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Anomalous Hall effect in type-I Weyl metals beyond the noncrossing approximation
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We study the anomalous Hall effect (AHE) in tilted Weyl metals with Gaussian disorder due to the crossed X
and � diagrams in this work. The importance of such diagrams to the AHE has been demonstrated recently in
two-dimensional (2D) massive Dirac model and Rashba ferromagnets. It has been shown that the inclusion of
such diagrams dramatically changes the total AHE in such systems. In this work, we show that the contributions
from the X and � diagrams to the AHE in tilted Weyl metals are of the same order of the noncrossing diagram
we studied in a previous work, but with the opposite sign. The total contribution of the X and � diagrams cancels
the majority of the contribution from the noncrossing diagram in tilted Weyl metals, similar to the 2D massive
Dirac model. We also discuss the difference of the contributions from the crossed diagrams between the 2D
massive Dirac model and the tilted Weyl metals. At last, we discuss the experimental relevance of observing the
AHE due to the X and � diagrams in type-I Weyl metal Co3Sn2S2.
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I. INTRODUCTION

The anomalous Hall effect (AHE) has been a topic of
interest since it was first observed in ferromagnetic iron by
Edwin Hall in 1881 [1]. It is analogous to a usual Hall effect
but without the need of an external magnetic field [2,3]. The
transverse motion in the anomalous Hall systems originates
from the spin-orbit interaction, and to have a net transverse
current, the time reversal symmetry (TRS) has to be broken
in the system [2–6]. In insulators or semiconductors, the
anomalous Hall conductivity is quantized and insensitive to
impurity scatterings. In metals, however, the impurity scat-
terings affect the AHE significantly, and the AHE in such
cases can be divided into the intrinsic contribution, which is
due to the nontrivial topology of the electronic band structure
and remains in the clean limit, and the extrinsic contribution,
which is due to the impurity scatterings [5]. The anomalous
Hall current can be obtained either from the quantum Kubo-
Streda (QKS) formula [7] or from a semiclassical Boltzmann
equation (SBE) approach [4,5]. The former approach is more
systematic whereas the latter is physically more transparent.

The extrinsic AHE depends on the type of impurities in
general. For simplicity, we focus on the Gaussian white noise
disorder in this work. It has been well known that the Feynman
diagrams with crossed impurity lines shown in Figs. 1(b)–1(d)
result in a longitudinal conductivity which is smaller than the
noncrossing diagram by a factor of 1/εF τ due to the restricted
phase space of two rare impurity scatterings, so the crossed
diagrams are usually neglected in computing the longitudinal
conductivity. For a long time, the crossed diagrams were also
ignored for the AHE and only the Feynman diagrams with
noncrossing impurity scattering lines were considered for the
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AHE [4,5,8]. However, for the AHE, both the noncrossing and
crossed diagrams contain the rare impurity processes [9,10]
and are suppressed by 1/kF l � 1 compared to the longitudi-
nal conductivity for weak impurity systems. The two types of
diagrams may then contribute the same order of magnitude
to the AHE as was demonstrated in recent years in two-
dimensional (2D) Rashba ferromagnets and the 2D massive
Dirac model [9,11,12].

The account of the crossed diagrams in a number of anoma-
lous Hall systems changes the total AHE in the systems
dramatically [9–12]. For example, the inclusion of the X and
� diagrams in Figs. 1(b)–1(d) in 2D Rashba ferromagnetic
metal results in a nonvanishing AHE instead of the vanishing
result under the noncrossing approximation (NCA) [9,13,14].
In the 2D massive Dirac model, the X and � diagrams almost
cancel out the NCA contribution at high energy [11,12]. It was
also shown that the same crossed diagrams play an important
role for the AHE on the surface of a topological Kondo insula-
tor [10], for the Kerr effect in chiral p-wave superconductors
[15], and for the extrinsic spin Hall effect across the weak and
strong scattering regimes [16,17].

The above cases show that the crossed diagrams play an
important role for a more complete study of the AHE in
a general case. For that reason, we study the contributions
of the crossed diagrams, namely, the X and � diagrams to
the AHE in three-dimensional (3D) tilted Weyl metals with
breaking TRS [18,19] and weak Gaussian disorder in this
work. Although the SBE approach can yield the same result
for the AHE as the QKS formula for the noncrossing diagram
in isotropic systems [5], it is not convenient for calculating the
AHE from the X and � diagrams because it is very difficult
to compute the scattering rates for such diagrams. We then
employ the QKS formula and the diagrammatic technique to
study the X and � diagrams in tilted Weyl metals in this work.
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FIG. 1. (a) The Feynman diagram of the response function �I
αβ

under the noncrossing approximation (NCA) in the spin basis. The
thick solid lines are Green’s function in the spin basis under the Born
approximation, and the solid square represents the current vertex
�α renormalized by the ladder diagram under the NCA. (b) The X
diagram with two crossed impurity lines. (c and d) The � diagram
with two crossed impurity lines. (e) The recursion equation satisfied
by the renormalized current vertex �α .

Diagrams with more crossed impurity lines have a smaller
contribution in 1/εF τ for Gaussian disorder.

For untilted Weyl metals it has been shown that the im-
purity scatterings have little effect on the AHE only if the
Fermi energy is not very far from the Weyl nodes [20]. This
is because the low-energy effective Hamiltonian of a single
Weyl node of the untilted Weyl metal gains an emergent
TRS and the AHE due to the impurity scatterings vanishes.
For tilted Weyl metals, the tilting breaks the TRS of the
effective Hamiltonian of a single Weyl node [21,22] and the
impurity scatterings have significant effects on the AHE in
such a system [23,24]. In a previous paper [24], we have
studied the disorder-induced AHE in tilted Weyl metals due
to the noncrossing diagrams and obtained both the intrin-
sic and extrinsic contribution for such diagrams from the
quantum Kubo-Streda formula. We also separated the two
different extrinsic contributions, namely, the side jump and
skew scattering contribution from the noncrossing diagrams
in this system. The study of the crossed diagrams for the tilted
Weyl metals in this work is an important supplement of the
skew scattering contribution to the AHE in such a system.

The skew scattering contribution to the AHE comes from
the diffractive scattering of electrons off two impurities, as can
be seen from the crossed X and � diagrams [10], as well as
the noncrossing skew scattering diagrams in Ref. [5]. For the
two scattering processes to interfere, the two impurities need
to be close enough for Gaussian disorder, i.e., with a distance
of the order of the Fermi wavelength. This is verified by the
calculation of the AHE from the X and � diagrams in the real
space [9,10].

We show that the contribution from both the X and �

diagrams for tilted Weyl metals with Gaussian disorder is of
the same order of the contribution from the NCA diagram we
studied in the previous work [24], i.e., ∼τ 0. This is different
from the 2D massive Dirac model for which the contribution
from the � diagram vanishes for Gaussian disorder [11,12].
On the other hand, our calculation shows that the total con-

tribution of the X and � diagram cancels a majority of the
contribution from the NCA diagram for tilted Weyl metals.
This is similar to the 2D massive Dirac model. However,
the inclusion of the X and � diagram does not change the
dependence of the anomalous Hall conductivity on the Fermi
energy whereas in 2D massive Dirac model, the crossed di-
agram changes the total anomalous Hall conductivity from
σxy ∼ m/εF for the NCA diagram to σxy ∼ (m/εF )3 [12].

We also discussed the experimental relevance of observing
the effects of the X and � diagrams in tilted Weyl metals,
such as Co3Sn2S2 [25–27]. We point out that the density of
the Gaussian disorder needed to observe the contributions
of the crossed X and � diagrams is much higher than that
of observing the noncrossing diagram with single impurity
scatterings, such as the side jump contribution, since the for-
mer corresponds to electron scatterings by pairs of closely
located impurities with a distance of the order of the Fermi
wavelength. We estimated that the impurity density needed
to observe the AHE due to the X and � diagrams is nsk

imp >√
2/(λF lφ )3/2 for 3D tilted Weyl metals, where lφ is the phase

coherence length and λF is the Fermi wavelength and lφ � λF

(see the Discussion section). As a comparison, the impurity
density needed to observe the AHE from the noncrossing
diagram with single impurity scatterings is ns j

imp > 1/(lφ )3,

which is much lower than nsk
imp. Another issue is that the

intrinsic AHE from the Chern-Simons term is much higher
than the AHE from both the noncrossing and crossed diagrams
in Co3Sn2S2 with Gaussian disorder, so the effects of the
Gaussian disorder on the AHE is not very distinguishable in
experiments in this system. We propose that one can observe
the effects of the Gaussian disorder on the AHE by measuring
the anomalous Nernst effect (ANE) in such a system because
the Chern-Simons term has no contribution to the ANE and
the contributions of the Gaussian disorder to the ANE and
AHE are proportional to each other.

This paper is organized as follows. In Sec. II, we present
the model and the calculation of the anomalous Hall effect
due to the crossed X and � diagrams in tilted Weyl metals,
and compare the AHE from the crossed diagrams with the
noncrossing diagram, as well as with other systems, such as
the 2D massive Dirac model. In Sec. III, we have a discussion
of the experimental relevance of observing the effects of X
and � diagrams. In Sec. IV, we have a summary of this work.

II. AHE IN TILTED WEYL METALS DUE TO X
AND � DIAGRAMS

The low-energy physics of a type-I Weyl metal with
breaking TRS can be described by an effective low-energy
Hamiltonian of two independent Weyl nodes and a topological
Chern-Simons term [24,28]. The Chern-Simons term results
in an AHE proportional to the distance of the two Weyl nodes
and is not affected by the impurity scatterings. We will then
focus on the low-energy effective Hamiltonian of the Weyl
nodes in the following, which is

H =
∑

χ

(χvσ · p + uχ · p), (1)
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where χ = ±1 is the chirality of the two Weyl nodes, σ are
the Pauli matrices, and uχ is a tilting velocity with uχ < v

for type-I Weyl metals we consider in this work. Here we
assume the tilting u+ = −u− = u, i.e., the tilting is opposite
for the two valleys. For this case, the AHE in the two Weyl
nodes adds up instead of cancel out. The Hamiltonian Hχ

for each single valley results in two tilting linear bands ε± =
±vp + uχ · p. The tilting term breaks the TRS of a single
Weyl node so the AHE from each valley does not vanish. The
term χvσ · p breaks the global TRS so the total AHE of the
two valleys is nonzero.

We consider weak Gaussian disorder (white noise) with
random potential V (r) = V0

∑
a δ(r − ra) and correlation

〈V (r)V (r′)〉 = γ δ(r − r′), where γ = nimpV 2
0 and nimp is the

impurity density. We assume that all the higher-order cor-
relators of the impurity potential vanish for simplicity, and
the mean free path of the electrons is much larger than the
Fermi wavelength, i.e., kF l � 1 or εF τ � 1. The anomalous
Hall conductivity may be written in two parts, σ I

H and σ II
H ,

in the Kubo-Streda formula [5,7]. Formally, σ I
H takes into

account the contribution on the Fermi surface, and σ II
H in-

cludes the contribution from the whole Fermi sea. Since σ II
H

is not sensitive to impurity scatterings and its contribution in
the clean limit has been studied in previous works for tilted
Weyl metals [21,22], we only need to study the σ I

H part in this
work. The leading order contribution to the response function
�I

αβ includes the diagrams in Fig. 1, where Fig. 1(a) is the
diagram under the NCA and has been studied in our previous
work [24]. The NCA diagram includes both the intrinsic and
extrinsic contributions, and both contributions to the AHE are
independent of the scattering rate 1/τ in the leading order, i.e.,
∼τ 0. For the crossed diagrams in Figs. 1(b)–1(d), previous
works [9,10,12] have shown that for Gaussian disorder, the
leading order AHE from these diagrams for 2D Rashba ferro-
magnets and massive Dirac models is of the same order as the
noncrossing diagram in Fig. 1(a), i.e., ∼τ 0. In the following,
we study the contribution of the crossed X and � diagrams for
tilted Weyl metals and compare the leading order contribution
of these diagrams with the noncrossing diagram in Fig. 1(a).
Diagrams with more crossed impurity lines have a smaller
contribution in 1/τ and so are negligible.

We assume that the impurity potential is diagonal for both
the spin and valley index, so the two valleys decouple and
one can compute the AHE in each valley separately. The
leading order contribution to the AHE from the NCA dia-
gram of the tilted Weyl metals has been worked out in our
previous work [24]. The total dc anomalous Hall conductivity
from the noncrossing diagram for the two Weyl nodes is
σ NCA

xy = 4e2εF u/3π2v2 in the leading order of u/v for u in
the z direction. As a comparison, we compute the anomalous
Hall conductivity in the dc limit due to the crossed X and �

diagram in the tilted Weyl metals in the leading order of u/v

in the following.
We consider a uniform electric field E = −∂t A applied to

the system. In the linear response regime jI
α = �I

αβAβ , where
Aα = (0, A). The response functions �I

αβ in the dc limit for
the X and � diagrams for a single Weyl node (e.g., χ = 1)

are, respectively,

�X
αβ = γ 2ω

∑
p1,...,p4

∫
dε

2π i

dnF (ε)

dε
δ(p1 + p2 − p3 − p4)

× Tr[�αGR(p1)GR(p3)GR(p2)�βGA(p2)

× GA(p4)GA(p1)] (2)

and

��
αβ = γ 2ω

∑
p1,...,p4

∫
dε

2π i

dnF (ε)

dε
δ(p1 + p4 − p2 − p3)

× Tr[GA(p1)�αGR(p1)GR(p3)GR(p4)

× GR(p2)�βGA(p2) + GA(p1)�αGR(p1)

× GR(p2)�βGA(p2)GA(p4)GA(p3)], (3)

where GR/A is the retarded or advanced Green’s function
(GF) of the tilted Weyl metals, and �α is the current vertex
renormalized by the noncrossing ladder diagram [24]. We
have omitted the argument ε in GR/A(ε, p) in the above equa-
tions for brevity.

The impurity averaged retarded or advanced GF in a single
valley (e.g., with χ = 1) under the first Born approximation is
[24]

GR/A(ε, p) = (ε − vσ · p − u · p − �R/A)−1, (4)

where the self-energy due to the impurity scatterings is
�R/A = γ

∑
p GR/A

0 (p) = ∓ i
2τ

[1 + �(u) · σ] with 1/τ =
πγ g(εF ), g(εF ) = ∫ d3 p

(2π )3 δ(u · p + vp − εF ) = ε2
F v

2π2(v2−u2 )2

being the density of states at the Fermi energy εF > 0 and
�(u) = −u/v. We note here that the self-energy under the
self-consistent Born approximation produces the same AHE
as that under the first Born approximation in the leading order
of εF τ for the Gaussian disorder. The inclusion of diagrams
with crossed impurity lines in the self-energy also only results
in corrections to the AHE in the higher orders of 1/εF τ .

For the calculation in this work, it is convenient to write
the GR/A in Eq. (4) as

GR/A(ε, p) =
(
ε ± i

2τ
− u · p

)
σ 0 + vp · σ ∓ i

2τ
(� · σ )(

ε − ε+
p ± i

2τ+
)(

ε − ε−
p ± i

2τ−
) , (5)

with 1/τ± = 1
τ

(1 ± p·�
p ).

The renormalized current vertex �α in Eqs. (2) and (3) has
been worked out in our previous work [24]. The bare current
vertex for the tilted Weyl metals is ĵα = e(vσα + uασ0) (we
define u0 ≡ 0). By expressing ĵα and �α with the Pauli ma-
trices as ĵα = Jαβσβ and �̂α = �αβσβ, α, β = 0, x, y, z, one
can solve the coefficients of the renormalized current vertex
as �αβ = JαγDγ β , where the summation over the repeated
index γ is implied as usual and D = (1 − γI )−1 is the 4 × 4
diffusion matrix with the polarization operator I defined as

Iαβ = 1

2

∫
dp

(2π )3
Tr[σαGR(ε + ω, p + q)σβGA(ε, p)]. (6)
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In our previous work [24], we have shown that the renor-
malized current vertex �αβ = evDαβ , i.e., the tilting term
uασ0 in the bare current vertex has no contribution to the AHE
and the main effect of the tilting is to produce an anisotropy
of the Fermi surface. We have also worked out the I matrix
and D matrix for the tilted Weyl metals in the previous work
[24], so we will just apply the results of such matrices for the
study in this work.

Denoting the integrand of Iαβ in the dc limit as
Iαβ (p) = 1

2 Tr[σαGR(ε, p)σβGA(ε, p)], one gets GA�̂αGR =
�αβIβγ σγ , GR�̂αGA = σγ Iγ β�αβ . The response functions for
the X and � diagrams in Figs. 1(b)–1(d) can then be written
as

�X
αβ = e2γ 2v2ω

∫
dε

2π i

dnF (ε)

dε

∑
p1,...,p4

δ(p1 + p2 − p3 − p4)

× Dαξ Iξμ(p1)Fμν (p3, p4)Iνγ (p2)DT
γ β, (7)

��
αβ = e2γ 2v2ω

∫
dε

2π i

dnF (ε)

dε

∑
p1,...,p4

δ(p1 + p4 − p2 − p3)

× Dαξ Iξμ(p1)Mμν (p3, p4)Iνγ (p2)DT
γ β, (8)

where we have defined

Fμν (p3, p4) ≡ Tr[σμGR(ε, p3)σνGA(ε, p4)], (9)

Mμν (p3, p4) ≡ Tr[σμσνGA(ε, p4)GA(ε, p3)

+ σνσμGR(ε, p3)GR(ε, p4)]. (10)

The AHE due to the X and � diagrams corresponds to the
antisymmetric part of the response function �X

αβ and ��
αβ . In

the following, we study the AHE in tilted Weyl metals due to
the two diagrams, respectively.

A. AHE from the X diagram

In this subsection, we study the AHE due to the X diagram
in tilted Weyl metals. To do this, we first compute the anti-
symmetric part of the response function �X

αβ in Eq. (7).
For the matrices D, I , and F in Eq. (7), the symmetric parts

of these matrices are D0∼τ 0, Is∼τ, F s∼τ 0, and the antisym-
metric parts Da∼τ−1, Ia∼τ 0, F a∼τ 0. In the leading order of
1/εF τ , the antisymmetric part of �X

αβ is then

�X,a
αβ = e2γ 2ω

∫
dε

2π i

dnF (ε)

dε

∑
p1,p2,Q

D0,αγ Is
γμ(p1)

× F a
μν (p1 − Q, p2 + Q)Is

νη(p2)DT
0,ηβ,

(11)

where Q ≡ p1 − p3 = p4 − p2.
The vertex correction factor D0 and DT

0 on the two ends
of �X,a

αβ are constant matrices as a function of u and v, as
given in our previous work [24], and when multiplied with the
remaining part of the response function, it results in an extra
total factor α̃2 ≈ 9/4 + O(u2/v2) only if the remaining part is
an antisymmetric matrix of the linear order of ui, i = 1, 2, 3,
which is the case for both the X and � diagrams. For con-
venience, we will then drop the D0 factor in Eq. (11) in the
following calculation and add the vertex correction factor α̃2

at the end.
Since the symmetric part of the I matrix in the dc limit is

Is
αβ (p) ≈ πτ+δ(ε − u · p − vp)

1

p2
× pα pβ, (12)

the integration over the momentum p1 and p2 is bound to the
Fermi surface due to the δ function in Is.

The antisymmetric part of the F matrix for the X diagram
is F a

μν = Nμν (F a)/D(F ), where

Nμν (F a) = 2iv2{ε0μνk

[
(p1 p2k − p2 p1k ) + (p1 + p2)Qk + u · Q

v
(p1k + p2k )

]
− εμνlk (p1 − Q)l (p2 + Q)k},

D(F ) =
[
ε − u·(p1 − Q) − v|p1 − Q| + i

2τ+
3

][
ε − u·(p1 − Q) + v|p1 − Q| + i

2τ−
3

]
(13)

×
[
ε − u·(p2 + Q) − v|p2 + Q| − i

2τ+
4

][
ε − u·(p2 + Q) + v|p2 + Q| − i

2τ−
4

]
,

and 1
τ±

i
≡ 1

τ
(1 ± δi ), δi ≡ pi·�

pi
, μ, ν = 0, 1, 2, 3, and l, k = 1, 2, 3. In Nμν (F a), we have only kept the leading order in 1/τ .

We assume u in the z direction for simplicity and Q = Q(sin α cos β, sin α sin β, cos α). Rotate the z axis to the direction of
Q by the transformation ⎛

⎝x̂′
ŷ′
ẑ′

⎞
⎠ =

⎛
⎝cos α cos β cos α sin β − sin α

− sin β cos β 0
sin α cos β sin α sin β cos α

⎞
⎠

⎛
⎝x̂

ŷ
ẑ

⎞
⎠,

where (x̂, ŷ, ẑ) and (x′, y′, z′) are the bases of the old and new frames, respectively. The coordinates of pi, i = 1, 2 in the old
and new frames are denoted as (pix, piy, piz ) and (p′

ix, p′
iy, p′

iz ), respectively. Assuming in the rotated frame pi = p (sin θi cos φi ·
x̂′ + sin θi sin φi · ŷ′ + cos θi · ẑ′) for i = 1, 2, we then have p1 · Q = p1Q cos θ1, p2 · Q = p2Q cos θ2, u · Q = uQ cos α.

The coordinates piα, i = 1, 2 in the old frame may be expressed as

pi,x = pi(cos φi sin θi cos α cos β − sin θi sin φi sin β + cos θi sin α cos β ),

pi,y = pi(cos φi sin θi cos α sin β + sin θi sin φi cos β + cos θi sin α sin β ),

pi,z = pi(− sin θi cos φ sin α + cos θi cos α). (14)
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From the δ function in Is, one can get pi = ε
v+uẑi

, i = 1, 2, where

ẑi = piz/pi = − sin θi cos φi sin α + cos θi cos α. (15)

Applying the δ function in Is to replace ε by p1 and p2 in D(F ), we get

1

D(F )
= [(v2 − u2 cos2 α)Q2 − 2v2 p1Q

(
cos θ1 + u

v
cos α

)
− i

τ
(vp1 + uQ cos α + vδ3|p1 − Q|)]−1

× [(v2 − u2 cos2 α)Q2 + 2v2 p2Q

(
cos θ2 + u

v
cos α

)
+ i

τ
(vp2 − uQ cos α + vδ4|p2 + Q|)]−1. (16)

The AHE due to the X and � diagram is finite only when u is nonzero. In this work, we only compute the AHE in the tilted
Weyl metals in the leading order of u for simplicity. For this reason, we expand 1/D(F ) in terms of u/v and keep only the terms
up to the linear order of u. We then get

1

D(F )
≈

[
v2Q2 − 2v2 p1 · Q − i

τ
vp1 − 2vp1u · Q

]−1[
v2Q2 + 2v2 p2 · Q + i

τ
vp2 + 2vp2u · Q

]−1

≈ 1 + u
v
ẑ1

v2Q2 − 2vεQ
(

cos θ1 + u
v

cos α
) − i

τ
ε + vuQ2ẑ1

1 + u
v
ẑ2

v2Q2 + 2vεQ
(

cos θ2 + u
v

cos α
) + i

τ
ε + vuQ2ẑ2

≈
(

1 + u

v
ẑ1

)(
1 + u

v
ẑ2

)
1

v2Q2 − 2vεQ cos θ1 − i
τ
ε

(
1 − vuQ2ẑ1 − 2εuQ cos α

v2Q2 − 2vεQ cos θ1 − i
τ
ε

)
(17)

× 1

v2Q2 + 2vεQ cos θ2 + i
τ
ε

(
1 − vuQ2ẑ2 + 2εuQ cos α

v2Q2 + 2vεQ cos θ2 + i
τ
ε

)
,

where we have neglected the linear order of u terms ∼iuQ cos α/τ and iδ3/τ, iδ4/τ since they contain an extra small factor 1/τ .
Putting Is and F a together and neglecting the vertex correction at the two ends of the X diagram at the moment, we get the

antisymmetric part of the response function �X
xy as

�X,a
αβ = π2e2γ 2ω

∫
dε

2π i

dnF (ε)

dε

∫ ∞

0

d p1

8π3
p2

1

∫ ∞

0

d p2

8π3
p2

2

∫ ∞

0

dQ

8π3
Q2

∫ π

0
sin θ1dθ1

∫ π

0
sin θ2dθ2

∫ π

0
sin αdα

×
∫ 2π

0
dφ1

∫ 2π

0
dφ2

∫ 2π

0
dβ

4iv2 p1α p2β (p1 + p2)(p1 × p2) · Q
p2

1 p2
2 D(F )

�
i=1,2

τ+
i δ(ε − u · pi − vpi ). (18)

The scalar factor (p1 × p2) · Q = p1 p2Q sin θ1 sin θ2 sin(φ2 − φ1) in the rotated frame, and τ+
i = τ/(1 − u

v
ẑi ), i = 1, 2. For

the integrand in Eq. (18), only the factor p1α p2β includes the angle β and one can easily integrate out this angle. For u in the
z direction, if the electric field E is also in the z direction, �X,a

αz = 0 after the integration over the angle β for α 
= z. For this
reason, we only need to consider the case when E is perpendicular to u. Assuming the electric field E in the y direction, �X,a

zy is
zero with the integration over β. We then only need to compute the nonvanishing component �X,a

xy .
Since

∫ 2π

0
dβp1x p2y = π p1 p2[cos α sin θ1 sin θ2 sin(φ2 − φ1) + sin α(cos θ1 sin θ2 sin φ2 − cos θ2 sin θ1 sin φ1)], (19)

the response function �X,a
xy for the X diagram becomes

�X,a
xy = e2v2γ 2τ 2ω

∫
dε

2π i

dnF (ε)

dε

1

(2π )9
4iv2π3

∫ ∞

0
Q2dQ

∫ π

0
sin αdα

∫ π

0
sin θ1dθ1

∫ π

0
sin θ2dθ2

∫ 2π

0
dφ1

∫ 2π

0

× dφ2 Q sin θ1 sin θ2 sin(φ2 − φ1)[cos α sin θ1 sin θ2 sin(φ2 − φ1) + sin α(cos θ1 sin θ2 sin φ2 − cos θ2 sin θ1 sin φ1)]

× v

v − uẑ1

v

v − uẑ2

(
ε

v + uẑ1
+ ε

v + uẑ2

)
ε2

(v + uẑ1)3

ε2

(v + uẑ2)3

1

D(F )
. (20)
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It is easy to check that at u = 0, the response function in Eq. (20) vanishes. Expanding Eq. (20) to the linear order of u and
combining 1/D(F ) in Eq. (17), we get

�X,a
xy (u) = e2v2γ 2τ 2ω

∫
dε

2π i

dnF (ε)

dε
× 4iv2π3 1

(2π )9
× ε5

v7

∫ ∞

0
Q2dQ

∫ π

0
sin αdα

∫ π

0
sin θ1dθ1

∫ π

0
sin θ2dθ2

∫ 2π

0
dφ1

∫ 2π

0

× dφ2 × Q sin θ1 sin θ2 sin(φ2 − φ1)[cos α sin θ1 sin θ2 sin(φ2 − φ1) + sin α(cos θ1 sin θ2 sin φ2 − cos θ2 sin θ1 sin φ1)]

× 1

v2Q2 − 2vεQ cos θ1 − i
τ
ε

1

v2Q2 + 2vεQ cos θ2 + i
τ
ε

[
− 3

u

v
(ẑ1 + ẑ2) − 2

vuQ2ẑ1 − 2εuQ cos α

v2Q2 − 2vεQ cos θ1 − i
τ
ε

− 2
vuQ2ẑ2 + 2εuQ cos α

v2Q2 + 2vεQ cos θ2 + i
τ
ε

]
. (21)

The angular integration over φ1, φ2, and α can be easily done in the above equation and the contributions from the terms
with the factor ẑ1 and ẑ2 vanish after this angular integration. The response function for the X diagram after the integration over
φ1, φ2, α, and ε becomes

�X,a
xy (u) = − ω

12π3
e2v3ε2

F u ×
∫ ∞

0
Q4dQ

∫ π

0
sin θ1dθ1

∫ π

0
sin θ2dθ2 sin2 θ1 sin2 θ2

1

v2Q2 − 2vεF Q cos θ1 − i
τ
εF

×
[

1

v2Q2 − 2vεF Q cos θ1 − i
τ
εF

− 1

v2Q2 + 2vεF Q cos θ2 + i
τ
εF

]
1

v2Q2 + 2vεF Q cos θ2 + i
τ
εF

(22)

= −iω
u

6π3
e2v3ε2

F × Im
∫ ∞

0
dQSX (Q),

where

SX (Q) ≡ Q4
∫ π

0
sin θ1dθ1

∫ π

0
sin θ2dθ2 sin2 θ1 sin2 θ2 × 1(

v2Q2 + 2vεF Q cos θ1 − i
τ
εF

)2 × 1

v2Q2 + 2vεF Q cos θ2 + i
τ
εF

.

(23)

The anomalous Hall conductivity from the X diagram is
σ X

xy = �X,a
xy /iω, which is then completely real and dissipation-

less. The integration in Eq. (22) can be done by a change of
variable x = cos θ1, y = cos θ2, as shown in the Appendix. We
get in the leading order of 1/τ

IX ≡ Im
∫ ∞

0
dQ SX (Q) ≈ π

εF v5
. (24)

The leading order response function without vertex correction
for the X diagram from a single valley is

�X,a
xy (u) ≈ −iω

e2εF u

6π2v2
. (25)

The vertex correction adds a factor of 9/4 in the leading
order of u/v to the response function �X

xy(u). For tilted Weyl
metals with two valleys, the response function doubles. We
then obtain the leading order anomalous Hall conductivity of

the tilted Weyl metals due to the X diagram as

σ X
xy ≈ −3e2εF u

4π2v2
, (26)

which is of the same order of the leading order contribution
from the NCA diagram σ NCA

xy = 4e2εF u
3π2v2 , but with opposite sign.

B. AHE from the � diagram

In this subsection, we study the AHE in tilted Weyl metals
due to the � diagram. To do this, we compute the antisym-
metric part of the response function ��

αβ in Eq. (8).
For the matrices D, I , and M in Eq. (8), the symmetric

parts of these matrices are D0 ∼ τ 0, Is ∼ τ, Ms ∼ τ 0, and the
antisymmetric parts are Da ∼ τ−1, Ia ∼ τ 0, Ma ∼ τ 0. In the
leading order of 1/εF τ , the antisymmetric part of ��

αβ is then

��,a
αβ = e2γ 2ω

∫
dε

2π i

dnF (ε)

dε

∑
p1,p2,Q

D0,αγ Is
γμ(p1)Ma

μν (Q − p2, Q − p1)Is
νη(p2)DT

0,ηβ, (27)

where Q ≡ p1 + p4 = p2 + p3, Is is given in Eq. (12) and Ma
μν is the antisymmetric part of

Mμν ≡ Tr[σμσνGA(p4)GA(p3)] + Tr[σνσμGR(p3)GR(p4)]. (28)
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We denote the GAGA term in Eq. (28) as MA and the GRGR term as MR. Since MR = (MA)∗, the M matrix is then M =
2Re MA. The antisymmetric part of the MA matrix in the leading order of 1/τ is MA,a

μν = Nμν (MA,a)/D(MA), where

Nμν (MA,a) = 2ivε0μνk{[2(ε − u · Q) + u · (p1 + p2)]Qk − [ε − u · (Q − p2)]p1k − [ε − u · (Q − p1)]p2k}
(29)

− 2v2[(Q − p1)μ(Q − p2)ν − (Q − p1)ν (Q − p2)μ],

D(MA) =
[
ε − u · (Q − p1) − v|Q − p1| − i

2τ+
4

][
ε − u · (Q − p1) + v|Q − p1| − i

2τ−
4

]

×
[
ε − u · (Q − p2) − v|Q − p2| − i

2τ+
3

][
ε − u · (Q − p2) + v|Q − p2| − i

2τ−
3

]
. (30)

In the above equation, 1
τ±

i
= 1

τ
(1 ± δi ), δi = pi·�

pi
as defined before.

For u in the z direction and Q = Q(sin α cos β, sin α sin β, cos α), after the same rotation of the z axis to the direction of Q
as for the X diagram, and applying the δ function in Is, we obtain

D(MA) ≈
[
v2Q2 − 2v2p1 · Q + i

τ
vp1 − 2vp1u · (2p1 − Q)

][
v2Q2 − 2v2p2 · Q + i

τ
vp2 − 2vp2u · (2p2 − Q)

]
, (31)

where we have neglected the second-order u terms as well as the u/τ terms.
Putting Is and Ma together and neglecting the vertex correction at the two ends of the � diagram at the moment, we get the

antisymmetric part of the response function for the � diagram as

��,a
αβ = π2e2γ 2ω

∫
dε

2π i

dnF (ε)

dε

×
∑

p1,p2,Q

[
2ivε0μνk p1,α p1,μ p2,ν p2,β[2(ε − u · Q) + u · (p1 + p2)]Qk

p2
1 p2

2 D(MA)
+ c.c

]
�

i=1,2
τ+

i δ(ε − u · pi − vpi )

= e2v2γ 2ω

∫
dε

2π i

dnF (ε)

dε
× 2ivπ2 1

(2π )9

∫ ∞

0
Q2dQ

∫ π

0
sin αdα

∫ 2π

0
dβp1α p2β

×
∫ ∞

0
d p1

∫ ∞

0
d p2

∫ π

0
sin θ1dθ1

∫ π

0
sin θ2dθ2

∫ 2π

0
dφ1

∫ 2π

0
dφ2 τ+

1 τ+
2 (p1 × p2) · Q

× [2ε + u · (p1 + p2 − 2Q)]

[
1

D(MA)
− c.c

]
δ(ε − vp1 − u · p1)δ(ε − vp2 − u · p2). (32)

At u = 0, the response function ��,a
αβ vanishes. We then expand ��,a

αβ to the linear order of u and neglect the higher-order
contributions. Similar to the X diagram, for u in the z direction and E in the y direction, ��,a

zy = 0 and we only need to consider
��,a

xy for the AHE. Keeping only the linear order of u and integrating out the angle β, we get

��,a
xy (u) = e2v2γ 2τ 2ω

∫
dε

2π i

dnF (ε)

dε
4ivπ3 1

(2π )9

ε5

v6

∫ ∞

0
Q2dQ

∫ π

0
sin αdα

∫ π

0
sin θ1dθ1

∫ π

0
sin θ2dθ2

∫ 2π

0
dφ1

∫ 2π

0
dφ2

× Q sin θ1 sin θ2 sin(φ2 − φ1)[cos α sin θ1 sin θ2 sin(φ2 − φ1) + sin α(cos θ1 sin θ2 sin φ2 − cos θ2 sin θ1 sin φ1)]

×
{

1

v2Q2 − 2vεQ cos θ1 + i
τ
ε

1

v2Q2 − 2vεQ cos θ2 + i
τ
ε

[
− u

ε
Q cos α + u

2v
(ẑ1 + ẑ2)

− 2uvẑ1
(
Q2 − ε

v
Q cos θ1 − 2 ε2

v2

) + 2εuQ cos α

v2Q2 − 2εvQ cos θ1 + i
τ
ε

− 2uvẑ2
(
Q2 − ε

v
Q cos θ2 − 2 ε2

v2

) + 2εuQ cos α

v2Q2 − 2εvQ cos θ2 + i
τ
ε

]
− c.c.

}
. (33)
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After the integration over φ1, φ2, and α, we get the antisymmetric part of ��
xy as

��,a
xy (u) = − ω

12π3
e2v3ε2

F u
∫ ∞

0
Q4dQ

∫ π

0
sin θ1dθ1

∫ π

0
sin θ2dθ2 sin2 θ1 sin2 θ2

× 1

2

{
1

v2Q2 − 2vεF Q cos θ1 + i
τ
εF

1

v2Q2 − 2vεF Q cos θ2 + i
τ
εF

×
[

− 1

2ε2
F

−
(

1

v2Q2 − 2εF vQ cos θ1 + i
τ
εF

+ 1

v2Q2 − 2εF vQ cos θ2 + i
τ
εF

)]
− c.c.

}

= −iω
u

6π3
e2v3ε2

F Im
∫ ∞

0
dQS� (Q), (34)

for which we separate S� (Q) to two parts as

S� (Q) = S�,1(Q) + S�,2(Q),

S�,1(Q) = − Q4

4ε2
F

∫ π

0
sin3 θ1dθ1

∫ π

0
sin3 θ2dθ2

1

v2Q2 − 2vεF Q cos θ1 + i
τ
εF

1

v2Q2 − 2vεF Q cos θ2 + i
τ
εF

, (35)

S�,2(Q) = −Q4
∫ π

0
sin3 θ1dθ1

∫ π

0
sin3 θ2dθ2

1

(v2Q2 − 2vεF Q cos θ1 + i
τ
εF )2

1

v2Q2 − 2vεF Q cos θ2 + i
τ
εF

. (36)

As shown in the Appendix, in the leading order of 1/τ , the
integration over S�,1(Q) and S�,2(Q) gives

I�,1 ≡ Im
∫ ∞

0
dQ S�,1(Q) ≈ 17 + 16 ln 2

105

π

εF v5
(37)

and

I�,2 ≡ Im
∫ ∞

0
dQ S�,2(Q) ≈ 1 + 8 ln 2

15

π

εF v5
. (38)

The antisymmetric part of the response function for the �

diagram for a single valley without vertex correction is

��,a
xy (u) = ��,1,a

xy (u) + ��,2,a
xy (u) ≈ −4 + 12 ln 2

105
iω

e2εF u

π2v2
.

(39)

Adding the vertex correction factor 9/4 in the leading order
of u, and taking into account the two valleys of the tilted Weyl
metals, we get the total anomalous Hall conductivity due to
the � diagram in the leading order of u as

σ�
xy ≈ −6 + 18 ln 2

35

e2εF u

π2v2
≈ −0.53

e2εF u

π2v2
. (40)

The contribution from the � diagram is also of the same order
of the contribution from the NCA diagram σ NCA

xy = 4e2εF u
3π2v2 , but

with the opposite sign. This is different from the 2D massive
Dirac model, for which the anomalous Hall conductivity from
the � diagram vanishes for Gaussian disorder [12].

C. Comparison between the crossed and noncrossing diagrams

The total contribution of the X and � diagrams to the AHE
for the tilted Weyl metals with two valleys is

σ X+�
xy = σ X

xy + σ�
xy ≈ −1.28

e2εF u

π2v2
. (41)

As a comparison, we plot the different contributions to the
anomalous Hall conductivity of the tilted Weyl metals due

to both the noncrossing and crossed diagrams in Fig. 2. The
anomalous Hall conductivity from the noncrossing diagram
was obtained in our previous work [24] and includes three dif-
ferent mechanisms: intrinsic, side jump, and skew scattering.
The total anomalous Hall conductivity from the noncrossing
diagram for Gaussian disorder in the leading order of u/v is

σ NCA
xy ≈ 4e2εF u

3π2v2
. (42)

0.0 0.2 0.4

-2

0

2

xy
/(e

2
F/

4
2 v

)

u/v

intrinsic I
H

side jump
skew scattering with NCA
total I

H with NCA

II
H

X diagrams
Ψ diagrams
total

FIG. 2. The different contributions to anomalous Hall conductiv-
ity from the noncrossing and crossed diagrams for the 3D tilted Weyl
metals with Gaussian disorder as a function of the tilting velocity u
rescaled by v. The Fermi surface contributions from the noncrossing
diagram in the plot come from Ref. [24] and are exact, whereas
the results for the crossed diagrams are kept in the linear order of
u/v. The intrinsic contribution from the Fermi sea σ II

H comes from
Ref. [21]. The black solid line represents the total Fermi surface
contribution from the noncrossing diagram, and the blue solid line
represents the total contribution from both the Fermi surface and
Fermi sea, including both noncrossing and crossed diagrams.
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This contribution includes the intrinsic part σ I
int = e2εF u

3π2v2 from

the Fermi surface and σ II
int = − e2εF u

6π2v2 from the Fermi sea. The
remaining part is the extrinsic contribution due to impurity
scatterings, including the side jump and skew scattering con-
tribution as shown in Fig. 2.

From Eqs. (41) and (42), we see that the inclusion of the
X and � diagrams cancels most of the contribution from the
noncrossing diagram in the leading order of u/v, as shown
in Fig. 2. This is similar to the case of the 2D massive
Dirac model at large energy with Gaussian disorder. How-
ever, for the 2D massive Dirac model, the inclusion of the X
and � diagram changes the dependence of the total anoma-
lous Hall conductivity on the energy from σ NCA

xy ∼ m/εF to
σ total

xy ∼ (m/εF )3, which greatly reduces the total anomalous
Hall conductivity in the metallic regime m/εF � 1. In con-
trast, for tilted Weyl metals, the contributions of the X and
� diagrams have the same dependence on the Fermi energy
as the noncrossing diagram and the cancellation is due to the
opposite signs but close values of the coefficients of the two
contributions.

III. DISCUSSION

The expansion of the response functions of the X and �

diagrams to the second order of u reveals that the contribu-
tions to the AHE from these diagrams vanish in the second
order of u for the tilted Weyl metals. The next leading-order
corrections to the AHE from the X and � diagrams are then
∼(u/v)3. The same is true for the contribution to the AHE
from the noncrossing diagram [24]. For the type-I Weyl metals
with not very large u/v, the anomalous Hall conductivity in
the linear order of u we obtained in this work is then accurate
enough.

The contributions to the AHE from the X and � diagrams
do not depend on the disorder strength and scattering rate
for Gaussian disorder, and have the same dependence on the
Fermi energy and the tilting of the Weyl metals as the NCA
diagram in the leading order. This makes it hard to distinguish
the contributions from the two types of diagrams in experi-
ments. However, the skew scattering contribution comes from
the consecutive electron scatterings off two closely located
impurities with distance of the order of electron Fermi wave-
length [9–12]. The impurity density required to observe the
AHE due to the X and � diagrams as well as the skew
scattering contribution in the NCA diagram is then much
higher than that to observe the side jump effects originating
from incoherent single impurity scatterings. The self-average
of the impurities in the diagrammatic technique indicates an
average over all the independent and equivalent subsystems
of the size of the phase coherence length lφ . To validate the
self-average over the impurities in the calculation of the skew
scattering contribution, every independent subsystem of the
size of the phase coherence length lφ (which is much smaller
than the sample size) needs to contain at least one pair of
such closely located impurities. We can then estimate the
minimum impurity density required in the system to observe
the effects of the X and � diagrams as follows. Assume there
are N randomly distributed impurities in each independent
subsystem of the size of lφ . The probability for two randomly

chosen impurities in this subsystem to have a distance less
than or equal to the Fermi wavelength λF is ∼(λF /lφ )3. Since
there are N (N − 1)/2 ways to choose a pair of impurities
in the subsystem, the total pair number of the rare impurity
complexes in the subsystem is ∼N (N−1)

2 (λF /lφ )3. This pair
number needs to be greater than one to validate the results
of the skew scattering contribution, including the X and �

diagrams and the noncrossing skew scattering diagrams in
Refs. [5,24], so we get N >

√
2(lφ/λF )3/2 and the impurity

density nsk
imp >

√
2/(λF lφ )3/2. (Note that under this impurity

density, the condition kF l � 1 can still be satisfied.) As a
comparison, the impurity density required to observe the in-
coherent single impurity scattering effect, e.g., the side jump
contribution, is ns j

imp > 1/(lφ )3. Since lφ > l � λF , the min-
imum impurity density to observe the AHE due to skew
scatterings is much higher than that of observing the side
jump contribution. The same is true for the 2D massive Dirac
systems for which ns j

imp > 1/(lφ )2 and nsk
imp >

√
2/(λF lφ ).

For the recently studied type-I Weyl metal Co3Sn2S2

in experiments [25,26], the topological Chern-Simons term
[20,24,28] gives an extra anomalous Hall conductivity σH ∼

e2

2π2 K which is proportional to the distance K between the
two Weyl nodes. This contribution is independent of the im-
purity scatterings and constitutes part of the intrinsic AHE.
For Co3Sn2S2, the AHE from the Chern-Simons term is one
order of magnitude greater than both the contribution from
the noncrossing diagram and the crossed diagrams of the low-
energy effective Hamiltonian with Gaussian disorder [23] so
it dominates the total AHE in this system. This makes it hard
to distinguish the contribution of the disorder in experiments,
either due to the NCA diagram or the crossed diagrams. In
Ref. [25], all the AHE measured in Co3Sn2S2 was attributed
to the intrinsic one. In Ref. [26], the authors measured the
AHE in both the clean and dirty samples, but the difference
of the anomalous Hall conductivity in the two samples is only
about 10% of the clean case. To better observe the effects of
the disorder and the interplay of the noncrossing and crossed
diagrams in experiments, one may increase the Fermi level of
Co3Sn2S2 by doping to enhance the weight of the contribution
to the AHE due to both the noncrossing and crossed diagrams
since the anomalous Hall conductivity from the Chern-Simons
term does not depend on the Fermi energy.

Another way to observe the disorder effects and the in-
terplay between the crossed diagrams and the noncrossing
diagram in Co3Sn2S2 is by the measurement of the anomalous
Nernst effect (ANE) [26,29–31] in such a system. The ANE
only comes from the scatterings on the Fermi surface so the
Chern-Simons term has no contribution to the ANE. The ANE
is proportional to the Fermi surface contribution of the AHE,
i.e., σ I

H , we studied in Ref. [24] and this work, with the ratio
∼kBT/εF [23]. By measuring the ANE in different disorder
conditions, one can tell whether and when the skew scatterings
play a role in both the ANE and AHE in the system. Indeed, in
Ref. [26], the ANEs in the disordered samples are about three
to five times that of the clean sample, which makes the effects
of the disorder much more discernible in the ANE than in the
AHE. The large enhancement of the ANE by the disorder in
this experiment agrees qualitatively with our calculation for
the NCA diagram in the previous work [24] and seems to
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indicate that the crossed diagrams do not contribute to the
ANE in the measured disordered samples based on our cal-
culation of the Gaussian disorder in this work. One possible
reason may be that the impurity densities in the disordered
samples in the experiment did not reach the required den-
sity nsk

imp to observe the skew scattering effects. On the other
hand, the real system may also include disorders more com-
plicated than the Gaussian disorder considered in this work
[12,17,32–34], which may change the results of the AHE and
ANE significantly. For example, it was shown in Ref. [12]
that for the 2D massive Dirac model with smooth disor-
der, the anomalous Hall conductivity is enhanced by the X
and � diagrams instead of being canceled as in the case
of Gaussian disorder. Impurities with higher-order correla-
tions than the Gaussian disorder may also introduce a new
contribution to the AHE [33]. Besides, the impurities with
internal structure may also activate a new skew scattering
mechanism and change the AHE significantly [17,34]. A
more complete theoretical study including various realistic
disorders is then needed to tell whether the crossed diagrams
play a role in such experiments. We will leave this for a
future study since the study of the 3D tilted Weyl metals
with these types of disorder is more complicated than the
2D massive Dirac model due to the increased dimensionality.
On the other hand, to observe the AHE or ANE due to the

crossed diagrams, more experiments with a wider range of
disorder conditions may also need to be carried out in the
future.

IV. SUMMARY

To sum up, we study the AHE due to the crossed X and
� diagrams in type-I Weyl metals with Gaussian disorder.
We show that similar to the 2D massive Dirac model, the
contributions from the crossed diagrams cancel a majority of
the contribution from the noncrossing diagram of the low-
energy effective Hamiltonian. However, the impurity density
needed to observe the AHE due to the X and � diagrams is
much higher than that of observing the contribution of the
noncrossing diagrams with single impurity scatterings. We
estimate the minimum impurity density to observe the AHE
due to the X and � diagrams and discuss the experimental
relevance to observe the AHE from such crossed diagrams in
the type-I Weyl metal Co3Sn2S2.
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APPENDIX: CALCULATION OF IX AND I�

In this Appendix, we show the details of the integration in Eqs. (24), (37), and (38) for the X and � diagram.
We first present the integration

IX = Im
∫ ∞

0
dQSX (Q)

= Im
∫ ∞

0
Q4dQ

∫ π

0
sin3 θ1dθ1

∫ π

0
sin3 θ2dθ2

1(
v2Q2 + 2vεF Q cos θ1 − i

τ
εF

)2

1

v2Q2 + 2vεF Q cos θ2 + i
τ
εF

.

By a change of the variable x = cos θ1, y = cos θ2 and denoting εF as ε for brevity, we get

IX =
∫ ∞

0
Q4dQ

∫ 1

−1
dx

∫ 1

−1
dy(1 − x2)(1 − y2)

{
−

ε
τ

(v2Q2 + 2vεQy)2 + ε2

τ 2

(v2Q2 + 2vεQx)2 − ε2

τ 2[
(v2Q2 + 2vεQx)2 + ε2

τ 2

]2

+ 2 ε
τ

(v2Q2 + 2vεQy)

(v2Q2 + 2vεQy)2 + ε2

τ 2

v2Q2 + 2vεQx[
(v2Q2 + 2vεQx)2 + ε2

τ 2

]2

}
. (A1)

We denote the first and second term in the above equation as IX,1 and IX,2, respectively, and calculate them separately in the
following. With the variable substitution v2Q2 + 2vεQy = t, v2Q2 + 2vεQx = s and the relationship

ε
τ

(v2Q2 + 2vεQy)2 + ε2

τ 2

≈ πδ(v2Q2 + 2vεQy), (A2)

we get

IX,1 = −π

∫ ∞

0

Q4

(2εvQ)2
dQ

∫ v2Q2+2vεQ

v2Q2−2vεQ
ds

[
1 −

(
s − v2Q2

2vεQ

)2] s2 − ε2

τ 2(
s2 + ε2

τ 2

)2

∫ v2Q2+2vεQ

v2Q2−2vεQ
dt

[
1 −

(
t − v2Q2

2vεQ

)2]
δ(t ), (A3)

IX,2 = 2ε

τ

∫ ∞

0

Q4

(2εvQ)2
dQ

∫ v2Q2+2vεQ

v2Q2−2vεQ
ds

[
1 −

(
s − v2Q2

2vεQ

)2] s

(s2 + c2)2

∫ v2Q2+2vεQ

v2Q2−2vεQ
dt

[
1 −

(
t − v2Q2

2vεQ

)2] t

t2 + c2
. (A4)

We first do the integration of IX,1. The integration over s and t for IX,1 in Eq. (A3) can be carried out separately at first.
To get a nonvanishing integration over the δ(t ) factor in Eq. (A3), Q must be limited to 0 < Q < 2ε/v. Denoting c ≡ ε/τ and
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integrating out s and t , IX,1 becomes

IX,1 =
∫ 2ε/v

0
dQ

−πQ4

(2εvQ)2

[
1 − v2Q2

4ε2

]{
−

(
1 − v2Q2

4ε2

)
s

s2 + c2
+ 1

2ε2

[
cπδ(s) + 1

2
ln(s2 + c2)

]

− 1

4ε2v2Q2

[
s + csδ(s) − 2c arctan

(
s

c

)]}∣∣∣∣
v2Q2+2vεQ

s=v2Q2−2vεQ

. (A5)

Neglecting the small terms in 1/τ , we get

IX,1 =
∫ 2ε/v

0
dQ

−πQ4

(2εvQ)2

[
1 − v2Q2

4ε2

]
×

{
−

(
1 − v2Q2

4ε2

)
s

s2 + c2
+ 1

4ε2
ln(s2 + c2) − 1

4ε2v2Q2
s

}∣∣∣∣
v2Q2+2vεQ

s=v2Q2−2vεQ

= π

2εv5

[
1 − 1

15
(1 + 8 ln 2)

]
. (A6)

Similarly, after the integration over s and t , IX,2 becomes

IX,2 = 2
∫ ∞

0

Q4

(2εvQ)2
dQ

[(
1 − v2Q2

4ε2

)
1

2
ln(t2 + c2) + 1

2ε2
t − 1

8ε2v2Q2
t2]

∣∣∣∣
v2Q2+2vεQ

t=v2Q2−2vεQ

×
[

−
(

1 − v2Q2

4ε2

)
π

2
δ(s) + 1

4ε2
arctan

(
s

c

)]∣∣∣∣
v2Q2+2vεQ

s=v2Q2−2vεQ

, (A7)

where we have omitted the terms proportional to c or sδ(s). The integration over the terms with δ(s) in Eq. (A7) is zero because at
s = 0, Q = 0 or 1 − v2Q2

4ε2 = 0, and the terms with δ(s) in the integrand become zero. For this reason, we only need to consider the

terms with 1
4ε2 arctan( s

c ) after the integration of s. Since c is small, arctan( s
c )| v2Q2+2vεQ

s=v2Q2−2vεQ is nonzero only when v2Q2 − 2vεQ <

0 < v2Q2 + 2vεQ, i.e., 0 < Q < 2ε/v. In this regime,

arctan

(
s

c

)∣∣∣∣
v2Q2+2vεQ

s=v2Q2−2vεQ

≈ π (A8)

and

IX,2 = π

2ε2

∫ 2ε/v

0

Q4

(2εvQ)2
dQ ×

[
1

2

(
1 − v2Q2

4ε2

)
ln

(v2Q2 + 2vεQ)2 + c2

(v2Q2 − 2vεQ)2 + c2
+ vQ

ε

]

= π

2εv5

[
1 + 1

15
(1 + 8 ln 2)

]
.

Adding IX,1 and IX,2 together, we get IX = π/εF v5 as in Eq. (24).
We next compute I� ≡ Im

∫ ∞
0 dQS� (Q) for the � diagram. As shown in the main text, we divide I� into two parts I�,1 and

I�,2 and compute them separately.
From Eq. (35), we get

I�,1 = Im
∫ ∞

0
dQS�,1(Q)

=
∫ ∞

0

Q4

4ε2
dQ

∫ 1

−1
dx

∫ 1

−1
dy(1 − x2)(1 − y2)

×
[

ε
τ

(v2Q2 − 2vεQy)2 + ε2

τ 2

(v2Q2 − 2vεQx)

(v2Q2 − 2vεQx)2 + ε2

τ 2

+
ε
τ

(v2Q2 − 2vεQx)2 + ε2

τ 2

v2Q2 − 2vεQy

(v2Q2 − 2vεQy)2 + ε2

τ 2

]

= π

2ε2

∫ ∞

0

Q4

(2εvQ)2
dQ

∫ v2Q2+2vεQ

v2Q2−2vεQ
ds

[
1 −

(
s − v2Q2

2vεQ

)2] s

s2 + ε2

τ 2

∫ v2Q2+2vεQ

v2Q2−2vεQ
dt

[
1 −

(
t − v2Q2

2vεQ

)2]
δ(t )

= π

2ε2

∫ 2ε/v

0
dQ

Q4

(2εvQ)2

(
1 − v2Q2

4ε2

)[(
1 − v2Q2

4ε2

)
1

2
ln

(v2Q2 + 2vεQ)2 + c2

(v2Q2 − 2vεQ)2 + c2
+ vQ

ε

]

= π

εv5

17 + 16 ln 2

105
. (A9)
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Similarly, we get

I�,2 = −
∫ ∞

0
Q4dQ × Im

∫ 1

−1
dx

∫ 1

−1
dy(1 − x2)(1 − y2)

[
1

(v2Q2 − 2vεQx + i
τ
ε)2

× 1

v2Q2 − 2vεQy + i
τ
ε

]

=
∫ ∞

0
Q4dQ

∫ 1

−1
dx

∫ 1

−1
dy(1 − x2)(1 − y2)

×
[

ε
τ

(v2Q2 − 2vεQy)2 + ε2

τ 2

(v2Q2 − 2vεQx)2 − ε2

τ 2[
(v2Q2 − 2vεQx)2 + ε2

τ 2

]2 + 2 ε
τ

(v2Q2 − 2vεQy)

(v2Q2 − 2vεQy)2 + ε2

τ 2

v2Q2 − 2vεQx[
(v2Q2 − 2vεQx)2 + ε2

τ 2

]2

]

= −IX,1 + IX,2

= π

εv5

1

15
(1 + 8 ln 2). (A10)
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