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Classical phase space crystals in an open environment
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It was recently discovered that a crystalline many-body state can exist in the phase space of a closed dynamical
system. A phase space crystal can be an anomalous Chern insulator that supports chiral topological transport
without breaking physical time-reversal symmetry [L. Guo et al., Phys. Rev. B 105, 094301 (2022)]. In this work,
we further study the effects of an open dissipative environment with thermal noise and identify the existence
condition of classical phase space crystals in realistic scenarios. By defining a crystal order parameter, we plot
the phase diagram in the parameter space of dissipation rate, interaction, and temperature. Our present work
paves the way to realize phase space crystals and explore anomalous chiral transport in experiments.
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I. INTRODUCTION

Physical systems in equilibrium are described by standard
thermodynamics and statistical mechanics. For systems near
equilibrium, linear response theory [1] applies by defining
typical thermodynamic quantities locally, e.g., the Onsager
reciprocal relations [2] and the principle of minimum en-
tropy production [3]. However, physical systems far from
equilibrium can behave drastically different. Nonequilibrium
fluctuations can be amplified in the neighborhood of equi-
librium stable point resulting in the so-called dissipative
structures [4], self-organization phenomena [5] and chaotic
structures, e.g., synchronization [6], bifurcation [7], Lorenz
attractor [8], lasers, Brusselator [9], Rayleigh-Bénard con-
vection [10], and Belousov-Zhabotinsky reaction [11]. These
intriguing far-from-equilibrium phenomena have been studied
intensively in classical dynamical systems for many decades
and recently extended to the study in quantum systems such as
quantum synchronization [12–15] and period multiplication
[16–18].

The novel far-from-nonequilibrium states mentioned above
are reached from the balance between driving (pumping en-
ergy) and damping (dissipating energy), i.e., by exchanging
energy and information with an open environment. In contrast,
the fate of a generic isolated driven many-body system is
a trivial infinite temperature state [19–21] due to the heat-
ing by the driving field. One exceptional example is the
Floquet/discrete time crystals [22–25] in a closed quan-
tum system, where the discrete time transnational symmetry
(DTTS) of driving field is spontaneously broken and the
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infinite heating process is prevented by the disorder [26–28]
or effective nonlinearity in the thermodynamic limit [29–33].
For a clean system without disorder, there can also exist a
prethermal state with an exponentially long lifetime if the
driving frequency is much larger than the local energy scales
[34–36] resulting in the so-called prethermal time crystals.
By coupling the Floquet many-body system to a cold bath
[37,38], the prethermal time crystal can have infinite lifetime
and is dubbed as dissipative time crystals [39,40]. While most
studies focus on the spontaneous breaking of DTTS and the
protection mechanism of time crystals, there is a trend to
study the interplay of two or more time crystals [41], i.e., an
emerging research field coined as condensed matter physics in
time crystals [22,25,42–50].

Another example of ordered state in highly excited system
is the so-called phase space crystals [51,52], which is closely
related to but different from time crystals. Depending on
whether interaction is included, phase space crystals are clas-
sified as single-particle phase space crystals and many-body
phase space crystals [42,51]. For a single-particle quantum
system, the phase space crystal state refers to the eigenstate
of Hamiltonian [53] or the eigenoperator of the Liouvillian
for an open quantum system [54] that has discrete rotational
or transnational symmetry in phase space. Phase space crystal
in a many-body system is defined as the solidlike crystalline
state in phase space [51,55,56]. In the work by Guo et al. [56],
the authors studied collective vibrational modes of many-body
phase space crystals with a honeycomb lattice structure in
phase space and found the vibrational band structure can have
nontrivial topological physics. Due to the symplectic phase-
space dynamics, the vibrations of any two atoms are coupled
via a pairing interaction with intrinsically complex phases
that can not be eliminated by any local gauge transformation,
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leading to a vibrational band structure with nontrivial Chern
numbers and chiral edge states in phase space. In contrast
to all the chiral transport scenarios in real space where the
breaking of time reversal symmetry is a prerequisite, the chiral
transport for phase space phonons can arise without breaking
physical time-reversal symmetry that becomes a global anti-
unitary transformation in phase space.

In this work, we continue to investigate the classical dy-
namics of phase space crystals in an open environment with
dissipation and thermal noise. We reduce the equation of
motion (EOM) in the rest frame to the EOM with rotating
wave approximation (RWA) in the rotating frame, which is
then justified by numerical simulations. Based on the linear
analysis of dynamical system, we find that the phase space
crystals can exist when the interaction, dissipation and tem-
perature are below some critical values. We define an order
parameter for phase space crystal state and plot the phase
diagram. Phase space crystals predicted by theory has not
been found in the experiments. Our present work paves the
way for the realization of phase space crystals in the cold atom
experiment with realistic conditions.

The paper is organized as follows. In Sec. II, we introduce
the model system and the EOM in the open environment. In
Sec. III, we derive the EOM in the RWA including dissipation
and thermal noise. In Sec. IV, we study the dynamics of phase
space crystals and identify the existence condition for the
crystalline state in phase space. We first provide analytical
results for the critical values of dissipation, temperature and
interaction based on the linear analysis of dynamics. Then, we
define the crystal order parameter and plot the phase diagram
from numerical simulations based on RWA EOM. In Sec. V,
we estimate the parameters for realizing classical phase space
crystals in the real cold-atom experiments. In Sec. VI, we
summarize the results in this work.

II. MODEL SYSTEM

We consider the classical system of many particles trapped
in a one-dimensional (1D) harmonic well and subjected to
an additional periodically driven lattice potential Vd (x, t ) with
driving frequency ωd as shown in Fig. 1(a). In the experiment,
such model system can be realized with cold atoms in optical
lattices [59] as shown in Fig. 1(b). At low temperature, the
interaction of neutral cold atoms is dominated by s-wave scat-
tering process and can be modelled by an effective two-body
contact potential [57]. The total classical Hamiltonian of the
system of N atoms is given by

H (t ) =
N∑

i=1

[
1

2

(
x2

i + p2
i

) + Vd (xi, t )

]
+

N∑
i< j

βδ(xi − x j )

≡
N∑

i=1

Hs(xi, pi ) +
N∑

i< j

V (xi, x j ), (1)

where Hs(xi, pi ) represents the single-atom Hamiltonian in-
cluding the harmonic trap plus the driving potential, and
V (xi, x j ) represents the real-space interaction of two atoms.
Here, all the variables have been scaled dimensionless by
choosing the units of time, position and momentum as ω−1

0
(ω0 is the harmonic trapping frequency), l0 (the characteristic

FIG. 1. Model system. (a) Sketch of our model: many particles
(blue balls) moving in a harmonic trap (green curve) and periodically
driven by additional lattice potential Vd (x, t ). The red dashed curve
represents total potential at a fixed moment. The whole system is
subjected to a thermal bath with temperature T and dissipation rate
κ . (b) Implementation of our model with cold atom experiment setup:
a cloud of cold atoms (blue) confined in 1D harmonic trap formed by
the intensity profile of a single Gaussian laser beam [57] (green); the
driven lattice potential is formed by two lasers (red) intersecting at
angle with tunnable intensities and phases [58].

length of driving lattice potential), and p0 = mω0l0/2π (m is
the mass of particle), respectively. The unit of energy (Hamil-
tonian) is set to be ε0 = mω2

0(l0/2π )2.
In the open environment with dissipation rate κ (scaled by

ω0) and temperature T (scaled by ε0/kB with kB the Boltz-
mann constant), the classical EOM is given by

dxi

dt
= pi,

d pi

dt
= − ∂

∂xi
H (t ) − κ pi +

√
2κT ni(t ). (2)

Here, the thermal noise term
√

2κT ni(t ) is introduced accord-
ing to the fluctuation-dissipation relationship, where ni(t ) is
the white noise satisfying

ni(t ) = 0, ni(t )n j (t ′) = δi jδ(t − t ′). (3)

We now define the Wiener process as the integral of white
noise, i.e., wi(t ) ≡ ∫ t

0 ni(τ )dτ. Using the property of white
noise Eq. (3), one can show that

wi(t ) = 0, wi(t )wi(t ′) = δi jmin(t, t ′).

By further defining dwi(t ) ≡ wi(t + dt ) − wi(t ), we have

dwi(t ) = 0, dw2
i (t ) = [wi(t + dt ) − wi(t )]2 = dt .

Therefore we can write the EOM given by Eq. (2) as the
following stochastic differential equation process:

dxi(t ) = pi(t )dt,

d pi(t ) = −∂H

∂xi
dt − κ pi(t )dt +

√
2κT dwi(t ). (4)
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III. ROTATING FRAME

A. Hamiltonian within rotating wave approximation

We go to the rotating frame with frequency 
/n using the
generating function of the second kind

G2(t ) =
∑

i

xiPi

cos(
t/n)
− 1

2
x2

i tan

(



n
t

)
− 1

2
P2

i tan

(



n
t

)
.

Here, we have defined the ratio of driving frequency to
harmonic frequency by 
 = ωd/ω0 and assumed the near-
resonance condition 
 ∼ n with n ∈ Z+. Note that we can
introduce some detuning δω = 1 − 
/n between the driving
and harmonic frequencies if 
 �= n, which will produce a
parabolic confinement potential in phase space that is some-
times important to stabilize the phase space crystals [56].
The canonical transformation of coordinates is then given by
pi = ∂G2/∂xi, Xi = ∂G2/∂Pi, i.e.,

xi(t ) = Pi sin(
t/n) + Xi cos(
t/n),

pi(t ) = Pi cos(
t/n) − Xi sin(
t/n). (5)

The canonical transformation of Hamiltonian (1) in the rotat-
ing frame is given by

HRF (t ) = H (t ) + ∂G2(t )/∂t . (6)

Due to the driving field and interaction of atoms, the quadra-
tures (Xi, Pi ) of oscillation (amplitude and phase) are slowly
moving. By plugging the transformation Eq. (5) into HRF (t )
and neglecting all the time-dependent (fast oscillating) terms,
we arrive at the effective static Hamiltonian in the rotating
wave approximation (RWA)

H =
∑

i

Hs(Xi, Pi ) +
∑
i< j

U (Ri j ). (7)

We expect the RWA is valid when the driving field Vd (xi, t )
and the contact interaction strength β between atoms are weak
compared to the harmonic trapping frequency, which will
be justified by our numerical simulation in Sec. III C. Here,
Hs(Xi, Pi ) represents the RWA part of single-atom Hamilto-
nian Hs(xi, pi ), cf. Eq. (1).

For short-range interactions in real space, the effective
RWA interaction becomes a function of the distance between
atoms in phase space [25,60]

Ri j =
√

(Xi − Xj )2 + (Pi − Pj )2. (8)

This is because the atoms located at different phase space
points will still collide in the course of their laboratory-
frame trajectories. Thus, when we perform averaging of the
Hamiltonian over time, the short-range interaction in the
laboratory-frame gives rise to an effective long-range interac-
tion in the rotating frame [29,43,51,55,60,61]. For the contact
interaction of cold atoms in the laboratory frame, the effec-
tive interaction becomes long-range Coulomb-like interaction
[51,55,60]

U (Ri j ) = β

π

1

Ri j
. (9)

B. Equations of motion within rotating wave approximation

For a closed system without dissipation, the canonical
EOM under RWA in the rotating frame is given by

dXi

dt
= ∂H

∂Pi
,

dPi

dt
= −∂H

∂Xi
. (10)

In order to obtain the EOM under RWA in the open envi-
ronment with dissipation and thermal noise, we introduce the
following transformation from Eq. (5)

dXi

dt
= dxi

dt
cos

(



n
t

)
− d pi

dt
sin

(



n
t

)
− 


n
Pi

dPi

dt
= dxi

dt
sin

(



n
t

)
+ d pi

dt
cos

(



n
t

)
+ 


n
Xi. (11)

By plugging Eq. (2) into Eq. (11), we have EOM including
the dissipation and noise in the rotating frame

dXi

dt
= ∂HRF

∂Pi
+ κ pi sin

(



n
t

)
− √

κT nX
i (t )

dPi

dt
= −∂HRF

∂Xi
− κ pi cos

(



n
t

)
+ √

κT nP
i (t ). (12)

Here, we have defined the two orthogonal components of
noises by

nX
i (t ) ≡

√
2ni(t ) sin

(



n
t

)
, nP

i (t ) ≡
√

2ni(t ) cos

(



n
t

)
.

Obviously, we have nX
i (t ) = 0 and nP

i (t ) = 0. From the rela-
tionship Eq. (3), we have the time correlation of two noise
components as follows:

nX
i (t )nP

j (t ′) = δi jδ(t − t ′) sin

(
2



n
t

)
, (13)

nX
i (t )nX

j (t ′) = δi jδ(t − t ′)
[

1 − cos

(
2



n
t

)]
, (14)

nP
i (t )nP

j (t ′) = δi jδ(t − t ′)
[

1 + cos

(
2



n
t

)]
. (15)

Therefore, in the RWA (keeping only time-independent terms
in the correlations), we can take nX

i (t ) and nP
i (t ) as indepen-

dent standard white noises.
We plug Eq. (5) into EOM (12) and keep only static terms

in the spirit of RWA. Finally, we obtain the RWA EOM with
dissipation and noise

dXi

dt
= ∂H

∂Pi
− 1

2
κXi − √

κT nX
i (t )

dPi

dt
= −∂H

∂Xi
− 1

2
κPi + √

κT nP
i (t ). (16)

As in Eq. (4), we introduce two independent Wiener processes
for the two quadratures wX

i (t ) = ∫ t
0 nX

i (τ )dτ and wP
i (t ) =∫ t

0 nP
i (τ )dτ and write the EOM (16) within RWA in the form

of stochastic differential equation

dXi(t ) =
(

∂η

∂Pi
− 1

2
κXi

)
dt − √

κT dwX
i (t ),

dPi(t ) =
(

− ∂η

∂Xi
− 1

2
κPi

)
dt + √

κT dwP
i (t ). (17)
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FIG. 2. Justification of RWA in the presence of dissipation and thermal noise. (a) Stroboscopic dynamics of N = 3 interacting particles
in the laboratory frame obtained by solving exact EOM (4) and plotting the phase space variables every period of the harmonic oscillator
potential. The three blue dots in the leftmost panel indicate the initial conditions of three particles. The other panels show 200 trajectories
of each particle (grey dots) obtained for 200 different realizations of noise and the averaged dynamics (blue dots). (b) Dynamics of three
interacting particles in the rotating frame obtained within RWA by solving Eqs. (17). The three red dots in the leftmost panel indicate the initial
conditions of three particles. The other panels show 200 trajectories of each particle (grey trajectories) obtained for 200 different realizations
of noise and the averaged dynamics (red curves). (c) Time evolution of the variance of each particle in phase space, cf. Eq. (21), obtained from
the exact EOM (blue dots) and within RWA (red curve) and linear analysis (LA) (black curve), cf. Eq. (40). For all figures, we set driving
strength � = −0.01, dissipation rate κ/κc = 0.5, interaction β/βc = 0.5 with the Lorenz parameter ε = 0.5, cf. Eq. (20), and temperature
T = 0.1.

C. Justification

In order to justify our RWA with dissipation and thermal
noise, we consider the following classical many-body Hamil-
tonian with square phase space lattice described by

H =
N∑

i=1

�(cos Xi + cos Pi )
2 +

N∑
i< j

U (Ri j ). (18)

The square lattice of single-particle Hamiltonian in phase
space can be generated by a kicking sequence of stroboscopic
lattices (see details in Appendix)

Vd (x, t ) = �
∑
n∈Z

∑
q

Kq cos(kqx)δ

(
t

2π
− θq − n

)
. (19)

Here, there are six kicks in each harmonic time period with
kicking parameters kq = [

√
2, 2,−√

2,−√
2,

√
2, 2], θq =

[1/8, 2/8, 3/8, 5/8, 7/8, 1] and Kq = 0.5�. In fact, arbitrary
lattice structures in phase space can be synthesized by prop-
erly choosing the kicking parameters [51,56].

The validity of RWA EOM without dissipation has been
studied in the previous works [55,60]. Here, we justify our
RWA EOM with finite dissipation rate and at finite tempera-
ture by comparing the prediction of Eqs. (17) with numerical
solutions of the exact EOM (2). In our numerical simu-
lation, we choose Lorenz function to model the contact
interaction potential, i.e., V (xi, x j ) = limε→0

β

π
ε

(xi−x j )2+ε2 . The
corresponding phase space interaction potential is then given

by [55,60]

U (Ri j ) = lim
ε→0

β

π

1√
R2

i j + ε2
. (20)

In Figs. 2(a) and 2(b), we compare the dynamics of N = 3
interacting particles obtained within RWA with the exact re-
sults obtained by solving Eqs. (4). We show 200 trajectories
corresponding to 200 realizations of noise for the same ini-
tial conditions of the particles, and also present the averaged
phase space variables (X i(t ), P(t )i ). Clearly, the 200 samples
spread gradually as time evoluates. In Fig. 2(c), we plot the
variance of threes particles in the phase space given by [cf.
also Eqs. (39) and (40)]

Vari(t ) ≡ (Xi − X (t )i )2 + (Pi − P(t )i )2. (21)

The numerical results show that the RWA approach agrees
well with the exact dynamics. In fact, the RWA is valid when
the dynamics of (Xi, Pi ) is much slower than the period of the
harmonic oscillator potential.

IV. EXISTENCE OF PHASE SPACE CRYSTALS

In the present section, we analyze the dynamics of phase
space crystals based on the many-body dynamics and in the
presence of dissipation and thermal noise and within the
RWA, Eq. (16). Our goal is to identify the condition for
the existence of phase space crystals. According to Eq. (8),
the RWA interaction potential of two atoms U (Ri j ) depends
on their relative distance in the phase space. Therefore it is
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natural to extend the concept of force from configuration
space to phase space. By defining the position vector in phase
space Zi ≡ (Xi, Pi )T and a unit direction vector perpendicular
to the phase space plane n̂ ≡ n̂X × n̂P, where n̂X and n̂P are
the unit vectors in the position and momentum directions
respectively, we can rewrite the EOM (16) in the following
compact form:

d

dt
Zi = n̂ × Fi, (22)

with the phase space force defined via

Fi ≡ −∇iH + 1
2κn̂ × Zi + √

κT ni(t ). (23)

Here, we have defined the thermal noise vector

ni(t ) ≡ (
nX

i (t ), nP
i (t )

)T
.

Based on the linear analysis of Eqs. (22) and (23), we will
estimate the critical values of relevant parameters (dissipation
rate, temperature and interaction strength) for the existence
of phase space crystals, which will be verified by numerical
simulations.

A. Dissipation effects

For a closed system of particles without interaction, the
fixed points Z0

i are the extreme points determined by the con-
dition ∇iH|Zi=Z0

i
= 0. We have Z0

i = (nπ, mπ )T with n, m ∈
Z having the same parity. Finite values of dissipation rate,
temperature and the presence of interaction will shift the fixed
points and thus affect the existence of phase space crystals.
We first consider the pure effects of dissipation at zero tem-
perature (T = 0) and without interaction (β = 0). In this case,
the fixed points in phase space are given by the condition of
Fi = 0. From Eq. (23), we have

∇iH|Zi=Z̃0
i
= 1

2κ
(
n̂ × Z̃0

i

)
, (24)

where Z̃0
i are the positions of the fixed points shifted by

dissipation. We linearize Eq. (24) around the original fixed
points Z0

i as follows:

J
(
Z̃0

i − Z0
i

) = 1
2κA

(
Z̃0

i − Z0
i

) + 1
2κAZ0

i , (25)

where the Jacobian matrix J and asymmetric tensor A are
given by

J ≡ J∇iH|Zi=Z0
i
≡

⎛
⎝ ∂2H

∂Xi∂Xi

∂2H
∂Xi∂Pi

∂2H
∂Pi∂Xi

∂2H
∂Pi∂Pi

⎞
⎠

∣∣∣∣∣
Zi=Z0

i

, (26)

A ≡
(

0 −1
1 0

)
. (27)

Solving Eq. (25), we get the shifted fixed points explicitly

Z̃0
i − Z0

i = − 2�κ

16�2 + κ2/4
n̂ × Z0

i − κ2/4

16�2 + κ2/4
Z0

i .

(28)

The first term on the right-hand side of Eq. (28) is respon-
sible for rotation of the whole lattice while the second term
contracts the whole lattice along the radial direction.

If the shift of the fixed points is large enough, one can
imagine that atoms will escape the lattice potential and the

FIG. 3. Dissipation effects on phase space crystal formation.
(Left) Initial conditions of N = 129 atoms (yellow dots). (Right)
Final configuration of atoms with dissipation rate κ = 1.5κc. The
dashed circle and dashed line indicate the crystal radius predicted by
Eq. (30) and the rotation angle given by Eq. (28). Driving strength
parameter: � = −0.01.

phase space crystals become “melting”. Since the displace-
ment of the fixed points is proportional to their distance from
the origin, cf. Eq. (28), the crystal will start to melt from
the edge. In order to calculate the critical dissipation rate
where the atoms on the edge start to melt, we estimate the size
of the final lattice limited due to dissipation. From Eq. (24),
we have the following condition:∣∣∣∣1

2
κ (n̂ × Zi)

∣∣∣∣ = |∇iH|

= 2|�(cos Xi + cos Pi )|
√

sin2 Xi + sin2 Pi

� 2
√

2|�|. (29)

The above equation sets an upper limit for the lattice size
condition, i.e., solutions for the fixed points exist if |Zi| � Rc

where Rc ∼ 4
√

2�/κ . Considering the angular dependence of
|∇iH|, we get a better empirical estimation for the radius of
stable region from numerical simulations,

Rc ∼ 4�

κ
. (30)

The area of stable region for the existence of phase space
crystals is approximately

S = πR2
c = π (4�/κ )2.

The total number of the fixed points inside the stable region is
approximately

σaS = 8

π

(
�

κ

)2

,

where σa = 2/(2π )2 is the density of atoms, e.g., one atom
in each fixed point which corresponds to two atoms in each
unit cell. If we assume that each fixed point is occupied by
one atom, there is an upper limit for total atom number N =
8
π

( �
κ

)
2
. Given the number of atoms, the critical dissipation

rate is

κc = 4|�|√
2πN

. (31)
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In Fig. 3, we show the initial state of atoms (left) and the final
state due to the dissipation (right). The black dashed circle
indicates the crystal radius predicted by Eq. (30). The dashed
line indicates the rotation angle of the final lattice given by our
predication, cf. Eq (28). Note that the two plots have the same
number of atoms. As we do not consider interaction here, it is
possible that more than one atoms occupy the same lattice site
in the final crystal state.

B. Temperature effects

We then study the effects of thermal noise that is de-
termined by a finite temperature T > 0 and dissipation rate
κ > 0, cf. Eq. (23). We apply linear approximation around the
points Z0

i to the EOM (22)

d

dt

(
Zi − Z0

i

) = −
(

AJ + 1
2
κI

)(
Zi − Z0

i

)
− 1

2
κZ0

i + √
κT Ani(t ). (32)

We now define the following auxiliary vector:

ui ≡ A
(
Zi − Z̃0

i

)
, (33)

where Z̃0
i is the shifted equilibrium point due to dissipation but

at T = 0, cf. Eq. (25) or (28). The vector ui is perpendicular
to the displacement vector describing the shift Zi − Z̃0

i . We
simplify the stochastic differential equation (32) as follows:

dui(t ) = −Bui(t )dt − √
κT dwi(t ), (34)

with

B ≡ (
JA + 1

2κI
)
, dwi(t ) = ni(t )dt . (35)

This stochastic differential equation describes a multidimen-
sional Ornstein-Uhlenbeck process. The formal solution is
given by

ui(t ) = e−Bt ui(0) − √
κT

∫ t

0
e−B(t−s)dwi(s). (36)

The mean value of stochastic process ui(t ) is

E[ui(t )] = e−Bt ui(0) = PE(t )P−1ui(0) (37)

with

E(t ) ≡
(

e−λ1t 0
0 e−λ2t

)
. (38)

Here, P is the matrix diagonalising the matrix B, i.e.,
P−1BP = diag(λ1, λ2).

For an open dissipative environment, the eigenvalues λ1

and λ2 should be positive values such that E[ui(t )] → 0 in
the long-time limit. We further calculate the variance of ui(t )
as follows

Vari = E[(ui(t ) − ui(t ))T (ui(t ) − ui(t ))]

= κT
∫ t

0

∫ t

0
E
[
dwT

i (s′)e−BT (t−s′ )e−B(t−s)dwi(s)
]

= κT
∫ t

0
dsE

[
nT

i (s)e−BT (t−s)e−B(t−s)ni(s)
]
. (39)

Here, we have used the property of white noise Eq. (3).
Reminiscent of the definition of B given by Eq. (35), it

is not difficult to prove the following statement: If matrix
J is diagonal, we have the identities: JA = AJ, [B, BT ] =
0. The Jacobian matrix, Eq. (26), is indeed diagonal, J =
diag(−4�,−4�), and thus [B, BT ] = 0 holds in our case.
Therefore, according to the Baker-Campbell-Hausdorff for-
mula, we have

e−BT (t−s)e−B(t−s) = e−(BT +B)(t−s) = e−κ (t−s)I.

As a result, the variance of stochastic process ui(t ) given by
Eq. (39) can be calculated explicitly as follows:

Vari = E[(ui(t ) − ui(t ))T (ui(t ) − ui(t ))]

= 2κT
∫ t

0
dse−κ (t−s)

= 2T (1 − e−κt ). (40)

In Fig. 2(c), we compare the variance (40) with the results
obtained by exact numerical simulations and within the RWA
approach. Our analysis is based on the linear expansion
around the stable points and it works well in short-time dy-
namics. The deviations grow gradually as the particle leaves
further from the stable points,

Combining with Eq. (33), we have in the long-time limit

t → ∞, |Zi − Z̃0
i |2 = 2T . Therefore the long-time distribu-

tion is a normal distribution with the width σ = √
2T . In order

to keep phase space crystal stable, we need the dispersion
width much smaller than the characteristic length of unit cell
(here we take π/2)

σ =
√

2T � π/2 ⇒ T � π2/8. (41)

In fact, the above relation can be directly obtained when we
apply the equipartition theorem to the system in the laboratory
frame. Considering a particle trapped at the bottom of har-
monic well subjected to a both with temperature T , the width

of the thermal ground state is 1
2 X 2

i + 1
2 P2

i = T . Note that we
have set the Boltzmann constant kB = 1 here. Actually, for any
fixed point, in the regime where the temperature is so low that
only slow motions are thermalized, we have

1
2

(
Xi − X

0
i

)2 + 1
2

(
Pi − P

0
i

)2 = T,

and thus |Zi − Z
0
i |2 = 2T , where Z

0
i is the average phase

space position of a harmonic oscillator. The condition Eq. (41)
just means that the phase space lattice constant (characteristic
length of driving lattice) has to be much larger than the width
of thermal state.

C. Interaction effects

We now study the interaction effects on the existence of
phase space crystals. For convenience, we separate the total
Hamiltonian into the sum of two parts

H =
∑

i

�(cos Xi + cos Pi )
2 +

∑
i< j

U (Ri j )

≡ T + �. (42)

Here, we have introduced T ≡ ∑
i �(cos Xi + cos Pi )2 rep-

resenting the summary of all single-particle square lattice
Hamiltonians, and � ≡ ∑

i< j U (Ri j ) representing the sum of
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the interaction potentials. In the presence of the dissipation
but at zero temperature T = 0, the fixed points are given by
the condition Fi = 0, cf. Eq. (23),

∇iT |Zi=Z̃0
i
= −∇i�|Zi=Z̃0

i
+ 1

2κ
(
n̂ × Z̃0

i

)
, (43)

where Z̃0
i is the shifted fixed points to be calculated. By lin-

earizing the above condition around the original fixed points
Z0

i satisfying ∇iT |Zi=Z0
i
= 0, we obtain

JT
(
Z̃0

i − Z0
i

) = −∇i�
(
Z0

i

) − J�

(
Z̃0

i − Z0
i

)
+ 1

2κA
(
Z̃0

i − Z0
i

) + 1
2κAZ0

i , (44)

where JT and J� are Jacobian tensors defined by

JT ≡ J∇iT |Zi=Z0
i
≡

⎛
⎝ ∂2T

∂Xi∂Xi

∂2T
∂Xi∂Pi

∂2T
∂Pi∂Xi

∂2T
∂Pi∂Pi

⎞
⎠

∣∣∣∣∣
Zi=Z0

i

, (45)

J� ≡ J∇i�|Zi=Z0
i
≡

⎛
⎝ ∂2�

∂Xi∂Xi

∂2�
∂Xi∂Pi

∂2�
∂Pi∂Xi

∂2�
∂Pi∂Pi

⎞
⎠

∣∣∣∣∣
Zi=Z0

i

. (46)

Therefore we have the shifted equilibrium points

Z̃0
i − Z0

i = (
JT + J� − 1

2κA
)−1[ 1

2κAZ0
i − ∇i�

(
Z0

i

)]
. (47)

It is straightforward to calculate tensor JT , cf. Eq. (26). The
difficulty is to calculate J� and ∇i�(Z0

i ). Below, we provide
an approximate method to calculate them analytically.

For the Coulomb-like phase space interaction potential
U (Ri j ) = π−1β/Ri j , cf. Eq. (9), the parameter β plays the
role of an effective charge. We assume that N atoms are
initially uniformly distributed in a disk shape with radius R
with density ρ ≡ N/(πR2). We smear the point charges into a
uniform charge distribution with charge density βρ. Then, the
interaction potential at the edge of the disk is given by

�(R) =
∫ π/2

−π/2
dθ

∫ 2R cos θ

0
rdr

βρ

πr

= 1

π
βρ

∫ π/2

−π/2
dθ

∫ 2R cos θ

0
dr

= 4

π
βρR. (48)

Thus the gradient of interacting potential at the edge is

∇i�(R) = 4

π
βρn̂0

i and J� = 0, (49)

where n̂0
i is the unit direction from the center of the disk to

initial equilibrium position of ith atom, i.e., Z0
i = Z0

i n̂0
i . Note

that the phase space force given by Eq. (49) is only for the
atoms at the edge and independent of the radius R.

Using Eqs. (26)–(28) and (47), we have the analytical
expression for the shifted fixed point as follows

Z̃0
i − Z0

i = −κ (4�)Z0
i /2 + 2κπ−1βρ

(4�)2 + κ2/4
n̂ × n̂0

i

− κ2Z0
i /4 − 4(4�)π−1βρ

(4�)2 + κ2/4
n̂0

i . (50)

Comparing to Eq. (28), the interaction basically gives a cor-
rection to the effect of dissipation. The new equilibrium
position is given by

Z̃0
i = −κ (4�)Z0

i /2 + 2κπ−1βρ

(4�)2 + κ2/4
n̂ × n̂0

i

+ (4�)2Z0
i + 4(4�)π−1βρ

(4�)2 + κ2/4
n̂0

i . (51)

Following Eq. (29), we have the existence condition of phase
space crystals with interaction∣∣ − 4π−1βρn̂0

i + 1
2κ

(
n̂ × Z̃0

i

)∣∣
= |∇iT |

= 2|�(cos Xi + cos Pi )|
√

sin2 Xi + sin2 Pi

� 2
√

2|�|. (52)

As in Eq. (29), by modifying the upper limit by 2|�| and
plugging Eq. (51) to Eq. (52), we have the existence condition
for stable phase space crystal state

(
4βρ

π

)2

+
(

κ

2

)2
[

(4�)2Z0
i + 4(4�) βρ

π

(4�)2 + (
κ
2

)2

]2

� (2�)2. (53)

By introducing the critical interaction strength and the critical
dissipation rate as follows

βc ≡ π |�|
2σa

= π3|�|, κc ≡ 4|�|
Z0

i

= 4|�|√
2πN

, (54)

where we have assumed that one atom is present per each
fixed point, i.e., ρ = σa = 2/(2π )2 and π (Z0

i )2σa = N , the
existence condition (53) becomes

(
β

βc

)2

+
(

κ

κc

)2
[

1 + β

βc

1
2Z0

i

1 + (
κ
κc

)2( 1
2Z0

i

)2

]2

� 1. (55)

For large lattice |Z0
i |  1, we have a simple condition

(
β

βc

)2

+
(

κ

κc

)2

� 1. (56)

Although this condition for the existence of phase space crys-
tals is obtained based on the linear analysis of dynamical
system and other approximations, it provides a very good
estimation for the phase transition as shown below by our
numerical simulations. When the condition (56) breaks down,
the atoms at the edge first escape their stable points and the
entire crystal starts to melt from its edge, cf. Fig. 4(b).
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FIG. 4. Crystal order parameter and phase diagram. [(a)–(c)] Configuration of N = 101 atoms in phase space (upper panels) and the
crystal order parameter C(kX , kP, t ) in (kX , kP ) space (lower panels) at time instant t = 0 (a), t = 0.5π |�−1| (b) and t = 60π |�−1| (c) with
� = −0.01, interaction strength β = 1.5βc, dissipation rate κ = 0 and temperature T = 0. (d) Phase diagram, i.e. the crystal order parameter
C(kX = 1, kP = 1, t = 1

2κ
) as a function of the scaled interaction strength β/βc and the scaled dissipation rate κ/κc. The atom number is

N = 101 and the temperature is zero (T = 0). The yellow curve corresponds to the analytical prediction (56). (e) Crystal order parameter
C(1, 1, 1

2κ
) as a function of the interaction strength for different atom numbers N = 37, 69, 101, 161, and 225. The dissipation rate is κ = 0.5 κc.

Note that the curves for N = 161 and 225 are nearly overlaping each other.

D. Phase diagram

To identify the existence of phase space crystal, we define
the crystal order parameter as follows:

C(kX , kP, t ) ≡
∣∣∣∣∣∣

1

N

∑
j

eikX Xj (t )+ikPPj (t )

∣∣∣∣∣∣
2

. (57)

In Fig. 4, we plot the crystal order parameter for different
system parameters.

Let us first illustrate what happens with the crystal when
there is no dissipation (κ = 0) but the interaction strength
is larger than the critical value. In Fig. 4(a), we start from
an initial state where N = 101 atoms occupy the lattice sites
in a finite disk-shape region. The corresponding crystal or-
der parameter as a function of kX and kP is also shown in
Fig. 4(a). For such perfect crystal state, the order parameter
plot contains regular peaks that are periodically arranged in
the (kX , kP ) space, i.e., the positions of peaks appear at points
(n, m) with n, m ∈ Z having the same parity. In Fig. 4(b),
we plot the configuration of N = 101 atoms in phase space
and the crystal parameter in (kX , kP ) space at time instant
t = 0.5π |�−1| with � = −0.01. It is clearly shown that for
the interaction strength β/βc = 1.5 and dissipation rate κ = 0
we consider here, the crystal starts to melt from the edge
as predicted above, cf. Eq. (56) and the related discussion
around. The corresponding crystal order parameter plot in the
lower panel of Fig. 4(b) shows all the peaks diminish except
the trivial peak at the center (kX = 0, kP = 0). In Fig. 4(c), we
plot the configuration of atoms in phase space and the crystal
parameter at time instant t = 60π |�−1| with � = −0.01. All
the atoms escape from their equilibrium points and spread
over the phase space forming a gaslike state in phase space.
Because all the atoms are randomly distributed in phase space,

all the nontrivial peaks in the crystal order parameter plot
disappear.

Now, let us include the dissipation but at zero temperature.
We choose the peak value of crystal order parameter at point
(kX = 1, kP = 1) to trace the phase diagram. Due to finite
dissipation, the atoms need some time to relax to the final
state. The characteristic relaxation time scale is of the order
of 1/(2κ ). In Fig. 4(d), we plot the crystal order parameter
C(1, 1, 1

2κ
) for N = 101 atoms as a function of the scaled

interaction strength β/βc and the scaled dissipation rate κ/κc.
From the plots, it is clearly visible that there exists a region
in the parameter space spanned by dissipation and interaction
where the order parameter does not vanish. In Fig. 4(e), we
plot the crystal order parameter as a function of the interaction
strength for the dissipation rate κ = 0.5κc and for five differ-
ent atom numbers, i.e., N = 37, 69, 101, 161, and 225. The
sudden jump of the order parameter indicates a discontinuous
phase transition. As the atom number increases with uniform
density (approaching the scenario similar to thermodynamic
limit in equilibrium state), the transition point approaches a
fixed point close to (actually a bit lower than) our predicted
value βc based on linear analysis, cf. the transition curves for
N = 161 and 225.

In order to show the effects of thermal noise on the forma-
tion of phase space crystals, we plot in Fig. 5 the crystal order
parameter C(1, 1, 1

2κ
) as a function of temperature for differ-

ent dissipation rates and interaction strengths. We show the
averaged value (connected points) and the standard deviation
(colored shadows) of the crystal order parameter obtained by
simulating 200 different realizations of noise. At low temper-
ature (T � 1), the order parameter is close to one indicating
the existence of a crystal state in phase space. In contrast,
at sufficiently high temperature, the order parameter is very
close to zero indicating that the crystal state in phase space
is totally dissolved. In each plot, we calculate the crystal
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FIG. 5. Crystal order parameter as functions of temperature for
different atom number with given dissipation rate and interaction
strength. Connected points are the averaged crystal order parameter
C(1, 1, 1

2κ
) over Niter = 200 trajectories with colored shadows indi-

cating the standard deviation σC . The standard error from the mean
over Niter = 200 trajectories is σC/

√
Niter .

order parameter for three different system sizes (atom num-
bers). As atom number increases, the plots approach a fixed
curve corresponding to the thermodynamic limit. The stan-
dard deviation for each parameter set is zero at zero
temperature (T = 0), and then starts to increase when the
temperature increases. However, as the temperature becomes
high enough, the standard deviation goes back to zero again.
This is because the phase space crystal state does not exist
and the crystal order parameter vanishes for all realizations of
noise we have simulated.

V. EXPERIMENTAL PARAMETERS

We now discuss whether the conditions for realizing classi-
cal phase space crystals can be satisfied in the real cold-atom
experiments. We first examine the RWA condition that the
driving strength �, dissipation rate κ and interaction strength
β should be much smaller than unity in our units [55,60].
By recovering the units of parameters, we have the RWA
condition

|�|, β

l0
� ε0 = mω2

0

(
l0

2π

)2

, κ � ω0. (58)

In the experiment of cold atoms [59], a quasi-1D harmonic
potential with strong transverse trapping frequency is formed
by propagating Gaussian laser beam(s). The resulting trans-
verse trapping frequency ωtr and axial trapping frequency

ω0 are given by ωtr = 2Er
h̄

√
V0
Er

, ω0 = λLωtr/πw0, where w0

is the Gaussian beam waist, λL (kL = 2π/λL) is the laser

wavelength (wavenumber), V0 is the intensity of lasers and
Er = h̄2k2

L/2m is the recoil energy of an atom.
For the cold 87Rb atoms (m = 1.42 × 10−25kg) in the pres-

ence of the Gaussian laser with wavelength λL = 823nm,
beam waist w0 = 160 µm and intensity V0 = 27Er , the
transversal and axial trapping frequency are ωtr/2π = 36 kHz
and ω0/2π = 59 Hz respectively. By choosing the charac-
teristic length of driving lattice potential (created by two
additional laser beams, see Fig. 1) fifty times of the axial trap-
ping length l0 = 50

√
h̄/mω0 = 71µm, we have the following

RWA condition for driving strength:

|�| � ε0 = 1.08Er (59)

with the recoil energy Er = 2.29 × 10−30 J. Therefore we can
tune the intensity of lasers that generate driving lattice poten-
tial to satisfy the RWA.

In the quasi-1D trap, the effective contact interaction is
given by [57] V1D(x) ≈ 2h̄ωtra0δ(x), where a0 is the 3D s-
wave scattering length. Thus we have the following RWA
condition for interaction strength from Eq. (58)

β

l0
= 2h̄ωtra0

l0
� ε0. (60)

Taking the 3D scattering length a0 = 5.3 nm for 87Rb atoms,
we have the interaction strength β ≈ 0.00144ε0l0 satisfying
RWA. The interaction strength can be further tuned either
by transversal trapping frequency ωtr or by the Feshbach
resonance [57].

Next, we estimate the critical parameters for the phase
diagram in Fig. 4. According to Eq. (54), we have the critical
driving strength and critical dissipation rate with recovered
units

βc

ε0l0
= π3|�|

ε0
, κc = 4|�|√

2πN

ω0

ε0
(61)

Using the driving strength |�| = 0.01ε0 and atom number
N = 225, we have the critical values βc ≈ 0.31ε0l0 and κc ≈
0.0038ω0. The dissipation rate (damping coefficient) κ/ω0

for an atom can be tuned by the laser detuning from atomic
frequency and set κ = 0 at resonance [62]. Finally, to have
stable phase space crystals, we need the temperature condition
from Eq. (41)

T � π2

8

ε0

kB
≈ 179nK, (62)

which locates in the typical temperature range from the
nanokelvin to the microkelvin regime in the cold-atom exper-
iments [57].

VI. SUMMARY AND DISCUSSION

Many-body phase space crystal is an ordered highly ex-
cited state in a classical or quantum many-body dynamical
system. Previous works on phase space crystals are restricted
to closed system. In this work, we investigated the dynam-
ics of classical many-body phase space crystals in the open
dissipative environment with thermal noise. We started from
the exact equations of motion of the system in the laboratory
frame in the presence of dissipation and at nonzero temper-
ature. We then derived and justified the equations of motion
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obtained within the rotating wave approximation in the ro-
tating fame, which describes the slow dynamics of harmonic
oscillation’s quadratures. We performed linear analysis of sta-
bility of the phase crystal and found that strong dissipation,
interaction and high temperature can destroy the crystal state
in phase space. We estimated the critical values of the parame-
ters for the destruction of the phase space crystal. By defining
a crystal order parameter, we plotted the phase diagram in the
dissipation-interaction parameter plane and the order parame-
ter as a function of temperature. The main conclusion is that
phase space crystal state does exist for a range of parameter
settings in the cold atom experiments.

In order to prepare such phase space crystals, one can
initially set the cloud of atoms with driving, dissipation and
interaction parameters below the critical values according to
our prediction, but at relatively high temperature. In this sce-
nario, the thermal noise will activate the atoms spreading over
the phase space. Then, when cooling down the atoms, the
finite dissipation will help the atoms to relax to the stable
points nearby forming some blocks of phase space crystals.
As the main goal of the present work is to prove the existence
of phase space crystal state, we will study in detail how to
prepare phase space crystals in the future work.

In this work, we have studied the square phase space
crystalline structure for the single-particle Hamiltonian. An
extension to other lattice structure like honeycomb lattice
is straightforward. It has been shown that the phase space
crystal vibrational band structure of honeycomb lattice can
support chiral transport without breaking time-reversal sym-
metry [56]. Such kind of anomalous Chern insulator has not
yet been realized in the experiments. We only investigated
dynamics of phase space crystals in classical regime. The ex-
tended study in the quantum regime, which is closely related
to (fractional) quantum Hall physics and 1D anyons [63,64],
will be our future work.
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APPENDIX: SQUARE PHASE SPACE LATTICE

To show how to generate the single-particle square phase
space lattice in Eq. (18), we start from the following general-
ized model of a kicked harmonic oscillator

H = 1

2
(x2 + p2)

+
∑
n∈Z

∑
q

Kq cos(kqx − φq)δ

(
t

τ
− θq − n

)
, (A1)

where q represents the kicking sequence of stroboscopic lat-
tice with tunable intensity Kq, wave vector kq and phase φq at
different time instance t = τ (n + θq) with n ∈ Z. To simplify
the discussion, we first consider a single kicking sequence,

i.e.,

Hs = 1

2
(x2 + p2)

+
∑
n∈Z

Kq cos(kqx − φq)δ

(
t

τ
− θq − n

)
. (A2)

We transfer the above Hamiltonian into a rotating frame with
the kicking frequency 2π/τ using the generating function of
the second kind

G2(x, P, t ) = xP

cos(2πt/τ )
− x2

2
tan

(
2π

τ
t

)
− P2

2
tan

(
2π

τ
t

)
,

which results in the transformation of phase space coordi-
nates,

x = P sin

(
2πt

τ

)
+ X cos

(
2πt

τ

)
,

p = P cos

(
2πt

τ

)
− X sin

(
2πt

τ

)
, (A3)

and the transformed Hamiltonian

Hs(X, P, t ) = 1

2
δω(X 2 + P2) +

∑
n∈Z

Kqδ

(
t

τ
− θq − n

)

× cos

(
kq

[
P sin

(
2πt

τ

)

+ X cos

(
2πt

τ

)]
− φq

)
. (A4)

Here, δω ≡ 1 − 2π/τ is the detuning between the kicking and
harmonic oscillator frequencies. For weak resonant driving
(|Kq| � 1, τ = 2π ), the single-particle dynamics can be sim-
plified by averaging the Hamiltonian over the fast harmonic
oscillations. The effective slow dynamics of quadratures is
given by the lowest order Magnus expansion, i.e., the time
average of Hs(X, P, t ) over one kicking period,

Hs(X, P) = 1

τ

∫ τ

0
Hs(X, P, t )dt

= Kq cos(kq[P sin(2πθq) + X cos(2πθq)] − φq).

(A5)

Including all the kicks in Eq. (A1), we obtain the general form
of the phase space lattice Hamiltonian

Hs =
∑

q

Kq cos(kq[P sin(2πθq) + X cos(2πθq)] − φq).

(A6)

In principle, any arbitrary lattice Hamiltonian in phase space
can be synthesized by multiple stroboscopic lattices. For the
square lattice considered in our work, we can get the desired
driving parameters by decomposing the square lattice into a
series of cosine functions, i.e.,

Hs(X, P) = �(cos X + cos P)2

= �
[
1 + 1

2 cos(2X ) + 1
2 cos(2P)

+ cos(X + P) + cos(X − P)
]
. (A7)
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We decompose each term in the above equation as follows:

1

2
cos(2X ) = 1

2
cos(2[X cos(2π ) + P sin(2π )]),

1

2
cos(2P) = 1

2
cos

(
2

[
X cos

(
2π

4

)
+ P sin

(
2π

4

)])
, (A8)

and

cos(X + P) = 1

2
cos(

√
2

[
X cos

(
2π

8

)
+ P sin

(
2π

8

)])

+ 1

2
cos

(
−

√
2

[
X cos

(
10π

8

)

+ P sin

(
10π

8

)])
,

cos(X − P) = 1

2
cos

(√
2

[
X cos

(
14π

8

)
+ P sin

(
14π

8

)])

+ 1

2
cos

(
−

√
2

[
X cos

(
6π

8

)

+ P sin

(
6π

8

)])
. (A9)

By comparing the above expansion to Eq. (A6), we can gen-
erate the square phase space Hamiltonian by choosing the
kicking parameters:

kq = [
√

2, 2,−
√

2,−
√

2,
√

2, 2],

θq = [
1
8 , 2

8 , 3
8 , 5

8 , 7
8 , 1

]
, (A10)

and Kq = �/2 and φq = 0 for all q.
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