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Coexisting hinge and vertical disclination states in a higher-order acoustic Dirac semimetal

Yuexin Zhang, Chao Liu, Xiaoyu Dai, and Yuanjiang Xiang *

School of Physics and Electronics, Hunan University, Changsha 410082, China

(Received 13 February 2023; revised 7 May 2023; accepted 14 June 2023; published 23 June 2023)

The concept of crystalline disclinations in solid-state physics has gained attention in recent years, particularly
with a focus on two-dimensional Cn-symmetric topological crystalline insulators. Research in this area has
revealed novel topological phases different from the traditional bulk-boundary correspondence, expanding the
topological material family. However, there remains a need to investigate the bulk-disclination correspondence in
three-dimensional topological semimetals. We present an example of a higher-order Dirac semimetal in acoustic
crystals with central disclinations. Our simple model not only exhibits hinge modes in the vertical direction but
also supports a robust one-dimensional disclination hinge state along the central bulk-hollow path. Simulations
demonstrate that our structure is capable of realizing backscatter-free disclination and higher-order hinge waves
under the same architecture. Our findings offer insight for potential applications in acoustic devices for sound
wave propagation and manipulation, as well as for exploring more exotic high-performance three-dimensional
acoustic metamaterials.
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I. INTRODUCTION

The thriving of band theory in condensed matters physics
has promoted the emergence of topological insulators (TIs).
One of the remarkable features in TIs is the bulk-edge corre-
spondence principle, where nontrivial boundary states persist
in the band gap of the topological materials [1–3]. A sys-
tem cannot be transferred from a normal insulator (NI) to a
TI with small perturbations or disturbances unless the band
gap undergoes a closing and reopening process [4–6]. Usu-
ally, the n-dimensional (nD) topological material possesses
(n − 1)D gapless states at the geometric boundaries or at
the interface with NIs. A pool of discoveries such as Chern
insulators and quantum spin Hall effects have been proposed
and experimentally realized to enrich the topological family
[6–8]. Further, the idea of higher-order topological insula-
tors (HOTIs) in recent years has broadened the perspective
for studying intriguing nontrivial phases at lower dimensions
[9–15]. A HOTI can support (n − d)D lower-dimensional
topological states (d > 1). It is highlighted that symmetry
plays an important role in constituting higher-order phases.
Studies reveal that the topological crystalline insulator (TCI)
serves as a qualified candidate for a higher-order quadrupole
insulator with higher bulk multipole moments [16–20]. In a
two-dimensional (2D) TCI the Cn-rotational symmetry makes
it endowed with protected corner modes with a fractionalized
charge of e/n at each corner [21–27]. In this way, the 2D TCI is
naturally transplanted in a three-dimensional (3D) framework
following a stacking-layered configuration, and the higher-
order topological corner modes become vertical hinge states
[28–34].
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In parallel, more concepts from condensed matter physics
are used to explore novel topological phases, among which
lattice defects come into the spotlight due to their unique
properties. It is natural to find defects in lattices, and these
noneliminated perturbations can also lead to unique physical
phenomena despite the local transformation of the real-space
structure [35–50]. For example, a screw dislocation in the
bulk of a three-dimensional (3D) TI will produce a one-
dimensional (1D) helical defect state [48]. Some structures
with bulk defects are experimentally demonstrated, such as
the 3D acoustic Weyl metamaterials with locked orbital an-
gular momentum [47], 2D photonic TCIs with disclinations
[39,45], and light-trapping TIs with dislocations [40]. Among
a pool of defects, disclinations built by a “cutting and glue”
operation in TIs manifest rich topological properties. Further,
disclinations in a simple Cn-symmetric TCI make the design
and fabrication of photonic and phononic metamaterials easier
and more accessible.

Due to the adequate research on HOTIs, these findings
are also spurring the development of topological semimetals
(TSMs). A 3D TSM is featured with 2D nonclosed surface arc
boundary states, such as the surface Fermi arcs connecting
the two Weyl points with opposite charges [51–56]. When
it comes to a higher-order topological semimetal (HOTSM),
hinge arcs linked by topological charges can be obtained
[28–34]. Many of the existing HOTSMs are fabricated with
simple Cn-symmetric structures, so it is valuable to investigate
the combination of the HOTI and the disclination in a 3D
framework.

In this paper, we propose an acoustic higher-order Dirac
semimetal (HODSM) with bulk defects that simultaneously
manifest the vertical 1D disclination and hinge modes. The
model exhibits a C6z symmetry with two Dirac degenera-
cies along the high-symmetry axis. The topological index
describes the higher-order topological phase. At the same
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FIG. 1. The framework of our unit cell and corresponding band structure. (a) The tight-binding model of our acoustic lattice. Three
connecting bars with different colors stand for intracell (t0), intercell (t1), and interlayer (tz) hopping terms. The unit cell preserves C6z

symmetry. (b,c) Constructions of our acoustic crystal. The lattice constants are a and h. (d) Upper panel: The band dispersion near the DP
in the kx−ky plane. Lower panel: The band crossing mode around the degeneracy point in the kx−kz plane. (e) Band structure along the path
�−K−M−�−A−H−L−A, where the fourfold DP is located at the high-symmetry axis �−A. Inset view: the 3D first Brillouin zone of our
3D crystal.

time, the central hollow defects constructed by breaking the
lattice configuration lead to the propagation of 1D disclination
state along the bulk-hollow path. It is emphasized that the
disclination state is explained by the localized inner bound
state [45,47], which is different from the hinge modes judged
by band topology indicators. We offer a detailed numerical
simulation in a multilayer 3D acoustic sample to realize the
highly robust hinge and disclination wave transmission and
spectral intensity distributions. Our model has successfully
illustrated the fascinating one-way confined sound waves pro-
tected by two distinct channels, which provides a broader
vision for fabricating high-performance acoustic devices such
as multimode waveguides under simple piling Cn-symmetric
constructions.

II. MODEL CONSTRUCTION AND INVARIANT INDEX
MEASUREMENT

We first introduce a minimal acoustic Dirac unit cell in
approximation with the tight-binding model, as shown in
Fig. 1(a). The overall view of the real acoustic lattice is given
in Figs. 1(b) and 1(c) with the horizontal and vertical lattice
constants a and h. The lattice supports a higher-order topo-
logical phase by adjusting the ratio of intracell and intercell
hopping as the kz passes through the momentum space. We
define the in-plane parameters t0 and t1 as the intracell and

intercell couplings, respectively. In particular, the interlayer
hopping term tz acts on the in-plane t0 and makes each mono-
layer a TCI phase or a NI phase as the kz varies from −π /h
to π /h, enabling phase transitions that support a HOTSM.
We can then write the kz-dependent intracell hopping term
as t0(kz ) = t0 + 2tzcos(hkz). The thickness of the rigid plate
(blue) is d , and the hexagonal pillars’ (yellow) width at the
six corners is w. This design allows for free transmission of
sonic waves to the adjacent unit cell and the neighboring upper
or lower lattice, which matches well with the tight-binding
model. If we neglect the next nearest neighboring effect, we
can model our 3D unit cell with the Hamiltonian matrix as

H (k) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 A 0 B† 0 A
A 0 A 0 C† 0
0 A 0 A 0 D†

B 0 A 0 A 0
0 C 0 A 0 A
A 0 D 0 A 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, (1)

where A = t0 + 2tzcos(hkz ), B = t1eikxa, C = t1ei(kx/2+ky

√
3/2)a,

and D = t1e−i(kx/2–ky

√
3/2)a.

We choose the setting of t0 = t1 = −1 and tz = −1/4 and
find the Dirac points (DPs) at k =(0, 0, 0.4π/h) along the
�−A axis. According to the C6z symmetry, the DP will also
appear at k = (0, 0, −0.4π/h). Figure 1(d) shows the band

214108-2



COEXISTING HINGE AND VERTICAL DISCLINATION … PHYSICAL REVIEW B 107, 214108 (2023)

dispersion modes in three directions, where the band crossing
modes around the DP indicate that our HODSM is a type-II
semimetal. To agree with the theoretical results, we use the
finite-size analysis to calculate the band structure of the unit
cell along the 3D first Brillouin zone (FBZ) in Fig. 1(e).
This way, we fit the sample parameters of a = 27.7 mm,
h = 9.6 mm, d = 4.8 mm, w = 4.6 mm, and b = 10 mm to
obtain the simulation band spectrum. As can be seen in the
band structure, the type-II DP appears at k =(0, 0, 0.4π/h)
with a frequency of around 13.7 kHz, proving that our model
can be well interpreted with a tight-binding approximation.

Since our lattice observes C6z rotational-mirror symme-
try, we can characterize the topological phases at each kz

by the invariant index χ (6) = ([M (2)
1 ], [K (3)

1 ]) [19,35,38–40].
The [M (2)

1 ] and [K (3)
1 ] denote the different band represen-

tations of the occupied energy bands at the high-symmetry
momentum points �, K, and M. The C2 invariants is defined
as [M (2)

1 ] = #M (2)
1 − #�

(2)
1 , where M is the twofold high-

symmetry momentum invariant point under the C2 rotational
operator. Similarly, the C3 invariants can be expressed as
[K (3)

1 ] = #K (3)
1 − #�

(3)
1 , where K is the threefold rotational

invariant points in the momentum space [57,58]. #M (2)
1 (#K (3)

1 )
and #�

(2)
1 (#�

(3)
1 ) are the numbers of energy bands under

band gaps with C2 (C3) rotational eigenvalues of +1 at high-
symmetry momentum points M (K) and �. As kz crosses the
FBZ, the kz-dependent ratio of t1/t0(kz) changes, describing
the phase transition process by judging the changing χ (6) (see
Supplemental Material [59]). Therefore, we can calculate the
band structure at kz = 0.3π/h and 0.8π/h to verify the χ (6)

in two different topological phases, as shown in Figs. 2(a)
and 2(b). At each high-symmetry momentum point below
the band gap, we label the Cn point groups with irreducible
representations and corresponding phase winding profiles in
Figs. 2(d) and 2(e). In Fig. 2(c), we find that when 0 < kz <

0.4π/h, [M (2)
1 ] and [K (3)

1 ] remain zero, indicating a NI phase,
while χ (6) = (–2,0) when 0.4π/h < |kz| < π/h, indicating a
nontrivial TCI phase. Figure 2(f) shows the phase transition
diagram of our kz-dependent monolayer unit cell, where the
two DPs represent the phase transition points at kz = 0.4π/h.
For a TCI phase, the Wannier centers are on the sides of the
lattice and the corner charge hosts. On the other hand, the
Wannier centers are concentrated on the middle of the crystal
when the system transforms into a NI phase. The central
black circle illustrates the path of the phase transition process,
where the closed loop experiences both TCI and NI phases by
crossing the interface of the two different areas. The two DPs
(red dots) are the case of equal intracell and intercell coupling
strength.

III. DISCLINATIONS IN THE 3D HOTI ARCHITECTURE

It is revealed that a 2D Cn-symmetric unit cell can be
divided into n sectors like a pizza, and each sector has an angle
of 2π /n from the rotation axis, as plotted in Fig. 3(a). Pro-
tected by the Cn symmetry, these sectors are invariant under
Cn rotational operations. To introduce a disclination, we can
either insert or remove 1/n part of the plate lattice, that is, the
glue-stick process [45–47]. In this way, a zero-dimensional
(0D) disclination mode will emerge in the trapped central

defect. In our framework, a Frank angle � = 2π /6 sector of
the plane is cut and glued to constitute a deformed discli-
nation metacell structure, as displayed in Fig. 3(b) [39,45–
47]. As analyzed before, the sample possesses a fractional
corner charge as long as the system stays in a TCI phase,
since the loss of one sector will not destroy the rotational
invariant property of the remaining (n − 1) parts. For a NI
phase, the meta-array will not manifest corner modes at the
five corners, while the TCI phase hosts corner states, and
the Wannier centers in the TCI contribute to a fractional
corner charge of e/2 [21,45,46]. Figure 3(c) gives the band
projection spectrum of the disclination-introduced metacell,
where a “disclination hinge” (marked by hollow green circles)
spans the kz axis and merges into the bulk bands around
kz = 0.75 π/h. Generally speaking, the localized disclination
states can survive in the continuum spectrum and hybridize
with bulk states and become indistinguishable. In a regu-
lar C6z-symmetric metacell, only hinge arcs connected by
the two DPs will emerge between the bulk bands in the range
0.4π/h < |kz| < π/h. After introducing the disclination, the
deformed finite-size sample will inherit the fractional corner
charge protected by the higher-order invariant index among
0.4π/h < |kz| < π/h. When kz travels in the TCI phase, the
Wannier centers are located at the boundary of the unit cell
as shown in Fig. 2(a); thus each sector of the metaplane will
contribute an e/2 fractional charge, as displayed at Fig. 3(b).
So the disclination state also has the e/2 fractional charge.
When kz locates in the NI phase, the Wannier centers all gather
in the middle of the unit cell; the disclination core hosts no
fractional charge. However, the central core is a vertical path
with air transmission along the kz direction in the momentum
space. The bound state around the disclination for each kz

is regarded as the 2D bound modes triggered by localized
defects, since the disclination itself originated from the bulks
[47]. Therefore, this inner sonic wave propagation will not be
affected by the changing intracell hopping as the kz goes. Also,
the disclination arc connects the two symmetry-pinned DPs at
kz = ±0.4π/h, as described in Fig. 3(c). Distinguished from
other approaches such as screw-glide disclination defects in
3D crystals, our framework can be achieved without too many
geometrical distortions, which is vital for practical fabrication.
More importantly, we can make other deformed metacells
by inserting the 1/n part of the Cn-symmetric plane to build
central-filled disclination modes. For example, the C3- or C4-
symmetric TCIs can be expanded into a defected finite-size
sample preserving C4 or C5 rotational symmetry.

Further, we investigate the eigenstate solutions of different
phases to see acoustic field distributions. In Fig. 4(a), we
choose kz = 0.2π/h of the unit cell in NI phases and cor-
responding eigenstate modes. We have marked the Wannier
center locations in each unit cell (red dots), where the cor-
ner charge will not appear due to the principle of fractional
charge distribution in the NI phase, while for kz = 0.6π/h,
both the hinge and disclination modes exist since the Wannier
center is sitting on the sides of each unit cell (yellow dots),
as shown in Fig. 4(b). The hinge charge at each corner is
Qc = {e/4[M (2)

1 ] + e/6[K (3)
1 ]} mod e, where Qc = 0 in a NI

phase and Qc = e/2 in the TCI phase [45–47]. The inset views
of Figs. 4(a) and 4(b) show the acoustic pressure field distri-
bution of the disclination mode at kz = 0.2π/h and 0.6π/h.
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FIG. 2. The invariant index and band structures as kz varies. (a,b) The band spectra of �−K−M−� at kz = 0.3π/h and 0.8π/h. The
irreducible representations of Cn-rotational eigenvalues at high-symmetry momentum points are given. (c)The calculation results of [M (2)

1 ] and
[K (3)

1 ] with the range of 0 < kz < π/h. The phase transition point at kz = 0.4π/h divides the system into HOTI and NI phases. (d,f) The phase
winding properties of high-symmetry momentum points at lower bands. (f)Topological phase diagram of our HODSM with a kz-dependent
coupling ratio. The Wannier centers are marked for TCI and NI phases. The black loop describes the topology properties of the system as kz

changes. DPs are pinned at the interface of the TCI and NI regions.

The fivefold rotational symmetry protected defect-introduced
metalattice plate owns a disclination charge of

Qd = e
{
�/2π

(
3/2

[
M (2)

1

] − [
K (3)

1

])}
mod e = e/2 (2)

in the TCI phase [45–47]. Additionally, the disclination
charge is zero in the NI phase. From the eigenmode solutions
in Fig. 4(b), we find that the numbers of hinge and disclination
states are five and one. There are five defect modes due to
the mirror symmetry in a fivefold TCI sample, including two
pairs of symmetric and antisymmetric disclination states and a

single mode. The remaining four disclination modes are
mixed with the bulk states and fail to be unambiguously con-
firmed.

IV. ROBUSTNESS OF THE DISCLINATION STATE
TRANSMISSION

We perform the finite-element method to simulate the
acoustic pressure field distribution in approximation with real-
space near-field measurement. To this end, we construct a
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FIG. 3. Design of our 3D acoustic HODSM metaplane and
disclination sample. (a) Upper panel: The monolayer finite-size sam-
ple composed of HODSM crystals, where the green part stands for
the air region. The top layer is partly removed to show the inside air
cavities. Lower panel: The deformed HODSM sample with central
bulk defects, where the orange part is the air region. (b) The for-
mulation procedure of a disclination metacell. By removing a π/3
part of the plane sample and reattaching the two edges by deforming
the remaining lattices, the bulk defects generate in the middle of the
metacrystal. (c) The hinge and disclination projection spectrum of
the defect-introduced finite-size sample.

13-layer metacell sample with disclinations in the central
part of the structure, as shown in Fig. 5(a). The gray, green,
and purple solid circles are probes inserted into the multi-
layer acoustic metamaterials. One-fifth of the architecture is
removed to better display the inner structure. The five side
boundary surfaces of the piling sample and the central discli-
nation tunnel are set as rigid hard boundary conditions to
block the air transmission. Figure 5(b) gives the calculated
bulk, hinge, and disclination mode transmission rate, where
the hinge and disclination states reach peak values of around
15.75 kHz. Due to the merging of topological and bulk bands,

FIG. 4. The eigensolutions of finite-size acoustic HODSM in
TCI and NI phases. (a,b) Upper plane: the spectral charges of the
unit cells in a whole structure at kz = 0.3π/h and 0.7π/h. Lower
plane: The eigenmodes spectrum at kz = 0.2π/h and 0.6π/h, where
gray dots mean bulk modes, green dots represent disclination modes,
and red dots denote hinge modes. The inset view plots the acoustic
pressure |p|2 distribution near the bulk defects.

FIG. 5. Constructions of the multilayer acoustic HODSM sample
with disclinations. (a) The 3D view of our stacking metacell (only
air regions are shown), where the acoustic probes are placed in the
middle of the sample to detect bulk, hinge, and disclination modes.
(b) The transmission rate spectrum of our sample with hinge (green),
disclination (purple), and bulk (gray) modes. The hinge and discli-
nation states reach peak values at a frequency around 15.75 kHz.
(c) Acoustic field distributions of disclination states at layers 1, 5, 9,
and 13 at 14.9 kHz. (d) Acoustic field distributions of hinge states at
layers 1, 5, 9, and 13 at 15.1 kHz.

we find a spectrum mixture at 13–15 kHz frequency. To study
the sonic wave propagation performance, we put the excitation
sources near the hinge and the central disclination at the top
of the sample to simulate the robust one-way transmission. We
extract different layers of acoustic field slices, as displayed in
Figs. 5(c) and 5(d). Disclination and hinge modes are firmly
pinned at layers 1 (L1), 5 (L5), 9 (L9), and 13 (L13) (counting
from the top layer) at frequencies of 14.9 and 15.1 kHz, indi-
cating a well-performed vertical wave propagation in confined
directions.

Then we pay attention to the robustness of our bulk-
disclination acoustic HODSM against system disorders. Two
main defects must be considered: (i) broken rotation symme-
try and (ii) irregular disclination shape. In Figs. 6(b) and 6(d),
we erase one unit cell near the central hollow space; hence,
both the rotational symmetry and disclination shape will be
disrupted. Again, we select the NI and TCI phases to exam-
ine the eigenmode solutions with disorders. In Fig. 6(a), we
obtain the solution numbers of the disorder-induced disclina-
tion plane at kz = 0.2π/h. The strongly localized disclination
modes can be seen around the defects and extended disorders
in the center of the sample. Figure 6(a) plots five disclination
states among the bulk band gap due to the broken mirror
symmetry. In particular, Fig. 6(c) shows that in the TCI phase
a disorder will produce a mixture state containing both hinge
and disclination modes. The acoustic field distribution of sam-
ple slices in Fig. 6(d) explicitly presents mixture states at
14.61 and 14.94 kHz, and the solutions manifest a hinge mix-
ture disclination hierarchy in the band gap. The emergence of
mixture states is attributed to the inner hinge shape, where the
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FIG. 6. Simulations on acoustic metacell sample with bulk defects and disorders and corresponding field distributions. (a) Eigenmode
solutions of the disturbed lattice in the NI phase at kz = 0.2π/h. (b) Acoustic pressure field intensity of disclination states in a NI phase at
13.37, 13.40, 13.51, and 13.64 kHz. (c) Eigenmode solutions of the disturbed lattice in the TCI phase at kz = 0.6π/h. (b) Acoustic pressure
field intensity of disclination and mixture states in the TCI phase at 14.58, 14.61, 14.94, and 15.04 kHz.

initial bulk defect and added disorders constitute the acoustic
field concentration.

V. CONCLUSIONS

In conclusion, we have proposed a higher-order acoustic
HODSM with vertical disclinations. Apart from the higher-
order hinge states in a piling 3D structure, central-localized
disclination states also emerge. The cutting and glue operation
creates a central disclination derived from the bulk, where the
boundary state separates from the continuum bulk spectrum.
We use band topology theory to analyze the invariant index
at a varying kz to measure the NI and TCI phases. The pro-
jected band spectrum on our defect-introduced HODSM plate
shows the relative pure disclination arc throughout the mo-
mentum space companying with higher-order hinge modes.

Simulations prove a well-performed sonic wave propagation
along the hinge and disclination path. Also, the local-
ized disclination modes are robust against system disorders
by breaking the mirror and rotational symmetry. Our pro-
posal provides an approach to designing and fabricating a
high-performance acoustic device to realize high-efficiency
waveguides and to modeling the flow of sonic waves in tube
cavity shaped metamaterials.
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[44] V. Juričić, A. Mesaros, R. J. Slager, and J. Zaanen, Universal
Probes of Two-Dimensional Topological Insulators: Dislocation
and � Flux, Phys. Rev. Lett. 108, 106403 (2012).

[45] Y. Liu, S.-W. Leung, F.-F. Li, Z.-K. Lin, X.-F. Tao, Y. Poo, and
J.-H. Jiang, Bulk–disclination correspondence in topological
crystalline insulators, Nature (London) 589, 381 (2021).

[46] T.-H. Li, P.-H. Zhu, W. A. Benalcazar, and T. L. Hughes, Frac-
tional disclination charge in two-dimensional Cn-symmetric
topological crystalline insulators, Phys. Rev. B 101, 115115
(2020).

[47] Q. Wang, Y. Ge, H.-X. Sun, H.-R. Xue, D. Jia, Y.-J. Guan,
S.-Q. Yuan, B.-L. Zhang, and Y. D. Chong, Vortex states in
an acoustic Weyl crystal with a topological lattice defect, Nat.
Commun. 12, 3654 (2021).

[48] L. Ye, C. Qiu, M. Xiao, T. Li, J Du, M. Ke, and Z. Liu, Topologi-
cal dislocation modes in three-dimensional acoustic topological
insulators, Nat. Commun. 13, 508 (2022).

[49] H. Hamasaki, Y. Tokumoto, and K. Edagawa, Dislocation con-
duction in Bi-Sb topological insulators, Appl. Phys. Lett. 110,
092105 (2017).

[50] Y. Yoshimura, A. Matsumoto, Y. Takane, and K. Imura,
Perfectly conducting channel on the dark surface of weak topo-
logical insulators, Phys. Rev. B 88, 045408 (2013).

[51] S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele,
and A. M. Rappe, Dirac Semimetal in Three Dimensions, Phys.
Rev. Lett. 108, 140405 (2012).

[52] N. P. Armitage, E. J. Mele, and A. Vishwanath, Weyl and Dirac
semimetals in three-dimensional solids, Rev. Mod. Phys. 90,
015001 (2018).

[53] C. Fang, M. J. Gilbert, X. Dai, and B. A. Bernevig, Multi-Weyl
Topological Semimetals Stabilized by Point Group Symmetry,
Phys. Rev. Lett. 108, 266802 (2012).

[54] L. Lu, Z.-Y. Wang, D.-X. Ye, L.-X. Ran, L. Fu, J. D.
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