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Recent advances in numerical methods significantly pushed forward the understanding of electrons coupled
to quantized lattice vibrations. At this stage, it becomes increasingly important to also account for the effects of
physically inevitable environments. Here, we combine state-of-the-art tensor-network and quantum trajectories
methods in order to study the impact of dissipation on realistic condensed matter models including highly excited
phononic modes. In particular, we study the transport properties of the Hubbard-Holstein Hamiltonian that
models a large class of materials characterized by strong electron-phonon coupling, in contact with a dissipative
environment. We combine the non-Markovian hierarchy of pure states method and the Markovian quantum
jumps method with the newly introduced projected purified density-matrix renormalization group, creating
powerful tensor-network methods for dissipative quantum many-body systems. Investigating their numerical
properties, we find a significant speedup up to a factor ≈30 compared to conventional tensor-network techniques.
We apply these methods to study dissipative quenches, aiming for an in-depth understanding of the formation,
stability, and quasiparticle properties of bipolarons. Surprisingly, our results show that in the metallic phase
dissipation localizes the bipolarons, which is reminiscent of an indirect quantum Zeno effect. However, the
bipolaronic binding energy remains mainly unaffected, even in the presence of strong dissipation, exhibiting
remarkable bipolaron stability. These findings shed light on the problem of designing real materials exhibiting
phonon-mediated high-TC superconductivity.

DOI: 10.1103/PhysRevB.107.214310

I. INTRODUCTION

Spectrally structured environments are omnipresent in any
realistic setup [1,2], and it is crucial to understand their effects
on quantum many-body systems. This becomes even more
relevant given the remarkable development of experimental
platforms such as ultracold quantum gases [3–7], high-quality
electromagnetic cavities [8–13], time-resolved pump-probe
experiments on photosynthetic complexes [14], and large
arrays of superconducting qubits [15–21]. These platforms
make it possible to study the effects of structured environ-
ments in cleaner setups but also to investigate the possibility to
exploit them as a resource to engineering new phenomena in
open quantum systems (OQS) [22–28]. The past decades have
also seen a rapid development of highly efficient numerical
tools, enabling simulations of a large number of quantum
mechanical degrees of freedom. In particular, the density-
matrix renormalization group (DMRG) in its matrix-product
state (MPS) formulation [29–32] provides a well-established
framework in today’s efforts with applications including
(near-) equilibrium studies of low-dimensional lattice systems
[33–40], out-of-equilibrium simulations following global
quenches [41–51], impurity solvers for quantum embedding
techniques [52–57], and solvers in coupled-cluster techniques
to study large molecules [58–63]. Despite its large success

on isolated quantum systems, effective numerical schemes to
simulate OQS using MPS are typically applicable only in
the Markovian regime [64–77]. This paper aims to close the
gap between the necessity of unbiased descriptions of OQS,
on the one hand, and numerically efficient lattice representa-
tions operating on the required large local Hilbert spaces, on
the other hand. For that purpose, we build upon a recently
introduced efficient representation of bosonic Hilbert spaces
[80,81] as well as both Markovian [82] and non-Markovian
methods for OQS [25,26,83]. Based on MPS representa-
tions, we combined both approaches, yielding a powerful
numerical tool to study the impact of dissipation on realistic,
phononic, condensed matter models, which were previously
out of reach. We test and benchmark the obtained methods
for the example of the dissipative Hubbard-Holstein model
in a large parameter space and explore their applicabilities
as a function of the electron-phonon coupling and dissipation
strength. Having these tools at hand, we are able to study the
effect of realistic phonon anharmonicities on electron-phonon
quasiparticles (polarons and bipolarons), originating from the
dissipative character of the phonons. Here, our main focus
is to answer the question of whether or not dissipation en-
hances the metallic behavior of (tightly) bound bipolarons.
We conduct a systematic analysis of their binding energy
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FIG. 1. Summary of our main finding: Dissipation tends to localize the bipolarons through effective, nonprojective measurements.
However, in the metallic regime, the bipolaronic binding energy remains mainly unaffected, i.e., bipolarons are stable even for strong
dissipation.

and effective mass, whose ratio serves as a measure of their
metallicity. Surprisingly, in the strong coupling regime, we
find a significant suppression of the metallicity compared
to the nondissipative case, which, however, does not affect
the quasiparticles’ stability. We complement these findings
by studying the bipolaron delocalization in real space [84],
which has a straightforward generalization to higher dimen-
sions and is directly related to the experimentally measurable
optical conductivity. The phenomenon of dissipation-induced
bipolaron localization is summarized in Fig. 1. We interpret
it as an instance of an indirect, dissipation-induced quantum
Zeno effect [85–87]. In a more general frame, our findings
indicate that even though the environment is coupled to the
electronic degrees of freedom via an indirect path there is
still significant decoherence. However, the decoherence is
induced only on the level of the quasiparticles of the iso-
lated system, i.e., quasiparticles are not destroyed but rather
localized. The decoherence itself is generated from averag-
ing over the various phonon configurations, a mechanism
which is generic to electron-phonon systems. We, therefore,
believe that our findings are relevant to the general situation
of mixtures containing phonons, which are coupled to an
environment.

The paper is structured as follows. In Sec. II we briefly
review the Markovian quantum jumps (QJ) method [82] and
the non-Markovian hierarchy of pure states (HOPS) method
[83], and introduce their efficient MPS realization, using the
recently developed projected purification (PP) mapping. Then,
in Sec. III we apply HOPS and QJ to study the effect of
dissipation on the bipolarons in the Hubbard-Holstein model,
and in Sec. IV we summarize our findings. In Appendix D,
a systematic comparison between QJ and HOPS can be
found.

II. METHODS

Dissipative electron-phonon systems can be described in
two different ways, depending on how they are decomposed
into a “system” and an “environment.” Thus, in this sec-
tion, we present both a Markovian (system = electrons and
phonons) and a non-Markovian (system = electrons only)
open system method. These methods can be combined with
MPS techniques in order to be able to treat many-body sys-
tems. The electron-phonon Hamiltonian we considered takes

the form

Ĥtot =
Markovian sys.︷ ︸︸ ︷

Ĥf︸︷︷︸
non-Markovian sys.

+ Ĥb + Ĥint

= Ĥf +
∑

j

ω j â
†
j â j +

∑
j

g j (L̂ j â
†
j + L̂†

j â j ), (1)

where Ĥf is an arbitrary Hamiltonian acting on the fermionic
degrees of freedom, Ĥb describes a collection of harmonic
oscillators representing the phonons, and L̂ is an operator
acting on the fermions. The index j labels the lattice sites
and the parameters ω j and g j are the vibration frequencies
of the harmonic oscillators and the electron-phonon coupling
constants, respectively. In addition to the unitary dynamics
described by Eq. (1), we consider dissipation of the form of
phonon losses so that the time evolution of the electron and
phonon density matrix is described by the Lindblad master
equation [88]:

∂t ρ̂ = −i[Ĥtot, ρ̂] +
∑

j

D̂ j ρ̂D̂†
j − 1

2
{D̂†

j D̂ j, ρ̂}, (2)

where D̂ j = √
κ â j are the corresponding Lindblad operators

acting on each phononic lattice site.

A. Quantum jumps

In the left panel of Fig. 2 we show a system decomposition
where both the electrons and the phonons are part of the
physical system, and dissipation acts on the phonons only.
This representation can be modeled as Markovian via the mas-
ter equation Eq. (2), which can be rewritten as an evolution
for pure states with a stochastic process so that averaging
over its samples gives the correct expectation values for the
observables. From a numerical point of view, this is highly
beneficial since for each random process one only has to
store the O(

√
Nρ ) complex coefficients, with Nρ being the

number of entries of the density matrix of the electron-phonon
system. A typical so-called pure state unravelling of the Lind-
blad equation Eq. (2) is given by the QJ method (we discuss
a different unravelling, the homodyne detection method, in
Appendix E). Working with pure states, a stochastic process
Q is introduced so that the density matrix, time evolved by
the Lindblad equation, is obtained from averaging over many
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FIG. 2. Two possible system-bath partitionings of electron-
phonon systems. Markovian system (left): When considering the
electrons and the phonons as the system, the dissipative terms act-
ing on the phonons can be modeled as Markovian. Non-Markovian
system (right): If only the electrons are treated as the system, the
damped phonon modes constitute a non-Markovian bath. Below both
images, a short list of the Markovian and non-Markovian methods
analyzed here is given, together with the corresponding section. For
the non-Markovian HEOM method, we refer to [78,79].

realizations of the stochastic process:

E[|�(t )〉q〈�(t )|q] = ρ̂(t ), (3)

where q ∈ Q is a collection of pseudorandom numbers iden-
tifying a so-called trajectory. Here, every single step q in a
trajectory Q is specified by (i) deciding if a dissipative event
(quantum jump) has to occur and (ii) choosing the lattice
site where the jump happens. Thereby, instead of constructing
the density matrix one computes the expectation values of an
observable Ô for every trajectory and averages them according
to

〈Ô〉(t ) = E[〈�(t )|qÔ|�(t )〉q]. (4)

In Appendix B we provide a detailed derivation of the QJ
method together with a sketch of the algorithm.

B. Hierarchy of pure states

Another bipartition of Eq. (1) is possible by treating only
the electrons as system, wrapping the phononic system into
a non-Markovian bath, as shown in the right panel of Fig. 2.
Tracing out the phonons in Eq. (2) makes it possible to derive
a non-Markovian stochastic Schrödinger equation [89] for the

fermionic degrees of freedom only |ψ (t )〉:
∂t |ψ (t )〉 = − iĤf|ψ (t )〉 + g

∑
j

L̂ jz
∗
j (t )|ψ (t )〉

− g
∑

j

L̂†
j

∫ t

0
ds α∗

j (t − s)
δ|ψ (t )〉
δz∗

j (s)
. (5)

Here α j (t ) represents the environment correlation function,
which on site j and at zero temperature is given by the
Fourier transform of the spectral density Jj (ω). Furthermore,
z j (t ) denotes a colored noise that satisfies E[z j (t )z∗

j′ (t
′)] =

α(t − t ′)δ j, j′ , while the term δ/δz∗
j (s) represents the func-

tional derivative with respect to z∗. The observables for the
electronic system are then obtained by averaging the dynamics
of Eq. (5) over many trajectories. In practical calculations,
solving Eq. (5) is exceptionally challenging because of the
last term of the right-hand side, which is nonlocal in time [90].
This problem can be solved efficiently by the HOPS method
[25,83], where one defines

|ψ (1, j)(t )〉 = Dj (t )|ψ (t )〉 ≡
∫ t

0
ds α∗

j (t − s)
δ|ψ (t )〉
δz∗

j (s)
, (6)

which is labeled the first auxiliary state relative to site j. One
then introduces the kth auxiliary state in a recursive manner,

|ψ (k, j)(t )〉 = [Dj (t )]k|ψ (t )〉, (7)

and defines a state on the combined fermionic and bosonic
Hilbert space as

|�(t )〉 =
∑

k

Ck(t )|ψ (k)(t )〉 ⊗ |k〉bos, (8)

where |k〉bos ≡ ⊗ j |k〉bos
j labels an effective bosonic mode

corresponding to the kth auxiliary state and Ck(t ) is a time-
dependent coefficient. The hierarchy then takes the form of
a simple Schrödinger equation for the state on the combined
fermionic and bosonic Hilbert space (see Appendix C for a
detailed description and the full representation of the effective
Hamiltonian and a sketch of the HOPS algorithm). Being a
pure state method, HOPS [91] is more suited for many-body
systems than its density matrix formulation, the so-called
HEOM method [78,79]. Moreover, time evolving density ma-
trices with MPS methods is nontrivial since one needs to
guarantee the positivity of ρ at all times [92]. In the next
section, we present how the open systems methods described
above can be hybridized with many-body approaches to tackle
the non-Markovian dynamics of many-body systems.

C. Matrix-product states and projected purification

Matrix-product states [93–95], also known as tensor trains,
provide well-established numerical representations for one-
dimensional quantum many-body systems. There are efficient
MPS algorithms available for both ground-state [31,32,96]
and time-dependent [49] problems. Here, we provide a very
short introduction to the MPS and projected purified DMRG
[80,81], focusing on the relevant technical aspects to combine
them with QJ [82] and HOPS [83,90]. We note that the com-
bination of HOPS with MPS was originally presented in [25].
Importantly, exploiting the PP mapping is required to treat the
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FIG. 3. MPS representation in an enlarged Hilbert space with each physical site consisting of a physical fermionic, a physical bosonic, and
a bosonic bath site. The circles labeled by nf (bottom row) represent the fermions, while the ones labeled by nP and nB represent the physical
bosons and the projected-purified bath bosons, respectively (middle and upper top). The background colors indicate that, as explained in the
main text, for QJs the bosonic sites correspond to actual physical phonons while for HOPS they are related to the auxiliary states. Adapted
from [80].

large local bosonic Hilbert spaces efficiently and thus render
the discussed OQS techniques suitable for MPS algorithms.

For any pure state with L sites and a finite number of lo-
cal degrees of freedom σ1, σ2, . . . , σL (σi = 1, 2, . . . , di with
local dimensions di) the coefficient tensor cσ1,σ2,...,σL can be
reshaped as

|�〉 =
∑

σ1,...,σL

cσ1···σL |σ1 · · · σL〉 −→ |�〉MPS

=
∑

σ1,...,σL
m0,...,mL

Mσ1
1;m0,m1

· · · MσL
L;mL−1,mL

|σ1 · · · σL〉, (9)

where {Mσi
i;mi−1,mi

} are mi−1 × mi rectangular matrices. This
representation has two main advantages: it allows for opti-
mal and physically motivated compression of the state via
singular-value decompositions and decomposes the coeffi-
cient tensor into local objects, which, moreover, can be related
to the system-environment picture of the original DMRG
[29,30].

MPSs and matrix-product operators (MPOs), which follow
the same structure, are often represented graphically in terms
of tensor-network diagrams. Therein, geometric shapes repre-
sent the rank-3 or rank-4 tensors. It is essential to note that the
dimensions of the MPS tensors on some site j, called bond
dimensions mj , typically grow exponentially with the entan-
glement when partitioning the system at the sites j − 1, j.
When it comes to time-evolution methods, the time-dependent
variational principle (TDVP) [97,98] is a well-established
technique, which is based on the Dirac-Frenkel variational
principle and consists of subsequently updating a small num-
ber (typically one or two) of site tensors [49]. One must bear
in mind, however, that in its original formulation, this method
is particularly prone to cause significant errors when used
for time evolving a product state with a large local Hilbert
space dimension [49]. Clearly, MPO-based techniques, such
as the time-evolving block decimation [95] or W I,II [99],
can overcome this limitation, but also suffer from systematic
Trotter errors [100]. However, we found it to be sufficient
to time evolve the state with the slower but more accurate
global Krylov method [49] up to the point where the bond
dimension is as large as the local Hilbert space dimension
and then to switch to TDVP. The description of bosonic de-
grees of freedom has posed substantial challenges to MPS

methods because of their infinite-dimensional Hilbert spaces.
Much work has been devoted to an accurate and efficient
truncation of bosonic Hilbert spaces, resulting in success-
ful techniques such as the pseudosite method [33] and the
local-basis optimization method [101–105]. In this context,
a newly introduced MPS method is the so-called projected
purification method [80]. For the class of Hamiltonians de-
scribed by Eq. (1), the electron-phonon interaction term Ĥint

does not conserve the number of phonons. The breaking of
the associated U (1) symmetry prevents the site tensors of
the MPS from having a block-diagonal structure, resulting
in a significant slowdown of matrix operations [106]. For a
thorough presentation of the method, we refer to [80]. The
main idea of the PP method is to restore the U (1) symmetry
artificially by doubling the bosonic Hilbert space, precisely as
one does for the thermal purification method [92] (see Fig. 3),
and to modify the bosonic creation and annihilation operators
as follows:

â†
j −→ â†

P; j ⊗ b̂B; j,

â j −→ âP; j ⊗ b̂†
B; j,

(10)

where b̂B; j and b̂†
B; j are the bare operators defined in Eq. (C9)

of Appendix C. Accompanied by this transformation, a local
gauge condition on the allowed states is imposed; i.e., on each
pair of physical and bath sites, the sum of the number of
physical particles nP and bath particles nB has to be conserved
nP + nB = nph,max − 1, where nph,max is the maximal phononic
local Hilbert space dimension. The second key ingredient of
the PP method consists in adopting a truncation method for
the local Hilbert space dimension of the phononic sites that
is analogous to the one exploited by MPS algorithms for
truncating the bond dimension. Thereby, imposing a discarded
weight δ, defined as the maximally allowed leakage of spectral
weight for density matrices belonging to any lattice biparti-
tion, determines a truncation in both the physical dimensions
and the bond dimensions. Thus, if the diagonal elements of the
phononic reduced density matrices decay fast enough, trunca-
tions can reduce the actually used local dimensions: dmax �
nph,max. From a more general point of view, it is the decay
of the single-site reduced density-matrix (1RDM) diagonal
elements ρσ j ,σ j

that controls the possible speedup generated
by the PP mapping. Therefore, while large local dimensions
are doable within PP-DMRG, in practice, one has to check for
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FIG. 4. PP speedup for intermediate (blue) and strong (orange)
electron-phonon coupling as a function of the dissipation strengths.
The speedup factor is significant for large electron-phonon couplings
and small dissipation strength, corresponding to a large bosonic local
Hilbert space dimension as indicated in the inset. The time evolutions
were performed with the QJ method for systems with L = 20 sites
for a single trajectory. All other parameters were the same as those
described in Fig. 16.

converged diagonal elements of the 1RDM and, if required,
increase the maximally allowed local dimension to keep the
truncation error δ at an acceptable level. In Appendix D we
present a detailed benchmark and convergence analysis of
the PP-enhanced HOPS and QJ methods for the dissipative
Hubbard-Holstein model. We want to emphasize that in cer-
tain parameter regimes, both a rescaling of the auxiliary states
for HOPS [Eq. (C5) and Fig. 12] and a very large phononic
Hilbert space dimension (made manageable by PP) are crit-
ical for reliably computing fermionic observables (Fig. 17).
Most importantly, both methods are numerically stable and
well controlled in different physical situations, rendering an
ideal toolset for studying OQS dynamics. While QJ allows
for an efficient simulation of weak and intermediate dissipa-
tion, HOPS reveals its strengths when considering the limit
of intermediate to strong dissipation. However, both methods
benefit significantly when combined with PP. In Fig. 4 we
illustrate the speedup provided by adopting the PP mapping
for a system of L = 20 lattice sites and one trajectory (note
that larger system sizes were out of reach for the reference
calculations). We find that the runtime is significantly reduced
when using the PP mapping for all analyzed parameters. In
particular, we observe a substantial speedup of a factor of ≈30
for small dissipation and strong electron-phonon coupling,
i.e., for large local Hilbert space dimensions >20, while it
is less significant for medium and strong dissipation (factor
≈5). Note that the reduced speedup in the strongly dissipating
regime is not severe for the overall runtime. This can be
attributed to the fact that strong dissipation naturally reduces
the correlations in the system and thus the bond dimension,
too (see Fig. 18 in Appendix D). Therefore, combining QJ

with PP allows for the numerically efficient application of QJ
in exactly that parameter regime, where QJ was also found to
be the method of choice.

III. IMPACT OF DISSIPATION ON BIPOLARONIC
QUASIPARTICLES

The Hubbard-Holstein Hamiltonian describes spinful
fermions coupled to Einstein phonons [107]. We consider the
one-dimensional case of the form of Eq. (1) that reads

ĤHH = − J
L∑

j=1

∑
σ=↑,↓

(ĉ†
j,σ ĉ j+1,σ + H.c.) + U

L∑
j=1

n̂ j,↑n̂ j,↓

+ ω

L∑
j=1

â†
j â j + g

L∑
j=1

(â j + â†
j )n̂ j . (11)

Here, U denotes the onsite Hubbard-interaction while g mea-
sures the electron-phonon coupling, and the phonon frequency
is given by ω. In the following, we fix J as the unit of
energy and J−1 as the unit of time. Despite its concep-
tional simplicity, Eq. (11) provides a minimal model for
the complex interplay between lattice vibration and elec-
tronic degrees of freedom in the strong coupling regime.
Such a physical situation occurs, for instance, in alkali-
metal-doped C60 fullerene molecules [108,109], a class of
unconventional superconductors that recently has been in-
vestigated for optically induced superconductivity [110–112].
However, understanding, in particular, the regime of compet-
ing (spinless) fermion-phonon and onsite Hubbard interaction
remains a challenging numerical task even in equilibrium,
with lots of numerical effort conducted in the past decade
[101,113–121]. We aim to push the limit towards complete
microscopic modeling of the out-of-equilibrium dynamics,
incorporating the effect of dissipation on a strongly correlated
quantum many-body system with up to L = 40 lattice sites.
We note that the dissipative Hubbard-Holstein model consid-
ered here can be derived from a more general perspective,
where the electronic degrees of freedom are coupled to a
global bosonic environment (see Appendix F). We empha-
size that in contrast to previous works, we made no strong
assumptions about the phonons to render it more tractable
[117,122]. The phase diagram of the Hubbard-Holstein model
at half filling sketched in Fig. 5(a) has been investigated
comprehensively, and in the regime of large phonon frequen-
cies the picture of three different phases has been established
[113,114,123–127]. In the limit of vanishing electron-phonon
coupling g/U → 0, a correlated spin-density wave (SDW)
phase exists, reminiscent of a Hubbard Mott phase. In the op-
posite limit g/U → ∞, strong phonon fluctuations drive the
system into a Peierls state, usually referred to as the charge-
density wave (CDW) phase. This limit is understood most
easily when transforming the Hubbard-Holstein model into
a polaronic description through a Lang-Firsov transformation
[128]. Then, the Hubbard on-site interaction is renormalized
by the phonons as U → U − 2g2

ω
and for sufficiently large

electron-phonon couplings a dominant attractive interaction
between the polarons features a spontaneous breaking of the
system’s translational symmetry. For intermediate couplings
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(a)

(b)

FIG. 5. (a) Phase diagram of the Hubbard-Holstein model at a
constant phonon oscillation frequency ω = 2 J adapted from [113].
The colored arrows indicate quenches from the Hubbard ground state
at U = J into the SDW, the metallic, and the CDW phase. (b) Double
occupancy dynamics after global quenches from the Hubbard ground
state. They were performed with HOPS at intermediate dissipa-
tion κ = J (solid line) and strong dissipation κ = 4 J (dashed line).
The double occupancy dynamics in the electron systems depend
more strongly on the phonon loss rate for large electron-phonon
coupling g.

U ∼ 2g2

ω
, the competition between attractive phonon-mediated

polaron-polaron and repulsive electron-electron interactions
drives the system towards a metallic Luther-Emery phase
[126]. There has been a vivid debate about whether this
metallic regime may also realize superconductivity, with
today’s assessment being that superconducting correlations
are always subdominant, compared to charge correlations
[113,126]. However, when incorporating Gaussian or quar-
tic anharmonicities in the phonon potentials, a strengthening
of the metallic behavior has been observed and the ques-
tion of whether anharmonic phonons may even drive the
Hubbard-Holstein model into a superconducting state arises
[117,129,130]. Here, we study the effect of a realistic source

of anharmonicities, namely, a dissipative coupling of the
phonons to an environment.

A. Dissipation and double occupancy

Previously, the effect of dissipation in the Hubbard-
Holstein model has been investigated using HOPS, reporting
an enhancement of superconducting correlations following a
quench from a Neel state [25]. We connect to these findings
and evaluate the dynamics of the double occupancy 〈n̂ j,↑n̂ j,↓〉.
As the initial state, we choose the ground state of the Hubbard
model (g = 0, κ = 0) at U = J , and perform a quench to a
point in the SDW phase (2g2

/ω = 0.5 J), one in the metallic
phase (2g2

/ω = 1.5 J), and one in the CDW phase (2g2
/ω =

4 J). As a method, we use HOPS, which is particularly tai-
lored for quenching in both κ and g. In Fig. 5(b), we show
the dynamics of the double occupancy on the central site
of a 20-electron system for intermediate (κ = J) and strong
dissipation (κ = 4 J). Quenching into the SDW regime of
the Hubbard-Holstein phase diagram (green curve), we find
only a weak dependency on the dissipation strength. This is
consistent with dominant spin-spin correlations in the SDW
phase, which are relatively insensitive to the phonon occupa-
tions. On the other hand, quenching into the CDW regime of
the Hubbard-Holstein phase diagram (blue curve), there is a
strong dependency on the dissipation. This can be understood
by noting that strong phonon fluctuations drive charge corre-
lations and the formation of double occupations in the Peierls
phase. However, increasing the dissipation strength allows the
phonons to escape the system, weakening charge correlations.
Surprisingly, the quenches into the metallic regime (purple
curve) resemble the behavior found in the SDW quenches.
The weak dependency on the dissipation strength indicates a
strong suppression of charge correlations, already for moder-
ate dissipation, an observation that counteracts the reported
observation of enhanced metallicity driven by Gaussian or
quartic phonon anharmonicities [117,129,130]. On the other
hand, these findings are still consistent with enhanced super-
conducting correlations [25].

B. Polarons and bipolarons

To disentangle the roles of g and κ and study the impact
of dissipation on quasiparticle formation and their metallicity,
we investigate further global quenches from the ground state
of the Hubbard-Holstein Hamiltonian at finite g, switching on
dissipation. For that purpose, we decompose the electronic
annihilation (creation) operators into strictly single- and two-
particle operators:

ĉ j,σ = ŝ j,σ + sgn(σ )ŝ†
j,σ̄ d̂ j, (12)

where ŝ j,σ = ĉ j,σ (1 − n̂ j,σ̄ ) and d̂ j = ĉ j,↓ĉ j,↑. Upon applying
a Lang-Firsov transformation [128], the Hubbard-Holstein
Hamiltonian acquires the form

ĤLF = −J
∑
j,σ

[
D̂†

j

(
g

ω

)
ĉ†

j,σ ĉ j+1,σ D̂ j+1

(
g

ω

)
+ H.c.

]

+ Ueff

∑
j

n̂ j,↑n̂ j,↓ + ω
∑

j

â†
j â j
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FIG. 6. Eigenvalues tk of bipolaronic hopping matrix T̂ bp
i, j,σ as a function of time, after turning on dissipation to κ = 1 J and 4 J in the three

different regions of the ground-state phase diagram [indicated by the three circles in Fig. 5(a)]. In the SDW phase, a large single-particle gap
indicates a small bipolaronic effective mass, while the flat band in the CDW phase represents heavy bipolarons. Both phases are basically
insensitive to dissipation. In the metallic phase, the gap closing shows that strong dissipation κ = 4 significantly increases the bipolarons’
effective mass. We simulated a system with L = 20 sites with QJ, with time step dt = 0.01 J−1 and computed |Q| = 200 trajectories, using
kmax = 40 local basis states, a maximum bond dimension of m = 2000, and fixing the discarded weight to δ = 10−10.

= −J
∑

j

(
T̂ bp

j, j+1 +
∑

σ

T̂ p
j, j+1,σ + Û bp

j

)
+ ω

∑
j

â†
j â j,

(13)

where Ueff = (U − 2g2

ω
). We, furthermore, introduced the

bipolaron potential energy Û bp
j = Ueff d̂

†
j d̂ j , the displacement

operator D̂†
j (

g
ω

) = eg/ω(â†
j −â j ), and the polaronic and bipola-

ronic hopping operators, T p
i, j,σ and T bp

i, j , respectively:

T̂ p
i, j,σ = D̂†

i

(
g

ω

)
ŝ†

i,σ ŝ j,σ D̂ j

(
g

ω

)
+ H.c., (14)

T̂ bp
i, j = D̂†

i

(
g

ω

)
d̂†

i

(∑
σ

ŝi,σ ŝ†
j,σ

)
d̂ j D̂ j

(
g

ω

)
+ H.c. (15)

Measuring the full hopping matrix T̂ bp
i, j , we can study the

kinetic energies tk of bipolaronic quasiparticles from a di-
agonalization of 〈T̂ bp

i, j 〉 ≡ t bp
i j where we label the eigenstates

by quasimomenta kn ≡ 2π
L n with corresponding eigenvalues

tk . As for the quench from the Hubbard ground state, in the
following we consider a system with L = 20 sites and com-
pute |Q| = 200 trajectories with maximal local dimension
dmax = 40, maximal bond dimension m = 2000, discarded
weight δ = 10−8, and time step dt = 0.01 J−1. We also check,
by Fourier transforming the hopping matrix, that assigning the
ordered eigenvalue numbers n with quasimomenta is reason-

able. From the kinetic energies, we determine the maximal
quasiparticle velocity veff by taking the discretized derivative
at keff = π/2. Then, in the quasiparticle picture, we intro-
duce an estimation for the bipolaronic quasiparticle mass
via

meff = keff

veff
= keff

(
�tk
�k

∣∣∣∣
keff

)−1

. (16)

If there are stable bipolaronic quasiparticles in the system,
then meff yields the smallest quasiparticle mass and thereby
provides a measure for their metallicity. This interpreta-
tion immediately becomes clear, when inspecting the CDW
quenches in Fig. 6 (rightmost column). Here, we observe a
nearly flat band over the whole simulation time, indicating the
insulating character of the CDW phase that stems from local-
ized bipolarons. In turn, in the SDW phase, a single-particle
gap is found, indicating a very small bipolaron effective mass.
In the metallic phase, we find the strongest dependency on
the dissipation strength. An initially large metallicity is sup-
pressed upon time evolving for the case of κ = 4 J , i.e., the
single-particle gap closes, indicating localization of bipola-
ronic quasiparticles.

C. Bipolarons’ stability, metallicity, and localization length

In order to determine the stability of bipolaronic quasi-
particles, we furthermore calculated the averaged, bipolaronic
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FIG. 7. Binding energy (circles) and metallicity (crosses), after
the dissipative quenches at κ = 4 J from the three points in the
Hubbard-Holstein phase diagram considered in Fig. 6. Analyzing the
sign of the binding energy �E , we observe the formation of stable
bipolarons in the metallic and in the CDW phase, but not in the SDW
phase. Most interestingly, in the metallic phase, strong dissipation lo-
calizes the bipolarons (the metallicity decreases) without disrupting
their stability (�E is constant).

binding energy [131]. Using Eqs. (14) and (15) this quantity
can be written as the difference between the site-averaged
bipolaronic and polaronic energies:

�E = 1

L

∑
j

(〈
Û bp

j

〉 + 〈
T̂ bp

j, j+1

〉 − 〈
T̂ p

j, j+1,↑
〉 − 〈

T̂ p
j, j+1,↓

〉)
, (17)

where �E > 0 indicates that bipolarons are unstable and
tend to decay into two polarons, whereas �E < 0 signals the
formation of stable bipolaronic quasiparticles. In Fig. 7, the
dashed lines represent the obtained bipolaronic binding ener-
gies for the case of strong dissipation. Turning on dissipation
in the SDW, �E remains constant and positive, i.e., bipolarons
are unstable, which is consistent with the insulating charac-
ter of the antiferromagnetic Hubbard ground state. For the
quench in the CDW phase, we find �E < 0, which, however,
decreases by roughly a factor of 2 in the scope of the time
evolution on a time scale which is comparable to the phonon
frequency ω. Nevertheless, the bipolaronic binding energy is
comparably large over the whole time evolution, indicating
stable bipolaronic quasiparticles. In the metallic regime, we
also observe �E < 0, which surprisingly is nearly time in-
dependent. Thus, in the metallic phase, even in the presence
of strong dissipation, phonons that are bound to a bipolaronic
quasiparticle do not escape into the environment. Note that
these results are in perfect agreement with the time-dependent
double occupations shown in Fig. 5(b). Indeed, in the metallic
regime, the double occupation is nearly independent of the
dissipation strength, while the decay of double occupations
during the dynamics in the CDW phase at κ = 4 J occurs on

FIG. 8. Relative change of localization length ξ 2
t after the dis-

sipative quenches for κ = 4 J from the metallic region in the
Hubbard-Holstein phase diagram considered in Fig. 5(a) for various
system sizes. Note the decay of the localization length when turning
on strong dissipation. For convenience, the dashed lines (right y axis)
display the time-dependent bipolaron densities, which are constant
after an initial dip, consistent with the constant binding energy. Thus,
the reduced localization length is not an artifact of the bipolaron
number Nd

t .

the same time scale as the reduction of the bipolaronic binding
energy in Fig. 7.

The solid lines in Fig. 7 illustrate the ratio between the ab-
solute value of the binding energy and the effective bipolaron
mass. This quantity provides a measure for the bipolaronic
metallicity where, for constant binding energies, large ratios
correspond to highly mobile bipolarons. The displayed curves
provide a compact overview of our analysis, exhibiting the
persistent insulating character of both the SDW and CDW
phase, also in the presence of dissipation. Moreover, we find
a significant decrease in the metallicity in the metallic regime,
which is generated by the increased quasiparticle mass of the
bipolarons.

We further elaborate on the peculiar behavior of the
metallicity when adding strong dissipation, by studying the
bipolaron’s localization length ξ 2, which can be obtained from
the connected correlation functions of the bipolaronic density-
density correlation matrix [84]. Defining the time-dependent
bipolaronic center of mass operator X̂t = ∑

j
j/L · n̂d

j (t ), the
localization length at time t can be obtained from

ξ 2
t =

〈
X̂ 2

t

〉 − 〈X̂t 〉2

Nd
t

, (18)

with Nd
t = 〈∑ j n̂d

j (t )〉. In Fig. 8 the dynamics of the relative
change (ξ 2

t −ξ 2
0 )/ξ 2

0 is shown when switching on dissipation in the
metallic phase for different system sizes L (solid lines, y axis).
Following an initial increase, which is mainly generated by
the short-time behavior of the bipolaron density, we observe a
quick decrease in the metallic regime, indicating a localization
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of the bipolaronic quasiparticles. We checked that the local-
ization is not an artifact of a reduced bipolaron population
by monitoring the bipolaron density 〈N̂d

t 〉/L (y axis in Fig. 8).
Two main features are present: first of all, apart from the very
short-time dynamics, the bipolaron density is independent of
the system size. Second, there is no significant decay of the
bipolaron density at late times, which is in agreement with
the observed, constant binding energy (see Fig. 7). Therefore,
the bipolaronic localization length constitutes an alternative
measure, which, in combination with the binding energy and
the metallicity, strongly suggests a localizing character of
dissipation with respect to the bipolaronic quasiparticles. A
recent study has shown that couplings to an environment can
be modeled by measurements, suppressing transport via the
formation of decoupled clusters [132]. In the limit of very
strong dissipation, this is reminiscent of the quantum Zeno
effect [133]. In particular, the fact that intermediate dissi-
pation has no relevant impact on the dynamics (see Fig. 6)
while large dissipation induces a strong localization of the
bipolarons suggests the existence of the transition between
a volume law entangled phase and a quantum Zeno phase
described in [134]. Moreover, we stress that the nonprojective
measurements are performed only on the phononic system,
rendering the observed bipolaron localization an instance of
an indirect quantum Zeno effect [86,87].

IV. CONCLUSION

Incorporating dissipation into the description of strongly
correlated electron systems coupled to phonons paved the way
to intriguing phenomena such as light-enhanced or cavity-
induced phonon-mediated superconductivity [135–137]. Fur-
thermore, in the prototypical Hubbard-Holstein model, recent
(semi-) analytical investigations suggested the enhancement
of the metallic regime in the presence of anharmonic phonons,
posing the question of enhanced superconducting correlations
[117,129,130]. In this paper, we, therefore, investigated the ef-
fect of a realistic source of phonon anharmonicities generated
by a dissipative coupling of the phonons to an environment.

In order to be able to perform the required, numerically
very challenging, dissipative quantum many-body simulations
for large systems we combined both HOPS and QJ, two estab-
lished out-of-equilibrium methods to describe OQS, with the
recently introduced PP-DMRG. We tested and benchmarked
the obtained numerical tools, demonstrating their feasibility in
capturing the complex, dissipative out-of-equilibrium dynam-
ics after global quenches. Interestingly, we found that both
methods, being comparably computationally efficient, exhibit
complementary regimes of the physical model parameter in
which they yield precise and numerically well-controlled
time-evolution schemes. In particular, HOPS proved to be
the method of choice for the case of intermediate and strong
dissipation and large electron-phonon couplings, whereas QJ
yielded excellent performance for weak dissipation and weak
to intermediate electron-phonon couplings. As a consequence,
using PP mapping, we elevated OQS methods to be applicable
in an efficient and unbiased way to a broad class of dissipative
quantum many-body systems, using tensor-network algo-
rithms. We believe that the discussed, tensor-network-based
Markovian (QJ) and non-Markovian (HOPS) methods will

be very fruitful tools for addressing relevant problems such
as thermalization of quantum systems [138–140], cooling of
quantum many-body systems [141,142], exciton dynamics in
light-harvesting complexes [143,144], and quantum transport
in two-terminal dissipative setups [145–150]. Moreover, as
mentioned in Appendix C, the methods developed here for
systems described by Eqs. (1) and (2) can be generalized to
multiple phonon modes per site, to phonon modes coupled
to baths with arbitrary spectral structures, to different kinds
of baths (dephasing and absorption), or to nonlocal phonons
coupled to several sites [151]. This latter generalization could,
for instance, make it possible to study dissipative versions of
the Hubbard-Fröhlich model [152,153].

Having established the PP-enhanced HOPS and QJ meth-
ods, we turned to the question of whether dissipation enhances
metallicity in the Hubbard-Holstein model. For that purpose,
we performed a series of quenches, investigating the forma-
tion of bipolarons, i.e., phonon-mediated bound two-electron
quasiparticles and their metallicity. Here, we defined metal-
licity as the ratio between the bipolaronic binding energy and
its effective mass. In the metallic regime of the Hubbard-
Holstein ground-state phase diagram, we found that the time
dependence of the bipolaronic binding energy remains mainly
unchanged, i.e., the phonons that contribute to bound electron
pairs do not tend to escape the system. Studying the bipola-
ronic kinetic energy dynamics, we observed melting of the
bipolaronic single-particle gap upon increasing dissipation,
indicating an increased scattering rate. Consequently, the ef-
fect of dissipation is to enhance the bipolaronic effective mass,
yielding an overall reduction of the bipolaronic metallicity.
We complement these findings by calculating the bipolaronic
localization length, and explicitly find the localization of bipo-
larons under the action of dissipation, in the metallic regime.
Since our results contrast previous findings when considering
Gaussian anharmonicities, we calculated the phononic exci-
tation probabilities for the different sources of anharmonic
phonons (see Appendix A).

The picture of a quantum jump description of the dissipa-
tive dynamics creates an interesting connection to the indirect
quantum Zeno effect [85,133]. Moreover, the absence of bipo-
laron localization for moderate dissipation is in agreement
with the transition from a volume law entanglement phase to
a quantum Zeno phase described in [134].

Nevertheless, we also find that the bipolaronic binding en-
ergy is very robust against dissipation in the metallic regime.
This is a remarkable observation, in particular, since the
calculated binding energies are of the order of 0.15 J and
thereby much smaller than the studied dissipation strengths
κ = 1J and 4J . Understanding the origin of this unexpected
robustness of formed bipolarons in the metallic regime would
be an interesting theoretical question, particularly concerning
phonon-mediated superconductivity. Here, investigating the
impact of dissipation on light bipolarons in Peierls-coupled
electron-phonon systems and the reported, enhanced values
of TC is extremely important for actual physical realizations
[154–156].

The relevance of phononic degrees of freedom in the
description of real materials is demonstrated by the vast re-
cent effort on studying, for instance, anharmonic phonons
[129], long-range electron-phonon coupling [151], and opti-
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cally pumped [156] phonons. In this paper, we not only added
an aspect (the coupling to a dissipative bath) which is relevant
to real materials but also provided tools from which we believe
that all the aforementioned fields can benefit greatly.
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APPENDIX A: DISSIPATION AND GAUSSIAN
ANHARMONICITIES

Recent theoretical studies considered the effect of anhar-
monicities on the properties of the metallic phase in the
Hubbard-Holstein model, indicating the tendency to stabi-
lize light bipolarons even at larger electron-phonon couplings
[117,122], a crucial requirement for large transition temper-
atures into a bipolaronic, superconducting state [131,154–
157]. However, the anharmonic contributions to the phononic
oscillator potentials have been incorporated constructively,
such that the resulting models can be treated semianalyti-
cally. This is mainly due to the extremely high numerical
costs for simulating phononic degrees of freedom, whose
local Hilbert spaces are, in principle, infinite dimensional.
The computational limitations become even more severe when
incorporating more realistic foundations for anharmonicities,
such as treating the phononic system as an OQS or consider-
ing dispersive behavior [105,158].

To connect our results to the reported enhancement of the
metallic phase via Gaussian and quartic anharmonic modifi-
cations of the phononic modes, we compared the effects of
dissipation and the anharmonicities investigated in [117,129]
on the excitation probabilities of a single phonon mode. As a
reference distribution, we computed the population of the ex-
cited modes by diagonalizing the corresponding Hamiltonian
and evaluated the Boltzmann weights at inverse temperature
β equal to the oscillator frequency ω. For the dissipative
case, it can be shown that the thermal state for a single
harmonic oscillator ρ̂

eq
β = e−βωn̂/N is the steady state solu-

tion of a Lindblad master equation with Lindblad operators
D̂1 = e−βω/2â† and D̂2 = â. Combining them with the Lind-
blad operator for dissipation D̂3 = √

κa yields the following
equation:

∂t ρ̂ = −e−βω
(

1
2 {ââ†, ρ̂} − â†ρ̂â

)
− (1 + κ )

(
1
2 {â†â, ρ̂} − âρ̂â†), (A1)

which can be solved numerically. In Fig. 9, we show
the excitation probabilities of a harmonic oscillator ĤHO =
ωâ†â, an anharmonic oscillator with Gaussian anharmonic-
ity ĤG(λ, γ ) = ĤHO + λe−γ (â†+â )2

, and a harmonic oscillator
with dissipation Eq. (A1). Here, we illustrate what we believe
to be the underlying reason for the seemingly contradicting re-
sults: dissipation and Gaussian anharmonicities have opposite

FIG. 9. Effect of anharmonicities and dissipation on the exci-
tation probability of bosonic modes. The yellow curve is obtained
from evaluating the excitation probabilities of a harmonic oscilla-
tor ĤHO at inverse temperature β = 1. We compare these to the
probabilities obtained when adding a Gaussian, quadratic anhar-
monicity ĤHO + λe−γ (â†+â )2

with λ = 0.05 J, γ = 0.05 (purple data)
and when incorporating dissipation κ = 1 J (blue data). While Gaus-
sian anharmonicities reduce the spacing between the energy levels
and thus increase the probabilities of populating highly excited states,
the effect of dissipation is to leak phonons into the environment,
increasing the ground-state occupation while higher excitations are
suppressed.

effects on the population of the excited phonon states. While
the decay of the excitation probability is reduced by Gaussian
anharmonicities, it is enhanced when considering dissipation.
These observations can be connected to our investigation
of the metallicity and the localization length, and by noting
that the binding energy is mainly unaffected by dissipation in
the metallic phase. This suggests that the metallicity mainly
depends on the mean free path length of the bipolaronic quasi-
particles, which appears to be reduced by dissipation.

APPENDIX B: QUANTUM JUMPS

In the following, we sketch the main equations of the
method presented in [82]. First, it is convenient to define an
effective, non-Hermitian Hamiltonian:

Ĥeff ≡ Ĥtot − i

2

∑
l

D̂†
l D̂l , (B1)

that allows us to rewrite the Lindblad equation Eq. (2) as

∂t ρ̂ = −i(Ĥeffρ̂ − ρ̂Ĥ†
eff ) +

∑
l

D̂l ρ̂D̂†
l . (B2)

Working with pure states, a stochastic process Q is introduced
so that the density matrix time evolved by the Lindblad equa-
tion is obtained from averaging over many realizations:

E[|�(t )〉q〈�(t )|q] = ρ̂(t ), (B3)
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FIG. 10. Algorithmic sketch of the quantum jumps method.

where q ∈ Q is a collection of pseudorandom numbers identi-
fying a so-called trajectory. Thus, instead of constructing the
density matrix, one computes observables for every trajectory
and averages over them:

〈Ô〉(t ) = E[〈�(t )|qÔ|�(t )〉q]. (B4)

In Fig. 10, we give a sketch of the described unravelling
and the random processes involved. In practice, typically
≈102–103 trajectories are needed for getting converged ob-
servables.

For a trajectory specified by two uniform random numbers
q = (q1(t ), q2(t )) with qi(t ) ∈ [0, 1], the algorithm to com-
pute the time evolution of |�(t )〉q is shown in Fig. 10. The
general idea is to expand the time-evolved state to first order,
to decompose the change in its norm:

||� (1)(t + δt )〉|2 = 1 − p ≈ 1 − δt
∑

l

〈�(t )|D̂†
l D̂l |�(t )〉

≡ 1 −
∑

l

pl . (B5)

Then, the random number q1(t ) is picked and compared to
the overall norm change p to decide whether a jump has to
happen. If a jump needs to occur, the second random number
q2(t ) is picked to choose the actual jump operator, according
to the different jump probabilities δt〈�(t )|D̂†

l D̂l |�(t )〉.
If the algorithm described above is carried out for each

trajectory q, averaging over the projectors yields

ρ̂(t + δt ) = E[|�(t )〉q〈�(t )|q]

= (1 − p)
|� (1)(t + δt )〉√

1 − p

〈� (1)(t + δt )|√
1 − p

+
∑

l

pl

p

D̂l |�(t )〉√
pl/δt

〈�(t )|D̂†
l√

pl/δt

= ρ̂(t ) − iδt (Ĥeffρ̂ − ρ̂Ĥ†
eff ) + δt

∑
l

D̂l ρ̂D̂†
l ,

(B6)

which in the limit δt → 0 is precisely the Lindblad equation.

APPENDIX C: HOPS

For clarity, we consider a single g, ω, and κ . Tracing out
the phonons transforms the Schrödinger equation with the
Hamiltonian of Eq. (1) into the non-Markovian quantum state
diffusion equation [89] for the state of the fermionic degrees
of freedom |ψ (t )〉:

∂t |ψ (t )〉 = − iĤf|ψ (t )〉 + g
∑

j

L̂ jz
∗
j (t )|ψ (t )〉

− g
∑

j

L̂†
j

∫ t

0
ds α∗

j (t − s)
δ|ψ (t )〉
δz∗

j (s)
. (C1)

Here α j (t ) represents the environment correlation function,
which on site j and at zero temperature is given by the Fourier
transform of the spectral density Jj (ω):

α j (t ) ≡ 〈â j (t )â†
j (t

′)〉 = 1√
2

∫ +∞

−∞
dω Jj (ω)e−iω(t−t ′ ), (C2)

which can be determined, for instance, from spectro-
scopic experiments [159]. In the following we assume that
the environment correlation function is given by a single
complex exponential α(t − t ′) = e−κ|t−t ′ |−iω(t−t ′ ). The term
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FIG. 11. Algorithmic sketch of the hierarchy of pure states method.

z j (t ) in Eq. (5) represents a colored noise that satisfies
E[z j (t )z∗

j′ (t
′)] = α(t − t ′)δ j, j′ , which can be generated in

practice following, e.g., [25,160], while the term δ/δz∗
j (s)

represents the functional derivative with respect to z∗. The ob-
servables for the electronic system are obtained by averaging
the results of Eq. (5) over many trajectories, as explained for
QJ in Sec. II A.

In practical calculations, solving Eq. (5) is exceptionally
challenging because of the last term of the right-hand side,
which is nonlocal in time [90]. This problem can be solved ef-
ficiently by the hierarchy of pure states HOPS method [25,83],
where one defines

|ψ (1, j)(t )〉 = Dj (t )|ψ (t )〉 ≡
∫ t

0
ds α∗

j (t − s)
δ|ψ (t )〉
δz∗

j (s)
(C3)

which is labeled the first auxiliary state relative to site j. One
then defines the kth auxiliary state recursively:

|ψ (k, j)(t )〉 = [Dj (t )]k|ψ (t )〉. (C4)

In Fig. 11 we sketch the HOPS algorithm. As discussed in
Appendix C 1, at least for the model considered in this paper,
it is highly important to rescale the auxiliary states in the
following way inspired by [26]:

|ψ (k, j)(t )〉 → 1√
α j (0)kk!

|ψ (k, j)(t )〉. (C5)

With Eqs. (C3) and (C5), we can replace Eq. (5) by a hierarchy
of equations. Following [25], it is convenient to define a state
on the combined fermionic and bosonic Hilbert space as

|�(t )〉 =
kmax∑
k=1

Ck(t )|ψ (k)(t )〉 ⊗ |k〉bos, (C6)

where |k〉bos ≡ ⊗ j |k〉bos
j labels the bosonic mode correspond-

ing to the kth auxiliary state, Ck(t ) is a time-dependent
coefficient, and kmax is the local bosonic Hilbert space di-
mension. The hierarchy then takes the form of a simple
Schrödinger equation for the state on the combined fermionic
and bosonic Hilbert space:

∂t |�(t )〉 = −iĤQ
eff|�(t )〉, (C7)

where the effective, non-Hermitian Hamiltonian now reads
[25,83]

Ĥeff = Ĥs +
∑

j

i
[
z̃∗

j (t )gL̂ j − (κ + iω)K̂j + gL̂ j ⊗ K̂1/2
j b̂†

j

− g(L̂†
j − 〈L̂†

j 〉t ) ⊗ b̂ j K̂
1/2
j

]
. (C8)

Here, K̂j is the bosonic number operator acting on site j and
b̂†

j and b̂ j are the so-called bare creation and annihilation
operator, respectively, acting on the bosonic modes as

b̂†|k〉 = |k + 1〉,
b̂|k〉 = |k − 1〉. (C9)

The colored noise is modified as

z̃∗
j (t ) = z∗

j (t ) + g
∫ t

0
ds α∗

j (t − s)〈L̂†
j 〉s.

Equation (C7) is linearized by computing the nonlinear term
〈L̂†

j 〉t with |ψ (t − δt )〉, which is a reasonable approximation
as long as the time step δt is small. For computing the elec-
tronic observables, at each time step, the whole state needs to
be projected onto the physical state:

|�(t )〉 → |ψ (t )〉 = |0〉bos〈0|bos|�(t )〉, (C10)

where |0〉bos ≡ ⊗ j |0〉bos
j is the bosonic vacuum. In practice,

the Schrödinger equation Eq. (C7) is propagated in time by
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FIG. 12. Improved stability of HOPS with auxiliary states transformed according to Eq. (C5). Many phononic modes get populated in the
strongly non-Markovian regime (right figure). With the original HOPS formulation, in such a case, the norm of the auxiliary states becomes
very large and renders the method very unstable when computing observables with the normalized physical state (left figure). The calculations
were performed for 20 sites and averaged over 100 trajectories with g = J and κ = 0.1 J . All other parameters are analogous to Figs. 14
and 15.

using the initial condition |�(t = 0)〉 = |ψ (0)(t = 0)〉 ⊗
|0〉bos, where all the auxiliary states are set to zero and are then
populated as time evolves. In principle, kmax is infinite, but the
populations of high-k auxiliary states typically remains small,
allowing for a truncation of the hierarchy. In Secs. II C and
Appendix D 2 we will discuss how the introduced PP method
allows for an optimal and automated selection of kmax.

The restriction of the environment correlation function α(t )
being a complex exponential can be lifted by noting that
complex exponentials form a complete orthonormal set on L2,
and thus we can approximate

α j (t − t ′) ≈
P∑

p=1

gpe−κp|t−t ′|−iωp(t−t ′ ), (C11)

for any square-integrable function with arbitrary precision
by increasing P. The decomposition can be obtained, for in-
stance, with the Laplace-Padé method [161], yielding a set of
parameters ωp, gp, and κp. In this paper, we will deal with the
case P = 1, corresponding to the case of a Lorentzian spectral
density. For a presentation of the conceptually straightforward
generalization to P > 1 we refer to [26,90].

Improved stability for highly excited baths

For all the HOPS calculations on the dissipative Hubbard-
Holstein model, we have rescaled the auxiliary states accord-
ing to Eq. (C5). This reduces the norm of the auxiliary states
and prevents numerical errors arising from the normalization
of the physical state that is performed at each time step when
computing the observables. In Fig. 12 we see that for a strong
electron-phonon coupling g = 1, and a weak dissipation κ =
0.1, the HOPS method without a rescaling of the auxiliary
states breaks down completely when 13 bosonic modes are
populated. In contrast, as shown in Fig. 16, with the new
definition of the auxiliary states HOPS can deal with up to
55 occupied bosonic modes. We want to point out that this
is not an MPS-related issue, as we encountered it also for
exact-diagonalization (ED) calculations.

APPENDIX D: METHOD BENCHMARKS

Simulating the complicated interplay between electronic
and dissipative, phononic degrees of freedom requires a care-
ful understanding of the limitations of the used methods.
Even though HOPS, as well as QJ, are well-established tools
for the description of open quantum systems, here we com-
bine these methods with a tensor-network representation that
comes along with its own approximations. Additionally, we
must consider the truncation in the enlarged phononic Hilbert
space generated by the PP mapping Sec. II C. It is therefore
essential to understand the effect of the additional numerical
approximations, particularly if we can control the numerical
precision within each method by tuning typical control pa-
rameters such as the bond dimension or the discarded weight
[32,49]. A practical consequence of the method benchmark
presented in the following is that even though both methods
require similar numerical resources, their numerical accura-
cies complement each other with respect to the dissipation
strength and electron-phonon coupling. Therefore, given a
physical realization of some model parameters, our bench-
mark yields a comprehensive picture of which method is to
be used for an optimal numerical outcome.

1. Exact diagonalization and matrix-product states

Analyzing the ground state of Eq. (11) already makes for a
numerically involved problem. Thus, faithfully simulating the
dynamics following a global quantum quench in the presence
of dissipation, we are equipped with a reasonable benchmark
system. Here, we prepare the system in a product state be-
tween the electronic and phononic system corresponding to
a highly excited state of Eq. (11). As a key feature, in the
postquench dynamics, a potentially significant occupation of
the bosonic, local degrees of freedom can occur, driven by
the excess energy of the electronic system. The latter com-
petes with the effect of dissipation. Considering large phonon
frequencies ω ∼ O(1), the relaxation separates into distinct
timescales. Therefore, describing the dynamics of the overall
system requires a large local Hilbert space dimension ≈10–60
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FIG. 13. Comparing HOPS and QJ to the exact ME. All ME results were computed with ED for a system composed of two fermionic
and two phononic sites. For all plots, the Hamiltonian parameters were chosen to be U = J , ω = 2 J , and 500 trajectories and a time step
dt = 0.005 J−1 was used. The dissipation strength κ was fixed to 0.1 J for the two upper plots and to 4 J for the two lower plots. For all
analyzed parameters, the linear and the nonlinear method present at most very small differences. Both HOPS and QJ agree very well with the
exact ME results, except for the case of intermediate and strong dissipation and large electron-phonon coupling (κ = 1, 4 J , g = J) where QJ
exhibits deviations at later times t > 2 J−1.

for the bosonic system. Capturing these competing effects cor-
rectly is one of the most important points in practice, whereas
any small, uncontrolled approximation already modifies the
short-time dynamics of correlation functions drastically. Note
that quenching from a product state, a large amount of en-
ergy is transferred into the system. In that sense, our analysis
refers to an extreme test case. In practice, for near-equilibrium
quenches, we expect both methods to perform reasonably also
in the regime, which is complementary to the optimal one
described in the following.

a. Comparison with exact diagonalization

The dynamics of the smallest meaningful Hubbard-
Holstein model, composed of two electrons and two phonons,
can be described by the exact Lindblad master equa-
tion [Eq. (2)] via ED. [162] This is used as an exact reference
to assess the precision and the computational complexity
of the HOPS and the QJ methods before turning to large
systems. We fix U = J and ω = 2 J , and study the perfor-
mance of the HOPS and the QJ methods as a function of
the electron-phonon coupling g and the dissipation strength
κ . The dependence on the dissipation strength is particularly
interesting because, in principle, the two methods are comple-
mentary: for HOPS, the environment becomes Markovian and
thus trivial for κ → ∞, whereas for QJ the nonunitary part
of the dynamics for the enlarged system becomes irrelevant in
the limit κ → 0. We initialize the time evolution with the Neel
state for the fermions and the vacuum for the phonons

|�〉init = |↑〉fer
1 |↓〉fer

2 |0〉bos
1 |0〉bos

2

and perform a global quench both in the electronic and in the
phononic system. We pick the number of spin-up fermions
on site 1, 〈n̂↑

1 〉, and the pairing correlation between the two
fermionic sites, 〈ĉ†

0,↑ ĉ†
0,↓ ĉ1,↓ ĉ1,↑〉, as a single-site and two-

site observable, respectively. We choose to compare the two
methods for very weak (κ = 0.1 J), intermediate (κ = J), and
very strong (κ = 4 J) dissipation at the medium and strong
electron-phonon couplings g = 0.5 J and J .

Our results are summarized in Fig. 13. In general we ob-
serve excellent agreement for both HOPS and QJ with master
equation (ME) at short times t � 2 J−1. The only notable de-
viation appears at larger simulation times in the QJ results for
the two-site observable, in the case of strong electron-phonon
coupling g = 1J and medium or strong dissipation κ � 1J .
We believe that using a modified version of QJ, or signifi-
cantly decreasing the time step and increasing the number of
trajectories, would improve the agreement with the exact re-
sult. However, with MPS methods, using an excessively small
time step can lead to an accumulation of truncation errors and
should be avoided. Therefore, we suggest that, at least for a
quench from a product state, HOPS should be preferred over
QJ in the parameter regime mentioned above. In Appendix E,
we show that both the linear and the nonlinear version of the
homodyne detection unravelling do not yield accurate results
for this model.

b. Comparison beyond exact diagonalization

We proceed with the comparison by considering the same
parameters as in Fig. 13 but increase the system size to L =
40. Such system sizes are far beyond reach for ED methods, as
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TABLE I. Summary of the most relevant simulation parameters: the maximum allowed discarded weight δ, the maximum allowed MPS
bond dimension mmax, the maximum allowed local dimension dmax, and the overall number of trajectories |Q|.

d surface QJ and HOPS Double occupations Bipolaron metallicity
(Figs. 16 and 17) (Figs. 14, 15, and 18) [Fig. 5(b)] (Figs. 6 and 7)

δ 10−10 10−10 10−10 10−10

mmax 6000 6000 500 2000
dmax 60 40 40 40
Sites 10 40 20 20
|Q| 5 200 50 200

well as density operator based time-evolution schemes, in par-
ticular when considering a large number of phononic modes
(here � 40) per site, too. In order to ensure numerical conver-
gence, throughout the benchmark calculations, we varied all
relevant parameters. Table I displays the settings we found
to produce faithful and converged results. In particular, we
fix the maximally allowed bond dimension to mmax = 6000
and choose a time step δt = 0.01 J−1 for HOPS and δt =
0.005 J−1 for QJ and a discarded weight of δ = 10−10. The
maximally allowed hierarchy depth kmax (for HOPS) and local
Hilbert space dimension of the phonons bmax (for QJ) are set
to kmax = bmax = 40. We find that these values are sufficient
to describe the dynamics, and correspondingly, the actually
exploited local dimensions never reach their respective upper
limit. Since the initial state is a product state, we start the
time evolution with the global Krylov method and then switch
to the two-site time-dependent variational principle (2TDVP)
method. Here, at least ≈50 Krylov time-evolution steps with
otherwise identical numerical configuration are required in
order to obtain converged results.

Our comparisons aim to determine the model parameter
regimes in which QJ and HOPS are capable of describing
the many-body postquench dynamics. Since the dynamics are
characterized by the spreading of correlations on different
timescales, in the following, we concentrate on our results
for the dynamics of spin-density and charge-density correla-
tion functions with respect to the central site. However, we
note that during our investigations, both methods performed
equally well when describing on-site observables. As shown
in Fig. 14, the spin-density correlations agree very well for
the two methods. However, for the charge-density correlations
displayed in Fig. 15 we find deviations in the long-distance
behavior for very weak dissipation. An additional shoulder
characterizes them in the tail of the correlation functions at
times t > 1 J−1, occurring in the dynamics obtained from
HOPS. This shoulder corresponds to an increased spreading
of density correlations in the HOPS result, compared to QJ
[163]. In order to clarify which method yields more reliable
results in this regime, we performed a comparison to the
quench dynamics in the absence of dissipation. As shown in
the upper-left panel of Fig. 15 by the dotted curves, we find
that QJ smoothly connects to the nondissipative case. We take
this observation as an indicator that QJ is more precise in the
case of small dissipation strengths.

2. Numerical complexity and stability

From a practical point of view, it is important to clarify if
the methods are numerically feasible in the identified optimal

parameter regimes. Here, we start by comparing the hierarchy
depth kmax ≡ dmax for HOPS with the local Hilbert space
dimension of the phonons bmax ≡ dmax for QJ for different
values of g and κ . Using 2TDVP as time-evolution method, the
numerically most costly operations scale as O(m3

maxd2
maxδmax)

and O(m2
maxd3

maxδ
2
max). In case of considerably large local di-

mensions dmax > 10, the latter operations become dominant
and the applicability of QJ and HOPS depends on their re-
quired local Hilbert space dimensions.

In Fig. 16 we show the evolution of dmax = kmax, bmax

required to ensure an overall discarded weight δ = 10−10

throughout the time evolution. Note that the PP-truncation
scheme generically truncates the required local dimension so
that the shown results already constitute the optimal number
of local basis states that need to be kept. Interestingly, we find
that despite being conceptually very different, each method’s
required local Hilbert space dimensions kmax (left plot) and
bmax (right plot) display a strikingly similar dependence on
g and κ , throughout the whole analyzed parameter space. A
broad connection between these two quantities is discussed
for another model in [164]. The shape of the surfaces drawn
by kmax and bmax confirms our previous observation that in
the case of strong electron-phonon coupling and weak dissi-
pation, many highly excited phononic modes are populated
that cannot escape due to dissipation, and thus large Hilbert
space dimensions are required. Note that for HOPS the top-
left corner of the kmax surface is missing. This is due to the fact
that for a few extreme cases of very strong electron-phonon
coupling and very weak dissipation, HOPS becomes numeri-
cally unstable because the norm of the auxiliary states grows
very large. In Appendix C 1 we show that, at least for the dissi-
pative Hubbard-Holstein model, this instability for the HOPS
method is much more severe when the original definition of
the auxiliary states is adopted instead of the modified one of
Eq. (C5). We thus find that the numerical costs are equivalent
for both methods when enforcing a certain discarded weight.
When performing a time evolution, one is typically interested
in the convergence of some specific observables and not in the
approximation quality of the wave function controlled by the
discarded weight. Therefore, we pick six representative pa-
rameter points marked by circles in Fig. 16 and study the con-
vergence of the nearest-neighbor pairing correlation function:

Cpa,dmax
nn = 1

L − 1

L−1∑
j=1

〈ĉ†
j,↑ ĉ†

j,↓ ĉ j+1,↓ ĉ j+1,↑〉. (D1)

We calculated its dependency on the maximally allowed
local dimension, compared to a reference value Ĉpa,kmax

nn which
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FIG. 14. Spin-density correlations 〈Ŝz
20 Ŝz

20+ j〉 calculated using HOPS and QJ for a system with L = 40 sites at half filling, quenched from a
Neel state with two different values of g (columns) and three different values of κ (rows). The two methods agree very well, even for long-range
correlations. Only small deviations between HOPS and QJ are found for large electron-phonon coupling g = J and intermediate and strong
dissipation κ = 1 J and 4 J . We chose a time step δt = 0.005 J−1 for QJ and δt = 0.01 J−1 for HOPS, since the latter method has shown to be
less sensitive to the time step.

FIG. 15. Charge-density correlations 〈n̂ f
20 n̂ f

20+ j〉 calculated with HOPS and QJ for the same quench as the one in Fig. 14. A disagreement
is observed at later times and long distances. In the upper-left panel, at each time, we have added a dotted line that represents the case without
dissipation, i.e., a simple Schrödinger evolution with the Hubbard-Holstein Hamiltonian. This indicates that the long-range correlations in case
of very weak dissipation are better described by QJ than by HOPS.
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FIG. 16. Left: Hierarchy depth kmax for HOPS as a function of g and κ . Right: Local physical dimension of the phonons bmax for QJ g
and κ . Center: Difference between kmax and bmax. The truncation is determined automatically via the PP method by fixing a discarded weight
δ = 10−10. For all calculations, the model parameters were Nsites = 10, U = J , and ω = 2 J and time evolution has been performed until
Tmax = 2 J−1. We computed ten trajectories for each point. For the six points marked by a sphere, a convergence analysis of an observable is
described in Fig. 17 and in the main text. Note that at very large g and very small κ (i.e., the scattered top left area in the left figure) HOPS
collapses, a finding which we discuss in the main text.

was obtained fixing the discarded weight only and using the
values of kmax and bmax extracted from Fig. 16:

Err( j) = ∣∣(Cpa,dmax
nn − Cpa,dmax j

nn

)
/Cpa,dmax

nn

∣∣. (D2)

Here, for both methods, we varied j ∈ {1/4, 1/2, 3/4}, re-
ducing the maximally allowed local dimension up to a quarter
of the optimal value. In Fig. 17, we show the obtained conver-
gence for the different fractions j indicated by the different
line styles. We observe that most of the time, the HOPS curves
lay below the QJ curves, i.e., they exhibit less sensitivity on
truncating the local Hilbert space dimension. Noting that in
HOPS, the bosonic degrees of freedom represent auxiliary
states with no direct physical meaning, it is reasonable to
expect it to be somewhat less sensitive on truncations in the
bosonic Hilbert space than QJ. Aside from the local dimen-
sion, we also analyzed the bond dimension mmax, which is of
particular importance when using the PP mapping, as it also
controls the approximation quality of the phonon 1RDMs (see
Sec. II C). The results are displayed in Fig. 18 for the same
model parameters as for the benchmark calculation shown in
Figs. 14 and 15. Similarly to the local dimensions, the required
bond dimensions decrease when the dissipation strength
increases. Notably, we find that for all six analyzed (g, κ ), QJ
features a smaller bond dimension than HOPS when enforcing
a constant discarded weight. We investigated the possible
origins of this surprising observation. One possible reason
may be buried in the fact that whenever a jump occurs, e.g., an
annihilator is applied on a phononic site, the bond dimension
drops significantly because a large portion of the local Hilbert
space is projected out. Moreover, it has been shown recently
that repeated measurements reduce the support of lattice sites,
on which correlations can spread significantly [51,132] and
thereby also reduce entanglement growth. Since in QJ the
probability for a jump to happen is mainly controlled by the
dissipation strength, we would expect considerably smaller

bond dimensions to happen if κ is large, as observed in the
right panel of Fig. 18. Furthermore, for small dissipation
strengths and large electron-phonon interactions, we also
observed a significant increase in the required local dimension
of HOPS. Since in the PP mapping, the required local
dimension is directly connected to the decay of the phonon
1RDM diagonal elements, HOPS seems to have the tendency
to create more substantial fluctuations in the phonon system
in this parameter regime and thereby increases the overall
bond dimension. However, deciding whether the overall trend
displayed in Fig. 18 is a peculiar feature of the analyzed
systems or a general feature is beyond the scope of this
paper.

APPENDIX E: QUANTUM STATE DIFFUSION

1. Linear and nonlinear homodyne detection

An alternative unravelling of the Lindblad master equa-
tion Eq. (2) is given by the so-called linear homodyne
detection (lHD) [1]. Similarly to HOPS, the stochastic part is
represented by a random noise term contained in the effective
Hamiltonian. For each trajectory Q, the time evolution is
generated by the non-Hermitian Hamiltonian [165]:

ĤQ
eff = Ĥs + i

∑
l

[
Zl (t )D̂l − Cl

2
D̂†

l D̂l

]
, (E1)

where Ĥs is the system Hamiltonian, D̂l are the Lindblad oper-
ators, and Zl (t ) is a random number drawn from a real-valued
Gaussian distribution with mean zero and standard deviation
σ given by the square root of the coupling parameter Cl

divided by the time step δt . To show the equivalence between
the Lindblad evolution and lHD method, we time evolve a
state |�(t )〉 to first order with the effective Hamiltonian of
Eq. (E1), considering the case of only one Lindblad operator
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FIG. 17. Convergence of nearest neighbor pairing correlation Eq. (D1) in the local Hilbert space dimension jdmax. The chosen six parameter
sets (g, κ ) are indicated in Fig. 16. At each time step, the relative error between a reference time evolution performed with the optimal local
dimension dmax is evaluated. All the model and time evolution parameters are analogous to Fig. 16. Note that more than one trajectory is used
only to avoid the risk of picking a particularly favorable or unfavorable combination of random numbers, but the error analysis here is not
concerned with the statistical averaging performed for pure state methods.

for clarity:

|�(t + δt )〉 =
[

1 + δt

(
− iĤs + D̂Z (t ) − C

2
D̂†D̂

)]
|�(t )〉.

(E2)

To first order in δt [recalling that Z2 is O(δt−1)], the outer
product of Eq. (E2) with its Hermitian conjugate reads

|�(t + δt )〉〈�(t + δt )|

= |�(t )〉〈�(t )| + δt

(
− iĤs + D̂Z (t ) − C

2
D̂†D̂

)
× |�(t )〉〈�(t )| + |�(t )〉〈�(t )|δt

×
(

+ iĤs + D̂†Z (t ) − C

2
D̂†D̂

)
+ δt2Z2(t )D̂|�(t )〉〈�(t )|D̂†.

Now, by making use of the mean and the variance of Z ,
namely, E[Z (t )] = 0 and E[Z2(t )] = C/δt , we compute the
ensemble average over the projectors:

E[|�(t + δt )〉〈�(t + δt )|]

≡ ρ̂(t + δt ) = ρ̂(t ) + δt

(
− iĤs − C

2
D̂†D̂

)
ρ̂(t )

+ ρ̂(t )δt

(
+ iĤs − C

2
D̂†D̂

)
+ δt2 C

δt
D̂ρ̂(t )D̂†

= ρ̂(t ) + δt

(
−i[Ĥs, ρ̂(t )]−C

2
{D̂†D̂, ρ̂(t )}+CD̂ρ̂(t )D̂†

)
,

which, in the limit δt → 0, is the Lindblad equation. For the
case of the dissipative Hubbard-Holstein model considered in

FIG. 18. Bond dimension for QJ and HOPS during time evolution after the global quenches, specified in the caption of Fig. 14.
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FIG. 19. Comparing the linear and nonlinear homodyne detection to the exact ME. All results were computed with ED for a system
composed of two fermionic and two phononic sites. For all plots, the Hamiltonian parameters were chosen to be U = J , ω = 2 J , and 500
trajectories and a time step dt = 0.005 J−1 was used. The dissipation strength κ was fixed to κ = 0.1 J for the two upper plots and to κ = 4 J
for the two lower plots. For all analyzed parameters, the linear and the nonlinear method present at most very small differences. While both
methods agree reasonably well with the exact results for a small dissipation strength, for strong dissipation, the homodyne detection results
deviate strongly from the exact ones, and the problem becomes more severe for large electron-phonon coupling.

Secs. III and Appendix D, the effective Hamiltonian reads

ĤQ
eff = ĤHH + i

L∑
j=1

[
Zj (t )â j − κ

2
â†

j â j

]
, (E3)

with the constant coupling being the dissipation strength κ .
To try to lower the number of trajectories needed to

converge the observables for this pure-state method, a mod-
ification of Eq. (E1) called non-linear homodyne detection
(nlHD) can be used [165]:

ĤQ
eff = Ĥs + i

L∑
j=1

[
Zj (t )D̂ j − Cj

2
D̂†

j D̂ j

+ Cj〈�(t )|(D̂†
j + D̂ j )|�(t )〉D̂ j

]
. (E4)

Analogously to what is done for HOPS, the nonlinear dy-
namics generated by Hamiltonian Eq. (E4) are linearized by
computing the expectation value with the state |�(t − δt )〉,
which is a reasonable approximation as long as the time step
δ is small.

We show the ED comparison of both the linear and the
nonlinear homodyne detection methods to the ME methods
for the same parameters used in Fig. 13. Figure 19 shows that
lHD and nlHD work well for small dissipation but fail to yield
correct results both for single-site and for two-site observables
in the case of large dissipation. We thus conclude that the
QJ method is more suitable to be used as a comparison to
HOPS.

2. Exact factorization of the time-evolution operator

The matrix elements of the non-Hermitian part of the effec-
tive Hamiltonian can be computed exactly, both for the linear
and the nonlinear case. Also, the MPO representation of the
phononic displacement operator used for the computation in
Sec. III is obtained in a completely analogous way. We first
consider the linear case Eq. (E3), define B̂ ≡ ∑L

j=1 [Zl (t )âl −
κ
2 â†

l âl ], and start by factorizing the exponential of the effective
Hamiltonian via a second-order Trotter decomposition:

e−i(ĤHH+iB̂)δt ≈ eB̂δt/2e−iĤHHδt eB̂δt/2 + O(δt3). (E5)

We then focus on calculating the exponential eBδt . Since
the terms acting on each site commute, the expression

e
∑L

j=1

[
Z j (t )â j− κ

2 â†
j â j

]
δt = e

[
Z1(t )â1− κ

2 â†
1 â1

]
δt · e

[
Z2(t )â2− κ

2 â†
2 â2

]
δt

. . . e
[

ZL (t )âL− κ
2 â†

LâL

]
δt

is exact. We consider the expression for one site and drop the
site subscript and the explicit time dependency of Z:

e
[

Zâ− κ
2 â†â

]
δt
. (E6)

We now want to write this exponential as a product of
two exponentials. We use the following theorem from [166]:
Given two operators X̂ and Ŷ , if [X̂ , Ŷ ] = sŶ with s ∈
C, s �= 2π in, n ∈ N, then eX̂ eŶ = exp (X̂ + s

1−e−s Ŷ ). Applied
to Eq. (E6), this theorem implies that

e
[

Zâ− κ
2 â†â

]
δt = e

[
− κ

2 â†â+ s
1−e−s Z̃ â

]
δt = e− κ

2 â†âδt eZ̃âδt , (E7)
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with Z̃ = Z 1−e−s

s and s = κ
2 δt . Finally, the factorized operator

reads

e
[

Zâ− κ
2 â†â

]
δt = e− κ

2 â†âδt eZ 1−e−κδt/2

κδt/2 âδt = e− κ
2 â†âδt eZ 1−e−κδt/2

κ/2 â
.

(E8)

The operator eZ 1−e−Kδt/2

κ/2 â does not conserve the bosonic particle
number. The U (1) symmetry is restored in the PP mapping,
by replacing the annihilator â with â ⊗ b̂†, where b̂† is the
balancing operator acting on the bath site. By defining the
prefactor as γ (Z ) we get

e− κ
2 â†âδt eγ (Z )â⊗b̂†

.

We now want to calculate the MPO representation of the
dissipative operator. We thus compute the matrix elements:

〈n, n′|e− κ
2 â†âδt eγ (Z )â⊗b̂† |m, m′〉

= e− κ
2 nδt

∞∑
l=0

γ (z)l

l!
〈n|âl |m〉〈n′|(b̂†)l |m′〉 = (E9)

e− κ
2 nδt

∑
l=0

γ (z)l

l!

√
(l + n)!

n!
δtn+l,mδtn′,m′+l

=
{

0, n > m
e− κ

2 nδt

(m−n)!γ (Z )m−n
√

m!
n! δtn′−m′,m−n, otherwise.

(E10)

We can rewrite the rank-4 tensor δtn′−m′,m−n as

δtn′−m′,m−n =
d−1∑
a=0

δtn′−m′,aδtm−n,a.

Thus we get the expression

e− κ
2 â†âδt eγ (Z )â⊗b̂† =

∑
n,m,n′,m′,a

e− κ
2 nδt

(m − n)!
γ (Z )m−n

√
m!

n!

× W (p)n,m
1,a W (pp)n′,m′

a,1 |n〉〈m| ⊗ |n′〉〈m′|,
(E11)

with

W (p)n,m
1,a = δtm−n,a

W (pp)n′,m′
a,1 = W̃ (pp)n′,m′

a,1 = δtn′−m′,a. (E12)

At this point, obtaining the exact factorization of the effective
Hamiltonian for the nonlinear homodyne detection is straight-
forward. We start by defining κ〈�(t )|(â†

j + â j )|�(t )〉 ≡ f ,
considering a single site, dropping the j subscript, and writing

e(Z+ f )δt â− κ
2 δt â†â. (E13)

We see that the operator has the same form as (E6) with Z + f
instead of f . Thus the factorized operator has the form

e(Z+ f )δt â− κ
2 δt â†â = e− κ

2 â†âδt e(Z+ f ) 1−e−κδt/2

κ/2 â
. (E14)

The MPO form of this operators is given by Eqs. (E11) and
(E12) with γ (Z ) = (Z + f ) 1−e−κδt/2

κ/2 .

APPENDIX F: PHYSICAL MOTIVATION
FOR THE SYSTEM-ENVIRONMENT MODEL

Typical physical systems are immersed in a single global
environment. For example, electrons in a real material are
coupled to the atoms in the crystal structure, which vibrate
collectively through excited phonon modes. In this section,
we sketch out the justification and physical approximations
required for mapping a system coupled globally to an envi-
ronment with a continuum of energy modes to the toy models
that we have considered in this paper, where we have an
effective (independent) mode coupled locally to each site of
the lattice, with an effective correlation function that decays in
time.

We begin with a system-environment interaction in the
linear form:

ĤInt =
∑

j,k

g j,kL̂ j â
†
k + g∗

j,kL̂†
j âk, (F1)

where L̂ j acts on system site j, âk annihilates an excitation
in mode k of the environment, and gj,k are some complex
coefficients describing the coupling strength which in general
are k dependent and may also be spatially inhomogeneous. We
can then define effective environment modes:

ˆ̃B j =
∑

k

g∗
j,k âk,

ˆ̃B†
j =

∑
k

g j,k â†
k, (F2)

allowing us to write the interaction Hamiltonian as

ĤInt =
∑

j

L̂ j
ˆ̃B†

j + L̂†
j

ˆ̃B j, (F3)

which is now in the form of the electron-phonon coupling
in the Hubbard-Holstein model considered in the main text.
However, we also need to consider the correlations between
different effective environment modes, which in general will
be nonzero and so not independent:

〈 ˆ̃Bj′ (t
′) ˆ̃B†

j (t )〉 =
∑
k,k′

g j,kg∗
j′,k′ 〈âk′ (t ′)â†

k (t )〉

=
∑
k,k′

g j,kg∗
j′,k′e−iωkt+iωk′ t ′ 〈âk′ â†

k〉

=
∑
k,k′

g j,kg∗
j′,k′e−iωkt+iωk′ t ′

δk,k′

=
∑

k

g j,kg∗
j′,ke−iω(t−t ′ ), (F4)

where in the second to last line, we have used the (zero-
temperature) relation, 〈âk′ â†

k〉 = δk,k′ , valid if the operators â†
k

are the eigenmodes of the environment Hamiltonian, i.e., the
environment is a collection of noninteracting bosons ĤE =∑

k ωkâ†
k âk .

Next, we assume that the magnitudes of the coupling co-
efficients are homogeneous, but there can be a relative phase
factor:

g j,k = gke−ik ja, (F5)
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FIG. 20. Bath correlation function (F10) approximated with one and three complex exponentials via the Laplace-Padé method for
c = g = a.

where a is the spacing between lattice sites. We then arrive at
the expression for the correlation functions:

〈B̃ j′ (t
′)B̃†

j (t )〉 =
∑

k

|gk|2e−ika( j− j′ )e−iω(t−t ′ ). (F6)

Following [167], we consider strong lattice confinement so
that the eigenstates of the harmonic oscillator can approxi-
mate the localized basis for the fermions. Then, the coupling
coefficients between such fermionic states and a continuous
bosonic excitation in the environment described by a plane
wave can be written as

gα,β

k ∝
∫

dz �α∗(z)�β (z)e−ikz, (F7)

where �α (z) is the αth eigenstate of the harmonic oscillator:

�α (z) = 1√
2αn!

(πa2)−1/4e
z2

2az Hα

(
z

az

)
, (F8)

where az = √
1/mωz and Hα are the Hermite polynomials.

Assuming only the ground states �0(z) to be occupied, we
can compute the coupling coefficients exactly:

gk = ge−k2a2/2, (F9)

where we have assumed a momentum-independent prefactor
g. We now consider a linear dispersion relation ω = ck and
insert the expression for gk into Eq. (F6). If ka � 1, then for
j �= j′, we get a large oscillating component in the sum, which
leads to a vanishingly small correlation. This corresponds to
the so-called large wave-vector limit, which is valid if the
characteristic wavelength of excitations in the environment
λeff is much smaller than the spacing between system lattice
sites. Approximating the sum with an integral for j = j′ we

obtain

〈 ˆ̃Bj′ (t
′) ˆ̃B†

j (t )〉 =
∑

k

|gk|2e−iω(t−t ′ ) ≈
∫ ∞

0
dk |gk|2e−ick(t−t ′ )

≈
∫ ∞

0
dk g2e−k2a2−ick(t−t ′ )

=
√

π

a2
g2e−c2/4a2(t−t ′ )2 ≡ α(t − t ′). (F10)

In Fig. 20 we approximate the correlation function Eq. (F10)
via the Laplace-Padé method [161]. It can be seen that already
three complex exponentials suffice to reproduce the correla-
tion function fairly well.

This then allows us to connect our paper presented here
to a wider variety of more realistic physical systems. An
interesting future research direction would be analyzing what
happens when this small wavelength limit is not satisfied,
giving rise to strong correlations between the different envi-
ronment modes.

APPENDIX G: FAILURE OF THE MARKOVIAN
DESCRIPTION OF THE DISSIPATIVE

HUBBARD-HOLSTEIN MODEL

The non-Markovian method outlined in Sec. II B and the
Markovian one for the enlarged physical system (electrons
and phonons) discussed in Sec. II A are numerically chal-
lenging. Thus, one could wonder whether a much simpler
Markovian master equation for the electronic system only
would suffice to describe the dynamics correctly. Such an
equation was derived in [25] and reads

∂t ρ̂ = −i[Ĥf, ρ̂] + g2

⎛
⎝ L∑

j=1

n̂ j ρ̂n̂ j − 1

2
{(n̂ j )

2, ρ̂}
⎞
⎠, (G1)
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FIG. 21. Comparison between a master equation for the “electron + phonon” system and a master equation for the electron system only.
For all plots, the Hamiltonian parameters were chosen to be U = J and ω = 2J . The dissipation strength κ was fixed to 0.1 J for the left plots
and 4 J for the right plots. The results obtained with the two methods strongly deviate from one another, showing that the electron dynamics
of the systems considered here cannot be captured by the naive Lindblad master equation of the form Eq. (G1).

where Ĥf is the Hubbard Hamiltonian, g is the electron-
phonon coupling, and n̂ j is the number operator acting on the
jth fermionic site. Note that the Lindblad equation Eq. (G1)
has been derived via the Markovian and the Born (i.e., weak
coupling) approximation and is thus not expected to provide
a valid description for large values of the electron-phonon

coupling g. The exact-diagonalization comparison between
the master equation for the enlarged system, Eq. (2), and the
master equation for the electronic system only, Eq. (S1), is
presented in Fig. 21 and shows that the latter is not suited
for describing the non-Markovian bath that arises when the
phonons are traced out.
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