
PHYSICAL REVIEW B 107, 214422 (2023)

Quantum spin helices more stable than the ground state: Onset of helical protection
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Topological magnetic structures are promising candidates for resilient information storage. An elementary
example is spin helices in one-dimensional easy-plane quantum magnets. To quantify their stability, we numeri-
cally implement the stochastic Schrödinger equation and time-dependent perturbation theory for spin chains with
fluctuating local magnetic fields. We find two classes of quantum spin helices that can reach and even exceed
ground-state stability: spin-current-maximizing helices and, for fine-tuned boundary conditions, the recently
discovered “phantom helices.” Beyond that, we show that the helicity itself (left or right rotating) is even
more stable. We explain these findings by separated helical sectors and connect them to topological sectors in
continuous spin systems. The resulting helical protection mechanism is a promising phenomenon for stabilizing
helical quantum structures, e.g., in ultracold atoms and solid-state systems. We also identify a third type of
phantom helix in the system.

DOI: 10.1103/PhysRevB.107.214422

I. INTRODUCTION

Quantum states are notoriously vulnerable to external per-
turbations. Yet, aside from cooling or physically separating
quantum systems from the environment, some mechanisms
create comparably stable quantum phenomena. Among these
are topological electronic phases [1–3] including quantum
Hall effects [4–9], topological superconductors [10–14],
topological spin models [15], and spin-based anyons [15].
Furthermore, quantum systems affected by specific external
perturbations can reach dark states, i.e., subspaces protected
against decoherence [16,17].

Recently, helices in easy-plane one-dimensional Heisen-
berg magnets were conjectured to extend the class of stable
quantum states, having been predicted to exhibit stability in
classical systems [18], in semiclassical approximations [19],
and in quantum systems [20–23], including dissipatively and
parametrically controlled magnetic boundaries that facilitate
their creation [23–27]. In particular, helical solutions for quan-
tum spin chains with fine-tuned magnetic boundary fields
were found which are product states of spins at individual
sites. Using the Bethe ansatz, these helices were shown to
consist of “Bethe phantom roots,” which carry zero energy but
a finite momentum relative to a reference state [28–33]. Jepsen
et al. [34] demonstrated the creation of such phantom helices
in cold atomic systems and put phantom helices in relation to
quantum scars, i.e., states that equilibrate significantly slower
than an average state [35].

Topological spin systems could be used to store energy
like in a spring [18] in both classical and quantum spintronics
and as bits and qubits by storing information in its rotational
sense. To this end, proposals using quantum skyrmions [36]
and quantum merons [37] have been made. Quantum spin
helices and quantum spin systems are an active research area
in solid-state physics [12,38,39] and quantum chemistry [40]
and, beyond their realization in ultracold-atom systems, could
be simulated with tensor networks or on a quantum com-
puter. Furthermore, through a Jordan-Wigner transformation,
quantum spin helices are closely connected to Josephson junc-
tions which exhibit a helically twisted superconducting order
parameter [41], and understanding spin helices may help us
to analyze higher-dimensional noncollinear quantum mag-
netism like quantum skyrmions [42] and generalized phantom
states [34]. In all these contexts, it is paramount to quantita-
tively understand the susceptibility of quantum spin helices
to external noise in the bulk of the chain. Particularly rele-
vant are parametric perturbations, which correspond to, e.g.,
fluctuating magnetic fields, fluctuating superconducting order
parameters, phonons, or gate errors, depending on the physical
system at hand.

In this paper, we show that quantum spin helices in one-
dimensional easy-plane Heisenberg magnets generally exhibit
noise protection that can exceed ground state stability. Fur-
thermore, the helicity of a state is protected for even larger
timescales. To show this, we analyze quantum spin chains

2469-9950/2023/107(21)/214422(9) 214422-1 ©2023 American Physical Society

https://orcid.org/0000-0001-7693-350X
https://orcid.org/0000-0003-0904-7254
https://orcid.org/0000-0001-5022-9506
https://orcid.org/0000-0001-6133-5232
https://orcid.org/0000-0002-1574-7591
https://orcid.org/0000-0003-0839-6268
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.214422&domain=pdf&date_stamp=2023-06-15
https://doi.org/10.1103/PhysRevB.107.214422


STEFAN KÜHN et al. PHYSICAL REVIEW B 107, 214422 (2023)

with random, time-fluctuating on-site magnetic fields by
simulating the stochastic Schrödinger equation and by em-
ploying time-dependent perturbation theory. Our study in-
cludes phantom helices and the more general class of quantum
spin helices characterized as helices carrying maximal spin
current along the chain. The stability of quantum spin he-
lices is explained by the length-dependent onset of decoupled
helical sectors, distinguishing left-rotating, right-rotating, and
nonrotating quantum spin states. We speculate that this helical
protection of ferromagnetic quantum spin helices descends
from the topological protection in Appendix A in continuous
antiferromagnetic spin systems with large spin quantum num-
bers [43]. The helical protection preserves the helicity of a
quantum state for short and intermediate timescales and could
be a base for future stable helical quantum effects in ultracold
atoms and solid-state systems.

II. NOISE MODEL FOR HEISENBERG CHAINS

We consider a one-dimensional easy-plane XXZ Heisen-
berg magnet of spins 1/2, which is exposed to time-dependent
random fluctuations of local magnetic fields. The Hamiltonian
is

H (t ) = Hchain + Hend + Hrand(t ),

Hchain =
∑
j<L

J
(
Sx

j S
x
j+1 + Sy

j S
y
j+1

) + �Sz
jS

z
j+1,

Hend = J
(
Sx

1 + Sx
L

)
h̄/2,

Hrand(t ) =
∑
j�L,λ

hλ
j (t )Sλ

j . (1)

Here, L is the length of the spin chain, Sλ
j is the spin operator

on the jth site in direction λ ∈ {x, y, z}, J is the easy-plane
coupling, and � is the axial anisotropy in the z direction.
We consider ferromagnetic coupling J < 0, yet our results
directly transfer to planar antiferromagnetism by the map-
ping S j

x, S j
y → −S j

x,−S j
y for even j. The magnitude of

the boundary fields in Hend [23,33] is generic in the sense
that a large magnetic field at hypothetical sites 0 and L + 1,
which fully polarize these spins, will create exactly the desired
magnitude of the boundary fields. The coupling constant hλ

j (t )
fluctuates randomly in time between ±hmax and is uncorre-
lated for different lattice sites. For simplicity, we assume that
the perturbations change stroboscopically in intervals of δt .
This approach is also a first step towards simulating Eq. (1) on
a noisy quantum computer, where Trotter real-time evolution
along with decomposition of the single-step time evolution
operator in quantum gates could be employed. In this scenario,
uncorrelated coherent single-qubit gate errors correspond to
the random parametric noise assumed here. Within the Marko-
vian approximation, neither the assumed uniform distribution
nor the sudden changes in the magnetic field cause unphysical
behavior in the limit of small δt |J|/h̄. This is demonstrated by
the corresponding Lindblad master equation that assumes the
form of a typical continuous Markovian time evolution of a
system with uncorrelated external fields in Appendix B 2 and
Ref. [44].

We call a quantum state a quantum spin helix if the
expectation values of the local spins form a helix in the

FIG. 1. We consider quantum helices defined by helical spin
expectation values of a chain of coupled spins or pseudospins (red)
exposed to uncorrelated time-dependent perturbations of the mag-
netic field |hλ

j (t )| � hmax. The helix is stabilized by boundary fields
in the x direction (blue).

x-y plane (see Fig. 1). In general, a helical eigenstate of
Hchain is degenerate to a state with opposite helicity because
Hchain has the symmetry U = ∏

j�L Sx
j , which mirrors each

spin about the x axis. Quantum spin helices are therefore
ambiguously defined when we consider only their energy.
To resolve the ambiguity, we consider two special kinds of
helices. The first type is helices that are eigenstates of the
model in Eq. (1) with the maximal amount of spin cur-
rent along the direction of the chain C = ∑L

j=1(S j × S j+1)z.
These spin-current-maximizing helices consist of entangled
spins and generally appear in chains of odd length or at
special anisotropies � = J cos(π/k) for odd k < L with even
chain lengths L [23]. Here, we focus on � = J/2, i.e., k = 3.
Spin-current-maximizing helices at general easy-plane values
of � (|�| < |J|) can be prepared by adiabatically twisting
the boundary magnetization by 2π for � = J/2 [23] and
subsequently adiabatically adjusting to the desired value of
�. The second class of quantum spin helices appears when
the chain length L and the Heisenberg anisotropy � match the
phantom condition (L − M )γ + δM,1π ≡ 0 (mod 2π ), with
γ = arccos �/J and M being −1, 1, or 3. Then, helices with
a constant winding angle γ are product states of local spin
states fulfilling the phantom helix ansatz [31,33,45,46],

|PHτ 〉 =
L⊗

j=1

Rz(±[ j − 2δτ,1]γ + πδτ,1)|→〉 j . (2)

Here, the index τ = 1, 2 denotes two types of phantom he-
lices, Rz(θ ) is an SU (2) rotation around the z axis with the
angle θ , and |→〉 j is the spin state at site j pointing in the
x direction. Type τ = 1 helices are eigenstates for M = 1, 3,
and type τ = 2 helices are eigenstates for M = 1,−1. The
case where M = 1 is a phantom condition not mentioned in
Refs. [31–33,46], fulfilling the criteria of Ref. [45], which we
verified by acting with Hchain on the ansatz above. To prepare
phantom helices, an initial product state gets twisted locally
by single-spin manipulations [34].

III. STABILITY OF QUANTUM SPIN HELICES

In the following, we present results on the stability of the
helical and nonhelical eigenstates of Hchain for varying chain
length and Heisenberg anisotropy �. For the boundary fields
in Eq. (1), spin-current-maximizing helices exist for even
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FIG. 2. The stability of quantum spin helices. (a) The ground state (blue dashed line), the two spin-current-maximizing helices (SMH;
solid lines, degenerate despite numerical fluctuations), and the phantom helices (PH; dash-dotted lines) are significantly more stable than other
states, shown by exact simulations of the fidelity F	 (t ) [see Eq. (3) and main text]. Inset: At time ts = 200h̄/|J|, the most stable helical state
is separated from the first excited nonhelical state (dashed orange line) by the fidelity difference 
 and separated from the ground state by the
fidelity difference �F . Parameters: chain length L = 10, anisotropy � = J/2, and perturbation strength hmax = |J|/2, averaged over 1000 runs
with different random noise. (b) The separation 
 between the most stable helical state and less stable states at time ts = 200h̄/|J| [see inset
in Fig. 2(a)] shows that the most stable helix can be a spin-current-maximizing helix (squares) or a phantom helix of type 1 with M = 3 (PH1;
downwards triangles), type 2 with M = −1 (PH2; upwards triangles), or types 1 and 2 with M = 1 (PH; diamonds). (c) Fidelity difference �F
between the ground state and the most stable helical state in units of 
. For spin-current-maximizing helices, stability increases in chain length
L, where chains with L � 6 sites can become more stable than the ground state (blue), while phantom helices are more stable than the ground
state for all L.

chain lengths with � = J/2 and for odd chain lengths for
all |�| < |J|. For the considered value of � = J/2, phantom
helices exist only for chain lengths L = 3, 4, 5, 9, 10, 11, . . . ,
i.e., L ≡ 3, 4, or 5 (mod 6), inferred from the phantom condi-
tion and Eq. (1).

First, we numerically simulate the Hamiltonian, imple-
menting the time evolution using a series expansion for the
time evolution operator up to second order in the time step
δt , which we choose to be 0.01h̄/|J|, and average over 1000
runs. Other values of δt or higher-order terms in the expan-
sion do not change our results qualitatively. We note that
other advanced numerical methods describing the random
time evolution of the quantum system are hard to apply
here. The large dimensionality of the quantum spin sys-
tem prohibits the direct implementation of the corresponding
Lindblad equation (see Appendix B 2) already for short spin
chains. Tensor network methods are, in general, not suited to
accessing long timescales for out-of-equilibrium simulations
due to the growth of entanglement over time [47–50]. Other
advanced numerical methods, including a description of the
spins as localized electrons, applying (real-space) dynamical
mean field theory [51], and using neural network quantum
states [52], are similarly not applicable. As a measure for
stability, we consider the expected fidelity of an eigenstate
of the fluctuation-free Hamiltonian and a time-evolved initial
eigenstate,

F	 (t ) = E(|〈	(0)|	(t )〉|2), (3)

where E(· · · ) denotes averaging with respect to the random
noise.

We find that the ground state, the spin-current-maximizing
helices, and the phantom helices, when they exist, are more
stable than the remaining eigenstates [see Fig. 2(a)]. A
suitable time for comparing chains of different lengths is ts =
200h̄/|J|, where the fidelities usually reach F	 (ts) ≈ 40%,
and the group of stable states is separated from less stable ones
[see Fig. 2(a) for a representative example with chain length
L = 10]. To elaborate this, we consider the fidelity difference

 = F	h (ts) − F	nh (ts) between the most stable helical state
	h and the most stable nonhelical excited state 	nh. As a
general trend, 
 increases for increasing chain length, and
the most stable helical state is consistently separated from
the most stable nonhelical excited state, independent of the
Heisenberg anisotropy [see Fig. 2(b)].

To show that helical states can exceed ground state stabil-
ity, we calculate the difference in fidelity between 	h and the
ground state 	gs, �F = F	h (ts) − F	gs (ts). The sign of �F
determines parameter regions where either the ground state or
	h is most stable; see the red and blue regions in Fig. 2(c),
respectively. We find that when phantoms exist, they are the
most stable states, independent of the length L of the chain and
the satisfied phantom condition. For spin-current-maximizing
helices, the stability increases with L, with a turning point
around L ≈ 6 depending on the Heisenberg anisotropy, where
spin-current-maximizing helices can become more stable than
the ground state.

IV. ONSET OF HELICAL SECTORS

Despite their enhanced stability, we observe from Fig. 2
that quantum spin helices are evidently not perfectly stable.
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FIG. 3. Onset of helical protection with increasing chain length. (a) Formation of helical sectors: reduced transition amplitudes �ψ,ψ ′

appear between left (�, green), right (�, red), and nonhelical (N, blue) eigenstates of Hchain(t = 0). Only the four energetically lowest states
are shown for each sector, sorted according to increasing absolute value of the spin current. Data correspond to L = 10 and hmax = |J|/2.
(b) Decreasing transition amplitudes away from the helical sectors with increasing chain lengths L for the energetically lowest state in each
sector (triangles and squares). In contrast, the nonhelical ground state (diamonds) experiences increased transitions with increasing L. Shown
is the sum of the matrix elements

∑
m/∈A �nm. (c) The length-dependent preservation of helical sectors spanned by left-rotating helical states

(�, green), right-rotating helical states (�, orange), and nonhelical states (N , blue) for system sizes L = 7 (dash-dotted lines), L = 9 (dashed
lines), and L = 11 (solid lines). Dotted black lines denote the perturbative result [see Eq. (4)]. PA is the probability of finding the time-evolved
initial state, a right-rotating spin-current-maximizing helix, after time t in the left (�, green), right (�, orange), or nonhelical sector (N , blue).
Parameters: chain length L = 10, anisotropy � = J/2, and perturbation strength hmax = |J|/2, averaged over 1000 runs with different random
noise.

We find that although the initial states experience strongly
reduced transitions to states with different helicities, transi-
tions to states with the same helicity are not suppressed. This
decoupling of the helical sectors becomes more prominent
for longer chains. To elaborate, we consider the probabil-
ity PA(n, t ) = ∑

g∈A |〈g|n(t )〉|2 of measuring the system at
time t in the same helical sector A ∈ {� left rotating, �
right rotating, N (nonhelical)} as the initial state |n〉. Here,
left-rotating, right-rotating, and nonhelical states are defined
by positive, negative, and vanishing spin current, respectively.
For hmaxδt/h̄ 	 1 and δt |J|/h̄ 	 1, we find

PA(n, t ) ≈

⎧⎪⎨
⎪⎩

1 − δth2
max

3h̄2 t
∑
m 
∈A

�nm n ∈ A,

δth2
max

3h̄2 t
∑
m∈A

�nm n 
∈ A,
(4)

with n and m labeling the eigenstates of Hchain(t =
0) [see Appendix B 1, Eq. (B13)]. The matrix �nm =∑L

j=1

∑
λ |〈m|Sλ

j |n〉|2 is the relevant quantity for describing
transitions between states of different helical sectors and
shows a strong separation between helical sectors, as depicted
in Fig. 3(a). The transition from one helical sector to another
one is proportional to �A(n) = ∑

m/∈A �nm. In Fig. 3(b), we
show the dependence of ��, ��, and �N for the energetically
lowest spin-current-maximizing helices and the ground state
on the chain length L. The short-time decay of the spin-
current-maximizing helices falls below that of the ground state
at intermediate lengths and ultimately approaches zero. This
is remarkable because longer chains contain more disorder
terms, such that a faster decay of general properties of the
states is expected, as observed in the increasing short-term
decay of the ground state �N . Notice that the helicity of
the ground state during the stochastic time evolution remains
zero by decaying with equal probability into the right- and
left-rotating sectors. This implies that, for sufficiently short
times t and long chains, the spin-current-maximizing helices
decay only into states in the same helical sector. For longer

times, leaving the perturbative regime, this tendency prevails
within an intermediate time regime whose width depends
on the strength of the random noise hmax, as shown by the
increase of P�(t ) for chains lengths 7, 9, and 11 in Fig. 3(c)
for hmax = |�| = |J|/2 using 1000 independent runs of the
full time evolution. Until t ≈ 200h̄/|J|, the increase in chain
length causes a net protective effect against transitions to the
oppositely rotating sector and to the nonhelical sector, as seen
by the decreased absolute slope of P� for small times. For
longer times, the slopes of P� for different chain lengths
become similar, and the population of the oppositely rotating
helical sector (green) is no longer negligible, which implies
that helical protection is lost.

The decoupling between sectors of different helicities is
reminiscent of topological sectors in continuum theories for
large spin quantum numbers. There, a semiclassical saddle
point analysis for antiferromagnetic helices [43] revealed that
spin slips, the only causes of transitions between helical
sectors, are strongly suppressed by a topological θ term in
the action. Interestingly, we find that the stability of helices
is the same for ferromagnetic models, where, instead, the
suppression of spin slips is caused by a topological Wess-
Zumino-Witten term [53] (see also Appendix A). Due to the
Wess-Zumino-Witten term, spin flips with opposite skyrmion
charge destructively interfere in the case of half-odd-integer
spin systems, as discussed in Appendix A.

V. DISCUSSION

This study reveals the onset of decoupled helical sectors
in spin chains of finite length when the chain is perturbed
by local randomly fluctuating magnetic fields. The result-
ing helical protection increases for increasing chain lengths
and suppresses transitions to sectors of different helicities
for short and intermediate timescales. We suggest that he-
lical protection becomes weaker at longer timescales due
to stronger coupling between highly excited states, which
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facilitates transitions to sectors with a different helicity. When
these transitions are suppressed by additional measures, e.g.,
by a low-temperature bath, we expect the helical sectors will
display their stability over an increased timescale. In general,
such a timescale separation and decoupled states would be a
hallmark feature of weak ergodicity breaking [35].

While the transitions between the helical sectors are
strongly suppressed, states experience no native protection
against excitations within a helical sector. This under-
lines the challenge in using quantum spin helices, quantum
skyrmions [36], or quantum merons [37] as qubits, for which
a combination with conventional quantum error correction or
mitigation techniques would need to be applied to suppress
these unwanted transitions. In future research, we aim to
investigate whether the helical protection mechanism itself
could be useful for quantum computing applications.
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APPENDIX A: TOPOLOGICAL STABILITY
OF FERROMAGNETIC QUANTUM SPIN HELICES:

NONLINEAR SIGMA MODEL

For antiferromagnetic spin helices, Ref. [43] demonstrated
that quantum phase slips (QPSs) unwind spin helices with
a total winding angle of �φ = 2π for integer spins, assum-
ing the large-spin and continuum limits. For half-odd-integer

spins, these QPSs destructively interfere, such that the helices
remain stable. In this Appendix, we show that the same stabil-
ity arguments hold true for ferromagnetic spin helices.

We start with a brief summary of the results obtained in
Ref. [43], which consider the Hamiltonian of the anisotropic
Heisenberg antiferromagnetic spin-s chain,

H = J
∑

n

[
Sn · Sn+1 − aSz

nSz
n+1 + b

(
Sz

n

)2]
, (A1)

with the nearest-neighbor coupling J > 0, spin S2
n = s(s +

1), and small positive constants a 	 1 and b 	 1, which
parametrize the anisotropy. In the large-s limit, neighboring
spins are mostly antiparallel, 〈Sn〉 ≈ −〈Sn+1〉, in low-energy
states, and long-wavelength dynamics of the chain can be
understood in terms of the slowly varying unit vector n =
〈S2n − S2n+1〉/s in the direction of the local Néel order param-
eter. The dynamics of the field n follows the nonlinear sigma
model with Euclidean action S = iθQ + S0 (in units of h̄),
where θ ≡ 2πs is referred to as the topological angle. Here,

Q ≡ 1

4π

∫
dx

∫
dτ n · (∂xn × ∂τ n) (A2)

is the skyrmion charge of n that measures how many times
n(x, τ ) wraps the unit sphere as the space and imaginary-time
coordinates, x and τ , vary.

QPSs are vortex configurations of n in the two-dimensional
Euclidean space-time. Vortex solutions are characterized by
their vorticity q and polarity p, which are related to the
skyrmion charge as Q = pq/2. When considering a dilute gas
of m QPSs, the periodic boundary conditions force this gas to
be vorticity neutral,

∑
i qi = 0. The resulting topological part

of the Euclidean action reduces to [43]

Sθ = iθ
∑

j

Q j = iθ
∑

j

p jq j/2, (A3)

where j = 0, . . . , m − 1. For the fixed-vorticity configuration
{qj}, the resulting partition function is summed over the two
possible polarities for each QPS, p j = ±1, which results in
the partition function [43]

Z =
∫

Dn(x, τ )δ(n2 − 1) exp(−Sθ − S0)

∝
⎡
⎣∏

j

cos

(
θq j

2

)⎤
⎦e−S0({q j}). (A4)

The prefactor of the partition function distinguishes integer
and half-odd-integer s. For integer s, the topological angle is
zero, θ = 0, and thus, the prefactor is 1. Half-odd-integer s,
however, yields θ = π , and the prefactor vanishes when any
vorticity {qi} is odd. This implies that the QPSs destructively
interfere for q = ±1. Thus, in the half-odd-integer case, the
helices can be unwound only if one has a double winding with
q = ±2.

In the following, we address the derivation of the topolog-
ical protection for ferromagnetic spin helices, J < 0, which
can be done analogously to the antiferromagnetic spin he-
lices [43] discussed above. Following Ref. [53], we consider
the Wess-Zumino-Witten (WZW) term for the ferromagnetic
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spin chain,

SWZW(n, ∂τ n) = is
∫

dτ [1 − cos(ψ )]φ̇. (A5)

Here, (φ,ψ ) are two angles parametrizing the unit vector n.
This expression is equivalent to [53]

SWZW(n, ∂τ n) = i
C

4π

∫
dx

∫
dτ n · (∂xn × ∂τ n), (A6)

where the coupling constant C obeys the quantization con-
dition C = 4πs = 2πk, k ∈ Z. Thus, the θ term in the
antiferromagnetic case (A2) is a descendant of the WZW
term in the ferromagnetic case (A6) [53], and the topological
angle θ = 2πs can be identified with the coupling constant
C = 4πs [53]. This implies that both the antiferromagnetic
and ferromagnetic spin chains can be mapped to the same non-
linear sigma model, with the same definitions of the skyrmion
charge and vortex configurations as in the previous paragraph.
Thus, to derive the topological protection for the ferromag-
netic spin helices, we can follow the same derivation as for the
antiferromagnetic case [43], arriving at the partition function

Z ∝
⎡
⎣∏

j

cos

(
θq j

2

)⎤
⎦e−S0({q j}). (A7)

Here, qi is the vorticity of the QPSs, just as in the antiferro-
magnetic case. For half-odd-integer s, the prefactor vanishes
when any vorticity {qi} is odd, which implies that the QPSs de-
structively interfere for q = ±1. Thus, in the half-odd-integer
case, the helices can be unwound only if one has a double
winding with q = ±2.

APPENDIX B: TIME-DEPENDENT
PERTURBATION THEORY

In this Appendix, we conduct the time evolution and aver-
aging over the random fluctuations in the limit of short time
steps δt |J|/h̄ 	 1 and magnetic fluctuations that are small
compared to 1/δt , i.e., hmaxδt/h̄ 	 1, in order to determine
the stability of the helicity of an initial state.

Consider the Hamiltonian H (t ) in Eq. (1) of the main text
describing a spin- 1

2 chain with N sites perturbed by fluctuating
local magnetic fields:

H (t ) = H0 + Hrand(t ) = Hchain + Hend + Hrand(t ), (B1)

with dipole-field interaction

Hrand(t ) =
N∑

j=1

S jh j (t ). (B2)

The chain has 2N eigenstates |n〉 with eigenenergies En. In the
interaction picture, the interaction term reads

Hrand,I (t ) =
N∑

j=1

SI, j (t )h j (t )

=
N∑

j=1

e
i
h̄ H0t S je

− i
h̄ H0t h j (t ). (B3)

The time evolution operator is conveniently expressed by the
Dyson series

UI (t ) = 1 − i

h̄

∫ t

0
dτHrand,I (τ )

− 1

h̄2

∫ t

0
dτ

∫ τ

0
dτ ′Hrand,I (τ )Hrand,I (τ ′)

+ · · · . (B4)

Consider an eigenstate |	〉 and a subspace A spanned by
eigenstates of H0 such that |	〉 ∈ A; we compute the proba-
bility to find |	(t )〉 in A:

〈	(t )|PA|	(t )〉 =
∑
{n}

|〈n|	(t )〉|2, (B5)

with PA being the projector onto A and {n} being a set of
orthonormal eigenstates of H0 including 	 and forming a
basis of A. We proceed to compute the terms in the sum on
the right-hand side of Eq. (B5):

〈n|UI (t )|	〉 = δ	n − i

h̄

N∑
j=1

∑
χ=x,y,z

∫ t

0
dτ 〈n|Sχ

j |	〉hχ
j (τ )

− 1

h̄2

2N∑
m=1

N∑
j,k=1

∑
χ,ξ=x,y,z

∫ t

0
dτ

∫ τ

0
dτ ′ei(ωnmτ−ω	mτ ′ )〈n|Sχ

j |m〉〈m|Sξ

k |	〉hχ
j (τ )hξ

k (τ ′) + · · · . (B6)

Introducing the transition frequencies ω	n = (E	 − En)/h̄ and denoting |〈	|	(t )〉|2 = |〈	|UI (t )|	〉|2, we obtain

|〈n|	(t )〉|2 = δ	n + δ	n
2

h̄

N∑
j=1

∑
χ=x,y,z

Im〈	|Sχ
j |	〉

∫ t

0
dτhχ

j (τ )

+ 1

h̄2

N∑
j,k=1

∑
χ,ξ=x,y,z

〈n|Sχ
j |	〉〈	|Sξ

k |n〉
∫ t

0
dτhχ

j (τ )
∫ t

0
dτ ′hξ

k (τ ′)

− δ	n
2

h̄2

2N∑
m=1

N∑
j,k=1

∑
χ,ξ=x,y,z

∫ t

0
dτ

∫ τ

0
dτ ′ Re

(
eiω	m (τ−τ ′ )〈	|Sχ

j |m〉〈m|Sξ

k |	〉)hχ
j (τ )hξ

k (τ ′) + · · · . (B7)
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1. Random sampling

We draw M random samples of the magnetic field and in-
dex them by α = 1, . . . , M. We assume that the magnetic field
is uncorrelated for different sites and time differences larger
than δt . Further, we assume that the magnetic field is constant
over the time interval [uδt, (u + 1)δt], with u = 0, . . . , K − 1
being a non-negative integer. The samples are drawn from a
distribution of the fields at each lattice site within the range
−hmax < hχ

j < hmax for each field component independently.
The distribution is considered to be independent of time. As a
consequence, we have

lim
M→∞

1

M

M∑
α=1

hχ
j,α (τ ) = 0, (B8)

lim
M→∞

1

M

M∑
α=1

hχ
j,α (τ )hξ

k,α
(τ ′)

=
{

1
3 h2

maxδ j,kδχ,ξ , for uδt � τ ′ < (u + 1)δt,

0, otherwise,
(B9)

with u being the largest integer such that uδt � τ . With these
assumptions, the average of Eq. (B7) over the random samples
can be evaluated in a straightforward fashion. We define the �

matrix as

�nm =
N∑

j=1

∑
χ=x,y,z

∣∣〈m|Sχ
j |n〉∣∣2

(B10)

and obtain the total loss of fidelity truncating higher orders of
(hmaxδt/h̄) after reducing t = δtK where applicable:

E (〈	(t )|PA|	(t )〉) = 1 − h2
maxδt

3h̄2 t
∑
m/∈A

�	m sinc2

(
ω	m

ωc

)
,

(B11)

with the normalized sine cardinal function sinc(x) =
sin(πx)/(πx) and the cutoff frequency ωc ≡ 2πδt−1. E (·)
denotes the averaging over the sample set for M → ∞. Note
that K = t/δt since we always assume t is an integer multiple
of δt .

Finally, making the rough approximation that the transition
frequencies are always in either the |ω	m| 	 ωc or |ω	m| 
ωc regime and neglecting the intermediate regime |ω	m| ≈ ωc,

we arrive at the final result for the loss of fidelity of the time-
evolved eigenstate:

E (〈	(t )|PA|	(t )〉) ≈ 1 − h2
maxδt

3h̄2 t
|ω	m|<ωc∑

m/∈A

�	m. (B12)

For a fixed time step δt , the fidelity decreases linearly in time
t . The smaller δt is, the more �-matrix elements contribute,
in principle. This effect saturates, however, for δt 	 h̄/J ,
assuming that the energy spectrum is bound, which is the case
for the considered spin chains. We then reach

E (〈	(t )|PA|	(t )〉) ≈ 1 − h2
maxδt

3h̄2 t
∑
m/∈A

�	m, (B13)

which results in the equation given in the main text consider-
ing that both probabilities add up to 1.

2. Lindblad Master equation

To demonstrate that the stroboscopic time evolution and
the chosen uniform random distribution of the perturbing
magnetic fields have no physical side effects compared to
a continuous evolution or other random distributions of the
random noise, we derive the Lindblad master equation in the
limit of small time steps δt . We find that, in first order in δt ,
the density matrix ρ evolves as

∂tρ(t ) = i[ρ, H] + κ
∑
λ, j

(
Sλ

j ρSλ
j − 1

2

{
Sλ

j
2
, ρ

})
, (B14)

with κ = 1
3 hmaxδt . The Lindblad master equation generally

allows us to directly access the average quantities of the
evolved the system. However, relying on the density matrix
instead of on the state vectors increases the dimension of the
implemented matrices by a power of 2. Therefore, Eq. (B14) is
generally unfeasible for conducting calculations of long spin
chains as discussed in the main text. For smaller chain lengths,
we checked the above Lindblad evolution against the exact
numerical implementation of the Schrödinger equation dis-
cussed in the main text and found arbitrarily close agreement
with an increasing number of runs of the exact numerical
simulation.
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