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Decoding the projective transverse field Ising model
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The competition between noncommuting projective measurements in discrete quantum circuits can give
rise to entanglement transitions. It separates a regime where initially stored quantum information survives the
time evolution from a regime where the measurements destroy the quantum information. Here we study one
such system—the projective transverse field Ising model—with a focus on its capabilities as a quantum error
correction code. The idea is to interpret one type of measurement as an error and the other type as a syndrome
measurement. We demonstrate that there is a finite threshold below which quantum information encoded in an
initially entangled state can be retrieved reliably. In particular, we implement the maximum likelihood decoder to
demonstrate that the error correction threshold is distinct from the entanglement transition. This implies that there
is a finite regime where quantum information is protected by the projective dynamics, but cannot be retrieved by
using syndrome measurements.
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I. INTRODUCTION

Entanglement lies at the heart of quantum mechanics and
plays a key role in various fields, two important examples
being quantum error correction [1] and entanglement tran-
sitions [2]. Because of decoherence, quantum error correction
has been identified as an indispensable step towards scalable,
universal quantum computation [3,4], and the existence of
quantum codes demonstrated by Shor [5] is the bedrock on
which the promises of quantum computation rest [5]. As
it turns out, entanglement between the physical qubits of a
quantum code is a necessary ingredient for quantum error
correction. Independent of these considerations, the notion
of monitored quantum circuits has gained traction in recent
years [2,6–14]. The idea is to study quantum circuits built
from random unitary gates, which typically lead to volume-
law entangled states, and monitor them with local, projective
measurements. The latter counter the entanglement growth
and their competition can lead to transitions in the entangle-
ment structure of the system. Strikingly, there are regimes in
which a finite rate of projective measurements can be tolerated
while still preserving long-range entanglement [2,6,7]. It then
seems natural to study the error correction capabilities of such
random systems. In this paper, we study a specific model that
has been shown to feature an entanglement transition, and
view it as a quantum code to illuminate the relation between
quantum error correction and entanglement.

The rationale of quantum error correction is the following
[15]: First, the quantum information to be protected (the logi-
cal qubits) is mapped to a subspace of the full system in such
a way that local operations on few physical qubits can neither
leak information about the amplitudes nor change them. This
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subspace is known as code space and necessarily comprises
states that share entanglement between the physical qubits. If
such a system is projectively monitored by the environment,
two things can happen: Either the environment gains access to
the amplitudes and they are lost irretrievably or it does not
and the amplitudes are still hidden in the state of the sys-
tem. However, as the interaction with the environment injects
entropy into the system, these hidden amplitudes cannot be
accessed right away. The next step of quantum error correction
is therefore to measure observables that do not destroy the
encoded amplitudes but retrieve information about the errors
induced by the environment, thereby lowering the entropy of
the system. The extracted information is called syndrome and
can be used to reconstruct the unknown errors to access the
hidden amplitudes; this last step is referred to as decoding
and the method used to convert the syndrome into a tentative
error pattern is the decoding algorithm. One can use different
decoding algorithms for the same quantum code. Whether
decoding for a particular instance succeeds depends on the
error pattern, the knowledge of the decoder (the syndrome),
and the decoder itself. The maximum error rate up to which
decoding with a given decoder succeeds on average is known
as error threshold, a quantity that in many cases can only be
approximated numerically. Prominent examples for quantum
codes are Shor’s nine-qubit code [16], the seven-qubit Steane
code [17], and scalable codes derived from topologically or-
dered systems like the toric/surface codes [18–21]. For all of
these, efficient decoding algorithms and numerical results for
their error thresholds are known [22–28]; the particularly high
thresholds of surface codes make them promising candidates
for real-world implementations [29,30].

The notion of monitored quantum circuits that give rise
to entanglement transitions was introduced in Refs. [2,6,9]
and originated from the question whether extensive, coherent
subsystems can be stabilized in the presence of environmental
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noise. Typically, one starts with a product state of an exten-
sive number of qubits equipped with a geometry and applies
a random sequence of 2-local unitaries (to model coherent,
local interactions) interspersed with single-qubit projective
measurements; the relative rate of unitaries and projective
measurements is the parameter of the system. The unitaries
are ideally drawn from the Haar measure, but often restricted
to the Clifford group instead to make use of the stabilizer
formalism for efficient simulation [15,31–35]. The findings
of Refs. [2,6,7,9] show that there is a finite, critical rate for
the projective measurements at which a continuous transition
in the entanglement structure takes place: below the critical
rate, the unitary evolution dominates and stabilizes the system
in a volume-law phase, whereas, above the critical rate, the
projective measurements prevail so no long-range entangle-
ment can build up (indicated by area-law states with only local
entanglement). Later, it was shown that similar transitions
can be found in systems where the unitaries are replaced by
projective measurements that do not commute with the projec-
tive measurements of the environment [36–40]. Depending on
the measurements [38], the entanglement transitions in such
purely projective models often separate phases of different
area laws (instead of volume-law and area-law phases). One
such model, derived from the transverse field Ising model
and dubbed projective transverse field Ising model (PTIM)
was studied in Ref. [37]. It features a critical monitoring
rate dictated by bond percolation. Below this rate, the system
exhibits long-range entangled states with an area law; above, it
transitions into product states with short-range entanglement.
Here we use this model to study the connection between
quantum error correction and entanglement transitions.

That these two fields are related is not hard to see: If
one initializes a monitored quantum circuit not in a prod-
uct state but an entangled state that encodes the amplitudes
of a logical qubit nonlocally, one can ask how long these
amplitudes survive the evolution of the system and how the
average lifetime scales with the system size. It turns out that
this is an alternative characterization of the entanglement
transition [10,37,41–47]: below the critical monitoring rate
(in the entangling phase), the lifetime grows exponentially
with the system size so the amplitudes survive indefinitely
in macroscopic systems; by contrast, the growth is subex-
ponential (typically logarithmic) in the disentangling phase.
In this sense, monitored quantum circuits in the entangling
phase can be seen as random quantum error correction codes
that protect amplitudes by scrambling them into distributed
degrees of freedom faster than the environment can extract
information. This relates to the first (encoding) stage of quan-
tum error correction explained above. What is not so clear
is the second (decoding) stage: Under which conditions and
how is it possible to retrieve the scrambled amplitudes? As
for quantum codes, one may expect an error threshold for
the projective measurements of the environment below which
retrieval is possible by some decoding algorithm. However, it
is unclear how the error threshold relates to the entanglement
threshold except that the latter poses an upper bound on the
former (in the disentangling phase, the amplitudes are lost and
cannot be retrieved).

In this paper, we answer these questions specifically for
the one-dimensional PTIM with a detailed study of several

decoding algorithms. We analyze the decoders numerically
making use of a mapping between trajectories with projective
measurements and “classical” trajectories with unitary opera-
tions. We introduce quantities to evaluate the performance of
decoders quantitatively. Our analysis includes a naïve decoder
based on majority voting [the maximum likelihood decoder
(MLD) for classical repetition codes], which is an instructive
approach that, unfortunately, fails. We then discuss and eval-
uate a decoder based on minimum weight perfect matching
(MWPM), an algorithm that is often used for the decoding
of topological surface codes. The algorithm has been applied
successfully to the decoding of the PTIM by Li and Fisher
[48]; we verify their results qualitatively and find a finite
error threshold below which the decoder reliably retrieves the
encoded quantum information. We then extend these results
and implement the MLD of this system, i.e., the provably
optimal decoder. We show that its decoding threshold provides
only a marginal improvement over the MWPM decoder. Fur-
thermore, we show that the decoding threshold of the MLD
is distinct from the entanglement transition of the PTIM. We
conclude that there is a finite range of parameters where the
encoded amplitudes survive the monitoring by the environ-
ment but cannot be retrieved without having access to the full
system dynamics.

The remainder of this paper is structured as follows. In
Sec. II, we start with a description of the model and focus on
its interpretation as a quantum code. We continue by formal-
izing the task of decoding and introduce quantities to gauge
the performance of decoders. In Sec. III, we present a brief
discussion of a naïve decoder based on majority voting and
demonstrate why it fails. Taking guidance from this failure,
we construct a decoder based on MWPM in Sec. IV and study
its performance numerically; we find a finite error threshold.
In Sec. V, we implement the MLD, which we find to per-
form slightly better than the MWPM decoder. We conclude
in Sec. VI with a summary and outlook. In Appendixes A–D
we provide technical details and proofs for some claims in the
main text.

II. SETTING

A. The model

We start by introducing the PTIM and its interpretation as
a quantum code. Consider an open chain of L qubits prepared
in the initial state |�(t = 0)〉 = |�0〉. To propagate the system
from time step t to t + 1, we first loop through all sites and
measure with probability p ∈ [0, 1] the operator

Ei = σ x
i . (1)

Here, σα
i denotes the Pauli matrix α = x, y, z acting on

qubit i = 1, . . . , L. We will refer to these measurements as
error measurements; they describe the monitoring of the sys-
tem by the environment. Next, we loop through all edges
e = (i, i + 1) between adjacent sites and measure

Se = σ z
i σ z

i+1 (2)

with probability 1 − q ∈ [0, 1]. We will refer to these as syn-
drome measurements as they are the stabilizers of the quantum
repetition code (see below). Note that q ∈ [0, 1] refers to
the probability that a stabilizer is not measured. Repeating
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FIG. 1. The model. The projective transverse Ising model (PTIM) is a stochastic process where in each time step t �→ t + 1 first error
measurements Ei = σ x

i occur with probability p per site, and then syndrome measurements occur with probability 1 − q per edge e = (i, i + 1)
along a one-dimensional open chain of L qubits. In this paper, we study sample averages over many trajectories T = {�(t )} for initial states
|�(t = 0)〉 = |�0〉 = α|0 . . . 0〉 + β|1 . . . 1〉 that belong to the code space of the quantum repetition code. We are interested in whether the
logical amplitudes α, β ∈ C survive the PTIM evolution for t = T ∼ L time steps. To test this, we finalize each trajectory with a complete
syndrome measurement. The final state |�(T )〉 can then have only two forms: (a) Trajectory where the amplitudes survive, which corresponds
to the bond percolation of the initial cluster highlighted in black. While horizontal edges are active if there is a stabilizer measurement,
vertical edges are active if there is no error measurement. The cluster connected to the initial state at t = 0 carries the encoded amplitudes.
(b) Trajectory where the initial cluster does not percolate. In this case, the encoded amplitudes are lost. The final qubit patterns mi depend on
the trajectory T .

this two-step process generates a trajectory T = {�(t )} of
the PTIM, see Fig. 1(a) for an example. For a fixed initial
state, the trajectory is uniquely determined by the space-time
patterns E p and Sp of error- and syndrome measurements and
their respective measurement outcomes Er and Sr . With a
slight abuse of notation, we refer to a trajectory as T = (E , S)
where E = (E p, Er ) and S = (Sp, Sr ). The parameters of this
model are the probabilities p for an error and q for a missing
stabilizer measurement, and we are interested in properties of
this stochastic process when sampled over many trajectories
for large system sizes L → ∞. Note that there are two types
of randomness in the model: the classical randomness of
measurement choices encoded in the patterns E p and Sp, and
the quantum randomness from the measurement outcomes Er

and Sr .
For an initial product state of the form |�0〉 = |+〉 ⊗

· · · ⊗ |+〉 ≡ |+ · · · +〉 (where |+〉 denotes the state with
σ x|+〉 = |+〉), it was shown in Ref. [37] that this process
features an entanglement transition at p + q = 1 that is dic-
tated by (anisotropic) bond percolation on the square lattice:
For p + q > 1 (error and/or failed stabilizer measurements
dominate) the state �(t → ∞) remains short-range entan-
gled, whereas for p + q < 1 (low error rate and/or syndrome
measurements dominate), stable long-range entanglement
emerges.

By contrast, here we are interested in the error correction
capabilities of this model. To this end, we consider (typically
entangled) initial states of the form

|�0〉 = α|0 . . . 0〉 + β|1 . . . 1〉, (3)

with σ z|0〉 = |0〉 and σ z|1〉 = −|1〉; α, β ∈ C with |α|2 +
|β|2 = 1 are the amplitudes of the logical qubit to be
protected. The two-dimensional subspace C 
 |�0〉 spanned
by |0〉 ≡ |0 . . . 0〉 and |1〉 ≡ |1 . . . 1〉 is the code space of
the quantum repetition code with stabilizer S = 〈{Se}〉, i.e.,
Ŝ|�〉 = |�〉 for all |�〉 ∈ C and Ŝ ∈ S . This code can only
correct bit flip errors Ei = σ x

i but not phase errors σ z
i (the

latter correspond to parity-violating terms in its fermionic
representation; this is not of relevance in the following).

To comply with the concept of quantum error correction,
we modify the evolution of the PTIM, initialized in Eq. (3),
by demanding that in the final time step t = T (where T is
fixed beforehand and typically T ∼ L), all stabilizers {Se}
are measured, irrespective of the failure probability q. This
forces the final state |�(t = T )〉 into the two-dimensional
subspace Cm spanned by |m〉 and |m〉 = ∏

i σ
x
i |m〉 where

m = (m1, . . . , mL ) with mi ∈ {0, 1} is a qubit configuration
that corresponds to the syndrome measurements at t = T and
m is its globally flipped configuration (which necessarily also
matches the syndrome). It was shown in Ref. [37] that the final
state has only two possible forms,

|�(T )〉 =
{

1√
2
|m〉 ± 1√

2
|m〉

α|m〉 + β|m〉, (4)

where m = m(T ) is some qubit configuration that depends on
the trajectory T . In the first case, |�(T )〉 = 1√

2
|m〉 ± 1√

2
|m〉,

the environment gained access to the logical qubit through
its measurements E = (E p, Er ) and no recovery of the en-
coded amplitudes is possible. The probability for this outcome
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FIG. 2. Decoding probability with full knowledge. Probability
PD to successfully decode the PTIM with full knowledge of the
error and stabilizer measurements T = (E , S) as a function of
the error probability p and the stabilizer failure probability q for
L = T = 51. For p + q > 1, decoding fails almost surely because in
the disentangling phase the amplitudes are lost due to the monitoring
of the environment. Because of finite-size effects, the true percolation
threshold is slightly tilted and smeared out. For each datapoint, we
sampled 20 000 trajectories.

approaches unity for L, T → ∞ if p + q > 1, i.e., in the dis-
entangling phase of the PTIM. This is so because the cluster
that carries the amplitudes does not percolate, as shown in
Fig. 1(b). In the second case, |�(T )〉 = α|m〉 + β|m〉, the
cluster does percolate [Fig. 1(a)] and the amplitudes survive
the monitoring by the environment; however, they are now
encoded in a rotated basis |m〉 = Ĉ†|0〉, where Ĉ = ∏

i(σ
x
i )Ci ,

C = (C1, . . . ,CL ) ∈ {0, 1}L, is a qubit flip pattern that de-
scribes the effect of the measurements by stabilizers and
environment. The probability for this to happen approaches
unity for L, T → ∞ in the entangling phase of the PTIM, i.e.,
for p + q < 1.

The goal of this paper is to recover the encoded amplitudes
from |�(T )〉, which is tantamount to finding a correction
string C = C(T ) such that

Ĉ|�(T )〉 = α|0〉 + β|1〉 = |�0〉. (5)

We refer to this as decoding of the noisy quantum repetition
code, which we discuss in the next subsection.

B. Decoding

The entanglement transition at p + q = 1 acts as an upper
bound in the (p, q) parameter space up to which decoding
can possibly succeed, and we will focus on p + q < 1 hence-
forth. If we have access to the full trajectory T = (S, E ),
it is straightforward to construct the decoding string C de-
terministically because we can simulate the evolution |�(t )〉
efficiently using the stabilizer formalism (there are even more
efficient ways to achieve this, but this shall not be our fo-
cus here). This is illustrated in Fig. 2 where we plot the

decoding probability PD as a function of the error probability p
and the stabilizer failure probability q (we will introduce the
quantity PD formally below). Note that the threshold of the
entanglement transition is slightly tilted and smeared out due
to finite-size effects; we checked that for L, T → ∞ the tran-
sition gets sharper and approaches the off-diagonal p + q = 1
predicted by percolation theory.

However, given our description of the measurements
above, it is reasonable to assume that we neither have access
to when and where error measurements occurred (E p) nor to
their results (Er), as these are performed by the environment;
hence, we have only access to the syndrome data S = (Sp, Sr ).
In Fig. 3, we illustrate the trajectory from Fig. 1(a) and con-
struct an abstract, reduced representation that illustrates the
knowledge of the decoder.

This lack of knowledge makes the construction of C a
nontrivial problem. However, the following observation helps
us in this regard: Remember that the syndrome data S includes
the outcomes of the full syndrome measurement in the last
step. As a consequence, we do know the rotated code space
Cm spanned by |m〉 and |m〉. Given the amplitudes survived,
the final state can have only two forms:

|�(T )〉 =
{
α|m〉 + β|m〉
α|m〉 + β|m〉. (6)

In the first case, the right choice for the correction string
that defines Ĉ is C ≡ m, whereas, in the second case, it is
C ≡ m. Decoding therefore amounts to choosing a decoding
string from a set {C,C} of two possible strings; selecting the
wrong one leads to a bit flip error on the logical qubit.

So, although we do not have access to an extensive amount
of information, namely, E = (E p, Er ), we are actually miss-
ing only a single bit, namely, whether to choose C or C to
decode |�(T )〉. A decoder or decoding algorithm picks one
of these two as a function of the syndrome data S:

D : S = (Sp, Sr ) �→ D(S) ∈ {C,C}. (7)

Note that in the following it is sufficient to start with an initial
state |�0〉 = |0〉 to quantify the performance of the decoder,
as the system dynamics commutes with the logical X -operator
X = ∏

i σ
x
i . Thus, any initial state which is polarized in the X

direction will never change its polarization, and it is best to
choose an initial state with vanishing X polarization.

For a given trajectory T = (E , S) with final state
|�f(T )〉 ≡ |�(T )〉, we can define the overlap

f qm(T ,C) := |〈�0|Ĉ|�f(T )〉|2 (8)

to identify the correct string C to decode the quantum informa-
tion. This expression returns 1 (0) for the correct (incorrect)
string when the amplitudes survive; in cases where the ampli-
tudes are lost, one finds f qm = 1

2 , irrespective of the chosen
correction string. This allows us to determine the performance
of a decoder D. For a single trajectory T = (E , S), we define

f qm
D (T ) := f qm(T ,C = D(S)) ; (9)

the performance of the decoder is then quantified by the prob-
ability to correctly decode the quantum information,

PD(p, q; L, T ) := 〈〈
f qm
D

〉〉 =
∑
T

Pqm(T ) f qm
D (T ), (10)
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FIG. 3. Trajectory representations of the PTIM. (a) Full trajectory of the PTIM reproduced from Fig. 1(a) where the amplitudes survive
the monitoring by the environment. (b) Switching to the dual of the dashed space-time lattice in (a), we can replace stabilizer measurements Sp

by solid vertical edges, the colors of which encode the measurement outcomes Sr . Absent error measurements are replaced by solid horizontal
edges. The emergent cluster structure is dual to the percolation cluster in Fig. 1(a). This representation on the dual lattice will be useful later
for constructing decoders. (c) Decoders only have access to the syndrome data S = (Sp, Sr ), i.e., the vertical edges of the representation in (b).
Decoding amounts to reconstructing the full pattern in (b) from the reduced one in (c) (or an equivalent one in a suitably defined sense).

where 〈〈•〉〉 denotes the sample average over trajectories and
Pqm(T ) is the probability for the trajectory T = (E , S). Note
that Pqm(T ) is a highly nontrivial quantity: While the classical
probability distribution that governs E p and Sp is straightfor-
ward to describe, the distributions of measurement outcomes
Er and Sr are not obvious as they depend on the history of the
trajectory and are not independent.

The quantity PD is our main figure of merit to evaluate
the performance of a decoder. It parametrically depends on p
and q, and we are interested in its behavior for large systems
L → ∞. A value of PD = 1 indicates that the decoder D
correctly decodes every trajectory and therefore allows us to
restore the encoded amplitudes reliably. For high error rates
and/or few stabilizer measurements, PD is expected to drop to
1
2 because either the decoder fails to decode the system (viz.
it tosses a coin to decide on a correction string) or the system
is in the disentangling phase and the amplitudes are lost to the
environment.

In addition to the decoding probability PD, we will use the
mean time to first failure (MTFF) TD to compare different
decoders. To define TD, consider a (ideally, infinitely long)
trajectory T and for t = 0, 1, . . . define T |t as the first t time
steps of T terminated by a full stabilizer measurement. We
can then apply a decoder D to T |t and compute f qm

D (T |t ). Let
tqm
D (T ) denote the first time step t where f qm

D (T |t ) < 1 and
define the MTFF as the sample average of this quantity:

TD(p, q; L) := 〈〈
tqm
D

〉〉
. (11)

We will refer to decoders as succeeding for a given set of
parameters p and q if the MTFF grows superpolynomially in
the limit L → ∞; by contrast, the MTFF of a failing decoder
grows sublinearly (typically logarithmically) in this limit.

C. Efficient numerical simulations

To evaluate PD numerically by sampling, for each sample
two steps are required: First, a trajectory T of the PTIM
must be generated and, second, based on the syndromes S,
the decoder must be evaluated to compute f qm(T ,C = D(S)).
The second step depends on the decoding algorithm used and
will be commented on in the respective sections where we
study the performance of different decoders. The sampling of
PTIM trajectories is described in the following.

Since both Ei and Se belong to the Pauli group on L qubits,
and |�0〉 = |0〉 is the unique state stabilized by {σ z

i }, the PTIM
evolution can be simulated exactly within the stabilizer for-
malism with only polynomial overhead [31,33–35], as stated
by the Gottesmann-Knill theorem [15].

However, there is a more efficient method by mapping
the trajectory to a classical stochastic process derived from
the PTIM that operates on a chain of L classical bits initial-
ized in the configuration m0 = 0 (we drop the “classical” in
the following). Instead of performing error measurements Ei

with probability p, we flip every bit in every time step with
probability p/2. This results in a bit flip pattern Ẽ p on the
space-time lattice which determines the final bit configuration
mT after T time steps. We then perform stabilizer measure-
ments on the classical system just as we would on the PTIM
(only there is no collapse due to the measurement so we can
do this en bloc after generating the bit flip pattern); this yields
a pattern Sp and the corresponding measurement results Sr .
Given the data S = (Sp, Sr ) sampled in this fashion, we can
apply a given decoder D to compute the correction string
C = D(S) ∈ {0, 1}L. With the (trivial) evaluation function

f bi(Ẽ p,C) :=
{

1, C = mT

0, otherwise, (12)

214201-5



ROSER, BÜCHLER, AND LANG PHYSICAL REVIEW B 107, 214201 (2023)

we can evaluate every decoder also on the classical system.
[The superscript bi stands for “bits” to distinguish this evalua-
tion function from its quantum counterpart defined in Eq. (8)].

The crucial point, which we prove in Appendix A, is the
relation 〈〈

f qm
D

〉〉
qm = 〈〈

f bi
D

〉〉
bi, (13)

which holds for all decoders D (the subscripts to the sample
averages indicate sampling with respect to the full quantum
model and the classical analog described above, respectively).
This allows us to sample the classical process described above
to evaluate the performance of decoders instead of performing
the full quantum mechanical simulation of the PTIM. This
approach results in a considerable speedup compared to the
stabilizer formalism, which enables us to study larger systems
and/or larger samples to reduce statistical fluctuations. We
cross-checked the validity of Eq. (13) numerically on smaller
systems using a full-fledged stabilizer simulation.

III. DECODING WITH MAJORITY VOTING

A. Algorithm

We will now introduce and discuss our first decoder D.
This decoder will have the threshold p = 0 except for the
special point q = 0, and therefore will fail to decode the stored
quantum information for the PTIM. It serves as preparation
and motivation for the more sophisticated decoders in Secs. IV
and V.

Let us first focus on the special case with q = 0, where
at every time step all stabilizers are measured and projective
errors occur with probability p ∈ (0, 1). This is the usual
situation of quantum error correction. Note, however, that our
projective error measurements with probability p effectively
result in qubit flips with probability p/2. This is in contrast to
conventional treatments where errors are modeled by unitary
operators, in which case the probability for an error to occur
and for a qubit to flip are identical.

If we exclude the exponentially unlikely situation where
in a single time step an error occurs on every qubit, it is
straightforward to check that, starting from |�0〉 = |0〉, every
round of stabilizer measurements projects the system into
a product state of the form |�(t )〉 = |mt 〉. In this situation,
the PTIM evolution becomes basically classical and guessing
the qubit flips from the stabilizer measurements Sr is equiv-
alent to decoding the classical repetition code: To compute
the final correction string C that recovers the initial state,
Ĉ|�(T )〉 = |C ⊕ mT 〉 = |0〉, we split C = ⊕T

t=1Ct into cor-
rection strings Ct that correct the qubit flips that occurred in
time step t . To compute Ct from the accumulated syndrome
data Sr = (Sr

t )t=0,...,T , we compare the syndrome measure-
ments Sr

t−1 at time t − 1 with the ones Sr
t in the subsequent

time step. Since the syndromes are complete (all stabilizers
were measured, q = 0), this allows for only two consistent
flip patterns Ct ∈ {Ct,1,Ct,2} with Ct,2 = Ct,1 (the bar denotes
the complementary bit string). The premise of the majority
voting decoder (MVD) is to choose the one with fewer flips,
as this is the more likely one for p/2 < 1/2. This choice is
unique for chains of odd length L; for consistency, we will
stick to odd L throughout the paper. It is well-known that this

decoder is perfect, i.e., it succeeds for all p/2 < 1/2 almost
surely in the limit L → ∞, which is therefore also true for the
PTIM evolution at q = 0. Note that in contrast to conventional
error models, where p denotes the probability for (unitary)
qubit flips, the decoding transition in the PTIM appears at
p = 1, i.e., when all qubits undergo an error measurement
within each time step. Our goal is now to generalize the MVD
decoder to the case where some stabilizers fail to be measured
with probability q > 0.

The basic procedure remains unchanged, i.e., we decom-
pose C = ⊕T

t=1Ct into corrections per time step and try to
derive Ct from the syndrome measurements. Because of q >

0, typically there will be gaps in the syndromes Sr
t where no

measurement was performed. This lack of knowledge enlarges
the set of consistent flip patterns Ct ∈ {Ct,1,Ct,2,Ct,3, . . . }.
To construct this list efficiently, we define a “tentative” qubit
configuration m̃t−1 ≡ ⊕t−1

τ=1Cτ ⊕ 0. By construction, m̃t−1 is
consistent with the (partial) syndrome Sr

t−1. To construct Ct ,
we list all consistent flip patterns Ct,k such that m̃t,k ≡ Ct,k ⊕
m̃t−1 is consistent with the partial syndromes Sr

t . Following
the rationale of majority voting, we then choose for Ct the
Ct,k with the fewest flips. This defines our decoding algorithm
D : S �→ C = D(S), which we will analyze in the next subsec-
tion.

B. Results

To assess the performance of majority voting, we computed
the MTFF TMV as a function of the system size L for fixed
parameters p and q. The results are shown in Fig. 4(a) for
the representative parameters p = 0.2 = q and L up to 501.
These results demonstrate that the MTFF does not scale su-
perpolynomially with the system size L, i.e., the decoding
algorithm does not decode the system efficiently. We checked
that varying the parameters p and q does not alter the result
qualitatively, i.e., there seems to be no parameter regime with
q > 0 where TMV grows superpolynomially with L.

This behavior can be made plausible with a single tra-
jectory that highlights a crucial weakness of the MVD; see
Fig. 4(b). The sketched trajectory has only a single error
measurement E9 between t = 0 and t = 1; furthermore, there
is a single missing stabilizer measurement at t = 1 that creates
a two-qubit segment connected by a syndrome measurement
Se = −1. Consequently, the decoder can only toss a coin to
decide on the location of the error. In 50% of the cases, its
choice is incorrect, so the internal model m̃1 deviates from
the true state |�(t = 1)〉 = |m1〉 on this segment. In the next
steps, no errors occur but there is a missing stabilizer in
each time step. Because the majority voting is restricted to
segments of contiguous stabilizer measurements, the decoder
is forced to enlarge the discrepancy between m̃t and mt until
at t = 4 the internal model is wrong everywhere. In total,
the decoder has to assume eight flips for its internal model
{m̃t } whereas in reality a single error occurred. Because of its
time-local mode of operation to determine Ct , the MVD has
no chance to find the true error pattern deterministically.

There is also a more abstract perspective on this. Re-
member that the decoder does work for q = 0, i.e., for the
conventional repetition code. For this, it is crucial that major-
ity voting is applied to an extensive set of qubits (namely, L).
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FIG. 4. Majority voting decoder (MVD). (a) Mean time to first failure (MTFF) TMV for the MVD for p = q = 0.2 averaged over 5000
trajectories as a function of the chain length L (odd L). Inset: Decoding probability PMV(p, q; L, T ) for the same p and q and L = 201 averaged
over 10 000 trajectories as a function of the decoding time T . The vertical red line indicates the MTFF TMV(p, q; L) for these parameters. These
results demonstrate that the MTFF does not grow exponentially with the system size. We checked that these results are representative and do
not change for other parameters p and q. (b) Example trajectory that illustrates a crucial weakness of the MVD. The tentative bit pattern {m̃t }
constructed by the decoder is indicated by circles; the true state of the system {mt } by bullets. Note that this is an example where the state
|�(t )〉 has product form |mt 〉 for all times t . The decoding result is Ĉ|�(T = 4)〉 = |1〉 �= |0〉 = |�0〉, so f qm(T ,C = D(S)) = 0.

For q > 0, the probability to find a segment of l contiguous
stabilizer measurements in a single time step is q2(1 − q)l ; the
average length of such a cluster is therefore l = (1 − q)/q.
The MVD, as defined above, performs majority voting on
each of these segments separately—it cannot keep track of
correlations between the segments. Because l is independent
of L and finite for q > 0, these l-local decisions do not im-
prove for L → ∞.

Combining these findings, the crucial flaw of the MVD
seems to be that it composes the final correction string C out
of stepwise corrections Ct that are the result of a time-local
minimization procedure. Especially, the decoder does not take
into account the full syndrome data S globally but slices it into
independent pieces; it operates, in a sense, one-dimensional
and ignores the two-dimensional space-time geometry that
comes with S. Thus, it cannot exploit correlations between
disjoint segments of contiguous syndrome measurements at
any given time step. We will overcome this issue with the
much more sophisticated MWPM decoder in the next section.

IV. DECODING WITH MINIMUM WEIGHT
PERFECT MATCHING

A. Algorithm

The MWPM decoder takes into account the full two-
dimensional space-time geometry and derives from the
syndromes S a possible error pattern E p with a globally
minimal number of errors. This error pattern is then used to
decide on one of the two decoding strings {C,C}. Our ap-
proach is motivated by the use of MWPM for the decoding of
two-dimensional surface codes [49,50], which is conceptually
similar to the decoding of a noisy, one-dimensional quantum
repetition code [21] in that nodes on a two-dimensional lattice
must be matched pairwise.

The decoder D is defined by three steps: First, the error
syndrome is used to construct an abstract graph on which
then, in the second step, MWPM is performed. Finally, the

found MWPM is used to select one of the two decoding strings
{C,C}. We now describe these three steps in detail, following
the illustrations in Fig. 5; a motivation for this algorithm is
given below.

(1) In the first step, we construct from the space-time pat-
tern of syndromes S in Fig. 5(a) the reduced dual space-time
lattice (graph) in Fig. 5(b), augmented by dummy nodes and
dummy edges. To this end, we keep all horizontal edges of the
lattice [dashed gray in (a)], but only the vertical edges with-
out syndrome measurement [dashed black in (a)]. We then
highlight all nodes of the graph in (b) where a blue vertical
line with Si = −1 in (a) terminates. To allow for matchings to
the boundaries, we add gray dummy nodes on the endpoints
of horizontal edges. If the total number of highlighted nodes
(blue and gray) is odd, we add an additional dummy node
to the graph. We then connect all dummy nodes pairwise by
dummy edges [for the sake of clarity, we do not show these
in Fig. 5(b)]. Finally, we assign integer weights to all edges
of the graph which count the number of horizontal segments
(= qubits) traversed by these edges. In particular, all vertical
and all dummy edges have weight zero.

(2) In the second step, we compute a MWPM of the blue
and gray nodes on this graph. A perfect matching is given by
pairwise connections of all highlighted nodes along edges of
the graph. A perfect matching has minimum weight if the total
sum of weights of all used edges is minimal. Minimum weight
perfect matchings can be efficiently computed using the Blos-
som algorithm [51]; here we use an optimized implementation
by Kolmogorov, known as Blossom V [52]. The result is a
MWPM, illustrated by orange paths in Fig. 5(c), where every
horizontal edge traversed contributes 1 to the total weight. The
horizontal edges of the MWPM are the positions where the
decoder assumes that a qubit was flipped.

(3) In the third and final step, we use the MWPM to de-
cide on the correction string C = (c1, . . . , cL ) = D(S). We set
ci = 0 if the qubit at position i crosses an even number of
horizontal edges in the MWPM, and ci = 1 if it crosses an odd
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graph

(c)(b)(a)

FIG. 5. Minimum weight perfect matching (MWPM) decoder—algorithm. (a) Syndrome data of the trajectory in Fig. 3(b) on the dual
space-time lattice; this is the input of the decoder. [The panel is mostly identical to Fig. 3(c); we reproduce it here for convenience.]
(b) Construction of the reduced, dual space-time lattice (graph) as the input for the MWPM algorithm. It consists of all horizontal edges
but only the dashed vertical edges of the dual space-time lattice in (a). The endpoints of blue line segments in (a) are labeled by blue nodes.
To allow matchings to the edges, we add dummy nodes (gray) on the boundary and an additional dummy node (top) to make the total number
of nodes even. The dummy nodes are fully connected by dummy edges (not shown). All edges are weighted by their number of horizontal
segments of the dual space-time lattice (= qubits). This weighted graph allows for a perfect matching of all blue and gray nodes by construction
and is the input to the MWPM algorithm. (c) Example of a perfect matching (orange lines). The weight of each matching path is given by
the number of traversed horizontal edges (which correspond to assumed error measurements). The shown perfect matching is a MWPM as it
minimizes the total weight (= number of assumed errors).

number. In other words: the decoder assigns ci = 0 (ci = 1)
to qubit i if it assumes an even (odd) number of flips on this
qubit.

The motivation for this algorithm is that a perfect matching
on the constructed graph describes a possible error pattern
E p (if one ignores the matchings on dummy edges between
dummy nodes). This is so because the paths of the per-
fect matching in combination with the blue vertical edges
in Fig. 5(a) (where syndrome measurements Si = −1 signal
flipped adjacent qubits) form the closed boundaries of space-
time regions where the qubits might have been flipped. A
given perfect matching therefore presupposes projective er-
rors on all its horizontal segments of the space-time lattice.
In particular, the total weight of the matching (= sum of all
horizontal segments) corresponds to the number of required
errors. Computing an error pattern E p that (1) explains the
observed syndrome S and (2) minimizes the total number
of errors is therefore equivalent to finding a MWPM on the
reduced space-time lattice. The matchings to dummy nodes on
boundaries are necessary because the endpoint of error strings
that terminate on boundaries is not signaled by a syndrome
measurement.

Note that this approach is very similar to the decod-
ing of topological quantum memories like the surface code
[18,19,21], where decoding boils down to matching (= fus-
ing) pairs of anyonic excitations with a minimal amount
of (unitary) errors. It is well-known that MWPM is an
efficient method to achieve this [49,50]. Indeed, the situa-
tion here can be interpreted as the decoding problem of an
anisotropic version of the surface code with peculiar boundary
conditions [21].

B. Results

We start our analysis by computing the decoding prob-
ability PMWPM for L = T = 51 as a function of p and q,
Fig. 6(a). Note that it is reasonable to scale T ∼ L when
studying the MWPM decoder; for simplicity, we set T = L

in the following. The results demonstrate that there is a finite
region in parameter space where decoding succeeds. As ex-
pected, this region is fully contained in the regime where the
PTIM is in the entangling phase (cf. Fig. 2); it is consider-
ably smaller though. There is a clear transition between the
region where decoding succeeds (PMWPM ≈ 1) and the region
where it fails (PMWPM ≈ 0.5). We checked that this transition
becomes sharper for larger systems (it also shifts slightly; we
discuss this in more detail below). Let us comment on a few
peculiarities. First, on the q axis (p = 0) the decoder always
succeeds because there are no errors to be corrected. This
intuition is confirmed by our results. On the p axis (q = 0),
one would expect the decoder to be successful as well because
MWPM is equivalent to global majority voting for q = 0,
i.e., when every stabilizer is measured (and we know that the
MVD succeeds in this special case for all p/2 < 1/2). How-
ever, our results suggest that the decoder fails for p � 0.7.
We confirmed that this is a (strong) finite-size effect which
can even be described analytically (see Appendix D). For
L = T → ∞, the decoding region will indeed grow on the
p axis until it reaches p = 1.0.

To assess the finite-size scaling on the diagonal, we com-
puted PMWPM as a function of p = q for increasing system
sizes L = T , see Fig. 6(b). We find a clear crossing with
almost negligible finite-size shift (in contrast to q = 0) that
becomes sharper in the limit L = T → ∞. We conclude
that the decoding phase is indeed a proper subset of the
entangling phase and pinpoint the decoding threshold at
pMWPM

thr = qMWPM
thr ≈ 0.324. Note that on the diagonal the en-

tanglement transition takes place at pc = qc = 0.5. In the
intermediary regime pthr < p = q < pc we face the peculiar
situation that the encoded amplitudes of the logical qubit sur-
vive the monitoring by the environment but are inaccessible
using only the syndrome data S and MWPM decoding.

Now that we know the phase diagram of the MWPM de-
coder, we can also evaluate the MTFF TMWPM. The decoding
transition is also visible in this quantity. To demonstrate this,
we pick three values for p on the diagonal p = q: p1 = 0.280
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FIG. 6. Minimum weight perfect matching (MWPM) decoder—results. (a) Decoding probability PMWPM of the MWPM decoder as a
function of p, q ∈ [0, 1] for L = T = 51, computed from a sample of 20 000 trajectories for every datapoint. For comparison, we reproduce
the percolation thresholds from Fig. 2 (dotted: numerical for finite-size system; dashed: exact for L → ∞); they indicate the entanglement
transition of the PTIM. The decoding phase is a proper subset of the entangling phase of the PTIM. (b) Decoding probability PMWPM along
the diagonal p = q in (a) for increasing system sizes T = L = 11, . . . , 51 and sampled over 50 000 trajectories for every datapoint. We find
a crossing with negligible finite-size shift that gets sharper for L = T → ∞ (inset), indicating an error threshold pMWPM

thr = qMWPM
thr ≈ 0.324

away from the entanglement transition at pc = qc ≈ 0.5. The error bars in the inset represent the standard deviation of the samples. (c) Mean
time to first failure (MTFF) TMWPM as a function of system size L in the decoding phase (p1 = 0.280), at the error threshold (p2 = 0.324), and
outside the decoding phase but in the entangling phase (p3 = 0.400), sampled over 5 000 trajectories for every datapoint. The MTFF grows
exponentially with the system size in the decoding phase [cf. Fig. 4(a)].

in the decoding phase, p2 = 0.324 on the phase boundary,
and p3 = 0.400 outside the decoding phase (but in the en-
tangling phase). In Fig. 6(c), we plot the MTFF TMWPM as
a function of system size L = T . It shows the expected ex-
ponential behavior in the decoding phase, while it seems to
grow linearly (TMWPM ∼ L) at criticality and subalgebraically
[TMWPM ∼ log(L)] away from the decoding phase.

V. MAXIMUM LIKELIHOOD DECODING

So far, we have demonstrated the existence of a nontriv-
ial decoding threshold for our model, i.e., a transition at a
critical error rate up to which it is possible to retrieve the
stored quantum information knowing only the syndrome S.
While the entanglement transition provides an upper bound
on this critical error rate, the MWPM decoder presented in
the previous section provides a lower bound on this thresh-
old. Decoders that achieve this threshold are MLDs. These
decoders are defined as the ones that, given the syndrome data
S, choose the correction string that is most likely correct. This
is done by calculating probabilities for classes of trajectories
that yield the same syndrome data S and final state Ĉ|�0〉. We
define the probability of such a class as

Pqm
f qm (C|S) :=

∑
T |S

Pqm(T ) f qm(T ,C), (14)

where T |S restricts the summation to trajectories with the
syndrome S. The output of the MLD is the correction string
C that maximizes Eq. (14) for a given syndrome S. Clearly,
the MLD provides the highest possible decoding probability

PMLD(p, q; L, T ) = sup
D

PD(p, q; L, T ), (15)

and therefore is the best possible decoder. While in many
cases it is impossible (or unknown how) to implement a
maximum likelihood decoder efficiently for a given error

correction code, below we demonstrate the efficient imple-
mentation of such a decoder for the PTIM.

Performing the sum in Eq. (14) is highly nontrivial because
it is constrained by the syndrome and typically contains an
exponentially large number of terms. Recently, an efficient
implementation of an MLD for the (perfect) surface code has
been demonstrated by Bravyi et al. [26] using a clever resum-
mation technique that is based on an equivalent formulation in
terms of a quadratic fermion theory. Here we implement the
maximum likelihood decoding for our system in two steps:

(1) We introduce a classical stochastic process with ran-
dom bit flips and stabilizer measurements, and prove that
defining the MLD based on the decoding probability Pbi

f bi (C|S)
for this classical model is equivalent to implementing the
MLD of its quantum mechanical pedant.

(2) The decoding probability Pbi
f bi (C|S) for this classical

model is then efficiently evaluated using the resummation
techniques developed by Bravyi et al. [26].

The classical stochastic process derived from the PTIM has
already been introduced in Sec. II C, and is reviewed here
again. It describes a chain of L classical bits with all bits
initialized in state 0. The dynamics is governed by random
bit flips with probability p/2, resulting in a bit flip pattern Ẽ p

on the space-time lattice. In every time step, we flip the bits
according to Ẽ p and then perform stabilizer measurements
with probability 1 − q, which yields the stabilizer pattern Sp.
The input of the decoder is the combination of the stabilizer
pattern and the corresponding results S = (Sp, Sr ), just as for
the quantum system.

The crucial point is that there is a straightforward way to
adapt Vargo’s algorithm to the classical variant of our system.
We then use this algorithm to compute the total probability
Pbi

f bi (C|S) of a fixed correction string C by summing over all
consistent bit patterns. This results in an algorithm with a
runtime that scales polynomially [like O(L4)] with system size
L = T , and depends parametrically on the error probability p
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FIG. 7. Maximum likelihood decoder (MLD). (a) Decoding probability PML of the ML decoder as a function of p, q ∈ [0, 1] for
L = T = 41, computed from a sample of 20 000 trajectories for every datapoint. For comparison, we reproduce the percolation thresholds
from Fig. 2 (dotted: numerical for finite-size system; dashed: exact for L → ∞); they indicate the entanglement transition of the PTIM. As
for the MWPM decoder, the decoding phase is a proper subset of the entangling phase of the PTIM. We omit data for p � 0.05 because in
this regime the MLD algorithm becomes numerically unstable and the results are not trustworthy. (b) Decoding probability PMWPM along the
diagonal p = q in (a) for increasing system sizes T = L = 11, . . . , 51 and sampled over 50 000 trajectories for every datapoint. Again we find
a crossing with negligible finite-size shift that gets sharper for L = T → ∞ (inset), indicating an error threshold pML

thr = qML
thr ≈ 0.336 away

from the entanglement transition at pc = qc ≈ 0.5. The error bars in the inset represent the standard deviation of the samples.

and syndrome failure rate q. The decoder Dbi
ML(S) then returns

the correction string that maximizes Pbi
f bi (C|S).

At this point, we have a working MLD for the classi-
cal system. Due to the equivalence between the classical
and the quantum trajectories [recall Eq. (13)], one can
prove rigorously that this algorithm satisfies the condi-
tions for a MLD also for the projective error model, i.e.,
〈〈 f qm

Dqm
ML

〉〉qm = 〈〈 f qm
Dbi

ML
〉〉qm. This means that the MLD of the

classical system Dbi
ML performs just as well as the MLD of the

quantum model Dqm
ML when applied on quantum trajectories;

hence we will just refer to the classical decoder Dqm
ML as MLD

in the following. As the proof is rather lengthy and quite
technical, we defer it to Appendix B.

A. Results

As for the MWPM decoder, we compute the decod-
ing probability PML for the ML decoder as a function of
p, q ∈ [0, 1] for a square space-time lattice L = T = 41, see
Fig. 7(a). Note that the ML algorithm is computationally more
expensive than the MWPM algorithm, which is why we stick
to smaller systems for reliable statistics. The results are very
similar to MWPM decoding. Most importantly, the decoding
phase still seems to be a proper subset of the PTIM entangling
phase. Contrary to the MWPM decoder, we encounter numer-
ical instabilities for very low error rates p � 0.05 where the
results become erratic and seemingly random. This instability
is a consequence of the very small probabilities of specific
error patterns and has already been noted in Ref. [26]. We
evade this technical issue by omitting the unreliable data in
Fig. 7(a), as we are mainly interested in the phase boundary
anyway.

To check for finite-size effects, we plot PML on the diagonal
p = q as a function of the system size L = T = 11, . . . , 51,
Fig. 7(b). As for the MWPM decoder, there is a clear crossing
with only a small finite-size shift (inset); the transition gets
sharper for larger systems and indicates an error threshold
pML

thr = qML
thr ≈ 0.336, slightly larger than the MWPM thresh-

old pMWPM
thr ≈ 0.324. This difference is small but nonetheless

shows that the ML decoder performs slightly better than the
MWPM decoder, as expected. However, these findings also
show that the MWPM decoder is already a near-optimal de-
coder and cannot be improved significantly. The rather small
improvement of ML over MWPM decoding is in agreement
with previous results for surface codes [26,50].

VI. SUMMARY

In this paper, we studied the error correction capabilities
of the PTIM, a stochastic model of two competing classes
of projective measurements that is characterized by an entan-
glement transition. We interpret the competing measurements
as stabilizer measurements of the quantum repetition code
and error measurements by the environment, respectively.
In the entangling phase of the PTIM, the system acts as
a quantum memory that preserves the amplitudes of a sin-
gle logical qubits from being accessed by the environment.
Our goal was to study methods for retrieving these ampli-
tudes without having access to the measurements by the
environment.

In a first attempt, we generalized the MVD—which is
known to work for (quantum) repetition codes—to our set-
ting. Numerical results suggested that this approach fails for
generic parameters of the PTIM. We provided an intuition
for this failure and used it as a starting point to construct
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our second decoding algorithm based on MWPM. This de-
coder makes use of the full syndrome data and numerics
revealed that it successfully retrieves the encoded amplitudes
for a nontrivial range of parameters which, however, does
not exhaust the complete entangling phase of the PTIM. This
result suggested the existence of a parameter regime where
quantum amplitudes cannot be accessed by the environment
but, at the same time, remain inaccessible without having full
access to the state of the system. To assess this hypothesis
rigorously, we introduced a third decoder—the MLD—and
showed that it improves only slightly on MWPM. Because
the MLD is the optimal decoder for our system, we concluded
that there is indeed an intermediary regime where the encoded
amplitudes are neither accessible to the environment (through
error measurement) nor to the observer (through syndrome
measurements). This result also shows that it is impossible
to pinpoint the entanglement transition by measuring the syn-
drome data alone. However, from a practical point of view,
the MWPM decoder seems to be the better choice because it
is already a near-optimal and computationally less expensive
than the MLD.
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APPENDIX A: CLASSICAL SIMULATION OF THE
QUANTUM SYSTEM

In the main text, we used the quantity PD(p, q; L, T ) to
evaluate the performance of decoders. Here we intend to
simulate realistic quantum systems to test our decoders and
evaluate the decoding probability Pqm

D (p, q; L, T ) = 〈〈 f qm
D 〉〉,

which is a functional of the decoder D. In the following, we
will prove that 〈〈 f qm

D 〉〉qm = 〈〈 f bi
D 〉〉bi, where we also distin-

guish between the sampling of a quantum and a classical
system. This allows us to evaluate the performance of a
decoder D on the quantum system by simulating classical
systems with bits.

Before we start the proof, we remind our readers that any
quantum system is defined by the pattern of error measure-
ments E p, the pattern of stabilizer measurements Sp, and the
corresponding measurement results Er and Sr . However, in
our use case the results of the error measurements are not
important, so we will drop them in our calculations. On the
other hand, a classical trajectory of bits is fully determined
by the pattern of bit flips Ẽ p but there still exists a pattern of
stabilizer measurements Sp and the corresponding results Sr .
To facilitate our calculations, we want to introduce the number
of measurements in a pattern which we denote as |Sp|, |E p|,
and |Ẽ p|. Furthermore, we introduce the concept of reduced
measurement patterns E p

red and Sp
red, which are subsets of the

original patterns but only include the measurements without a
predetermined measurement result. For example, measuring
a stabilizer twice in a row will not change the result, so
the second measurement would not be part of the reduced
pattern.

For any system, the sample average is〈〈
f α
D

〉〉
α

=
∑

T α∈{T α}
Pα (T α ) f α (T α; D(S)), (A1)

where T α indicates a trajectory in the system α and {T α} is
the set of all possible trajectories. Pα (T α ) is the probability
of T α to occur in the system α and f α denotes the evaluation
function for D in α, where we make clear that the decoder
D(S) is a function which depends only on the stabilizers S
which are part of the trajectory.

Now focus on the quantum system. The probability of a
single trajectory T qm occurring is

Pqm(T qm) := p|E p|(1 − p)LT −|E p|︸ ︷︷ ︸
Pqm(E p)

q(L−1)T −|Sp|(1 − q)|S
p|︸ ︷︷ ︸

Pqm(Sp)

×
(

1

2

)|Sp
red|

︸ ︷︷ ︸
Pqm(Sr |E p,Sp)

, (A2)

with the number of stabilizer and error measurements |Sp| and
|E p|. We can insert this for the sample average:〈〈

f qm
D

〉〉 =
∑

T qm∈{T qm}
Pqm(T qm) f qm(T qm; D(S)) (A3)

=
∑
E p

Pqm(E p)
∑

Sp

Pqm(Sp)
∑

Sr
|E p,Sp

Pqm(Sr |E p, Sp)

× f qm(T qm; D(S)). (A4)

Here we sample the trajectories by first sampling over all error
patterns, then sampling over all stabilizer patterns, and lastly
sampling over the different possible results of the stabilizer
measurements. (The results of the error measurements have
no effect on any of our observations and can thus be ignored.)
We can do the same for a classical system of bits. Here the
probability of a classical trajectory T bi is

Pbi(T bi) =
( p

2

)|Ẽ p|(
1 − p

2

)LT −|Ẽ p|
︸ ︷︷ ︸

Pbi(Ẽ p)

× q(L−1)T −|Sp|(1 − q)|S
p|︸ ︷︷ ︸

Pbi (Sp)

. (A5)

While it is possible to sample bit flip patterns Ẽ p with the
probability p/2 on every site in every time step, it will prove
useful to use a different approach. The idea is that bit flips can
also be sampled by first sampling a pattern E p of potential
bit flips using the probability p, and successively sampling Ẽ p

from E p using the probability 1/2. To do so, we add the pattern
E p to the trajectory T bi and define the following adjusted
probability:

Pbi(T bi; E p) := p|E p|(1 − p)LT −|E p|︸ ︷︷ ︸
Pbi (E p)

q(L−1)T −|Sp|(1 − q)|S
p|︸ ︷︷ ︸

Pbi (Sp)

×
(

1

2

)|E p|

︸ ︷︷ ︸
Pbi (Ẽ p|E p)

. (A6)
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This probability is related with Eq. (A5) via

Pbi(T bi) =
∑
E p

|T bi

Pbi(T bi; E p). (A7)

Here we take the sum over all patterns E p which are consistent
with the classical trajectory T bi. This relation is proven in
Appendix C.

The new quantity defined in Eq. (A6) allows us to write the
classical sampling average:

〈〈
f bi
D

〉〉
bi =

∑
T bi

Pbi(T bi ) f bi(T bi; D(S)) (A8)

=
∑

Sp

∑
Ẽ p

∑
E p

|T bi

Pbi(T bi; E p) f bi(T bi; D(S)) (A9)

=
∑
E p

Pbi(E p)
∑

Sp

Pbi(Sp) (A10)

×
∑

Ẽ p∈E p

Pbi(Ẽ p|E p) f bi(T bi; D(S)). (A11)

Here we used the fact that
∑

Ẽ p

∑
E p

|Ẽ p
· · · = ∑

E p

∑
Ẽ p

|E p
· · ·

and wrote
∑

E p

|T bi
· · · = ∑

E p
|Ẽ p

· · · and
∑

Ẽ p
|E p

· · · =∑
Ẽ p∈E p · · · .
Comparing the quantum system in Eq. (A4) and the classi-

cal system in Eq. (A11), we see that the samplings only differ
in the last sum, where in the quantum case the sampling goes
over the possible stabilizer results and in the classical case the
sampling goes over the possible bit flips. In the following, we
will show that the following equation:

∑
Sr

|E p,Sp

Pqm(Sr |E p, Sp) f qm(T qm; D(S))

=
∑

Ẽ p∈E p

Pbi(Ẽ p|E p) f bi(T bi; D(S)) (A12)

holds. As a first step, we insert the probabilities defined
above:

∑
Sr

|E p,Sp

(
1

2

)|Sp
red|

f qm(T qm; D(S))

=
∑

Ẽ p∈E p

(
1

2

)|E p|
f bi(T bi; D(S)). (A13)

First, we focus on the classical right-hand side and make use
of the fact that flipping a bit twice with a 50 % probability
yields the same sampling as flipping it once with the same
probability. This means that we can sample Ẽ p just on the
reduced error pattern E p

red without changing the result. On the
quantum mechanical left-hand side of the equation, we can
see that the sampling over all possible stabilizer measurement
results is in reality just a sampling over the reduced stabi-
lizer results. All other results are determined by that. Thus,

we find

∑
Sr

red |E p,Sp

(
1

2

)|Sp
red|

f qm(T qm; D(S))

=
∑

Ẽ p∈E p
red

(
1

2

)|E p
red|

f bi(T bi; D(S)). (A14)

We know that the patterns E p and Sp determine whether or not
the original cluster survives in the quantum system. Therefore,
we can consider two cases now.

(1) Cluster survives. If the sampling of E p and Sp is
such that the original Bell cluster in the quantum mechani-
cal system survives, it is |Sp

red| = |E p
red|. Both sums have an

equal number of terms and we can identify them with each
other in pairs, as we will explain now. First note that if the
original cluster survives, the evaluation function f qm either
returns value 1 or 0. Consider one term on the left side of
Eq. (A14), which corresponds to a single quantum mechanical
trajectory [see Fig. 8(a)]. On the plaquettes of L on which
the original cluster lives, we can easily determine the spin
orientations as they are polarized in z direction. This is the
area marked gray in Fig. 8(b). As we find the final state |ψf〉 of
the trajectory, this process already determines the value of the
evaluation function f qm(T qm; D(S)). Note that the trajectory
on the gray plaquettes in Fig. 8(b) has classical characteristics.
To associate the quantum trajectory with a classical trajectory,
the spin orientations on gray plaquettes can be artificially
backtracked in time [without crossing error measurements,
see Fig. 8(c)]. Any missing plaquettes can be eliminated by
deleting all trivial error measurements E p\E p

red from L. This
allows us to backtrack those plaquettes too and assign every
position in L with a spin orientation in the z direction (which
is not the real quantum trajectory). However, it is clear that
this spin configuration can be considered as a valid trajectory
on classical bits and be found as one term on the right side
of Eq. (A14), which obviously shares the same value of the
evaluation function f qm(T qm; D(S)) = f bi(T bi; D(S)). This
procedure allows us to determine a corresponding classical
trajectory for every quantum trajectory and thus pair up terms
on both sides of Eq. (A14) which share the same value. Thus,
Eq. (A14) holds.

(1) Cluster does not survive. If the sampling of E p and
Sp is such that the original Bell cluster in the quantum me-
chanical system does not survive, we already know that [for
any reasonable decoder D(S)] f qm(T qm, D(S)) = 1/2. On the
other hand, it is |Sp

red| = |E p
red| − 1. We insert those relations

into Eq. (A14) and find

∑
Sr

red |E p,Sp

(
1

2

)|Sp
red| 1

2
=

∑
Ẽ p∈E p

red

(
1

2

)|Sp
red+1|

f bi(T bi; D(S)).

(A15)

However, there are twice as many classical trajectories than
there are quantum trajectories and half of them are evaluated
as f bi(T bi; D(S)) = 1 (for the other half of the trajectories,
the evaluation function vanishes). Therefore, also in this case
Eq. (A14) holds.
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(a) (b) (c) (d)
t

FIG. 8. Visual guide to identify terms in Eq. (A14) if the original Bell cluster survives in the trajectory. (a) Here we show a grid L with
the measurements of a quantum mechanical trajectory. The colors are defined as in Fig. 3. (b) Wherever the original product state lives (gray
plaquettes), squares can be associated with a spin orientation (we indicate them with arrows). (c) By backtracking the spin orientations in
time, more plaquettes of L can be associated with a spin orientation (which does not correspond to the quantum trajectory). (d) All remaining
plaquettes can be backtracked by removing all E p\E p

red from L. The associated configuration of spins on L can be identified with a classical
trajectory in Eq. (A14).

This proves, that 〈〈 f qm
D 〉〉qm = 〈〈 f bi

D 〉〉bi independent on the
decoder D. As a consequence the performance of any decoder
D on the quantum system, can be evaluated on classical sys-
tems.

APPENDIX B: PROOF OF THE MAXIMUM
LIKELIHOOD DECODER

We will prove that the MLD introduced in Sec. V, for
which we assumed the system to be entirely classical with bit
flips instead of error measurements, deserves its name also
in the quantum mechanical system. Thus we will prove that
the decoder yields the most likely quantum mechanical spin
configuration and therefore gives us the best probability of
decoding the system that can be achieved.

1. Some thoughts in advance

Consider two discrete variables A and B, a function P(B) �
0∀B and a function f (A; B). Then we can find an upper bound
to the following supremum:

sup
A

[∑
B

P(B) f (A; B)

]
�

∑
B

P(B) sup
A

[ f (A; B)]. (B1)

Here we consider the sum over all B and find the supremum
out of all values of A.

However, if we now consider A(B) to be a function out of
the set of all functions that take the values B as input, we can
actually reach the upper bound:

sup
A

[∑
B

P(B) f (A(B); B)

]
=

∑
B

P(B) sup
A

[ f (A(B); B)].

(B2)

This is due to the fact that we can construct a function A(B)
that for every value of B maximizes the function f (no matter
the form of f ). We will use this later.

2. The proof

In general, we evaluate a decoder D(S) in a system α via
the function

Pα
D (p, q; L, T ) = 〈〈

f α
D

〉〉
α
, (B3)

which is the average value of the evaluation function f α for
many trajectories T α . We can express this value by summing
over all possible trajectories {T α} with the probability Pα (T α )
of a single trajectory occurring:〈〈

f α
D

〉〉
α

=
∑

T α∈{T α}
Pα (T α ) f α (T α; D(S)). (B4)

In the following, we will show that a MLD as defined in
using Eq. (14) maximizes the sample average 〈〈 f α

D 〉〉:

sup
D

[〈〈
f α
D

〉〉
α

] = sup
D

⎡
⎣ ∑

T α∈{T α}
Pα (T α ) f α (T α; D(S))

⎤
⎦. (B5)

It is important to note that here we consider all possible de-
coders of the form D(S) which take stabilizer measurements S
as an input and return a correction string. Now we realize that
the trajectories T α can be grouped into equivalence classes
[T ] = S(T α ) via their respective stabilizers S. This allows us
to rewrite the sum by first considering all possible stabilizers
S and for each one of them summing over all trajectories:

= sup
D

[∑
S

∑
T α∈S

Pα (T α ) f α (T α; D(S))

]
. (B6)

In the following, we use Eq. (B2) to take the supremum
into the outer sum. We can do this because we just require the
decoder D to be any function that takes stabilizers S as input
and returns correction strings. Thus, we find

=
∑

S

sup
D

[ ∑
T α∈S

Pα (T α ) f α (T α; D(S))

]
.

As the decoder D(S) is just a function that returns a correction
string C depending on the input S and we just fixed S, we can
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now just write the supremum as

=
∑

S

sup
C

[ ∑
T α∈S

Pα (T α ) f α (T α;C)

]
.

We can now consider our definition of a MLD in Eq. (14) and
rewrite as follows: For a given S, choose the correction string
Ci such that

Pα
f α (Ci|S)P(Sp) =

∑
T α∈S

Pα (T α ) f α (T α;Ci ) (B7)

is maximized. Here the sum does only consider trajectories
T α ∈ S. We can thus use the MLD Dα

ML(S) to finalize our
calculation:

sup
D

[〈〈
f α
D

〉〉
α

] =
∑

S

∑
T α∈S

Pα (T α ) f α
(
T α;Dα

ML(S )
)

= 〈〈
f α
Dα

ML

〉〉
α
. (B8)

From Appendix A, we know that 〈〈 f bi
D 〉〉bi = 〈〈 f qm

D 〉〉qm. Thus,
we find the following connection between the classical and the
quantum MLD. It is

sup
D

[〈〈
f qm
D

〉〉
qm

] = 〈〈
f qm
Dqm

ML

〉〉
qm (B9)

and

sup
D

[〈〈
f bi
D

〉〉
bi

] = 〈〈
f bi
Dbi

ML

〉〉
bi. (B10)

Using Appendix A, we find〈〈
f qm
Dqm

ML

〉〉
qm = sup

D

[〈〈
f qm
D

〉〉
qm

]
(B11)

= sup
D

[〈〈
f bi
D

〉〉
bi

]
(B12)

= 〈〈
f bi
Dbi

ML

〉〉
bi (B13)

= 〈〈
f qm
Dbi

ML

〉〉
qm. (B14)

This proves that the classical MLD yields the exact same
results as the quantum mechanical MLD. �

APPENDIX C: PROOF OF THE SAMPLING IN EQ. (A6)

Here we show a short proof for the sampling discussed in
Eq. (A6). We do so by inserting Eq. (A6) in Eq. (A7) to obtain
Eq. (A5).

Consider the term
1

Pbi(Sp)

∑
E p

|T bi

Pbi(T bi; E p), (C1)

where we take the sum over all error patterns E p that contain
the bit flip pattern Ẽ p which is part of T bi. Inserting Eq. (A6)
yields

=
∑
E p

|T bi

p|E p|(1 − p)LT −|E p|
(

1

2

)|E p|
(C2)

=
∑
E p

|T bi

( p

2

)|E p|
(1 − p)LT −|E p| (C3)

=
( p

2

)|Ẽ p|
(1 − p)LT −|Ẽ p| ∑

E p

|T bi

(
p

2(1 − p)

)|E p|−|Ẽ p|
. (C4)

Now consider the summation over all possible patterns E p

consistent with the trajectory T bi. This is equivalent to a sum-
mation over all virtual patterns E p

v := E p \ Ẽ p. This pattern
is constructed such that 0 � |E p

v | = |E p| − |Ẽ p| � LT − |Ẽ p|
and allows us to rewrite the sampling as

=
( p

2

)|Ẽ p|
(1 − p)LT −|Ẽ p| ∑

E p
v

(
p

2(1 − p)

)|E p
v |

. (C5)

It becomes clear now that sampling over all possible virtual
patterns E p

v is equivalent to choosing all possible subsets of a
set with LT − |Ẽ p| elements. This can be formulated as

=
( p

2

)|Ẽ p|
(1 − p)LT −|Ẽ p|

×
LT −|Ẽ p|∑

k=0

(
LT − |Ẽ p|

k

)(
p

2(1 − p)

)k

(C6)

=
( p

2

)LT
LT −|Ẽ p|∑

k=0

(
LT − |Ẽ p|

k

)
1k

(
2(1 − p)

p

)(LT −|Ẽ p|)−k

.

(C7)

Using the binomial theorem, we find

=
( p

2

)LT
(

1 + 2(1 − p)

p

)LT −|Ẽ p|
(C8)

=
( p

2

)|Ẽ p|(
1 − p

2

)LT −|Ẽ p|
(C9)

= Pbi(T bi)

Pbi(Sp)
. (C10)

This proves the relation in Eq. (A7) and thus proves that the
sampling in Eq. (A6) is correct. �

APPENDIX D: THERMODYNAMIC LIMIT OF THE MWPM
DECODER FOR q = 0

Here we want to shortly discuss the performance of the
MWPM decoder for q = 0 in the thermodynamic limit. For
this special case, analytical calculations can be made.

For q = 0, all stabilizers are measured and the lattice
produced by the MWPM decoder as shown in Fig. 5(b)
only features unconnected horizontal lines. Essentially, the
MWPM decoder is now a MVD as discussed in Sec. III.
Now if in a classical system of bits the number of flips in a
single step randomly surpasses L/2 in a time step (which has a
nonzero likelihood in finite systems), the decoder will match
the nodes falsely and fail in this time step. If this happens in
an even number of time steps, the decoder yields the correct
result after the last step, otherwise it fails. Therefore, we can
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FIG. 9. Analytical investigation of the MWPM decoder for the
case q = 0. The lines in this plot show the analytical results of the
MWPM decoder in the case q = 0. The data points are gained from
simulations with 100 000 samples.

calculate the decoding probability analytically via

PDMWPM (p, q = 0; L, T )

=
T∑

t=0,t even

(
T
t

)
(P(L, p))t (1 − P(L, p))T −t , (D1a)

P(L, p)

=
L∑

b=�L/2�

(
L
b

)( p

2

)b(
1 − p

2

)L−b
{

1
2 if b = L

2
1 else

. (D1b)

The function P(L, p) calculates the probability of more than
L/2 bits being flipped in a single time step. If exactly L/2 bits
are flipped, the MWPM decoder randomly guesses correctly
or falsely. Therefore, we multiply this probability by 1/2.

The analytical function was plotted for different system
sizes in Fig. 9. The dots in the plot represent simulation
data. They clearly fit the theory. As can be seen, the decod-
ing probability exhibits a strong finite-size effect but in the
thermodynamic limit L = T → ∞, the decoding probability
slowly approaches 1 for all p < 1.
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