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The hyperpolarization of nuclear spin ensembles through their interaction with optically active color centers
has emerged as a promising technique with applications ranging from sensing and imaging to quantum compu-
tation. Here, we investigate the efficiency of this approach for the hyperpolarization of the nuclear-spin bath in a
monolayer of hexagonal boron nitride via the optically active boron vacancy centers (Vg). To that end we design
a polarization sequence based on the suitable combination of optical polarization and microwave driving of the
Vg, which we optimize numerically. To extend our study to realistic systems with a large number of interacting
spins, we employ an approximate method based on the Holstein-Primakoff transformation, whose validity we
benchmark against exact numerics for small system sizes. Our results suggest that a high-degree of polarization
in the boron and nitrogen nuclear-spin lattices is achievable also at room temperature. Our work provides the
first step toward the realization of a two-dimensional quantum simulator based on natural nuclear spins and it
can prove useful for extending the coherence time of the Vg centers.
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I. INTRODUCTION

Color centers, also known as point defects, are atomic or
molecular sites within a crystal lattice that can absorb and
emit light at specific wavelengths [1]. They have garnered
considerable attention in recent years due to their potential
use in a variety of quantum technologies, including quantum
computing, quantum communication, and quantum sensing.
This is because some color centers, such as the nitrogen-
vacancy (NV) centers in diamond [2] and different defects
in silicon carbide [3,4], exhibit long coherence times, strong
optical interactions, and room-temperature operation, which
make them promising candidates for developing new quantum
devices. In particular, it has been identified that electron spins
of defect centers in wide-band-gap semiconductors, most no-
tably diamond, can be initialized optically and controlled by
microwaves [2]. In addition, the controlled coupling of these
electron spins to proximal nuclear spins (of, e.g., nitrogen
atoms for the NV-center cases or '>C) has been achieved
using microwave pulses [5] and electrical [6] or optical de-
tection [7].

On the other hand, extended systems such as nuclear spins
on the surface of diamond [8] or thin '3C layers in diamond [9]
have been recently proposed as potential quantum simulators.
However, a key challenge of these implementations is the
initialization of such nuclear-spin ensembles, i.e., generation
of a robust hyperpolarized state with nearly 100% spin polar-
ization [8,9]. Various methods have been studied to achieve
this high level of spin polarization by employing color centers
in diamond [8,10-16] and in silicon carbide [17]. For exam-
ple, the highly controllable color centers can be polarized
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efficiently at room temperature via optical and microwave
drives, and their polarization can be transferred to other in-
teracting spin systems.

In spite of the various valuable works on NV centers in
diamond, spin defects in noncarbon lattices have mostly been
overlooked, while there are tremendous unexplored areas out-
side the carbon realm. More recently, defect centers in 2D
materials such as hexagonal boron nitride (hBN) have been
identified experimentally [18-21] and characterized theoreti-
cally [22,23]. In this case, due to the simultaneous presence
of different nuclear-spin species in the lattice structure, the
initialization of the spin ensemble is more complex. Recently,
the first experimental attempts to polarize the spin ensemble
in hBN have been reported [24]. These are based on the
operation of the color center close to its ground-state level
anticrossing, which allows for polarization transfer to the
nuclear-spin ensemble. In this paper, we explore an alterna-
tive approach that, inspired by the hyperpolarization of '3C
nuclear spins in diamond, is based on the microwave control
of the color center and provides a potentially scalable scheme
for the hyperpolarization of the nuclear spins in hBN.

Here, we study the hyperpolarization of nuclear spins
(boron and nitrogen) in a monolayer of hBN via electro-
magnetic manipulation of the electron spin of Vg. As an
immediate application, this can significantly decrease the pure
dephasing contribution of the spin bath, and thus enhance
the coherence time of the defect spin state. A longer co-
herence time shall prove useful in every follow-up quantum
technological application, see, e.g., Ref. [25]. Unlike the hy-
perpolarization of the nuclear spins in diamond, here one
should deal with the polarization of two sublattices with dif-
ferent nuclear species and different spin values. We analyze
the hyperpolarization of the hBN lattice by optical pump-
ing and microwave driving and find a rapid and efficient
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performance reaching levels of polarization well beyond the
thermal polarization, even at low-temperatures and high mag-
netic fields. In particular, we examine the direct polarization
swap between the Vg defect and the surrounding nuclei by
applying a microwave field to drive the electron spin of the
Vg defect. In this scheme, the population transfer takes place
when the Rabi frequency of the microwave driving field is res-
onant with the energy splitting of the nuclear spins. Therefore,
the flip-flop processes between the Vg defect and the nuclear
spins can result in the polarization of the nuclear-spin lattice.
Moreover, we optimize the performance of our protocol by ad-
justing the magnetic-field orientation as well as the frequency
and amplitude of the microwave drive.

To corroborate our study with numerical analyses on such
large spin systems, we employ an approximate numerical
method that overcomes the typical limitations in computa-
tional resources for dealing with large-scale spin systems. The
numerical method is based on using a bosonic approxima-
tion through the Holstein-Primakoff (HP) transformation [26].
We justify the validity of the approximation in the working
regime of our interest by benchmarking its results with the
exact numerics for small-sized lattices. The study is then
extended to larger lattices with faster and yet considerably
less computational resources. The HP transformation has been
used for investigating hyperpolarization of oil molecules [13],
sensing phases of water via NV centers [27], and simulating a
diamond surface [8].

Before addressing the hBN problem, we explore the
strengths and limitations of the employed numerical bosonic
method and examine the range of its validity by applying it
to the simpler, inhomogeneous, central-spin model. In this toy
model, the spins in a one-dimensional Heisenberg chain inho-
mogeneously interact with a distinct spin, the “central spin.”
We argue that the bosonic approach is in good agreement
with exact numerical simulation if the interaction between
the central spin and the spin bath is long range. Also, we
find that the interaction among bath spins plays an effective
role to transfer polarization throughout the one-dimensional
lattice. This, together with the description of the Heisenberg
model and the Gaussian state method, is described in Sec. II.
In it, we study the strong polarization of the spin ensemble by
driving the central spin and compare the results of the exact
solution with those of the bosonic approximation for a system
of reduced size. In Sec. III, we introduce the Hamiltonian
of hBN lattice with a negatively charged Vg defect and the
nuclear bath model and study the hyperpolarization of this
lattice applying the methods developed in Sec. II. Finally, we
summarize and conclude in Sec. IV.

II. CENTRAL SPIN MODEL

To better understand the hyperpolarization process through
active manipulation of a defect spin and to examine the area of
validity of the employed approximate numerical method, here
we investigate the familiar problem of central spin model.

A. Hamiltonian

We begin with the nearest-neighbor Heisenberg model
for a chain of one-half spins [28-30] described by the
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FIG. 1. (a) Sketch of the central spin model studied in this work
(top panel) and the hyperpolarization of the bath spin chain as a
result of the active manipulation of the control spin (bottom panel).
(b) The geometry of the Vg defect in hBN: A negatively charged
boron vacancy (gray) surrounded by nitrogen (blue) and boron (or-
ange) atoms. The optical polarizing and microwave drives are also
indicated. (c) Vg defect simplified energy-level diagram: The straight
green lines show the exciting laser transitions, while the curly green
and dashed blue lines denote the radiative and nonradiative decay
to the ground state, respectively. The red circle arrows represents
the microwave drive. The inset presents a closer look at the ground-
state manifold and its manipulation via external magnetic field and
microwave drive.

Hamiltonian (A = 1)
N N—1
Hy=hy Si+xy (88, +580, +5,55), O
n=1 n=1

where 82 = 167 denotes the spin operator in the z direction
and S’,j’ (S‘n‘) is the raising (lowering) operator for site n.
Here, £ is the Larmor frequency, which is proportional to the
background magnetic field, and X is the coupling strength. The
first term of Hamiltonian (1) is the free energy of spins and the
second term describes the nearest-neighbor one-dimensional
interactions among the spins. At zero temperature and in the
limit of A < h, the ground state of the system is unique and
given by [0) = |0)®", where |0) and |1) are the eigenstates of
o* (Pauli matrix in the z direction), respectively corresponding
to —1 and +1.

Now we consider a central spin-one-half particle as the
control quantum entity, whose free dynamics is described
by the Hamiltonian H., = wy§° with Larmor frequency wy.
In a possible realistic physical implementation, the control
spin is an optically active spin to which a resonant driving
field is applied for its manipulation, see Fig. 1(a). The central
(control) spin interacts with the Heisenberg chain through the
following Hamiltonian:

N
A =Y Ju8S;, 2
n=1
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where J,, are the long-range coupling strengths, while §° and
§* are the spin operators of the control spin. The whole system
dAynamics is thus given by the Hamiltonian H=H.,+Hs +
Hint'

For the sake of simplicity, we assume that A, J,, < h, .
Hence, the conditions for the rotating-wave approximation
(RWA) are safely satisfied and the total Hamiltonian reads

N N—1
H=wod +h) §+2) (885 +58, +555)
n=1 n=1
N
+Y LGS +578D, 3)

n=1

where the second line of the above Hamiltonian represents the
flip-flop interactions between the control spin and Heisenberg
chain spins.

B. Hyperpolarization

The hyperpolarization of the spin chain can be achieved
by cyclically polarizing the color central spin and transferring
this polarization to the rest of the spins in the chain via the
flip-flop interaction. In this scheme, a single cycle consists of
the following steps: (i) The control spin is initialized in the
|0) state. This can be done, e.g., by applying a laser pulse.
(i) The control spin is driven in resonance with the “bath”
spins, such that the Hartmann-Hahn condition is satisfied and,
thus, the polarization of the control spin is transferred to the
bath spins [31]. The frequency tuning of the control spin for
satisfying the resonance condition can be done in various
ways. One possibility is to apply a resonant driving field with a
proper Rabi frequency, see Sec. III. The two above polarizing
steps are repeated as many as necessary times to achieve the
desired level of polarization in the Heisenberg chain spins.
To put it in the mathematical form, the total initial state is
given by p(0) = |0)(0] ®i:’=1 o where p is the initial
unpolarized thermal state of the nth spin in the chain. After
the (R + 1)st iteration of the polarization cycle, the state of
the Heisenberg spins is found by

PB((R + 1)7) = Tres (U (D)[10) (0l ® pp(RDITT (1)), (4)

where U (1) = exp{—iﬁ t} is the time evolution operator with
H being the Hamiltonian in Eq. (3) and Tr.{} indicates the
partial trace over the control spin. Here, the period of all cycles
is taken to be identical and equal to T. We must emphasize that
the polarization can be effectively transferred from the control
spin to the Heisenberg spins when wy = h. Thus, ideally,
after a sufficient number of cycles the final state of the bath
spins approaches |0) = |0)®". As we discuss later, in practice,
this can be hindered by the formation of dark states and the
presence of different types of noise in the system.

In the following we shall perform exact and approximate
numerical analysis to study this procedure. To quantify the
level of lattice polarization, we define the average collective
expectation value of the operators $° as

< _ 1 (%)
Sz - ]v S, ) (5)

with (§%) and s, denoting the expectation value and spin
number of the nth spin in the chain, respectively. In the current
case we have s, = 1/2. Note that the total polarization is
normalized to unity and —1 < S, < +1. The exact numer-
ics are performed by the QuTiP package [32]. Nonetheless,
due to the limited computational power, the hyperpolarization
of large spin systems is studied by a method based on the
Holstein-Primakoff approximation, which is discussed next.

C. Gaussian states method

To study the behavior of large spin baths, we adopt a
technique based on mapping the spin system onto a bosonic
system, which, under a number of considerations discussed
below, can then be numerically simulated with a significant
computational advantage. To that end we make use of the
Holstein-Primakoff transformation (HPT) and its correspond-
ing approximation (HPA) and map Hamiltonian (3) onto a
bosonic Hamiltonian [13,26]. In this method, a highly po-
larized spin is treated as a boson close to its ground state.
It is worth mentioning that, despite this fact, in the hyper-
polarization problem one usually takes the initial state of the
spin bath in a fully thermal state. Nevertheless, since the state
of the bath spins get closer to their respective ground state
after each hyperpolarization cycle, the amount of total error
committed in this method is tractable. Importantly, bosonic
fields whose dynamics is ruled by Hamiltonians quadratic in
the creation and annihilation operators preserve their Gaussian
character at all times, provided that they are initialized in a
Gaussian state. Given the fact that Gaussian states are com-
pletely characterized by their first and second moments, the
equations of motion for those moments are enough to describe
completely the system dynamics. Notably, those equations of
motion have a dimensionality that grows linearly with the
number of constituents, as opposed to the exponential growth
of their Hilbert space. Therefore, simulating the evolution of
the covariance matrix, which contains the second-order mo-
ments of the bosonic system, is enough to fully characterize
the system dynamics and has considerably less complexity
compared with the simulation of the time evolution of the
density matrix.

Hamiltonian (3) can be exactly mapped onto bosons un-
der the HPT. However, the resulting bosonic Hamiltonian is
not quadratic in the creation and annihilation operators. This
makes it difficult to study the system dynamics. One therefore
takes its linear approximation, the lowest order of the HPA,
that works the best for spin states that are close to their ground
state. In this approximation, the spin operators of a spin-s
particle are transformed as

F=a'a—sl,
st=a"V2s —afa~a'Vvas, (6)
8 =25 —ataa ~ V/2sa,

where &' (&) is the bosonic creation (annihilation) operator
with commutator [&, a'] = 1. Similarly, we perform the trans-
formation for the Heisenberg chain operators by assigning the
bosonic operators b, who satisfy the commutation relation
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[13,,, 5;] = 14,,». By applying the above transformations the Hamiltonian in Eq. (3) reads

N—1

N
(@) = wod'a+ Z(Biby + Bybw) + (= 1) Y By + 2 Y blburs +bub,

n=1 n=1

N
| BEP PR A ~t
+ S By b1 (0 + B Bu O] + 3 1 (@7hy + b)), )

n=1

where to maintain the quadratic form of the Hamiltonian we have employed the mean-field approximation to deal with the
terms arising from the $°S° interactions. Here, n; = U’; b;) is the instant occupation number of the ith spin site. The above
Hamiltonian can be cast into the compact form of H(@) = R'V(#)R where we have introduced the bosonic operator vector

R = (a, 131, ol EN )T and the dynamical matrix:
wo J[ JN
L h+5@m—1) 0
v=1I|h A h+ 4 +n3—2) - 0
Iy 0 h+4@y-1 —1)

This is an (N + 1)x(N + 1) matrix, where N is the total
number of spins in the bath.

Since the initial spin bath state is assumed to be thermal
and the control spin is put in the ground state, for the initial
state one has (R) = 0 and it retains this value given the purely
quadratic form of Eq. (7). Starting from the von Neumann
equation, it is straightforward to show that the evolution of
the covariance matrix, I'; ; = (Iéjl? i), 1s given by

whose formal solution is
T(t) =UBOTOU (1), 9

with U(t) = exp[—i [, V (s)ds].
Furthermore, Eq. (5) can be expressed based on the bosonic
operators

AL A

N
ra 1 (bj,bn> —Sn

n=1

We evaluate the hyperpolarization process by investigating
the time evolution of S, when the total initial state is set to
0(0) = 10)(0 ®Q,:1 oM and the system is subject to a series
of polarization cycles as described in the previous section.
We take J, = J/n”* for the coupling of the control spin to the
Heisenberg chain, without loss of generality. For « = 0 the
coupling is homogeneous, while other values of « represent
a long-range coupling with various scalings. As ¢« — 0o one
retrieves the nearest-neighbor coupling of the control spin to
the spin at site n = 1. We first perform the numerical analysis
with both exact and approximate methods for N = 9. The
results are shown in Fig. 2(a). We compare the numerical
outcomes of equations (5) and (10) that are referred to as exact
and bosonic (HPA) approaches, respectively. In generating
the plot we employ the following parameters: wg = h = 100,
A =2,J =10, and @ = 2. The polarization duration of each
cycle is numerically optimized to v = 5/h. In fact, several
different values of 7 have been inspected, and that resulting

(

in the greatest polarization transfer has been chosen. As can
be seen, the exact (solid line) and the HPA (triangles) are well
matched and approach to S, = —1. It is insightful to know
how polarization of the individual spins evolves. Hence, we
interrogate (S5)/s, for n =1, 5, 8 and plot them in the inset
of Fig. 2(a). The first spin in the chain (black line and stars)
gets polarized quickly, as one would expect. Surprisingly, the
fifth spin (magenta line and squares) is polarized slower than
the eighth spin (green line and circles). We shall discuss about
this behavior below. The agreement between the exact curves
and HPA solutions implies that the HPA is valid in this system
for the chosen set of parameters. This encourages us to extend
this approximate method to larger spin systems where the
simulation of the exact dynamics is numerically intractable.

In this spirit, we examine the polarization behavior for
N = 100 based on the bosonic solution for the same system
parameters. The solid blue line in Fig. 2(b) shows that the
total polarization can reach values as high as S, ~ —0.8 af-
ter R = 10000 realizations. Higher amount of polarization is
attainable for larger number of cycles, and thus, longer times.
Moreover, while inspecting the individual spin polarizations
we observe that the polarization of the spins at the beginning
(n=1,...,7) and at the end (n = 96, ..., 100) of the chain
attain a larger amount of polarization compared with the rest
of the spins. Meanwhile, the rate of polarizing is higher in
the former group. This can be understood by considering the
fact that these two groups have fewer neighbors from one
of their ends. Yet, the first group (n =1,2,...,7) is closer
to the control spin and polarizes faster. These can be seen
from Fig. 2(b) where the polarizations of the third (green
squares) and the 98th spin (red circles) are plotted as the
representatives of the first and second groups, respectively.
Moreover, the polarization of the 8th (magenta diamonds) and
95th (black stars) spins are also shown, revealing behavior of
the “intermediate” spins.

We now analyze the efficiency of the hyperpolarization
sequence as well as the accuracy of the approximate method
employed in this work for various system parameters. In
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FIG. 2. The hyperpolarization dynamic of the Heisenberg model
S. as a function of the normalized polarization time t/. (a) Compar-
ison of the exact numerical simulation and HPA method for N =9
spins with the polarization cycle time T = 5/h and for R = 800. The
inset in panel (a) displays the polarization dynamics of the individ-
ual spins. (b) The polarization dynamics for N = 100 based on the
HPA approach with R = 10 000. The parameters are wy = h = 100,
A=2,J=10,and @ = 2.

Fig. 3(a), we explore the role played by the strength of the
spin interactions A and J on the attainable hyperpolarization
by simulating exactly a system with N =7 and o = 2. As
can be observed, when A is zero, which indicates that there
is no interaction among spins within the chain, the hyperpo-
larization is negligible even for large values of J, that is, for
strong couplings of the spins in the chain to the central spin.
By increasing A the polarization is improved and gets close
to the maximum, S. ~ —1, for strong enough coupling rates
to the central spin (J > 5). These show that the diffusion of
polarization through interchain spin interactions is crucial for
the hyperpolarization this one-dimensional lattice. A similar
study is performed on the effect of the long-range interaction
exponent, and reported in Fig. 3(c), where S, is plotted against
«a for three different values of A. For large enough interspin
coupling rates larger values of o will favor the polarization.
We compare these exact numerical results with the corre-
sponding bosonic method by defining the relative error as
&= ([Sz]exacl - [Sz]HPA)/|[Sz]exact + [Sz]HPA|s which assumes
both positive (overestimating the exact results) and negative
(underestimating the exact results) values. The relative error
behavior is shown in Fig. 3(b) where the dotted area identifies
parameter region where the difference between the exact and

the bosonic methods is less than 1%, while the hashed area
corresponds to the parameter region where the HPA method
underestimates the exact results with less than a 5% error.
Note that our goal is to find the parameters that both give a
high polarization and low relative error. Hence, the highest
polarization associated with the least relative error can be
generally obtained for J > 10 and A > 2. These two optimal
limits also explain our choice of parameters in Fig. 2. A
similar study is performed for  and it is found that the relative
error saturates and becomes less that one percent for a > 2,
see Fig. 3(d).

This concludes our introduction to the possibility of
hyperpolarization by an optically active spin in a simple one-
dimensional lattice and the analysis of the validity of bosonic
model. In the next section we consider the same problem for
a real two-dimensional hexagonal boron nitride (hBN) lattice
with an optically active color center.

III. HEXAGONAL BORON NITRIDE LATTICE

Hexagonal boron nitride is an ideal van der Waals crystal
for hosting optically active defects since it has a large band
gap (6 eV) [18,33]. Defects in hBN can be exploited for flex-
ible two-dimensional quantum sensors [34,35]. Furthermore,
there are proposals for employing the freestanding layers of
hBN as optomechanical systems [36,37], which are based on
the exceptional mechanical properties of the hBN and the
accompanying color centers [38].

Each site in the hBN lattice is occupied by either a ni-
trogen atom or a boron atom, both of which have a nonzero
nuclear spin. A schematic of the hBN lattice with a Vg defect
is shown in Fig. 1(b) consisting of a missing boron atom.
The negatively charged boron vacancy center has a triplet
spin ground state (S = 1) with zero-field splitting D/2x ~
3.5 GHz, which can be efficiently polarized optically [39].
Moreover, transitions among the ground-state levels can be
induced through suitable microwave drives. The simplified
energy-level diagram of the Vg defect is depicted in Fig. 1(c).
In fact, the defect radiates a red light at a wavelength centered
at ~850 nm when excited with a green 532 nm laser. In the
following sections we introduce the nuclear spin bath model
and then study the possibility of hyperpolarizing the hBN spin
lattice. For the sake of simplicity, we shall assume that the
sample is purified to the ''B isotopes.

A. The nuclear spin bath model

The hyper-fine (hf) interaction between the color center
and a nucleus is produced by two mechanisms of different
physical origin and which can both contribute to the coupling
between an electron spin S and a nuclear spin I. The first
mechanism is the magnetic dipole-dipole interaction between
the magnetic moments of the electron and nuclear spins. In
analogy to the classical dipolar interaction between magnetic
moments its Hamiltonian is written as

N -_@Veyn,i|:’\ T _W}, (11)

H' = S-I
dd ™ g r r?

where pg is the permeability of the vacuum and r; is the dis-
placement vector pointing from electron to the ith nucleus (in
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FIG. 3. The exact numerical simulation of hyperpolarization in the central spin model and its comparison to the Gaussian method: (a) The
exact polarization and (b) the relative error of the corresponding Gaussian simulation ¢ as a function of J and A for « = 2. (¢) Variations of
the polarization and (d) the relative error ¢ as functions of the coupling exponent « for / = 10. The numbers next to each line correspond to a
different value of A. The other parameters are wy = h = 100, T = 5/h, N = 7, and R = 500.

meters) and #; is the corresponding unit vector. Here, y, and
Vn.i are the gyromagnetic ratios of the electron and nucleus
at site i, respectively. The dipole-dipole interaction depends
on the relative orientation of the magnetic moments and is
thus anisotropic. A purely dipolar interaction is expected if the
electron spin is located in a molecular orbital with no overlap
with the nuclei. In contrast, the second hf mechanism becomes
important if there is a finite probability of the electron pres-
ence at the location of the nuclei. In fact, this is the case only if
there are contributions of 1s orbital (totally symmetric orbital)
to the molecular orbitals that accommodate the electron of
interest [2,40]. The energy term of this so-called Fermi contact
interaction is given by

A 8 Mo

—_— . . 2A.A.
%—?E%ZWMWWL. (12)

Here, |W(r;)|? is the probability density of the electron in the
orbital described by the wave function V. Evidently, the Fermi
contact interaction is isotropic.

In the ground state of the negatively charged boron vacancy
the electrons occupy well-localized molecular orbitals, which
have little overlap with the lattice nuclei [23,41]. Hence, the
dipole interaction is the dominant term when the polarization
of a large spin lattice is concerned.

We now study the hyperpolarization of a monolayer of
hexagonal boron nitride lattice by the electron spin of the Vg
defect. We consider the nuclear-spin lattice of a monolayer of

hBN of arbitrary size. We assume an isotope purified sample
and only take into account the naturally prominent isotope
of boron, that is, !B, whose natural abundance is around 80
percent. The nuclear spins of the different constituents of the
lattice are the following:

Svp =1, Sn=1, S8g=3/2 (13)

Here, we study a protocol that can acquire rapid hyperpo-
larization of both nitrogen and boron nuclear spins at room
temperature, starting from thermal distributions. The electron
spin of the Vg defect is first polarized with a short laser pulse.
Then the polarization is transferred to the nuclei through their
hyperfine interaction, where resonance is achieved by suitably
driving the ground state of the color center with a microwave
field. This is optimal when the Hartmann-Hahn resonance is
satisfied. The process is repeated by polarizing the electron
spin and continues as many times as necessary to arrive at the
highest polarization level. Note that even in ideal conditions
one cycle of the polarization transfer is not enough for po-
larizing one single nuclear spin (boron or nitrogen). Because
the spin of nuclear spins is higher than that of the effective
one-half spin of the defect, see below. Therefore, to obtain a
strong polarization, it is requisite to exploit many reiterations
of the polarization protocol.

Meanwhile, the nuclear spins are coupled to each other via
the dipole-dipole interactions:
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where g;; = hipoVn,ivn,j/47 |r,-j|3 is the coupling strength and
ii = (I:-x, I:‘ IAf) is the vector of spin operators. Here, r;; =
r; —r; is the spatial vector connecting the two interacting
spins, with #;; = (%;;, 9i;, 2i;) its corresponding unit vector.
The lattice constant in hBN is ~1.5 A, while the boron and
nitrogen gyromagnetic ratios are yg /27w = 13.66 MHz/T and
yn/2m = 3.078 MHz/T, respectively. As shall become clear
in the next section, unlike the simple one-dimensional Heisen-
berg chain these internuclei interactions do not contribute to
the hyperpolarization process; in contrast, they can be detri-
mental.

B. Engineering the system dynamics

We take into account N symmetrically nearest nuclear
spins to the defect and assume a high external magnetic field
such that D < y,|B|, see the inset in Fig. 1(c). In this con-
figuration, the defect natural quantization axis is suppressed
and the magnetic field orientation dictates the quantization
axis for both electron and nuclei, which we assign to the z
axis. By applying a microwave field driving the transition
|—1) <> |0) with Rabi frequency 2 and under the rotating
wave approximation, the total effective Hamiltonian describ-
ing the dynamics of the system in the frame rotating with the
driving field frequency wn,y reads

A 1 0 ..
+ X oy(BG =40+ D) a9

where 3 = 3(|4+)(+ — [=)(=]) and 3" = [+)}(—| = ()"
are the Pauli matrices in the dressed state basis |+) = (|0) &
[=1))/ V2 representation, see the Appendix for details of the
derivation. Here, the hyperfine coupling o; = %(A;‘ + iA)), the
modified nuclear Larmor frequencies @; = w; — %Af, and the
internuclei dipolar coupling rate b;; = g;;(1 — 32%,-) have been
introduced. The hyperfine coupling vector of the electron spin
to the ith nuclear spin is given by A; = g.;(—3%:Z;, —39:2;, 1 —
322) with gei = fipto¥eyni/ (4 |ril).

It is clear from the above Hamiltonian and the hyperfine
vector that hyperpolarization of a monolayer of hBN is not
possible when the quantization axis is perpendicular to the
layer, whenever the conditions for the rotating wave approx-
imation are satisfied. Because in this case «; = 0, and thus,
the flip-flop interactions between the defect and the nuclear
spins cannot occur. To circumvent this, we assume that a high
magnetic field, tilted with respect to the layer, is applied with a
deviation angle 6, see Fig. 1(b) for the sketch. Note that, in the
limit of weak magnetic field, the natural quantization axis of
Vg inits D3, symmetry is perpendicular to the layer, and thus,
the hyperpolarization is inaccessible. This also explains our
choice of large magnetic field at the beginning of this section.

Note that for magnetic fields where the electronic- and
nuclear-spin transitions become resonant; that is, close to the
ground-state level anticrossing (GSLAC), in-plane flip-flop
interactions become allowed. The above assumption about

magnetic field direction is not correct in general, but it is valid
for our configuration with the RWA.

We next find the angle 6 that maximizes the flip-flop
interactions responsible for the polarization transfer. It is
straightforward to obtain

il = 3y |43]" + 4] = galsin20)l.  (16)
Therefore, the greatest amount of |o;| is found for 6§ = 7.
Nonetheless, the azimuthal angle of the magnetic field also
plays an important role here and can be employed for tuning
the coupling of the defect to different sites. We find the opti-
mal azimuthal angle numerically.

C. Hyperpolarization of hexagonal boron nitride

The hyperpolarization scheme is similar to the one ex-
plained in Sec. II B and can be summarized as follows: First,
by using an optical pumping the electron spin of the ground
state of the Vg defect is brought to the |0), i.e., the state
with my; = 0. Then it is prepared in the superposition state
|—) = (]0) — |—1))/ﬁ by applying a 7 pulse [39]. Second,
the polarization is transferred from the Vg spin to the nuclear
spins via the hyperfine interactions, which are made resonant
by applying a suitable resonant microwave drive. The steps of
the polarization cycle are iterated multiple times. Nonetheless,
one should keep in mind that since there are two spin species
(three for the natural isotope shares) in the lattice, the reso-
nance condition cannot simultaneously hold for all the spins
in the bath. Given the long coherence time of the nuclear spins
this can be circumvented, e.g., by alternating the resonant
condition for all spin species of interest. The whole initial
state is p(0) = p.(0) ®f1=1 o™ where the initial state of the
defect is set to p,(0) = |—)(—|. Meanwhile, the nuclear spins
are assumed to be in thermal equilibrium with independent
reservoirs, and thus, their initial density matrix is given by
,ofh. The evolution of the nuclear-spin density matrix after the
(R + 1)st cycle of the polarization protocol is determined by

Pruc(R + 1)) = Tro[e 7 [| =) (~|, ® pruc(RT)Je™17),
(17)

where H.g is the Hamiltonian (15), 7 is the equal duration of
each cycle, and Tr.{} denotes the trace over the electron spin.

To numerically simulate a large spin system we shall em-
ploy the method based on HPA explained and examined in
the previous section. Under this transformation, i.e., Eq. (6),
and for resonant driving of the electron, the Hamiltonian (15)
takes the following form:

N N
Ay =Qa'a+ Y o) bib;+ Y (pia'h; + prab))
i=1 i=1

N
— > Bi(b}b; + bib)), (18)

i<j
where we have introduced the electron-nuclei coupling rate
Bi = +/2s;a; and nuclear-nuclear interaction strengths B;; =
% /5i5; b;;j. Here, the modified Larmor frequency of the nu-
clear spins is @;(t) = @; + % Z#i b;j(m;(t) — 2s;) where the
time-dependent expectation value is due to the mean-field
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FIG. 4. The short time polarization dynamics of the defect and
the nearest nuclei: S. is given separately for the three nitrogens (blue)
and six borons (red) which are the nearest nuclei to the Vg. The
exact results are shown by solid lines, while those computed through
the HPA method are given as markers. The Vg and the nuclei states
are initially set to |—) and a fully thermal state, respectively. The
magnetic field is B = 1 T and the Rabi frequencies are set to satisfy
the Hartmann-Hahn resonance conditions.

approximation. This Hamiltonian is quadratic in the bosonic
operators, and this allows for an efficient and tractable nu-
merical simulation describing the dynamical evolution via the
covariance matrix formalism. The above Hamiltonian accord-
ing to the bosonic operator vector R = (a, lA)l, R 5N)T can
be expressed as A1) = RTW ()R, with the dynamics matrix

Q Bi B2 B3 o By

B @(t) —Bpn —Bp —Biy

W B35 —Bip () —Bx —Boy
=1\ . s

®) B3 —Biz —Bx  @s(t) —Bsy

By —Biyn —Bav  —Biy wn(t)

Thanks to the quadratic form of the Hamiltonian (18) the sys-
tem is fully characterized by the first and the second moments
of the operators R. The covariance matrix, ;= (Iéj]@ i), 1s
sufficient for describing the system dynamics when the initial
state gives zero-mean value. In our case, the nuclei are initially
set to a thermal state and the electron is in the ground state
of the dressed state basis. Therefore, we have (ﬁ) =0 and
proceed with analyzing the covariance matrix dynamics by
employing Eq. (9).

Before studying large-size systems, we compare the HPA
technique and the exact numerical simulation for first two
rings: Three nearest nitrogen nuclei and six next-nearest boron
nuclei, see Fig. 1(b) for a graphical illustration. To this end, we
investigate the short-time dynamics, where the nuclear spins
are all taken to be spin 1/2 systems and their couplings vary
according to equations (15) and (18) depending on whether
they represent a boron or a nitrogen nuclear spin. In Fig. 4
the results are compared when the nuclei are initially set
to the thermal state while the defect electron spin is initialized
in the dressed state of |—). The solid curves in Fig. 4 show the
numerical simulation of Hamiltonian (15). We notice that the
HPA method captures most features of the exact numerics de-
spite the thermal initial state of the nuclei. This is such that the
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FIG. 5. Hyperpolarization of hBN lattice: (a) The polarization
dynamics is represented for 121 nuclei spins composed of 61 nitro-
gens and 60 borons with R = 15x10°. (b) The polarization behavior
for five different rings. The inset gives the polarization evolu-
tion of the two first rings after R = 70. The other parameters are
N = 25/CUN, B = 15/&)3, and B=1T.

results even show perfect match for r < 25/wg. However, for
longer timescales, the approximate methods deviate from the
exact numerics as the incurred errors build up. The deviations
grow larger as the time elapses and the HPA method becomes
less reliable. Therefore, in our following hyperpolarization
study for large systems, which is based on the HPA method,
we always choose T < 25/wp to ensure the validity of the
results.

In the hyperpolarization procedure, we take the combina-
tion of two different Rabi frequencies that each satisfy the
Hartmann-Hahn resonance condition for the boron and ni-
trogen nuclei. This is to guarantee the polarization of both
sublattices. In other words, we set 2 = wy and Q = wp al-
ternating in the polarization cycle iterations. The duration of
polarization for each step is numerically optimized to 5 =
25/wp and g = 15/wp. That is, many different values of 7y
and tg have been investigated and these are found to be the
values that result in the highest polarization in the shortest
time.

Now, we extend our analysis based on the HPA method
to the largest spin system that our computational resources
can afford. Hence, we assume a spin lattice with N = 121
composed on 61 nitrogen and 60 boron spins. The results
are provided in Fig. 5(a), where one observes a smooth
trend in the average polarization of both boron and nitrogen
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sublattices. Nevertheless, there is a slight difference in their
behavior. The borons polarize slightly faster due to their
stronger interaction with the defect electron spin. But their
polarization already saturates after R = 15x10° cycles. We
attribute this to the larger coupling rate among the boron
nuclei, which in turn stems from their larger gyromagnetic
ratio. On the other hand, the nitrogen sublattice polarizes with
a slower pace, yet it has the potential of approaching higher
values of polarization over longer times. Our findings suggest
that—unlike the one-dimensional case—in two-dimensional
(and presumably higher-dimensional) lattices the strong inter-
action among the spins in the bath can hinder the polarization
transfer; see the discussion at the end of this section.

To better understand the dynamics of the system we also
examine the polarization process of sets of nuclei that are
equidistant to the Vg. We refer to each of these sets as the
“rings” around the defects. This is such that the three nearest-
neighbor nitrogens lie in the first ring, the second ring is
composed of six borons in the next-nearest neighbor, and so
on as follows: Three nitrogens in the third ring, six nitrogens
in the fourth ring, six borons in the fifth ring. Figure 5(b)
shows the polarization for some of the rings. The first and
second rings already get polarized to their asymptotic value
after R =~ 70. This rapid polarization of these two rings is un-
derstandable because of their proximity to the defect. For the
three nitrogen nuclei the weak interaction among themselves
allows for a perfect polarization. Meanwhile, the fast but lim-
ited polarization (S. ~ —0.5) of the second ring is ascribed
to the competition between the internuclei and defect-nuclei
interactions. However, for rings farther from the defect, the
distance among borons increases and consequently the inter-
nuclei interactions become much weaker. Hence, the boron
spins in the tenth ring continue their journey to the ground
state, although very slowly, see the purple squares in the
leftmost part of the plot. The trend is more or less the same for
farther rings of both species. Note that the tenth and thirteenth
rings have 12 borons and 12 nitrogens, respectively.

To further assess the effect of internuclei interactions on
the polarization transfer from the Vg defect to the spins bath,
we artificially turn off the defect-nuclei interactions in three
different scenarios: We first suppose that only the nitrogen
spins interact with the defect, while the borons are decoupled
from it. However, we allow them to interact among each other
as well as with the nitrogen spins. Next, we perform the same
study by swapping the role of boron and nitrogen. In another
scenario, we allow the defect to only interact with the first and
second ring nuclei, while the rest of lattice does not have any
direct interaction with the defect. In all these investigations
we generally find that the interaction between the nuclei is not
able to transfer the polarization from one species to another or
even from closer rings to the farther nuclei.

Notice that internuclear interactions can hinder the polar-
ization transfer in several ways. The build up of coherences
between nuclear spins can generate “dark states,” which lead
to a decoupling of the color center from the nuclear spin
ensemble and thus the transfer of polarization from the color
center to the nuclear spin lattice is inhibited [42]. Therefore,
for the polarization of regions within the neighborhood of
the color center, internuclear couplings are, in general, not
desirable. However, to polarize regions far from the color

center, one needs to rely on the diffusion of polarization via
the internuclear interaction. In this case, it is the internuclear
interaction terms of the form I:ijz which can become detrimen-
tal. In particular, such a term can bring neighboring nuclei out
of resonance, when each see environments with a different
degree of polarization. This loss of resonance in turn will
degrade the internuclear coupling and hinder the diffusion of
polarization.

Finally, note that, in practice, the polarization saturation
levels will depend on the rates of dissipative processes. One
can consider at least three ways in which the action of the en-
vironment on the system can affect the achieved polarization.
(i) The exact polarization rates and saturation levels could
deviate from the ideal case studied here if the coherence times
of both the color center and the nuclear spins fall below the
duration of a single polarization cycle. (ii) The polarization
of the nuclear spins can be lost through spin relaxation pro-
cesses, typically resulting from the interaction of the nuclei
with lattice phonons. Thus, the final saturation levels of the
polarization will depend on the ratio between the polarization
rate and the relaxation rate of the nuclear spins. (iii) Notably,
not all sources of noise are detrimental for the polarization
of the nuclear spin lattice and in some cases the presence
of dephasing noise can indeed give rise to better polariza-
tion. The dephasing noise, e.g., from a fluctuating magnetic
field, leads to the destruction of coherences among nuclear
spins. Hence the dark states are destroyed, which in turn leads
to higher saturation levels of the polarization [43]. A more
precise benchmark of the performance of our protocol in the
presence of these sources of noise requires a proper quantum
open-system analysis together with its corresponding numeri-
cal simulation, which is out of scope of the current work and
will be presented elsewhere.

IV. CONCLUSION

We have presented a theoretical description of the efficient
polarization transfer from a Vg defect to the nuclear spins in
the hexagonal boron nitride lattice at room temperature by
manipulating an optically active electron spin. Since a large
spin system cannot be simulated by exact methods, we have
studied the hyperpolarization via a numerical method based
on the Holstein-Primakoff approximation. By considering the
central spin model as a well-understood system, we have
benchmarked the method and have found that the HPA nu-
merical approach is in good agreement with exact numerical
simulation and yields satisfactory results. This has allowed us
to design and optimize numerically a polarization sequence
that may be implemented experimentally to reach large levels
of nuclear spin polarization in hBN. Our results pave the way
for the utilization of defects in hexagonal boron nitride for
quantum technologies, and high-resolution two-dimensional
quantum sensors such as NMR.
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APPENDIX A: DERIVATION OF THE EFFECTIVE
HAMILTONIAN (15)

In this Appendix we provide the detailed steps in arriving
to the effective Hamiltonian (15) employed for studying the
hyperpolarization of hBN nuclear-spin lattice. We begin by
considering an external magnetic field which defines the z
axis of the laboratory frame of reference and assume a hBN
layer that the Vg defect is located at the origin. It should be
noted that Vg has a D3;, symmetry with the axis of symmetry
perpendicular to the layer such that the misalignment angle
between the magnetic field and Vg axis is given by 6, see
Fig. 1(b). We suppose the applied magnetic field is strong,
D < y,|B|, such that the quantization axis is determined by
the magnetic field and the zero-field splitting will be regarded
as a perturbation that leads to energy shifts of the Hamiltonian
diagonal elements [16,44]. The total Hamiltonian describing
dynamics of the system in the laboratory frame reads H =
H, + H;, where H, constitutes the Vg defect and the nuclear
spin lattice free Hamiltonians:

N
Hy = [0 + 8O)18. + DO)ST + > i I,
i=1

(AL)

where w, = —y,B and w; = y, ;B are, respectively, the Lar-
mor frequencies of electron and the nuclei, and we have
introduced

D
D) = Z(l + 3cos260),

D2 [ »
sin” 6 +
8w,

where D denotes the zero-field splitting of the defect [16].
The interaction Hamiltonian is given by

N N -
A= Y g+ Y
i=1

i<j

8(0) =

sin? (260)
1= (D@O) /@) |

(A2)

Before proceeding, we simplify the interactions by applying
the secular approximation. For this purpose we first express
the interactions in terms of the spin raising and lowering
operators fii = I:-x + il? . Hence, Eq. (14) becomes

1
1

Hyg = by[FT; = (717 +1717)]

+ (e (FI7 +115) + dy (T I + Hel],  (A3)

where have introduced the following coefficients:
)
bij = gi;(1 = 32),
3 N PN
cij = —58ij(Xij — i 9ij)Zijs
3,22 _ o2 P
dij = =381 (%5 — 97 — 2i%;9i5)-
In the interaction picture of the free nuclear-spin lattice
Hamiltonian, the nuclear spins transform as

iii N iiieiiw,»t’ I:-z - iiz‘ (A4)
Under the rotating wave approximation, which is valid if the
applied magnetic field is high, and thus, the Larmor frequen-

cies are much larger than the dipole-dipole coupling, i.e.,

{wi, w;} > gij, one neglects the effect of the resulting time-
dependent terms in Eq. (A3). Hence, the spin-spin interaction
reduces to

ij ez lfFP— 4 F—1
Hy) ~ by[F1 — (P + 71D

(A5)

For the interaction of the defect electron spin with the
nuclear spins, which have gyromagnetic ratios differing by
about three orders of magnitude, one has

A ~ 8, A; -1, (A6)
where  A; = (=382, =392, 1 —32%)  with gu =
huoygyn,,-/47r|ri|3 is the hyperfine coupling vector of
the electron spin to the ith nuclear spin. Note that
we have simplified the hyperfine interaction by secular
approximation, since the nonsecular hyperfine coupling can
be neglected at magnetic fields that provide large differences
between the electronic and nuclear Zeeman splitting, i.e.,
|we + 6(0) — w;| > g.;. Hence, after applying the secular
approximations the Hamiltonian describing the system
dynamics reads

N
A =[w, +80))5. + DO)S2 + Y wif;
i=1

N N
o . 1 . . A
+§ S. A, I,+§ bij(lfl;_z(lfjjulllj))
i=1 i<j

(AT)

The flip-flop interaction of the electron spin with the nuclei—
necessary for polarization transfer—is negligible as w, > w;.
Nevertheless, an efficient two-level system that is on reso-
nance with the bath spins is constructed by a microwave drive
with a proper frequency and amplitude. In our analysis we as-
sume that the microwave field applied to the Vg defect is tuned
for driving the spin transition |0) <> |—1). The corresponding
Hamiltonian is then

Huy = Q(|0)(=1] 7™ + |=1)(0] "), (A8)
where 2 is the Rabi frequency and wy,, is the frequency of
the driving field. We add Hy,,, to the Hamiltonian in Eq. (A7)
and move to the frame rotating at w, to arrive at

N N
, 1 <
H=A¥+Q5+) ol + <§Z—§]1>Ai.l,~
i= i=1

i=1

(A9)

where A = w, + 6(0) — D(6) — wny is the detuning and we
have dropped the contribution from |41) in the electron-spin
dynamics justified through the rotating wave approxima-
tion. We, thus, have introduced the two-level electron-spin
operators § = 1(]0)(0] — |—1)(—1]) and 3 = 1(j0)(—1] +
|—1)(0]) in the subspace spanned by states {|0), |—1)}.

In the dressed state basis |+) = (|0) &= |—1))/\/§ rep-
resentation and neglecting the fast oscillating terms, the
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Hamiltonian (A9) reads

N N
Hor = AS + Q55+ Y ailf + Y (st + o571
i=1 i=1

(A10)

where {5, §%, §*} are the Pauli matrices in the dressed basis
representation. Here, the hyperfine coupling o; = ;ll(A;‘ +iA))
and the modified nuclear Larmor frequencies @; = w; — %Af
have been introduced. Note that this last secular approxima-
tion is justified when {2, w;} > g.;, which can be attained by
operating the system at high magnetic fields. In this work we
assume A = 0, which is suited for the polarization transfer,
and arrive to the effective Hamiltonian Eq. (15).
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