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We propose a fully quantum-mechanical formalism for the temperature-gradient-induced orbital magneto-
electric effect in systems without spatial inversion symmetry, P , and time-reversal symmetry T . The effect
consists of two parts, i.e., an extrinsic part and an intrinsic part. We demonstrate that for the intrinsic part,
a correction from the orbital magnetic quadrupole moment besides the usual Kubo formula, is necessary to
avoid an unphysical divergence at zero temperature and to satisfy the Mott relation. Furthermore, we show the
classification table with the magnetic point group for the intrinsic and extrinsic effects. Finally, we analyze the
intrinsic part in a PT -symmetric model exhibiting an orbital magnetization order, i.e., a loop-current order, and
demonstrate the enhancement near Dirac points. We believe these results will contribute to the detection and
application of orbital magnetic moments beyond spin moments.
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I. INTRODUCTION

Orbital angular momentum is one of the fundamental de-
grees of freedom of electrons along with charge and spin.
Electrons bound to a nucleus form electron clouds, charac-
terized by the orbital angular momentum, such as s-wave
symmetry and p-wave symmetry. In solids, electrons are ex-
posed to the periodic potential created by the lattice of nuclei
where some electrons are not bound anymore to a particular
nucleus but can move through the lattice. These electrons
can circulate in solids generating orbital magnetic moments
(OMMs) and can even create a bulk magnetization, such as
in loop-current order. The calculation of the OMM in solids
has been a challenging theoretical problem because the an-
gular momentum depends on the position operator that is
unbounded and, thus, ill-defined in solids. This problem has
been solved in the modern theory of the orbital magnetic
moment [1–5].

The OMM is the cause of various phenomena. For
example, the valley Hall effect has been proposed and experi-
mentally observed as an analog to the spin Hall effect [6,7].
Furthermore, in orbitronics beyond spintronics, it has been
recently explored how to manipulate and transport the OMMs
[8]. Particularly, it is discussed that magnetization dynamics
important in device applications can be created by orbital
transports [9–16].

Besides the necessity of electrically manipulating mag-
netic moments to apply them in devices, there also is an
ongoing fundamental interest in it. The magnetoelectric ef-
fect (ME effect) has been energetically studied in systems
without spatial-inversion P and time-reversal symmetry T . In
the ME effect, magnetization can be induced by an electric
field, or polarization can be induced by a magnetic field,
and such cross correlations are attracting attention for their
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ability to characterize the symmetry of materials. Since its
first observation in the antiferromagnet Cr2O3 [17–19], the
ME effect has been discussed mainly for spin degrees of
freedom in multiferroics [20–24]. Magnetization can also be
induced by a current, which is called the Edelstein effect [25].
Of course, besides spin polarization, OMMs also generate
magnetization. Thus, the orbital version of the ME effect and
the Edelstein effect can be anticipated. In fact, the orbital
ME effect has been discussed in topological insulators. This
effect has two parts: Kubo terms and a Chern-Simons term
[26–30]. Especially, the Chern-Simons term has a topolog-
ical nature and yields a quantized value for the ME effect
in topological insulators. Furthermore, this term introduces
the axion coupling rewriting the Maxwell equation anew and
paving the way for the axion electrodynamics [31]. However,
the Chern-Simons term is not yet directly observed but only
indirectly [32–35].

Although the orbital ME effect in topological insulators is
diligently researched due to its topological property, the or-
bital ME effect in metals is just beginning to attract attention.
The orbital Edelstein effect in metals has been theoretically
discussed [36–42] and recently observed in strained MoS2

[43,44] and twisted bilayer graphene [45,46]. In particular,
twisted bilayer graphene has a large OMM resulting in a giant
orbital Edelstein effect. The orbital Edelstein effect is also dis-
cussed in superconductors yielding a nondissipative response
[47,48]. Furthermore, the intrinsic orbital ME effect in metals
is recently formalized using semiclassical theory [49,50] or a
fully quantum-mechanical analysis [51] in the Bloch basis.
It has been shown that the intrinsic orbital ME effect can
be used to detect PT -symmetric orbital magnets, such as an
antiferromagnetic loop current order, and it implies that the
orbital ME effect is useful for the detection of higher-order
multipoles, such as orbital magnetic quadrupole moments.
Furthermore, the orbital ME effect is recently studied in
nanoribbons of honeycomb lattices using the intra-atomic ap-
proximation [52,53].
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Besides electric fields, also temperature gradients can in-
duce magnetization. The thermal version of the spin ME effect
(spin gravito-ME effect) and the spin Edelstein effect are dis-
cussed in systems with spin-orbit coupling [54–58]. Usually,
in theoretical calculations of thermal response functions, there
are certain aspects that need special consideration. In general,
when calculating the intrinsic thermal response, the Kubo
formula alone is not sufficient; certain equilibrium contribu-
tions of magnetic multipoles need to be subtracted [58–60].
Otherwise, response functions diverge at zero temperature,
which is an unphysical behavior.

In this paper, we propose a proper calculation for the or-
bital gravito-ME response within a full quantum-mechanical
calculation. First, we show in Sec. II that the second derivative
of the current energy-density correlation function includes
the information on the orbital gravito-ME tensor. Second,
we show in Sec. III A that the intrinsic orbital gravito-ME
response needs a correction from a higher-order magnetic
multipole moment, an orbital magnetic quadrupole moment.
Third, we derive equations for the intrinsic and extrinsic
orbital gravtio-ME effects in periodic metals at finite tem-
perature in Secs. III B–III D. In addition, we show that these
equations satisfy the Mott relation, similar to the relationship
between electrical conductivity and thermoelectric conductiv-
ity, and that each two parts have no unphysical divergence
at zero temperature. Fourth, we show in Sec. IV A the clas-
sification table for these responses with the magnetic point
group and show that the intrinsic part can be used for the
detection of PT -symmetric orders. Finally, we calculate the
intrinsic part in a model of a PT -symmetric orbital magnet
with a loop-current order in Sec. IV B and demonstrate the
enhancement around Dirac points.

II. FORMALIZATION

In this section, we discuss the formalization of the orbital
magnetization linearly induced by a temperature gradient,
which we call the orbital gravito-magnetoelectric (OGME)
response in this paper. In general, it is challenging to calculate
the orbital magnetization using the Bloch basis because the
position operator is unbounded. However, the orbital ME ten-
sor is known to be contained in the current-current correlation
function and the current-density correlation function, provid-
ing a way to calculate the orbital ME tensor without using the
position operator [29,38,51]. Here, we will see that the OGME
tensor can also be extracted from a correlation function, i.e.,
the linear-response function of the current density induced by
a temperature gradient.

Before presenting the formalization, we briefly comment
on how to calculate correlation functions induced by a temper-
ature gradient. We need to consider the temperature gradient
as an external force; however, this force cannot be sim-
ply added to the microscopic Hamiltonian because it is a
statistical force. Luttinger derived a method to treat the tem-
perature gradient as a mechanical force by introducing a
gravitational potential ψ (r) [61]. He showed that the response
function induced by the gradient of the gravitational potential
reproduces the temperature gradient-induced response func-
tion. This gravitational potential is added to the unperturbed

Hamiltonian H0 as

Hgrav =
∫

dx ψ (r)H0(r), (1)

where H0(r) = {H0, δ(x − r)}/2 is a Hamiltonian density.
Here, we define {A, B} = AB + BA. We note that r is here just
a coordinate and not an operator, unlike x. In the dynamical
linear-response theory, the total current density is changed by
the gravitational potential with a factor e−iωt+δt as

Ji
q,ω = �i(q, ω)ψq. (2)

�i(q, ω) is the dynamical linear-response function of the cur-
rent density induced by the gravitational potential, which is
discussed in this paper. This correlation function can be cal-
culated by the usual Kubo formula because the gravitational
potential is just a mechanical force. Finally, we can obtain
the response function induced by the spatially varying tem-
perature by replacing βψq with −βq, where β is the inverse
temperature of the system, and βq is the external inverse
temperature including a spatial modulation.

Next, we will move on to the formalization. We will
show that the second derivative of this correlation func-
tion �i, jk (ω) = ∂q j qk �

i(0, ω) includes the information of the
OGME tensor. �i, jk (ω) is symmetric for the interchange j ↔
k. Thus, we can decompose this function using a traceless
rank-2 tensor βi j , and a totally symmetric rank-3 tensor γi jk

as

�k,i j (ω) = iε jklβil (ω) + iεiklβ jl (ω) + ωγi jk (ω), (3a)

βli(ω) = 1

3i
εi jk�

k,l j (ω), (3b)

γi jk (ω) = 1

3ω
[�i, jk (ω) + � j,ki(ω) + �k,i j (ω)]. (3c)

Here, εi jk is the completely antisymmetric tensor. Substi-
tuting Eq. (3a) into Eq. (2), we find

Ji
q,ω = −iω

(− iq jQ
Gi j
q,ω

)+ (
iq × MG

q,ω

)
i, (4a)

QGi j
q,ω = iγi jk (ω)Gk

q,ω, (4b)

MGi
q,ω = 2iβ ji(ω)Gj

q,ω, (4c)

where Gq,ω = +iqψq,ω corresponds to a temperature gra-
dient. MG

q,ω and QGi j
q,ω are a magnetization and an electric

quadrupole moment induced by the temperature gradient
Gq,ω. Thus, βi j can be interpreted as the OGME tensor, and
γi jk is a pure electric quadrupole moment induced by the
temperature gradient, which cannot be included in the OGME
tensor due to its total symmetric property. In this formalism,
the trace of the OGME tensor is not included. Our formalism
is based on the current density, and, thus, we can obtain only
terms contributing to the current density. In general, the trace
of the OGME tensor βTr, does not contribute to the current
density because Jq,ω ∝ q × βTrqψq,ω = 0. In this paper, we
will derive the static and uniform traceless OGME response
by calculating βi j .

III. DERIVATION OF THE OGME TENSOR

In this section, we give the result of the static and uni-
form OGME tensor in periodic systems at finite temperatures.
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When we take the static and uniform limits, we take q → 0
before ω → 0 because we focus on the dynamical response
[62].

A. Orbital magnetic quadrupole moment correction

When we consider the response by the gravitational force,
we should note that the current density is also changed by
the gravitational potential. The total current density under this
potential is given by

J(r) = [1 + ψ (r)]J0(r), (5)

where J0(r) is the unperturbed current density. Thus, there are
two contributions to the linear-response function induced by
the gravitational force. One contribution comes from the first
term in Eq. (5). This contribution originates from the change
of the density matrix by the gravitational force, and it is given
by the usual Kubo linear response. It brings the correlation
function between the current density and the Hamiltonian
density, which we call the current energy-density correlation
function �i

JH (q, ω). Another contribution originates from the
second term. This term is already linear in the gravitational
potential. Thus, we need to calculate the equilibrium expec-
tation value of the current density J0(r). This equilibrium
current plays an important role in thermal responses. In fact, it
is known to give an orbital (energy) magnetization correction
to the Nernst conductivity and the thermal Hall conductivity,
and it eliminates an unphysical divergence at zero temperature
[59,60] and these conductivities satisfy the Mott relation. We
will see that the equilibrium current adds a higher-order mul-
tipole correction, an orbital magnetic quadrupole moment, to
the OGME tensor, in an analogy to the thermal Hall effect.

Let us discuss the contribution from the equilibrium current
in more detail. In equilibrium, a bulk current is not allowed to
flow. However, a local current is not forbidden. In general,
a local current can be written as a local magnetization M(r)
using 〈J0(r)〉0 = ∇ × M(r), which is called a magnetization
current. Here, 〈O〉0 is an expectation value of an observable
operator O in equilibrium. This magnetization can be derived
in a thermodynamic approach [4]. In local thermodynamics,
the free-energy density F (r) with a nonuniform magnetic-
field B(r) is given by

dF (r) = −Mi
0(r)dBi(r) − Q(m)

i j (r)d[∂iB
j (r)] + · · · . (6)

This thermodynamic relation defines multipoles conjugate to
the higher-order gradient of the magnetic field, where Q(m)

i j (r)
is a local magnetic quadrupole moment. Using this relation-
ship, the local magnetization M(r) is determined by

Mi(r) = −∂F (r)/∂Bi(r) = Mi
0(r) − ∂ jQ

(m)
ji (r) + O(∂2).

(7)
The bulk magnetization and magnetic quadrupole moment in
periodic systems can be calculated using this thermodynamic
definition where their formulas are applicable even in metals
at finite temperatures [4,63]. This thermodynamic magnetic
quadrupole moment is recently discussed in various works
[63–68].

Using the local magnetization, the contribution from the
second term in Eq. (5) can be rewritten as

ψ (r)〈J0(r)〉0 = ψ (r)∇ × M(r)
= ∇ × {

ψ (r)M0(r) − ∂i
[
e jψ (r)Q(m)

i j (r)
]}

+∇ × {
[∂iψ (r)]e jQ

(m)
i j (r)

}
−∇ψ (r) × [

M0(r) − ∂ie jQ
(m)
i j (r)

]
(8)

Here, ei is a unit vector along the i direction. The first term
is the gravitational potential correction to the magnetization
and the magnetic quadrupole moment. The third term repre-
sents the current-density response induced by a temperature
gradient where the conductivity is determined by the local
magnetization. This contribution is studied in the Nernst con-
ductivity [59,60]. The second term is the main result of this
paper. This term corresponds to a magnetization induced by a
temperature gradient, i.e., the gravito-ME effect. This means
that the magnetic quadrupole moment should be included
in the OGME tensor besides the contribution from the cur-
rent energy-density correlation function as χOGME

i j = 2iβJH
i j +

Q(m)
i j [Mi = χOGME

ji (∂ jψ )]. We note that the trace of the mag-
netic quadrupole moment is indefinite due to ∇ × ∇ = 0,
which is included in the second term of Eq. (8) similar to
the discussion on the traceless property of βi j . Thus, in the
following, we discuss only the traceless part of this correction.

The magnetic quadrupole moment correction is also stud-
ied in the spin gravito-ME effect, where the spin magnetic
quadrupole moment contributes to the response tensor [58].
With the gravitational potential, the spin density also changes
as [1 + ψ (r)]s(r) where the second term gives the contri-
bution from the spin magnetic quadrupole moment. Our
equation, on the other hand, includes the orbital magnetic
quadrupole moment.

B. Current energy-density correlation function in
periodic systems

We have shown above that we need to calculate the cur-
rent energy-density correlation function and the magnetic
quadrupole moment to obtain the OGME tensor. In the fol-
lowing, we will derive the OGME tensor in periodic systems
described by a Bloch Hamiltonian.

First, we will derive the current energy-density correlation
function. The Hamiltonian used in this paper is

H0 = p2

2m
+ V (x) + 1

4m2

(
∂V (x)

∂x
× p

)
· σ. (9)

Here, m is the electron mass, V (x) is a periodic potential, and
σ is the vector of the Pauli matrices. The third term represents
the spin-orbit coupling. The unperturbed current operator is
J0(r) = −e{v0, δ(x − r)}/2 and v0 = i[H0, x] is the velocity
operator. Here, −e(< 0) is the charge of an electron. In this
paper, we set h̄ = kB = 1. Using the Kubo formula, the cur-
rent energy-density correlation function is given by

�i
JH (q, ω) = −e

∑
mn,k

f (εnk+q/2) − f (εmk−q/2)

εnk+q/2 − εmk−q/2 − (ω + iδ)
〈umk−q/2| vi

k |unk+q/2〉 εnk+q/2 + εmk−q/2

2
〈unk+q/2|umk−q/2〉 . (10)
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We define εnk, |unk〉 as an eigenenergy and eigenvector of the nth band of the Bloch Hamiltonian Hk = e−ik·x(H0 − μN )e+ik·x.
f (ε) = 1/(eβε + 1) is the Fermi distribution function, and vk = ∂Hk/∂k is the velocity operator.

C. Intrinsic OGME tensor

After having defined the current energy-density correlation function in periodic systems, we expand the correlation function
up to the second order of q and use the relation in Eq. (3b) to derive βJH

i j (0) as a contribution to the OGME tensor originating
from the correlation function. In this subsection, we focus on the intrinsic part. The result for the extrinsic part will be shown
and discussed in the next subsection. Details of the derivation are given in Appendix A. The intrinsic part from the correlation
function (2iβJH

li = 2
3εi jk�

k,l j
JH ) is

2iβJH
li = −e

∫
BZ

d3k

(2π )3

∑
n

⎛
⎝εnk f (εnk)

⎧⎨
⎩1

3
εi jk∂kgl j

n −
∑

m( �=n)

2

εnmk
Re

[
Al

nmMi
mn − 1

3
δliA j

nmM j
mn

]⎫⎬
⎭

+ f (εnk)

⎧⎨
⎩2

3

∑
m( �=n)

Re
[
Al

nmMi
mn

]− 1

12
εi jk∂ jv

kl
n

⎫⎬
⎭
⎞
⎠. (11)

We use the notation ∂i = ∂/∂ki, εnmk = εnk − εmk, and v
i j
n = 〈unk| ∂2Hk/∂ki∂k j |unk〉. This equation includes several geometric

quantities. First, Ai
nm = i 〈unk|∂iumk〉 is the Berry connection. Second, gi j

n = ∑
m( �=n) Re[Ai

nmA
j
mn] is the quantum metric mea-

suring the distance of two states on the Brillouin zone [69,70]. It has been shown that the quantum metric appears in several
quantities, such as the conductivity [71], the electric quadrupole moment [72], the superfluid weight [73], the nonlinear response
[30,74–77], the nonreciprocal directional dichroism [78], and the orbital ME effect [49–51]. Third, Mmn = ∑

l ( �=n) V ml,n × Aln

(V ml,n = (vml
k + ∇εnkδml )/2 and vml

k = 〈umk| vk |ulk〉) corresponds to the product of the velocity and the position; thus, it
corresponds to an off-diagonal orbital magnetic moment.

The orbital magnetic quadrupole moment in periodic systems has already been derived using the thermodynamic approach
[63,65]. We reproduce it using our model and obtain (We only consider the traceless part.)

Q(m)
li = −e

∫
BZ

d3k

(2π )3

∑
n

⎛
⎝−g(εnk)

⎧⎨
⎩1

3
εi jk∂kgl j

n −
∑

m( �=n)

2

εnmk
Re

[
Al

nmMi
mn − 1

3
δliA j

nmM j
mn

]⎫⎬
⎭

− f (εnk)

⎧⎨
⎩2

3

∑
m( �=n)

Re
[
Al

nmMi
mn

]− 1

12
εi jk∂ jv

kl
n

⎫⎬
⎭
⎞
⎠. (12)

Here, g(ε) = −β−1 ln(1 + e−βε ) is the grand potential density. This equation is identical to the equations in Refs. [63,65].
Finally, combining Eqs. (11) and (12), the actual total intrinsic OGME tensor χ iOGME

i j [Mi = χ iOGME
ji (−∂ jT )] using the

correspondence ∂iψ → ∂iT/T is

χ iOGME
i j = −(2iβJH

i j + Q(m)
i j

)
/T = e

∫
BZ

d3k

(2π )3

∑
n

s(εnk)

⎛
⎝1

3
εkl j∂l g

ik
nk −

∑
m( �=n)

2

εnmk
Re

[
Ai

nmM j
mn − 1

3
δi jAl

nmMl
mn

]⎞⎠. (13)

In this calculation, we can see that terms proportional to
the Fermi distribution function in Eqs. (11) and (12) cancel
each other. This equation is the main result of this paper.
s(ε) = ε f (ε)/T − g(ε)/T is an entropy density. The OGME
tensor is very similar to the orbital ME tensor (see Ref. [51]).
The only difference is that the entropy density s(εnk) in the
OGME tensor is replaced by the Fermi distribution function
f (εnk) in the orbital ME tensor. It is natural that the entropy
density appears in the thermal response. Because the entropy
density becomes zero at zero temperature, the OGME ten-
sor approaches zero with decreasing temperature and has no
unphysical divergence, which used to be a problem for the
thermal Hall effect. In addition, the similarity to the orbital
ME tensor leads to the following relation (see Appendix B for

the details),

χ iOGME
i j (μ, T ) =

∫
dε

(ε − μ)

eT

∂ f (ε − μ)

∂ε
χ iOME

i j (ε, T = 0)

� −π2T

3e

∂χOME
i j (μ, 0)

∂μ
(T → 0). (14)

Here, χ iOME
i j (μ, T = 0) is the intrinsic orbital ME tensor at the

chemical potential μ and zero temperature. This equation is
known as the Mott relation, which was first introduced as
a relation between electric conductivity and thermoelectric
conductivity [79]. Now, this relation is known to hold for
various responses, such as the quantum anomalous Hall cur-
rent [80], the conserved spin current [81], the spin ME effect
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[58], and more general cases [82]. Thus, a similar relation
is valid for the orbital magnetization induced by an electric
field and a temperature gradient. The second line of this equa-
tion shows the behavior at low temperatures demonstrating
that the OGME tensor scales T linear at low temperatures.

We note that our formula is gauge invariant because it is
only written by the off-diagonal Berry connection and the
velocity, which are gauge invariant. Finally, we comment on
previous works. The intrinsic OGME tensor has been studied
using the semiclassical theory in Refs. [49,50]. There is a
small difference to our formula, i.e., the 1/3 factor in Eq. (13)
is replaced by 1/2 in Refs. [49,50].

D. Extrinsic OGME tensor

In this subsection, we will discuss the extrinsic part of the
OGME tensor. Using the relation in Eq. (3b), the extrinsic
part χ eOGME

i j [Mi = χ eOGME
ji (−∂ jT )] is (see Appendix A for

a detailed derivation),

χ eOGME
i j = −2iβJH

i j /T

= e

δT

∫
BZ

d3k

(2π )3

∑
n

εnk
∂ f (εnk)

∂εnk

×
{

∂εnk

∂ki
m j

nk − 1

3
δi j

∂εnk

∂kl
ml

nk

}
. (15)

Here, mnk = Im[〈∇unk| × (εnk − Hk) |∇unk〉]/2 is the OMM,
and δ is an adiabatic factor corresponding to the inverse of
the dissipation strength. Due to δ, the extrinsic part has a
Drude-like singularity. Furthermore, it originates at the Fermi
surface.

Here, we shortly comment on the time-reversal symmetry
in the case of the extrinsic OGME tensor. The integrand in this
equation is even against the time-reversal operation because
the OMM mnk and the Bloch wave-vector k are odd. As
mentioned above, the (gravito-) ME effect needs time-reversal
symmetry breaking. In the case of the extrinsic OGME, the
change in the distribution function together with dissipation
effectively break time-reversal symmetry. Thus, the Hamil-
tonian of the system does not need to break time-reversal
symmetry. For this reason, the extrinsic part is better inter-
preted as a current inducing the magnetization (Mi = χ jiJ j),
which is usually called the Edelstein effect.

The extrinsic part also satisfies the Mott relation (see Ap-
pendix B for details),

χ eOGME
i j (μ, T ) =

∫
dε

(ε− μ)

eT

∂ f (ε− μ)

∂ε
χ eOME

i j (ε, T = 0)

� −π2T

3e

∂χ eOME
i j (μ, 0)

∂μ
(T → 0). (16)

Here, χ eOME
i j (ε, T = 0) is the extrinsic orbital ME tensor at

the chemical potential μ and zero temperature.

IV. SYMMETRY ANALYSIS AND MODEL CALCULATION

A. Magnetic point-group symmetry analysis

In the above discussion, we have shown that there are two
parts to the OGME response, an extrinsic part and an intrinsic

part. In general, the breaking of both the time-reversal symme-
try and the inversion symmetry is needed for the (gravito-) ME
response. Thus, we need to use magnetic point groups (MPG)
to analyze whether the responses can exist. As explained
above, the extrinsic part is a dissipation effect that does not
need a time-reversal symmetry breaking of the Hamiltonian.
Due to the difference in how both parts change with respect
to the time-reversal symmetry, the conditions for their appear-
ance are different. In fact, the extrinsic part is an axial and
time-reversal-even rank-2 tensor, and the intrinsic part is an
axial and time-reversal-odd rank-2 tensor. The classification
table is created according to their symmetries and shown in
Table I.

Let us make some comments on the table. When the sys-
tem obeys PT symmetry, the product of inversion symmetry
P and time-reversal symmetry T , and the orbital magnetic
moment mnk vanishes. Thus, the extrinsic part cannot appear.
Most of the symmetry groups generating only the intrinsic part
obey PT symmetry; however, three groups without PT sym-
metry (6̄′, 6̄′m′2, 6̄′m′2′) also only have an intrinsic response,
as shown in Table I. There are 21 PT -symmetric groups
out of 122 magnetic point groups. Thus, Table I shows that
the intrinsic response is sensitive for detecting many of the
PT -symmetric MPGs. On the other hand, when the system
fulfills T symmetry, the intrinsic part is forbidden.

Let us now comment on the classification of the intrinsic
part. We show in Table I that there are 53 groups with a
finite intrinsic part [Eq. (13)]. However, there are 58 groups
allowing for the intrinsic ME effect, in general. As mentioned
above, our equation of the intrinsic part [Eq. (13)] is trace-
less. In other words, the monopole term is not included. In
general, the monopole term can exist and, e.g., corresponds
to the Chern-Simons term. This monopole term is allowed in
the remaining five groups (23, m′3̄′, 432, 4̄′3m′, and; m′3̄′m′).
These five groups are written in the square brackets ([ ]) in
Table I.

Moreover, we comment on the relation with the non-
linear (second-order) Hall effect. In general, the nonlinear
Hall effect consists of an extrinsic Hall effect induced by
the Berry curvature dipole [86] and an intrinsic Hall ef-
fect [30,74,87,88]. The extrinsic part is written by an axial
and time-reversal-even rank-2 tensor, and the intrinsic part
is written by an axial and time-reversal-odd rank-2 tensor.
Thus, the conditions for the appearance are identical to the
extrinsic part and the intrinsic part of the orbital (gravito-)
ME effect [87]. However, there is a small difference between
the orbital (gravito-) ME effect and the nonlinear Hall effect
due to symmetry-unrelated constraints. The extrinsic non-
linear Hall effect is traceless due to ∇ · �nk = 0. Thus, the
extrinsic nonlinear Hall effect vanishes for the groups in the
square brackets ([ ]) in Table I. However, the extrinsic orbital
(gravito-) ME effect can appear because the orbital magnetic
moment ∇ · mnk is not necessarily zero [37,38]. Furthermore,
the intrinsic nonlinear Hall effect is zero in insulators; how-
ever, the intrinsic orbital (gravito-) ME effect is generally
finite in insulators. These facts show that the orbital (gravito-)
ME effect occurs together with the nonlinear Hall response.
However, the orbital (gravito-) ME effect can occur in systems
where the nonlinear Hall effect is absent due to symmetry-
unrelated constraints and, thus, might sometimes be more
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TABLE I. Table classifying whether the extrinsic part and the intrinsic part of the orbital (gravito-) magnetoelectric response can be finite
in a (MPG. The results are obtained using MTENSOR in the Bilbao Crystallographic Server [83–85]. corresponds to a finite response, whereas,
- corresponds to a vanishing response. Groups not included in this table do not produce either response. The symbols P and T correspond to
the inversion symmetry and the time-reversal symmetry. PT represents the operation of the product of P and T .

MPG Intrinsic Extrinsic

(PT ©, T ×) 1̄′, 2′/m, 2/m′, m′mm, m′m′m′, 4/m′, 4′/m′, 4/m′mm, 4′/m′m′m, 4/m′m′m′,
√ −

3̄′, 3̄′m, 3̄′m′, 6/m′, 6/m′mm, 6/m′m′m′

(PT ×, T ×) 6̄′, 6̄′m′2, 6̄′m2′, [m′3̄′, 4̄′3m′, m′3̄′m′]

(PT ×, T ×) 1, 2, 2′, m, m′, 222, 2′2′2, mm2, m′m2′, m′m′2, 4, 4′, 4̄, 4̄′,
√ √

422, 4′22′, 42′2′, 4mm, 4′m′m, 4m′m′, 4̄2m, 4̄′2′m, 4̄′2m′, 4̄2′m′,
3, 32, 32′, 3m, 3m′, 6, 622, 62′2′, 6mm, 6m′m′, [23, 432]

(PT ×, T ©) 11′, 21′, m1′, 2221′, mm21′, 41′, 4̄1′, 4221′, 4mm1′, 4̄2m1′, 31′, 321′, 3m1′, − √
61′, 6221′, 6mm1′, [231′, 4321′]

(PT ×, T ×) 6′, 6′22′, 6′mm′, [4′32′]

suitable as a probe. Finally, we note that a relation between the
nonlinear Hall effect and the spin ME effect has been recently
discussed in a ferrotoroidic metal UNi4B [89,90].

B. Model calculation

In this subsection, we calculate the intrinsic OGME tensor
in a specific model. In the previous subsection, we have shown
the list classifying allowed groups for the OGME tensor.
Groups in the top row in Table I are useful to detect the
intrinsic OGME response because the extrinsic part vanishes.

Furthermore, orbital magnetization does, in general, not
need spin degrees of freedom. In other words, the orbital ME
effect can be finite in systems with only an orbital component.
Thus, the orbital ME effect will help detect orbital magnetic
orders, and we focus here on a system exhibiting orbital mag-
netic order, i.e., the loop current order.

Loop currents have been mainly discussed in the pseudo-
gap phase of the high-temperature superconductors [91–97].
Recently, loop-current orders are also discussed as candidates

of the time-reversal symmetry breaking charge order in the
kagome superconductors AV3Sb5 (A=K, Rb, and Cs) [98,99],
the hidden order in the spin-orbit coupled Mott insulator
Sr2IrO4 [100–102], the unconventional magnetization at the
surface of Sr2RuO4 [103], and the orbital ferromagnetic phase
with a loop current in twisted bilayer graphenes [104–107].
Here, we will study the loop-current order in cuprates. Several
proposals of loop-current orders exist for this class. We focus
here on the PT -symmetric order shown in Fig. 1, where two
opposite local currents (red shaded area and blue one) occur.
This order is called the LC-II state [91] and belongs to m′mm
in the MPG. Thus, only the intrinsic part exists. The model
Hamiltonian belonging to m′mm is given by [51,65,96,108]

Hk =
⎛
⎝ 0 itsx + ircx itsy + ircy

−itsx − ircx 0 t ′sxsy

−itsy − ircy t ′sxsy 0

⎞
⎠, (17)

where si = sin(ki/2a) and ci = cos(ki/2a) (a is the lat-
tice constant). This Hamiltonian has no spin degrees of

FIG. 1. (Left) Schematic of the loop current on the CuO2 plane. The blue four-leaves and red two-leaves represent the d orbitals on the
copper sites and px , py orbitals on the oxygen sites, respectively. The arrows represent the complex hopping characterizing loop currents. In
this case, two z-directional orbital magnetic moments with opposite signs are shown by red and blue shaded areas. The gray letters represent
the invariant symmetries in m′mm. mi is the mirror symmetry against the plane vertical to the i axis, and 2i is the 180◦ rotational symmetry
around the i axis. The symbols with the prime (′), such as 2′

z, represent the original symmetry multiplied by the time-reversal operation T .
This model fulfills PT symmetry (PT = m′

x′ my′ mz). (Right) Band dispersion of our model. This model has four Dirac points at E = −0.44t ,
−0.27t , and 0.33t . We use εnk in units of t .
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FIG. 2. (Left) The dependence of the OGME tensor on the chemical potential μ at T/t = 0.01. (Right) The dependence of the OGME
tensor on the temperature at μ = −0.8t . We set t = 1.0 and introduce an infinitesimal dissipation δ = 0.001i for the numerical calculation.
We use χOGME

y′z in units of ea/h̄, μ, and T in units of t .

freedom because we focus only on the orbital order. The
basis consists of the d-orbitals |d〉 on the copper sites and
the p-orbitals |px〉 , |py〉 on the oxygen sites. t and t ′ are
hopping constants across these orbitals and r is the or-
der parameter of the loop current. This model has four
Dirac points at E = −0.44t , −0.27t , and 0.33t , shown in
Fig. 1.

Let us discuss the intrinsic OGME tensor for this model.
To make the discussion easier, we transform the coordinates
from (kx, ky) → (kx′ , ky′ ) as shown in Fig. 1. First, we con-
sider the constraints of symmetry. The group m′mm has the
mirror symmetry my′ , thus, χ iOGME

x′x′ = χ iOGME
x′z = χ iOGME

y′y′ =
χ iOGME

zx′ = χ iOGME
zz = 0. In addition, this group fulfills the

product symmetry of mirror and time-reversal symmetry m′
x′ .

Thus, χ iOGME
x′y′ = χ iOGME

y′x′ = 0. Therefore, the remaining terms
are χ iOGME

y′z and χ iOGME
zy′ .

We calculate χ iOGME
y′z and show its dependence on the

chemical potential μ and the temperature T in Fig. 2. The
left figure shows the dependence on the chemical poten-
tial at T/t = 0.01 where we can see peak structures near
the Dirac points. These structures also appear in the orbital
ME response [51]. As discussed above, the OGME tensor
is determined by the orbital ME tensor [Eq. (14)] and pro-
portional to ∂χ iOGME

i j /∂μ at low temperature. This behavior
can be confirmed when comparing this figure with Fig. 2
in Ref. [51]. Next, the right panel in Fig. 2 shows the tem-
perature dependence at μ = −0.8t where we can confirm
the T -linear dependence at low temperature as derived in
Eq. (14).

V. CONCLUSIONS

In conclusion, we have discussed the orbital magneto-
electric effect induced by a temperature gradient (orbital
gravito-ME effect). We have derived its response using a
full quantum approach. We have shown that its response is
formalized by the second derivative of the current energy-
density correlation function. We have calculated the response
in periodic systems, and we have shown the appearance of
two terms, the extrinsic part and the intrinsic part. We have
shown that the intrinsic part needs a correction from the or-
bital magnetic quadrupole moment. Due to this correction, the
intrinsic part has no unphysical divergence and satisfies the

Mott relation. Furthermore, we have demonstrated that the ex-
trinsic part also satisfies the Mott relation. In previous works,
the intrinsic part was derived using a semiclassical approach
[49,50] without the correction being free of a divergence and
satisfying the Mott relation. However, we have demonstrated
that this correction is necessary when using the Kubo for-
mula. This fact is an important guideline when calculating
the orbital gravito-ME response in strongly correlated systems
using Green’s function methods.

In addition, we have classified the intrinsic and extrinsic
orbital (gravito-) ME responses by the magnetic point groups.
We have shown that almost all PT -symmetric groups can
be detected by the intrinsic part and have no response in
the extrinsic part because the orbital magnetic moment van-
ishes. We have discussed that the extrinsic part can exist even
in systems with time-reversal symmetry because dissipation
already breaks this symmetry. The symmetry table of the
orbital (gravito-) ME effects is very similar to the table of the
nonlinear Hall effects. Thus, the orbital (gravito-) ME effect
is also expected in systems where the nonlinear Hall effect
occurs.

In experiments, the spin magnetization also contributes
to the (gravito-) ME effect. Thus, we need to explore sys-
tems with large orbital magnetizations to study the orbital
ME effect. Fortunately, phenomena related to orbital mag-
netic moments, such as the valley Hall effect and the orbital
Edelstein effect, have recently been observed in a transition-
metal dichalcogenide MoS2 and twisted bilayer graphene
with large orbital magnetic moments around the K points.
Thus, the extrinsic OGME effect may also be observable
in these systems. On the other hand, the intrinsic part be-
comes dominant in PT -symmetric orbital magnetic orders,
such as an antiferromagnetic loop-current order as discussed
in Sec. IV B. There, the intrinsic part is strongly enhanced
around the Dirac points. This will give an experimental plat-
form for the detection of the intrinsic orbital (gravito-) ME
response.
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APPENDIX A: DETAILED CALCULATION OF THE CURRENT ENERGY-DENSITY CORRELATION FUNCTION

The current energy correlation function �i
JH (q, ω) is given as

�i
JH (q, ω) = −e

∑
mn,k

f (εnk+q/2) − f (εmk−q/2)

εnk+q/2 − εmk−q/2 − (ω + iδ)
〈umk−q/2| vi

k |unk+q/2〉 εnk+q/2 + εmk−q/2

2
〈unk+q/2|umk−q/2〉 . (A1)

Here, we use the following notations: the eigenenergies are εnk, and the eigenvectors are |unk〉, which fulfill Hk |unk〉 = εnk |unk〉,
where [Hk = e−ik·x(H0 − μN )eik·x]. The velocity operators are defined as vi

k = ∂Hk/∂ki, and the Fermi distribution function is
f (ε) = 1/(1 + eβε ). As discussed in the main text, we need to calculate the second-order derivative of the correlation function to
obtain the OGME tensor. In the following, we will calculate it for two cases; (A) intraband transitions (m = n), and (B) interband
transitions (m �= n).

In the case of (A), the correlation function is given as

�
i(A)
JH (q, ω) = −e

∑
n,k

f (εnk+q/2) − f (εnk−q/2)

εnk+q/2 − εnk−q/2 − (ω + iδ)
〈unk−q/2| vi

k |unk+q/2〉 εnk+q/2 + εnk−q/2

2
〈unk+q/2|unk−q/2〉 . (A2)

We expand each coefficient up to the second order of q,

f (εnk+q/2) − f (εnk−q/2)

εnk+q/2 − εnk−q/2 − (ω + iδ)
� − f ′

n(∂aεn)qa

ω + iδ
− f ′

n(∂aεn)(∂bεn)qaqb

(ω + iδ)2
, (A3a)

εnk+q/2 + εnk−q/2

2
� εnk + 0, (A3b)

〈unk+q/2|unk−q/2〉 � 1 − qa 〈unk|∂aunk〉 , (A3c)

〈unk−q/2| vi
k |unk+q/2〉 � ∂iεnk + qa

2
(〈unk| vi

k |∂aunk〉 − 〈∂aunk| vi
k |unk〉). (A3d)

Here, we define f ′
n = ∂ f (εnk)/∂εnk. Then, the second derivative of �

i(A)
JH (q, ω) for intraband transitions is

�
i,ab(A)
JH (ω)qaqb = −e

∑
n,k

εnk

[
− f ′

n(∂aεnk)

ω + iδ

(
− (∂iεnk) 〈unk|∂bunk〉 + 1

2
(〈unk| vi

k |∂bunk〉 − 〈∂bunk| vi
k |unk〉)

)

− f ′
n

(ω + iδ)2
(∂aεnk)(∂bεnk)(∂iεnk)

]
qaqb. (A4)

The term proportional to 1/(ω + iδ)1 can be transformed as

−(∂iεnk) 〈unk|∂bunk〉 + 1
2 (〈unk| vi

k |∂bunk〉 − 〈∂bunk| vi
k |unk〉) = 1

2 (〈unk| vi
kQn |∂bunk〉 − 〈∂bunk| Qnv

i
k |unk〉)

= 1
2 (〈∂iunk| εn − Hk |∂bunk〉 − c.c.). ≡ mib

n − (c.c.). (A5)

Here, we define Qn = 1 − |unk〉 〈unk|. Using this identity, we can write the correlation function �
i,ab(A)
JH (ω) as

�
i,ab(A)
JH (ω)qaqb = −e

∑
n,k

εnk

[ − f ′
n

ω + iδ
(∂aεnk)

(
mib

n − mbi
n

)− f ′
n

(ω + iδ)2
(∂aεnk)(∂bεnk)(∂iεnk)

]
qaqb. (A6)

Finally, we use Eq. (3b) and obtain the contribution from the current energy-density correlation function to the OGME tensor as

2iβJH (A)
li = 2

3
εi jk�

k,l j(A)
JH (0) = −e

δ

∑
n,k

εnk f ′
n

{
(∂lεnk)mi

n − 1

3
δli(∂ jεnk)m j

n

}
. (A7)

Here, mn = Im[〈∇unk| × (εnk − Hk) |∇unk〉]/2 is the orbital magnetic moment. This tensor has a Drude-like singularity and
originates from the Fermi surface. It is the extrinsic response and is called the Edelstein effect.

Next, we consider the case of interband transitions (B). In this case, the denominator has no singularity. Thus, we can take
the limits ω, δ → 0. The correlation function is given as

�
i(B)
JH (q, ω) = −e

∑
m �=n,k

f (εnk+q/2) − f (εmk−q/2)

εnk+q/2 − εmk−q/2
〈umk−q/2| vi

k |unk+q/2〉 εnk+q/2 + εmk−q/2

2
〈unk+q/2|umk−q/2〉 . (A8)
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Expanding each coefficients by q up to the second order,

〈unk+q/2|umk−q/2〉 � −qa 〈unk|∂aumk〉 − qaqb

2
〈∂aunk|∂bumk〉 , (A9a)

εnk+q/2 + εmk−q/2

2
� ε̃nmk

2
+ qa

4
∂aεnmk, (A9b)

〈umk−q/2| vi
k |unk+q/2〉 � iεmnkAi

mn − qa

2
(〈∂aumk| vi

k |unk〉 − 〈umk| vi
k |∂aunk〉)

= −εmnk 〈umk|∂iunk〉 − qa

2

(
− ∂iε̃nmk 〈umk|∂aunk〉 −

∑
l ( �=n)

〈∂aumk|ulk〉 εlnk 〈ulk|∂iunk〉

+
∑

l ( �=m)

εmlk 〈umk|∂iulk〉 〈ulk|∂aunk〉
)

, (A9c)

f (εnk+q/2) − f (εmk−q/2)

εnk+q/2 − εmk−q/2
� fnm

εnmk
+ qa

2εnmk

(
∂a f̃nm − (∂aε̃nmk) fnm

εnmk

)
. (A9d)

Here, we define εnmk = εnk − εmk, ε̃nmk = εnk + εmk, fnm = f (εnk) − f (εmk), and f̃nm = f (εnk) + f (εmk). Ai
mn = i 〈umk|∂iunk〉

is the Berry connection. To simplify the calculation, we split the second-order derivative into two cases with respect to Eq. (A9b):
(i) the contribution from the first term and (ii) the contribution from the second term. In the case of (i), the second derivative of
the correlation function is

�
i,ab(B−i)
JH qaqb = −e

∑
m �=nk

ε̃nmk

2

{
− fnm

2
〈umk|∂iunk〉 〈∂aunk|∂bumk〉 + fnm

2εnmk
〈unk|∂aumk〉

×
(

− ∂iε̃nmk 〈umk|∂bunk〉 −
∑
l ( �=n)

〈∂bumk|ulk〉 εlnk 〈ulk|∂iunk〉 +
∑

l ( �=m)

εmlk 〈umk|∂iulk〉 〈ulk|∂bunk〉
)

− 1

2
〈unk|∂aumk〉 〈umk|∂iunk〉

(
∂b f̃nm − (∂bε̃nmk) fnm

εnmk

)}
qaqb

= −e
∑

m �=nk

ε̃nmk

2

{
− fnRe[〈umk|∂iunk〉 〈∂aunk|∂bumk〉] + fn

εnmk

(
− ∂iε̃nmkRe[〈unk|∂aumk〉 〈umk|∂bunk〉]

−
∑
l ( �=n)

εlnkRe[〈unk|∂aumk〉 〈∂bumk|ulk〉 〈ulk|∂iunk〉] +
∑

l ( �=m)

εmlkRe[〈unk|∂aumk〉 〈umk|∂iulk〉 〈ulk|∂bunk〉]
)

− Re[〈unk|∂aumk〉 〈umk|∂iunk〉]
(

∂b fn − (∂bε̃nmk) fn

εnmk

)}
qaqb. (A10)

We split this further into two parts regarding the denominator; (a) (εnmk)0 and (b) (εnmk)1 in the denominator. In the case of (a),
collecting the terms whose denominator is (εnmk)0, we obtain

�
i,ab(B−i−a)
JH qaqb = −e

∑
m �=n,k

[
ε̃nmk

2

{
− fnRe[〈umk|∂iunk〉 〈∂aunk|∂bumk〉] − (∂b fn)Re[〈unk|∂aumk〉 〈umk|∂iunk〉]

+ fn

∑
l ( �=n)

Re[〈unk|∂aumk〉 〈∂bumk|ulk〉 〈ulk|∂iunk〉] − fnRe[〈unk|∂aumk〉 〈umk|∂iunk〉 〈unk|∂bunk〉]
}

+ fn

2
(∂iε̃nmk)Re[〈unk|∂aumk〉 〈umk|∂bunk〉] − fn

2
(∂bε̃nmk)Re[〈unk|∂aumk〉 〈umk|∂iunk〉]

+ fn

2

∑
l ( �=n)

εlmkRe[〈unk|∂aumk〉 〈∂bumk|ulk〉 〈ulk|∂iunk〉]

+ fn

2

∑
l ( �=n)

εlmkRe[〈unk|∂aumk〉 〈umk|∂iulk〉 〈ulk|∂bunk〉]
]

qaqb
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= −e
∑

m �=n,k

fn

2

{
− ε̃nmkRe[〈umk|∂iunk〉 〈∂aunk|∂bumk〉]

+ ε̃nmk∂bRe[〈unk|∂aumk〉 〈umk|∂iunk〉] +
∑
l ( �=n)

ε̃nlkRe[〈unk|∂aumk〉 〈∂bumk|ulk〉 〈ulk|∂iunk〉]

− ε̃nmkRe[〈unk|∂aumk〉 〈umk|∂iunk〉 〈unk|∂bunk〉] + (∂iε̃nmk)Re[〈unk|∂aumk〉 〈umk|∂bunk〉]

+
∑
l ( �=n)

εlmkRe[〈unk|∂aumk〉 〈umk|∂iulk〉 〈ulk|∂bunk〉]
}

qaqb. (A11)

The third term in this equation can be transformed as∑
l ( �=n),m( �=n)

ε̃nlkRe[〈unk|∂aumk〉 〈∂bumk|ulk〉 〈ulk|∂iunk〉] =
∑
l ( �=n)

ε̃nlk{Re[〈∂aunk|∂bulk〉 〈ulk|∂iunk〉]

− Re[〈∂aunk|unk〉 〈unk|∂bulk〉 〈ulk|∂iunk〉]}. (A12)

Therefore, this term cancels out the first and fourth terms. Finally, we get

�
i,ab(B−i−a)
JH qaqb = −e

∑
n �=m,k

{
ε̃nmk fn

2

(− ∂bRe
[
Aa

nmAi
mn

])− fn

∑
l ( �=n)

Re
[
Aa

nmV i
ml,nAb

ln

]}
qaqb. (A13)

Here, we define V i
lm,n = 1

2 (vi
lm + v0i

n δlm). In the case of (b), collecting the terms whose denominator is (εnmk)1,

�
i,ab(B−i−b)
JH qaqb = −e

∑
m �=n,k

εnk fn

εnmk

{
−(∂iε̃nmk)Re[〈unk|∂aumk〉] 〈umk|∂bunk〉 + (∂bε̃nmk)Re[〈unk|∂aumk〉] 〈umk|∂iunk〉

−
∑
l ( �=n)

εlmkRe[〈unk|∂aumk〉 〈∂bumk|ulk〉 〈ulk|∂iunk〉] +
∑
l ( �=n)

εmlkRe[〈unk|∂aumk〉 〈umk|∂iulk〉 〈ulk|∂bunk〉]
}

qaqb

= −e
∑

m �=n,k

2εnk fn

εnmk

∑
l ( �=n)

{
−Re[Aa

nmV b
ml,nAi

ln] + Re[Aa
nmV i

ml,nAb
ln]

}
qaqb. (A14)

Next, calculating the case of (ii), we get

�
i,ab(B−ii)
JH qaqb = −e

∑
m �=n,k

fn

2
(∂bεnmk)Re[Aa

nmAi
mn]qaqb. (A15)

Collecting all terms, we obtain

�
i,ab(B)
JH qaqb = −e

∑
n,k

[
εnk fn

∑
m( �=n)

{
−∂bRe

[
Aa

nmAi
mn

]+ 2

εnmk

∑
l ( �=n)

(−Re
[
Aa

nmV b
ml,nAi

ln

]+ Re
[
Aa

nmV i
ml,nAb

ln

])}

+ fn

{
−
∑

m( �=n)

∑
l ( �=n)

Re
[
Aa

nmV i
ml,nAb

ln

]+ 1

4

∂3εnk

∂ki∂ka∂kb
− 1

4
∂bv

ia
n

}]
qaqb. (A16)

Here, we define via
n = 〈unk| ∂2Hk/∂ki∂ka |unk〉. Finally, we use Eq. (3b) and obtain the contribution from the current energy-

density correlation function to the OGME tensor as

2iβJH (B)
li = 2

3
εi jk�

k,l j(B)
JH = −e

∑
nk

[
εnk fn

{
−1

3
εi jk∂ jg

lk
n −

∑
m( �=n)

2

εnmk
Re

[
Al

nmMi
mn − 1

3
δliA j

nmM j
mn

]}

+ fn

{
2

3

∑
m( �=n)

Re
[
Al

nmMi
mn

]− 1

12
εi jk∂ jv

kl
n

}]
. (A17)

Here, we use the quantum metric glk
n = ∑

m( �=n) Re[Al
nmAk

mn] and Mmn = ∑
l ( �=n) V ml,n × Aln. This equation does not depend on

the dissipation in the clean limit. Thus, it can be regarded as the intrinsic part.
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APPENDIX B: DERIVATION OF THE MOTT RELATION [EQS. (14) AND (16)]

The intrinsic OGME tensor and the intrinsic OME tensor at the chemical potential μ and at the temperature T are defined as

χ iOGME
i j (μ, T ) = e

∫
BZ

d3k

(2π )3

∑
n

s(εnk)W n
i j , (B1)

χ iOME
i j (μ, T ) = −e2

∫
BZ

d3k

(2π )3

∑
n

f (εnk)W n
i j . (B2)

Here, f (ε) = 1/(1 + eβε ) is the distribution function at the inverse temperature β = 1/T and s(ε) = ε f (ε)/T + ln(1 + e−βε ) is
the entropy density. W n

i j represents the wave-function part in Eq. (13). The OGME tensor can be rewritten as

χ iOGME
i j (μ, T ) = e

∫
BZ

d3k

(2π )3

∑
n

s(εnk)W n
i j = e

∫
BZ

d3k

(2π )3

∫
dε
∑

n

s(ε)W n
i jδ(ε − εnk)

= e
∫

BZ

d3k

(2π )3

∫
dε
∑

n

s(ε)W n
i j

d(ε − εnk)

dε
= −1

e

∫
dε s(ε)

∂χ iOME
i j (ε + μ, 0)

∂ε

= 1

eT

∫
dε(ε − μ)

∂ f (ε − μ)

∂ε
χ iOME

i j (ε, 0). (B3)

In the final step, we use partial integration and the identity ∂s(ε)/∂ε = βε[∂ f (ε)/∂ε]. Here, δ(x) is the δ function, and (x) is
the step function. This formula is called the Mott relation.

The Mott formula is also established for the extrinsic part. The extrinsic OGME tensor and the extrinsic OME tensor at the
chemical potential μ and at the temperature T are given by

χ eOGME
i j (μ, T ) = e

δT

∫
BZ

d3k

(2π )3

∑
n

εnk
∂ f (εnk)

∂εnk
W̃ n

i j , (B4)

χ eOME
i j (μ, T ) = −e2

δ

∫
BZ

d3k

(2π )3

∑
n

∂ f (εnk)

∂εnk
W̃ n

i j . (B5)

Here, W̃ n
i j represents the wave-function part in Eq. (15). The extrinsic OGME tensor can be rewritten as

χ eOGME
i j (μ, T ) = e

δT

∫
BZ

d3k

(2π )3

∑
n

εnk
∂ f (εnk)

∂εnk
W̃ n

i j = e

δT

∫
BZ

d3k

(2π )3

∫
dε
∑

n

ε
∂ f (ε)

∂ε
W̃ n

i j

d(ε − εnk)

dε

= 1

eT

∫
dε ε

∂ f (ε)

∂ε
χ eOME

i j (ε + μ, 0) = 1

eT

∫
dε(ε − μ)

∂ f (ε − μ)

∂ε
χ eOME

i j (ε, 0). (B6)

Therefore, the extrinsic part also satisfies the Mott relation.
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