks to the validation of the FD simulations, we were
able to simulate the CAV01 design for different dimensions
of the YIG slab while keeping the aspect ratio of the slab
constant. Since the demagnetizing components described in
Eq. (C3) are only dependent on this aspect ratio, the FMR
remains unchanged. However, still decreasing the YIG slab
dimensions decreases the filling factor η, and therefore the
coupling strength and g/ω from 63% to 5% with d = 50 μm.

We plotted �m/ω vs g/ω in Fig. 5(a), which clearly dis-
play a quadratic dependence. For g/ω � 0.1, �m/ω is more
or less negligible. This description agrees with the com-
monly situated transition point (shown as the red dotted line)
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FIG. 5. (a) �m/ω vs g/ω and (b) �m/2π vs η2. Shown are the
FD simulations on CAV01 in red and measurements in blue, in green
for CAV02, and in purple for CAV03. In (a) and (b), fitted values for
a reduced CAV01 with an aspect ratio equal to 0.025 as the black
square. The two data points circled in (a) correspond to the same
value of �m/2π in (b).

between the SC and USC regimes where all models converge.
Our simulations show the need for the �m/2π parameter to
properly fit the data. Figure 5(b) shows that �m/2π is linearly
proportional to η2. According to this observation and the def-
inition of η, we noticed that the more this energy is confined
in the YIG, the larger the shift in the magnon frequency will
be. In the literature, the parameter η is not so often considered
or estimated. In Ref. [29] we had the opportunity to test the
model of Eqs. (4) and (5) on multiple published experimental
results, and η rarely exceeds 0.05 in any of them. As a re-
minder, and in view of the description in Fig. 2, our system
(CAV01) proposes an η of about 0.79.

In Fig. 5 is represented by square marker a simulation
where dimensions of the cavity and the YIG are reduced by
a ratio equal to 0.025 for d = 50 μm. By decreasing the
dimensions of the entire cavity CAV01 by this ratio, the BM
frequency is increased to 275 GHz. Then this cavity operates
in the SC regime. However, the proportion of the h field in the
YIG remains the same, hence also η.

In Fig. 5(a) are circled the reduced system performing in
the SC regimes and the unmodified cavity in the USC regime
presenting the same η value. In Fig. 5(b) it is shown that the
frequency shift �m/2π is the same for both cavities, and for
the same value of η2. It is then important to note that this
effect is not bounded to the coupling strength and hence to
the coupling regime but instead to the filling factor, something
that has never been discussed so far.

Considering Eq. (4), �m/2π is also linearly proportional
to g2/ω, which is a dependent function of the magnetic prop-
erties of the YIG and η2. As a physical mechanism we have

identified two nonlinear processes that could be involved in
the appearance of �m/2π in this study due to their similar
behavior: the multiphoton Rabi oscillations [14,34,35] for its
effective coupling being proportional to g2/ω. When the cou-
pling between an artificial single atom and a cavity is in the
USC regime, the system can exchange several photons (and
undergo multiphoton Rabi oscillations) instead to a single
one (commonly known as Rabi oscillation); and the self-Kerr,
and the cross-Kerr effects [36–40] presenting a frequency
shift of the magnon, due to magnetocrystalline anisotropy and
magnon-magnon interactions, respectively.

V. CONCLUSION

In conclusion, we proposed a double reentrant cavity de-
sign to achieve USC magnon/photon coupling at microwave
frequencies, which was supported by both experimental data
and electromagnetic simulations. This is a demonstration of
USC magnon/photon coupling at room temperature. Achiev-
ing the USC without cryogenic temperature is promising for
the development of rf applications based on cavity spintronics.

We explained the importance of optimizing the filling fac-
tor η for reaching the USC, aside from just the frequency of
the resonator and the spin density. Importantly, the cavity we
proposed is parametrized by the distance d between the posts
and the lid. We showed that tuning this parameter allowed us
to continuously go from the regular SC to the USC regime.
The ability to study the transition from the SC to USC regime
is a significant step towards understanding the physics of USC
magnon/photon coupling.

Indeed, we showed that the standard models describing the
coupling of a single resonator mode to many dipoles (e.g., the
Dicke and Hopfield models) failed to properly describe our
experimental data. Nevertheless, thanks to the validation of
our electromagnetic simulations, we showed that a frequency
shift in the magnon frequency adequately modelled our data,
which we note is fully captured by the classical Maxwell
equations. Furthermore, we showed that this frequency shift
only depended on the filling factor η, highlighting its impor-
tance for hybrid magnon/photon systems. While the physical
origin of the magnon’s frequency shift is still unknown, we
hope that its relation with η will motivate further research into
deriving a proper theoretical model for USC magnon/photon
coupling.
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APPENDIX A: PHYSICS DESCRIPTION

The system under consideration is best described by the
Hamiltonian of two coupled harmonic oscillators. The oscil-
lators represent the cavity photonic mode Ĥc = h̄ωĉ†ĉ and
the uniformly precessing Kittel magnon mode Ĥm = h̄ωmb̂†b̂,
where h̄ is the reduced Planck constant, ω/2π and ωm/2π are
respectively the cavity and magnon frequencies, and ĉ† (b̂†)
and ĉ (b̂) are the creation and annihilation cavity (magnon)
operators. The coupling is then read as a an interaction Ĥint,
and the entire system Hamiltonian can then be written as

Ĥ = Ĥc + Ĥm + Ĥint. (A1)

The quantization of Maxwell’s equation leads to the ex-
pression of the vector potential,

Â(r, t ) =
∑

n

q̂n(t )√
ε0εr,n

Un(r), (A2)

where ε0 is the vacuum permittivity, εr,n the relative permit-
tivity experienced by the cavity mode n, q̂n(t ) is the temporal
term, and Un(r) is the space-dependent operator. This expres-
sion is generalized for all modes in a cavity. In the following
we will concern ourselves with only a single mode.

This potential vector in a cavity is comparable to a sim-
ple harmonic oscillator, where radiation modes are defined
according to annihilation and creation operators:

ĉ = 1√
2h̄ω

(ωq̂ − i ˆ̇q)

ĉ† = 1√
2h̄ω

(ωq̂ + i ˆ̇q). (A3)

Then the rf magnetic field (h field) bounded to the cavity mode
is [41]

ĥ = 1

μ0
∇ × Â = 1

μ0

√
h̄

2ωε0εr,c
(ĉ† + ĉ)∇×U, (A4)

where μ0 is the vacuum permeability, ε0 the vacuum permit-
tivity, εr,c the relative permittivity experienced by the cavity
mode, and U is the space-dependent operator of the potential
vector. The component of this field perpendicular to the sam-
ple’s magnetization direction will couple to the Kittel magnon
mode.

For such a uniform precession of the magnetic sample,
we introduce the macrospin operator considering the entire
sample as

Ŝ = Vm

γ
M̂, (A5)

where M̂ is the magnetization operator, Vm the volume of the
magnetic sample, and γ the gyromagnetic ratio.

We consider a saturated magnetization by the use of an
applied static magnetic field (H-field) in the z-axis direction.
It is then useful to introduce spin raising Ŝ+ and lowering Ŝ−
operators. Following the Holstein-Primakoff transformation
[42] and considering low excitation numbers vs the total spin

number of the macrospin operator, we obtain

Ŝ+ = Ŝx + iŜy =
√

2S − b̂†b̂b̂ ≈
√

2Sb̂

Ŝ− = Ŝx − iŜy = b̂†
√

2S − b̂†b̂ ≈
√

2Sb̂†

Sz = S − b̂†b̂,

(A6)

where S = μ

gl μB
Ns is the total spin number of the macrospin,

μB is the Bohr magneton, μ is the magnetic moment of the
sample, gl is the Landé g factor, and Ns = nsVm is the number
of spins in the sample, with ns the spin density.

The interaction term corresponds in this case to the Zeeman
energy:

Ĥint = −μ0

∫
Vm

M̂ · ĥdV. (A7)

Substituting ĥ and M̂ in Eq. (A7) by their expressions in
Eqs. (A4) and (A5), and replacing Cartesian macrospin values
by raising and lowering ones, with neglecting z-axis terms, we
arrive at

Ĥint/h̄ = gx(ĉ + ĉ†)(b̂ + b̂†) + igy(ĉ + ĉ†)(b̂ − b̂†), (A8)

where the coupling strengths are defined as

gx = − γ

2Vm

√
h̄S

ωεr,cε0

∫
Vm

(∇ × U) · x̂dV

gy = γ

2Vm

√
h̄S

ωεr,cε0

∫
Vm

(∇ × U) · ŷdV. (A9)

In order to consider the integration of the ∇ × U term in
the magnetic sample volume in x and y axis, it is necessary to
rewrite it considering the entire h field “seen” by the sample.
Therefore it is convenient to normalize the h field against that
of the entire cavity. The classical expression for the h-field
energy for a single cavity mode is

E = μ0

2

∫
h · hdV

= μ0

2ε0εr,c
q · q

∫
(∇ × U) · (∇ × U)dV, (A10)

where
∫

Vc
(∇ × U) · (∇ × U) = εr,cω

2

c2 [41].
Regarding the ratio of the h-field energy in the magnetic

sample versus the one in the whole cavity, we get

EVm

EVc

=
∫

Vm
h · hdV∫

Vc
|h|2dV

=
∫

Vm
(∇ × U) · (∇ × U)dV

εr,cω2/c2
. (A11)

Using the center and right terms of the above equation,
deriving numerators and applying the square root, we finally
read the infinitesimal normalized energy amplitude of the h
field:

∇ × U =
√

εr,cω

c

h√∫
Vc

|h|2dV
. (A12)

214423-7



BOURCIN, BOURHILL, VLAMINCK, AND CASTEL PHYSICAL REVIEW B 107, 214423 (2023)

Equation (A1), with the use of Eq. (A8), can be rewritten over
a matrix form as

Ĥ = 1

2
[ĉ† b̂† ĉ b̂] H [ĉ† b̂† ĉ b̂]† + const

H =

⎡
⎢⎢⎣

ω gx + igy 0 gx − igy

gx − igy ωm gx − igy 0
0 gx + igy ω gx − igy

gx + igy 0 gx + igy ωm

⎤
⎥⎥⎦.

(A13)

Using Hopfield-Bogoliubov transformation [22], the solu-
tion of the problem is to find polariton operators p̂±, expressed
as a linear combination of ĉ, ĉ†, b̂, and b̂†. Being bosonic
operators, they should obey the Hopfield formulation [33]:

[ p̂±, Ĥ ] = ω± p̂±, (A14)

where ω±/2π are frequency eigenvalues associated with the
eigenoperators p̂±.

As previously, the Hamiltonian in the polaritonic basis can
be rewritten as

Ĥ = 1
2 [ p̂†

− p̂†
+ p̂− p̂+] M [ p̂†

− p̂†
+ p̂− p̂+]†.

(A15)

In order to respect Eq. (A14), the Hopfield matrix M has to be
read as

M = Hdiag(1, 1,−1,−1). (A16)

Solving eigenvalues of the matrix M leads to

ω± = 1√
2

√
ω2 + ω2

m ±
√(

ω2 − ω2
m

)2 + 16g2ωωm, (A17)

where the coupling strength g =
√

g2
x + g2

y is defined as

g

2π
= γ

4π
η

√
μ0Sh̄ω

Vm
= η

√
ω

γ

4π

√
μ

glμB
μ0 h̄ns (A18)

with the filling factor

η =

√√√√(∫
Vm

h · x̂dV
)2 + (∫

Vm
h · ŷdV

)2

Vm
∫

Vc
|h|2dV

. (A19)

It is important to note that eigenfrequencies are a solution
of the Dicke model [14,15]. Finally the Hamiltonian can be
rewritten over the easier form

Ĥ/h̄ = ωĉ†ĉ + ωmb̂†b̂ + g(ĉ† + ĉ)(b̂† + b̂). (A20)

APPENDIX B: CAVITY OPTIMIZATION

Figure 6 is a representation of the optimization of the filling
factor η for two of the variable parameters; the width (W ) and
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FIG. 6. Filling factor η function of the width (W ) and the length
(L) of the two posts.

the length (L) of the posts, with d chosen equal to 50 μm. The
cavity radius (R) has been chosen at its optimized value. The
containment of the h field inside the YIG is at its maximum
when the post dimensions are of the slab dimensions. Hence
the width of the posts has been optimized over a range from
0.1 to 2 mm and their lengths from 4 to 8 mm. The radius of
the cavity does not have a big impact on η. The cavity radius
has been optimize over a range from 10 to 14 mm.

Each contour represents the value of η with respect to W
and L. The hashed contour delimits the surface where η �
78.5%. For better feasibility, we choose the largest values of
W and L. This leads to an optimal value of η for W = 0.6 mm,
L = 6 mm, and R = 12 mm.

APPENDIX C: FMR MODEL

Using the Landau-Lifshitz equation of the magnetization
with the proper approximations leads us to the FMR pulsation
for all types of ferromagnet shapes [30]:

ω0 = γ

√(
ωe

γ

)2

− [(Nxy + Nyx )Ms]2, (C1)

where Ms is the saturation magnetization, Ni, j is a component
of the demagnetizing tensor at the ith column and the jth row,
and ωe is the FMR pulsation for an ellipsoidal body read as

ωe = γ
√

[|Hz| + (Nxx − Nzz )Ms][|Hz| + (Nyy − Nzz )Ms].
(C2)

Using the perturbation theory with a small perturbation on
the H field ε = Mz

Hz
at the first order, it is shown that the

demagnetizing components for a rectangular prism are for the
diagonal components [31]:

N (1)
kk = 1

4π

⎧⎪⎪⎨
⎪⎪⎩

cot−1[ f (xi, x j, xk )] + cot−1[ f (−xi, x j, xk )]
+ cot−1[ f (xi,−x j, xk )] + cot−1[ f (xi, x j,−xk )]
+ cot−1[ f (−xi,−x j, xk )] + cot−1[ f (−xi, x j,−xk )]
+ cot−1[ f (xi,−x j,−xk )] + cot−1[ f (−xi,−x j,−xk )]

⎫⎪⎪⎬
⎪⎪⎭, (C3)
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FIG. 7. Transmission spectra vs the rf frequency and the H field. Fitted polariton branches are shown in white. The BM frequency (in
orange) and the coupling strength are variables. The FMR is shown in black and the DM in red. Fits were be done with the normal phase of
the Dicke model. In (a) the measurement for d = 50 μm and a fit with the Dicke model. In (b) the measurement for d = 4 μm and a fit with
the Dicke superradiant phase model.

with

f (xi, x j, xk ) =
√

(ai − xi )2 + (a j − x j )2 + (ak − xk )2(ak − xk )

(ai − xi )(a j − x j )
, (C4)

and for the off-diagonal terms,

N (1)
ik = − 1

4π
log

[
G(r|ai, a j, ak )G(r|−ai,−a j, ak )G(r|−ai, a j,−ak )G(r|ai,−a j,−ak )

G(r|−ai, a j, ak )G(r|ai,−a j, ak )G(r|ai, a j,−ak )G(r| − ai,−a j,−ak )

]
, (C5)

with

G(r|ai, a j, ak )

= (a j − x j ) +
√

(ai − xi )2 + (a j − x j )2 + (ak − xk )2.

(C6)

Let us notice that the demagnetizing components are spa-
tially dependent and were averaged to x, y, and z equal to zero
for analytical equations. For the YIG dimensions mentioned
in the manuscript, the off-diagonal components of the demag-
netizing tensor are equal to zero and then the slab was the
same FMR frequency as read in Eq. (C2).

APPENDIX D: DICKE MODEL

1. Normal phase

The Dicke model is the simplest model to describe the
magnon-photon interaction. We consider each Hamiltonian of
the cavity photonic mode and magnon as well as the interac-
tion Hamiltonian [22]:

Ĥ = ωĉ†ĉ + ωmb̂†b̂ + g(ĉ† + ĉ)(b̂† + b̂). (D1)

From this equation we can easily solve for the eigenmodes,
that is to say, the polaritronic modes described in Eq. (A17).
This equation is only valid when the ratio g/ω is less than 0.5.
For a description of a system with a ratio higher than 0.5, it is
necessary to use the Dicke superradiant phase [43].

2. Superradiant phase

The superradiant phase is a quantum transition in the Dicke
model and represents the displacement of bosonic modes [22]:
ĉ† → â† + √

α and b̂† → d̂† − √
β, where α and β represent

averaged values of the displaced ground states for the pho-
ton and the magnon, respectively. Using Holstein-Primakoff
transformation in the Dicke Hamiltonian, the eigenfrequen-
cies become

ω± = 1√
2

√
ω2 + g̃4ω2

m ±
√(

ω2 − g̃4ω2
m

)2 + 4ω2ω2
m,

(D2)

where g̃ = 2 g
ω

.
In this case Fig. 7(b) shows fitted measurement with the

superradiant Dicke model. For this fit we do not need to add a
frequency term on the FMR, and we found that ω = 4.75 GHz
and g = 2.58 GHz.

With comparing BM frequencies, DM frequencies, and
g as done in Sec. IV C, the BM frequency and g should
be higher than those obtained from simulation. Because of
this mismatch, it seems that the superradiant phase is not
reached. Figure 7 shows transmission spectra with respect to
the frequency and the H field. A fit has be done with the
standard Dicke model. The two eigenmodes of the fit shown
in the dotted white line which are not consistent with the
measurement prove the inability to fit with the standard Dicke
model.
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FIG. 8. Transmission spectra vs the rf frequency and the H field. Fitted polariton branches are shown in white. The BM frequency (in
orange) and the coupling strength are variables. The FMR is shown in black and the DM in red. Fits were be done with the modified Hopfield
model where the prefactor is (a) d < 1, (b) d = 1, and (c) d > 1.

APPENDIX E: HOPFIELD MODEL

1. Standard

The Hopfield model is equivalent to the Dicke one with a supplementary term: the diamagnetic one. Considering a carried
particle in a magnetic field, we redefine the impulse of the system [22],

p̂ → p̂ − qÂ, (E1)

with Â the vector potential and associated to the photonic mode: Â ∝ (ĉ† + ĉ).
We finally have the Hopfield Hamiltonian of the system:

Ĥ = ωĉ†ĉ + ωmb̂†b̂ + g(ĉ† + ĉ)(b̂† + b̂) + D(ĉ† + ĉ)2, (E2)

where D is the diamagnetic term where the Thomas-Reiche-Kuhn sum rules gives D = g2

ω
.

With using Hopfield-Bogoliubov transformation and redefining g as g
√

ωm
ω

we have

ω± = 1√
2

√
ω2 + ω2

m + 4g2 ±
√(

ω2 + ω2
m + 4g2

)2 − 4ω2ω2
m. (E3)

2. Modified

Following Ref. [17], where a prefactor d is added before the diamagnetic term in Eq. (E4), we tried to fit with the modified
Hopfield model by varying this prefactor,

ω± = 1√
2

√
ω2

c + 4dDωc + ω2
c ±

√(
ω2

c + 4dDωc − ω2
m

)2 + 16g2ωcωm, (E4)

where D = g2/ωm.
Figure 8 shows the fit with the modified Hopfield model when the prefactor is less, equal, or more than 1 in respectively (a),

(b), and (c). Let us notice that the standard Hopfield model is for d = 1. Finally, the only effect of this prefactor is equivalent to
increase (for d < 1) or decrease (for d > 1) the BM frequency, whereas it is needed to have a model which affects the FMR.
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APPENDIX F: MEASUREMENTS

1. CAV01

FIG. 9. Transmission spectra vs the rf frequency and the H field. Fitted polariton branches are shown in white. The BM frequency (in
orange) and the coupling strength are variables. The FMR is shown in black and the DM in red. Fitted parameters are shown in Table II.

TABLE II. The parameters associated with measurements at different values of distance d between the post and the lid of the machined
cavity. The numbering refers to the spectra shown in Fig. 9.

Numbering d [μm] fDM [GHz] fBM [GHz] g/2π [GHz] g/ω g2/2πω [GHz] �m/2π [GHz] fgap [GHz]

(a) 116 3.75 7.65 2.68 0.35 0.94 2.35 0.58
(b) 75 3.19 7.31 2.62 0.36 0.94 2.29 0.54
(c) 65 3.05 7.16 2.56 0.36 0.92 2.31 0.54
(d) 36 2.40 6.44 2.41 0.37 0.90 2.27 0.64
(e) 10 1.38 4.46 2.03 0.46 0.92 2.39 0.87
(f) 3 0.81 2.80 1.64 0.59 0.96 2.59 1.22
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2. CAV02

FIG. 10. Transmission spectra vs the rf frequency and the H field. Fitted polariton branches are shown in white. The BM frequency (in
orange) and the coupling strength are variables. The FMR is shown in black and the DM in red. Fitted parameters are shown in Table III.

TABLE III. The parameters associated with measurements at different values of distance d between the post and the lid of the printed
cavity. The numbering refers to the spectra shown in Fig. 10.

Numbering fDM [GHz] fBM [GHz] g/2π [GHz] g/ω g2/2πω [GHz] �m/2π [GHz] fgap [GHz]

(a) 4.06 9.79 2.72 0.28 0.76 1.63 0.24
(b) 3.26 8.76 2.59 0.30 0.77 1.71 0.30
(c) 3.01 8.32 2.52 0.30 0.76 1.74 0.31
(d) 2.64 7.63 2.42 0.32 0.77 1.69 0.34
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3. CAV03

FIG. 11. Transmission spectra vs the rf frequency and the H field. Fitted polariton branches are shown in white. The BM frequency (in
orange) and the coupling strength are variables. The FMR is shown in black and the DM in red. Fitted parameters are shown in Table IV.

TABLE IV. The parameters associated with measurements at different values of distance d between the post and the lid of the cavity with
cylinder posts from [29]. The numbering refers to the spectra shown in Fig. 11.

Numbering fDM [GHz] fBM [GHz] g/2π [GHz] g/ω g2/2πω [GHz] �m/2π [GHz] fgap [GHz]

(a) 3.02 5.53 0.65 0.12 0.08 0.33 0.01
(b) 2.29 4.36 0.69 0.16 0.11 0.29 0.02
(c) 1.44 2.92 0.63 0.22 0.14 0.37 0.02
(d) 1.30 2.35 0.58 0.25 0.14 0.50 0.05
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FIG. 12. �g/ω vs (a) g/ω; (b) �m/ω. Shown are the FD simulations on CAV01 in red and measurements in blue, in green for CAV02, and
in purple for CAV03.

APPENDIX G: GAP STUDY

Without adding �m to the FMR in the Dicke model, and
without applied static magnetic field, the frequency of the
upper polariton is equal to the cavity one. However, when

the FMR is shifted, an observable forbidden gap in frequency
appears. Considering Fig. 12, �g/ω is not observable when
g/ω is equal to or lower than 0.2. For higher g/ω values, �g/ω

is quadratic, as shown in (a). In (b) is shown the evolution of
�g/ω versus �m/ω.
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