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Active reconfiguration of multistable metamaterials for linear locomotion
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Buckling-driven shape-shifting is increasingly being used in metamaterials to achieve mechanical programma-
bility and novel functionality. Here, we show that the post-buckling response and the ensuing behavior, of lattice
metamaterials can be programed through so-called passive and active modal nudging. Numerical continuation is
first used to explore exhaustively the bifurcation manifold of a compressed, elastomeric lattice metamaterial. We
then tailor the natural postcritical behavior of the metamaterial by judiciously altering the baseline geometry
using modal information extracted from the bifurcation landscape (passive modal nudging). Experimental
tests verify the effectiveness of the approach. Subsequently, shape change is induced by actively nudging the
metamaterial between two stable postcritical states using an embedded actuator, i.e., by changing the local
topology of the metamaterial rather than by controlling a global field. Fundamentally, we use passive modal
nudging to bias the metamaterial towards one of three possible postcritical states under applied compression
and then employ active nudging to switch between different postcritical states. Based on this paradigm, we
manufacture and test a crawling soft robot and demonstrate that locomotion through local actuation to switch
between two postcritical states is significantly more energy efficient than the alternative strategy of switching
between a precritical and a postcritical state through global actuation. Overall, this paper demonstrates the
benefits and promise of programming the behavior of soft metamaterials by exploiting principles of bifurcation
theory and using tailored imperfections and embedded actuators.
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I. INTRODUCTION

Mechanical metamaterials—human-made structures with
homogenized material properties derived from structural
topology rather than the constituent materials themselves—
are well known for their tailorable and unique properties,
such as negative Poisson’s ratio [1,2], negative compressibil-
ity transitions [3], negative thermal expansion coefficient [4],
negative stiffness [5], morphology [6–8], biomimetic proper-
ties [9–11], and active response [12–14].

One fruitful approach to design for “exotic” properties is to
construct the metamaterial from unit cells that undergo elastic
instabilities, whereby a global phase transition can be initiated
as a result of local stimuli [15–17]. The resulting nonlinearity
and multistability have been exploited to, for example, enable
reversible large deformations and programmability [18–20].
However, multistable systems are imperfection sensitive
[21,22] and may respond erratically, if not suitably controlled.
This paper demonstrates the possibility of programming the
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behavior of lattice metamaterials by using both passive means
(tailoring the geometry via judicial imperfections) and active
means (embedded actuation).

Extensive work has been conducted to tailor the postbuck-
ling behavior of lattice metamaterials by introducing specific
geometric “imperfections” or “perturbations” into the origi-
nal, stress-free geometry during fabrication [23]. Janbaz et al.
[18] developed a design framework to introduce higher order
linear buckling modes as geometric imperfections into the
original geometry of soft metamaterials. In particular, they
achieved a rotational buckling pattern of square lattice meta-
materials under axial compression, which can be used as a
soft grasping robotic mechanism. However, identifying the
combination of modes to yield the desired response through
their method required onerous optimization.

Medina et al. [19] adopted a “deflated continuation”-based
bifurcation analysis [24] to explore the complex postcriti-
cal equilibrium manifold of a compressed elastomeric matrix
with a square array of circular holes. They then demonstrated
that the metamaterial’s response could be biased towards a
specific stable postbuckling mode by introducing small ge-
ometric imperfections of shape affine to that of the target
mode.

The methods in Ref. [18] and Ref. [19] are closely related
to the general principle of ‘modal nudging’ introduced by
Cox et al. [25], whereby geometric perturbations affine to
the mode shape of certain stable postbuckling modes are
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FIG. 1. (a) Perfect Roorda frame [26] under a vertical downwards force at the beam–column junction and the equilibrium path with
deformation modes. The column bends rightwards on the natural loading path, and leftwards on the isolated path. Tailored postbuckling
behavior using (b) passive and (c) active modal nudging. The equilibrium paths of the perfect Roorda frame are shown in grey. In (b), the
frame is nudged with a scaled deformation profile derived from an equilibrium state on the isolated, stable path. In (c), a horizontal force is
applied at the mid-height of the column to nudge the Roorda frame from the subcritical branch (solid square) to the supercritical branch (solid
triangle).

introduced into the original geometry to alter the natural
mechanical behavior. That is, the shape of a disconnected
equilibrium, i.e., one on a path in the bifurcation landscape
that is separated by an energy barrier from the natural re-
sponse, can be seeded into the baseline geometry thereby
“nudging” the system to spontaneously deform into this oth-
erwise unattainable mode upon loading. A simple example
is shown for the well-known Roorda frame [26] in Fig. 1.
The vertical column of the Roorda frame naturally prefers
to buckle one way due to the presence of the horizontal
beam [Fig. 1(a)]. This natural (i.e., spontaneous) predisposi-
tion leads to a limit point bifurcation, sudden loss of stability,
and collapse of the frame. However, as the response is de-
scribed by a broken transcritical bifurcation, a broken-away
equilibrium branch also exists that is stable and therefore
would prevent the loss of stability. Figure 1(b) show that the
response of the Roorda frame can be nudged onto this safe
path by seeding an initial imperfection—of shape affine to
the stable broken equilibrium—that biases the deformation
towards the desired mode. In this paper, we use the word
“mode” in the colloquial sense to describe a distinguishable
deformation modality that corresponds to a certain equilib-
rium configuration.

Modal nudging requires a method to determine all possible
postcritical modes of a structure, i.e., a comprehensive
bifurcation analysis that maps out the stability landscape.

However, this is beyond the capacities of current commercial
finite element packages. Here, we use an in-house nonlinear
finite element code with embedded numerical continuation,
where isolated broken-away solutions are determined by
homotopy [27].

In addition to preprogramming metamaterials using
geometric perturbations, efforts have also been made
to reprogram metamaterials in the postfabricated state
[12,17,28]. With external/internal actuation stimuli,
metamaterials can be switched from one stable equilibrium to
another, thereby reprogramming the homogenized mechanical
properties. The accompanying shape adaption has been
exploited for functionality, such as soft actuators [2,19] and
information storage [20].

Kidambi et al. [29] demonstrated that the behavior of meta-
materials can be tailored by boundary forces, but pronounced
metastability and energy-releasing state transitions were ob-
served. Additionally, Medina et al. [19] showed that the
response of lattice metamaterials can be tailored through local
manipulation or mechanical restraints. Reprogramming using
externally applied fields is also possible. For example, Chen
et al. [20] developed a reprogrammable metamaterial unit that
uses magnetic actuation for mode switching. The metamate-
rial unit exhibits distinctly different mechanical properties in
these two states, i.e., the stiffness and strength can range over
an order of magnitude.
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To date, tailoring the behavior of metamaterials has largely
focused on either passive or active means. However, a more
reliable exploitation of metamaterials with many possible
postcritical states may be enabled by use of both methods
synergistically. Herein, passive modal nudging is used to bias
a metamaterial towards one preferred base state in the postcrit-
ical regime, thereby overcoming the imperfection sensitivity
inherent in multistable systems. Active modal nudging is then
used to add functionality by enabling the metamaterial to
switch between different stable modes. Crucially, the actua-
tion in active nudging is applied locally to change the local
orientation of the “microstructure” of the metamaterial. This
contrasts with actuation at the global length scale and signifi-
cantly reduces the energy required to enable the desired mode
switch and the ensuing functionality.

II. METHODS

a. Finite-element formulation and generalized path-
following technique. An in-house nonlinear finite element
formulation for large deformation (geometric nonlinearity)
and finite strain (material nonlinearity) problems is adopted
herein, coupled to numerical continuation algorithms. The
modeling framework has been described and validated against
experimental results in previous work [30,31]. Specifically,
a compressible Neo-Hookean hyperelastic model [32] is
adopted to describe the material nonlinearity. In the analy-
ses, we reduce the structure to a planar 2D geometry, and
enforce the dimensional reduction by assuming a plane strain
condition in the third dimension. A structured uniform mesh
is adopted to discretize the geometry using 16-noded 2D
elements.

A generalized path-following solver [27,33] is used to
trace nonlinear equilibrium paths based on Riks’ arc-length
method [34], to pin-point critical points, to switch branches
at bifurcation points, and to trace critical points through pa-
rameter space. With the solver, we can explore the bifurcation
landscape of the lattice metamaterial under compression and
define the active nudging actuation strategy in a robust way
without preknowledge of branching events. More importantly,
we can trace certain critical and noncritical equilibria through
parameter space directly, e.g., the size of geometric perturba-
tion, rather than conducting expensive parameter studies. A
concise and self-contained description of the FE model and
the generalized path-following theory can be found in Sec. 1
of Ref. [39].

b. Passive modal nudging. Passive modal nudging [25]
is a design strategy that tailors the postbuckling behavior
of a load-carrying system, e.g., ultimate loading capacity,
compliance and/or stability, by seeding specific geometric
perturbations into the geometry that are derived from possible
deformation modes of the pristine, unnudged system [as seen
in Fig. 1(b)].

The procedure is based on the following steps.
(1) Explore the full bifurcation landscape of a baseline

structure.
(2) Choose a desirable stable equilibrium path beyond the

first instability point that does not lie on the natural path, i.e.,
the equilibrium path spontaneously followed by the structure

upon loading, and extract the deformation mode, ustate. Any
point along said stable equilibrium path is suitable.

(3) Alter the original undeformed geometry, x0, of the
baseline structure with the desired deformation mode shape,
ustate, as follows:

xnudge = x0 + ηūstate, (1)

where

ūstate = ustate

‖ustate‖2
, (2)

η‖ūstate‖2

‖x0‖2
� 1, (3)

with η a nondimensional nudging parameter and x0 contains
the position vector of each discretization node in the FE
model.

The nudging parameter should satisfy Eq. (3) to be classi-
fied as a small geometric change. If not, the corresponding
geometric alteration should not be considered a nudge, as
essentially an entirely new structure with its own unique struc-
tural response is formed.

c. Active modal nudging. While passive modal nudging is
used to tailor a structure’s response to prescribed loading,
active nudging uses secondary loading to switch between
stable equilibria. Using the Roorda frame of Fig. 1 (and the
symbols therein) as a reference again, the nudging process
starts from an equilibrium state where the active nudging force
is zero, i.e., Fn = 0, while Fa or ua need not be 0. Under the
action of Fn, the structure deforms away from the original
equilibrium state, i.e., Fn �= 0, while Fa or ua remain constant
depending on whether the primary loading is force or dis-
placement controlled [displacement controlled in Fig. 1(c)].
Should Fn reach a separate zero, another equilibrium state
would have been found, at which point active actuation would
no longer be required, if said equilibrium were also stable.
Similar techniques have been adopted in assessing the ‘shock
sensitivity’ of cylindrical shells [35] and experimental path-
following [36,37] to determine unstable equilibria.

A caveat for the effectiveness of active nudging is that
the secondary load must have control authority [38] over
the enforced deformation mode throughout the entire mode
switching process, or at least in the proximity of the targeted
equilibrium state.

III. BIFURCATION ANALYSIS
OF BASELINE METAMATERIAL

a. Geometry and material properties. We focus on a lattice
metamaterial consisting of an elastomeric matrix with a 3 by
3 square array of circular holes. The structure is shown in
Fig. 2(a). The holes have radius r and center-to-center distance
a, chosen so that the initial porosity is φ0 = πr2/a2 = 0.6.
The metamaterial has vertical edges broken up by columns
of semicircles and strips of solid material of height a − r
forming straight horizontal edges. Geometric dimensions and
material properties specific to the analyses herein are summa-
rized in Table I.

Previous studies [19] explored the stability landscape of
this metamaterial through experimental tests and numerical
simulations but with slightly different boundary conditions.
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FIG. 2. (a) Geometry of finite-size metamaterial with a 3 by 3
square array of holes. Parameter a is the distance between the holes
and r their radius. (b) Applied load and boundary conditions. The
top edge is under uniform compression (displacement controlled
loading), ua, and can move freely in the horizontal direction with
displacement us. The horizontal displacement at the bottom edge is
restrained at the middle of the edge to prevent rigid-body motion.

Here, vertical displacements are constrained along the bottom
edge, while a uniform vertical displacement ua is applied on
the top edge, as shown in Fig. 2(b). Top and bottom edges can
expand or contract freely in the horizontal direction, which is
different from the horizontally constraint adopted in Ref. [19].
In order to avoid rigid-body motion, the horizontal displace-
ment of the bottom edge’s mid point is assumed fixed.

b. Bifurcation diagram of baseline metamaterial. Firstly,
a bifurcation analysis is conducted to explore the bifurcation
landscape of the baseline metamaterial (perfect geometry).
The normalized load-displacement response is presented in
Fig. 3, with the stability of each equilibrium path high-
lighted (blue and red signify stable and unstable equilibria,
respectively). The plots are presented using the nondimen-
sional quantities σ̄ = Fa/(Lμ), ε̄ = ua/H , and γ̄ = us/H ,
indicative, respectively, of applied vertical load, and overall
compressive and shear deformations (symbols as per Fig. 2).
For clarity, abridged equilibrium paths are presented, i.e.,
only the fundamental path and equilibrium paths with stable
equilibria are plotted. As the current finite element (FE) model
cannot consider the effects of material self-contact, the analy-
sis is terminated once self-contact occurs.

The lattice deforms almost linearly up to the pitchfork
bifurcation B1. Upon branch-switching at B1, the lattice
loses left–right symmetry and transitions onto one of two

TABLE I. The material properties and geometric dimensions of
the lattice metamaterial. Geometry parameters defined in Fig. 2(a).
Dimensions as per the experimental samples manufactured and tested
by Medina et al. [19]. Material properties are determined as per
ASTM D412.

Shear modulus μ (kPa) 24
Poisson’s ratio ν 0.48
Length L (mm) 50.2
Height H (mm) 50.2
Center to center distance a (mm) 12.55
Radius of holes r (mm) 5.46

identical bifurcated paths, which are characterized by mirror-
symmetric sheared deformation modes as shown in Fig. 3.
This loading history is referred to as the natural path,
as it describes the physical response that the metamaterial
spontaneously, i.e., naturally, undergoes under the imposed
compressive loading.

In addition to these two postcritical equilibrium paths,
there also exists an isolated postcritical path, corresponding to
a symmetric deformation mode that becomes stable at bifur-
cation point B2. This isolated path is unattainable under the
imposed compression loading because it is separated by an
energy barrier from the fundamental path. However, it is pos-
sible to connect this isolated path with the natural loading one
through modal nudging (active or passive). Both possibilities
are discussed in detail in the following sections. Note that this
symmetric deformation mode was also defined as polarized in
previous research [19].

IV. TAILORING THE METAMATERIAL’S NATURAL
POSTCRITICAL RESPONSE VIA PASSIVE

MODAL NUDGING

Having unveiled the equilibrium manifold of the baseline
metamaterial, we now aim to tailor its natural response to
be biased towards the symmetric deformation mode. This
is achieved by passive modal nudging, i.e., seeding a small,
linearly scaled version of the symmetric deformation mode
into the perfect baseline geometry. With reference to Fig. 3 to
aid visualization, this nudging strategy breaks the supercritical
pitchfork B1 and separates the symmetry-breaking sheared
deformation modes from the symmetric deformation mode.
As we aim to design a soft robot (presented hereinafter)
that crawls by shape-shifting between the symmetric and
asymmetric modes, in this section, focus is placed on the
corresponding equilibrium manifolds. Alternatively, the
baseline geometry could also be nudged with a sheared
deformation mode to preferably select one mirror-symmetric
sheared deformation mode over the other, i.e., to bias the
metamaterial to shear left or right, but that is of less relevance
to the targeted application and therefore only discussed in
Sec. 3.1 of Ref. [39].

Figure 4 presents the equilibrium manifolds of the meta-
material nudged with the symmetric deformation mode. The
reference state for nudging is that along the symmetric de-
formation mode equilibrium branch of Fig. 3 past B2 with
ε̄ = 0.0502. A nudge factor η of 6.5162 is adopted. For ref-
erence, the vertical distance of the top and bottom points in
the central hole decreases by 0.076 mm from the baseline
metamaterial as a result of the applied nudge, which is 0.7% of
the diameter of the central hole. By eroding the energy barrier
that exists between the fundamental path and the isolated path
of the symmetric deformation mode for the baseline metama-
terial, the nudge results in a new natural loading path with
deformations affine to the symmetric deformation mode, as
shown in Fig. 4(b). In the advanced postbuckling regime, the
new path converges asymptotically to the isolated path of the
perfect baseline structure (grey curve), corresponding to the
symmetric deformation mode. This happens in accordance to
bifurcation theory principles owing to the shape and size of
the geometric perturbation introduced in the model.
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FIG. 3. Nondimensionalized load-displacement response for the lattice metamaterial with various bifurcation and limit points highlighted
as hollow and solid circles, respectively. γ̄ = us/H is the normalized shear displacement at the top edge. The paths corresponding to the
sheared deformation modes are disconnected from the path of the symmetric deformation mode. Bifurcation points denote intersections of
equilibrium paths, while limit points are minima and maxima of the displacement applied. Note that the full stability landscape features
significantly more equilibrium paths, and only the fundamental path and those leading to stable equilibria are presented here. Also shown are
the deformation states at the nominal compressive strain of ε̄ = 0.1 on each path: two mirror-symmetric sheared deformation modes and a
symmetric deformation mode with the central hole compressed vertically. A full bifurcation landscape can be found in Sec. 2 of Ref. [39].

There exists a threshold value of nudging required to
erode this energy barrier completely. Hence, a parameter
sensitivity study on the effect of the nudge factor on the
bifurcation landscape is conducted, as shown in Fig. 5. The
locus of the pitchfork bifurcation point B1 with respect to
the nudging parameter η is traced. For illustration purposes,
the equilibrium path of the baseline metamaterial is included
in the figure on the σ̄ -ε̄ plane. The locus of bifurcation

points shows that B1 and B2 are connected in parameter
space and that they converge and eventually collide at a cusp
catastrophe (η = 6.5162) as the nudging parameter increases.
This implies that, past the cusp, the energy barrier between
the equilibrium path of the symmetric deformation mode and
the fundamental path vanishes and the lattice metamaterial
naturally buckles into the symmetric deformation mode. For
a nudge factor smaller than the threshold value (η < 6.5162),

FIG. 4. Equilibrium paths and deformation profiles of the metamaterial nudged using the symmetric deformation mode. For comparison,
the equilibrium path of the metamaterial with perfect geometry is also plotted in grey curves, which is identical to those shown Fig. 3(b). As
shown in (b) and (c) the symmetric deformation mode is now the natural postcritical deformation mode, and both sheared deformation modes
are broken-away isolated paths.
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FIG. 5. Locus of bifurcation points (black curve) for different
levels of nudging factor η for the symmetric deformation mode. Note
that η is a nondimensional nudging parameter defined in Eq. (1),
which scales the size of the geometric perturbation introduced in
the structures. Above a specific nudging threshold (η � 6.5162) a
cusp catstrophe is reached suggesting that the isolated branch of the
baseline mode (η = 0) is now connected to the prebuckling path.

a finite energy barrier remains and the metamaterial spon-
taneously buckles into one of the two sheared deformation
modes. In reality, a larger threshold nudging factor than
determined here is required to overcome the effects arising
from manufacturing imperfections (stochastic geometric
imperfections and inhomogeneity of the material). More
details on the effects of imperfections on the effectiveness of
modal nudging can be found in Sec. 3.2 of Ref. [39].

In addition to the natural loading path, Fig. 4(c) also
presents the equilibrium path of the sheared deformation
mode, which in the successfully nudged scenario is now
detached from the natural loading path. In the advanced
postbuckling regime, the path converges to that of the sheared
deformation mode of the perfect baseline structure. Note
that the nudged symmetric deformation mode does not break
left–right symmetry of the metamaterial. Therefore there
are two mirror-symmetric sheared deformation modes as
in the baseline metamaterial, and the existence of multiple
stable postbuckling modes implies that we can mode switch
from the symmetric deformation mode onto either sheared
deformation mode by applying active nudging.

V. EXPERIMENTAL TESTING TO DEMONSTRATE
PASSIVE MODAL NUDGING

To verify the effectiveness of passive nudging, we con-
duct a series of experiments on unnudged and nudged lattice
metamaterials fabricated by molding silicone rubber. Figure 6
shows the test rig. More details on the fabrication method and
testing setup are described in Sec. 6 of Ref. [39].

In manufacturing the specimens, we adopt the same pla-
nar dimensions as in Table I and a depth of D = 40 mm in

FIG. 6. Test setup for testing of the metamaterial. The top and
bottom edges of the sample are partially embedded in the fixtures
with a depth of 2 mm. The top fixture is connected to a smooth glide
so that the top edge can move freely in the horizontal direction. The
bottom fixture is fixed to the test bed of the test machine.

the third dimension. The depth is comparable to the planar
dimensions such that the sample does not exhibit out-of-plane
buckling under the applied compression. However, the depth
chosen is not sufficient to satisfy the plane strain condition
(strictly speaking, infinite depth) of the 2D planar finite ele-
ment models. This produces small quantitative errors between
the 2D plane strain model and the experimental results. There-
fore we have also conducted 3D finite element analyses in
the commercial FE solver ABAQUS, which show marginally
better correlation with the experimental results. Overall, the
agreement between 2D plane strain model and experimental
results is excellent as shown in Fig. 7.

In the experimental campaign, three different samples were
manufactured: (a) a “perfect” geometry sample, i.e., no nudge
applied but background stochastic imperfections are present;
(b) a passively nudged sample using the symmetric deforma-
tion mode with nudge factor below the cusp value; and (c)
a passively nudged sample using the symmetric deformation
mode with the nudge factor over the cusp value. Note that
the symmetric deformation mode introduced is from the finite
element analysis using 2D plane strain elements. All samples
are first loaded into the advanced postbuckling regime with
ε̄ = 0.1, to obtain the natural loading path (sheared or sym-
metric). Subsequently, we manually and actively nudge the
samples to the other stable postbuckling mode corresponding
to the respective isolated branch(symmetric or sheared) and
then unload the sample to obtain the full isolated branch.

Figure 7 presents the experimental equilibrium paths
of the three samples, alongside the numerical simulations
from both 3D FE and 2D FE plane strain models. Each
row in Fig. 7 corresponds to one sample with (a) being
the pristine geometry, (b) the undernudged geometry, and
(c) the successfully nudged geometry. The first and second
columns denote the natural loading path [sheared for the
baseline (a) and undernudged (b) geometries, and symmetric
for the successfully nudged (c) geometry] with the first
column showing normalized compressive force vs normalized
compressive displacement, and the second column showing
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FIG. 7. Response of experimental samples with (a) baseline sample with “perfect” geometry, (b) geometrically nudged with symmetric
deformation mode and nudge factor η = 7.379 (below the nudging threshold), and (c) geometrically nudged with symmetric deformation mode
and nudge factor η = 8.433 (above the nudging threshold). In each case, columns 1 and 2 are the natural loading path; columns 3 and 4 are
isolated paths actively nudged from the natural loading path. Columns 1 and 3 present the normalized compression force vs the normalized
axial compression displacement at the top edge ε̄; columns 2 and 4 present the normalized axial compression displacement ε̄ vs the shear
displacement at the top edge us/L. FE simulations using three-dimensional brick elements as well as two-dimensional plane strain elements
are also shown for reference. The experimental results demonstrate successful passive nudging to the sheared and the symmetric deformation
mode, i.e., successful mode selection. Videos of these tests can be seen in the video folder of Ref. [39].

normalized shearing displacement vs normalized compressive
displacement. Columns 3 and 4 are the respective plots for
the isolated branches [symmetric for (a) and (b), sheared for
(c)]. Generally, both the 2D and 3D FE models compare well
with the experimental results for all three samples, verifying
the effectiveness of the numerical simulations. We observe
some oscillations in the experimental results in the proximity
of the critical point where the sheared buckling mode is
triggered. Close to the critical point, the principal stiffness of
the metamaterial in the direction of the buckling mode is close
to zero, and therefore any misalignment in load or geometric
imperfections leads to pronounced oscillations. In addition,
the plots of shearing displacement, us, vs applied compressive
strain, ε̄, show a nonzero value of us for the symmetric
deformation mode; see Figs. 7(a4), 7(b4), and 7(c2). This
occurs due to the inherent stiction and friction at the top glide
and eccentricities introduced during manufacturing. Note

that the shear jumping in the plane strain model Fig. 7(a4)
can be explained based on the bifurcation landscape of the
perfect 2D plain strain model in Fig. 3(b). The nominal strain
at B2, where the symmetric deformation mode loses/regains
stability is larger than that at the bifurcation point B1,
where shear buckling occurs. Therefore, upon unloading
from symmetric, the structure will jump at B2(symmetric
deformation mode) to the stable sheared deformation mode.

Both samples (a) and (b) buckle into the sheared defor-
mation mode under the applied compressive loading. Note
that the geometric nudging factor of sample (b)—the under-
nudged sample—is η = 7.379, which is slightly greater than
the threshold for effective nudging predicted by the 2D planar
model (the cusp in Fig. 5). The reasons for this discrepancy are
firstly the difference between the 3D mechanics of the experi-
mental specimen and the 2D plane strain mechanics assumed
in the model, and secondly, unavoidable imperfections during
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manufacturing which decrease the effectiveness of a given
nudge mode. Finally, sample (c) buckles into the symmetric
deformation mode upon application of the compressive load,
demonstrating a successfully nudged response. Indeed, in-
creasing the nudge factor of the symmetric deformation mode,
the shear component us in the symmetric deformation mode
during the loading process decreases, as shown in Figs. 7(a4),
7(b4), and 7(c2). This reduction in shear component reflects
the decaying influence of the sheared deformation mode with
increasing nudging in the symmetric deformation mode.

VI. ACTIVE NUDGING THROUGH
SECONDARY LOADING

The preceding sections have shown the coexistence of
different stable postbuckling modes in the metamaterial
under consideration, with and without passive nudges. As
mentioned in the introductory sections, multistability creates
the possibility for shape adaption through secondary loading.
To this aim, we introduce a pair of vertical concentrated forces
in the central hole, as shown in Fig. 8. An important feature
of this actuation scheme is that it acts to control the local
‘microstructure’ of the metamaterial by changing the shape
of the central hole: from sheared to symmetrically deformed.
The choice of actuation scheme is based on a distinctive
property of multistable metamaterials, that is their shape
can be changed by controlling features at a smaller length
scale—with smaller energy requirements—rather than the
alternative strategy of mode switching by a globally applied
actuation force. During active nudging, the compressive
displacement at the top edge remains constant but the top
edge can move freely in the horizontal direction (shear).

In this section, we navigate the nonlinear equilibrium path
of the baseline metamaterial (no passive nudge). Active nudg-
ing is applied from the symmetric to the sheared deformation
mode at a nominal compressive strain of ε̄ = 0.0814. The
active nudging force–displacement relationship is presented
in Fig. 9. Starting from the symmetric deformation mode
(EP1), the lattice metamaterial deforms symmetrically on the
fundamental active nudging path until this deformation mode
becomes unstable at a symmetry-breaking bifurcation point

FIG. 8. Illustration of active nudging of the postbuckled metama-
terial through a pair of vertical concentrated active nudging forces
Fn, applied on the top and bottom edges of the central hole (red
arrows). The direction of the actuation force at the top edge of the
central hole is positive upwards. During active nudging, the direction
of the actuation force remains vertical. The applied compressive
displacement at the top edge remains constant throughout the active
nudging process.

NB1. The critical eigenmode of the bifurcation point is a
sheared deformation mode, as shown in Fig. 9(a). Because the
connected bifurcation path that branches from the bifurcation
point NB1 is unstable, the metamaterial snaps dynamically
into the sheared deformation mode ES0 (under force con-
trolled loading), as shown by the dashed arrow in Fig. 9(b).
With further F̄n loading, the horizontal displacement of the top
edge, us, decreases and the lattice metamaterial restores sym-
metry at the bifurcation point NB2, where the bifurcated path
intersects with the fundamental active nudging path again.
However, it is noted from Fig. 9(b) that, if the active nudging
force Fn is removed at the snap-through equilibrium ES0,
the metamaterial stabilizes in the equilibrium state ES1 in
the form of the sheared deformation mode. Hence, we have
achieved mode switching from the symmetric deformation
mode (EP1) to the sheared deformation mode (ES1) by active
nudging.

At ES1, reversing the direction of the active nudging force
(Fn < 0), the metamaterial undergoes another snap-through
instability to the symmetric deformation mode at limit point
NLP1; see the dashed arrow in Fig. 9(b). When the active
nudging force is removed, the metamaterial returns to the
initial symmetric deformation mode EP1. In conclusion, we
achieve closed-loop mode switching between sheared and
symmetric deformation modes using active nudging.

The magnitude of the active nudging force required to trig-
ger mode switching from the symmetric deformation mode
to the sheared deformation mode, i.e., the force magnitude
at NB1, is larger than the magnitude of the force required to
mode switch from the shearing to the symmetric deformation
mode, i.e., the force magnitude at NLP1. The energy input
required to achieve mode switching from the symmetric defor-
mation mode to the sheared deformation mode is also larger
than the other way around. In engineering practice, it may be
beneficial to make the magnitude of the active nudging force
to trigger mode switching identical. This can be achieved by
adjusting the compression level at the top edge, for which
more details can be found in Sec. 4 of Ref. [39].

Also note that at bifurcation point NB1, the metamaterial
can switch into either of the two mirror-symmetric sheared
deformation modes. To make the system behave in a determin-
istic way, i.e., to prefer one sheared deformation mode over
the other, we need to bias the metamaterial in one direction,
for example, by introducing passive nudging in the shape of
the sheared deformation mode. A detailed analysis on this can
be found in Section 4 of Ref. [39].

VII. ACTUATION ENERGY
AND FURTHER CONSIDERATIONS

a. Energy efficiency of active modal nudging. In previous
work, shape-shifting in buckling-driven metamaterials was
generally achieved by mode switching between the pre and
postbuckling regimes [2,40], by means of loads applied on
the external material boundary. In these cases, assuming no
adverse effects on the shape-shifting characteristics, preload-
ing the structure to a point in the proximity of the bifurcation
can be a convenient strategy to minimize the energy input
required for actuation, because, then, only a relatively small
stimulus is required to trigger shape change. As shown in the
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FIG. 9. Nondimensionalized active nudging force–displacement path for the baseline metamaterial without passive nudging. Also shown
are the critical eigenvectors at selected bifurcation points and deformation profiles at selected equilibria. The dashed arrows in (b) represent
dynamic snaps under force controlled loading due to instabilities at NB1 and NLP1. When the nudging force is removed at ES0 and EP0,
the metamaterial stabilizes in the sheared deformation mode at ES1 and the symmetric deformation mode at EP1, respectively. Under the
force-controlled actuation, the transition from the symmetric deformation mode to the sheared deformation mode follows the active nudging
path: EP1 → NB1 → ES0→ ES1; the transition from the sheared deformation mode to the symmetric deformation mode follows the active
nudging path: ES1 → NLP1 → EP0→ EP1. Note that the vertical displacement at the top edge remains ε̄ = 0.0814 through the active nudging
process.

previous section, an alternative possibility is mode switching
between stable postbuckling states. Further actuation energy
efficiency ensues, because global shape change is triggered
by local deformations, i.e., by controlling the topology at a
smaller length scale.

Figure 10 compares the energy input required for shape
change using these two paradigms, with actuation between pre
and postbuckling states (from the symmetric unbuckled shape
to the sheared deformation mode) and between postbuckling
states (from the postbuckling symmetric symmetric defor-
mation mode to the sheared deformation mode) on the left
and right, respectively. For both cases, the force-displacement
diagrams shown are derived from the 2D plane strain model
with target shear amplitude us/L = 0.20. The energy required
for actuation between pre and postbuckling states [Fig. 10(a)]
is indicated by the shadowed red area subtended by the equi-
librium curve. Transitioning from the bifurcation point to
the targeted shear amplitude by increasing compression takes
0.227 J/m. For a fair comparison with the second actuation
strategy, we neglect the energy required to load the structure
up to the bifurcation point (E0 → E1), as this would only be
spent once rather than cyclically for the crawling action.

For the active nudging case, the limit point and sigmoidal
curve mean that actuation energy computations are more

complicated as these depend on the type of actuation chosen
or the loading history. With this caveat in mind, we turn our fo-
cus to an actuation scheme that balances energy efficiency and
ease of implementation; that is, displacement control, main-
tained upon reaching the displacement limit point NDLP1,
following which the structure will snap down and restabilize
on sheared deformation mode ES1. The energy consumed in
this case is 0.0225 J/m, i.e., 9.92% of that required with the
alternative actuation method. It is, therefore, self-evident that
active nudging by local actuation of an internal feature of the
metamaterial is energetically more efficient than enforcing a
mode change through global stimuli.

The energy required to achieve the transition from the
sheared deformation mode back to the prebuckling state in
Fig. 10(a) or the symmetric deformation mode in Fig. 10(b)
can be calculated in a similar way. For the global actuation
method, returning to the prebuckling point us = 0 is an un-
loading process. Therefore the corresponding energy input
required is zero. For the active nudging actuation, by reversing
the actuation direction, the structure will reach the displace-
ment limit point NDLP2, following which the structure will
snap up and restabilize in the symmetric deformation mode
at EP1. The energy required is highlighted by the shadowed
blue area, which is 0.0097 J/m in this case. Even though
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FIG. 10. The actuation force–displacement curve of the lattice metamaterial (plane strain; geometry and material properties as in Table I)
to achieve a us/L = 0.20 shear displacement amplitude, using: (a) increasing compression from the prebuckling state; and (b) active nudging
from the symmetric deformation mode. The red areas represent the energy input required to achieve the sheared deformation mode from the
state with us = 0 [prebuckling state in (a) or the symmetric deformation mode in (b)]; the blue area represent the energy input required to
achieve mode shifting from the sheared deformation mode to the symmetric deformation mode. In the deformation profiles, the red arrows
represent the main actuation force applied on the lattice to achieve shape-shifting; the dark green arrows represent the constant compressive
displacement. Note that the range of the vertical and horizontal axes in (b) is smaller than in (a).

in the active modal nudging process energy is input in both
directions of shape-shifting, the total energy input required
is only 14.21% of that required for the global actuation pro-
cess. Therefore we can conclude that active nudging via local
actuation is more energetically efficient if we want to use
the mechanism in a repetitive manner. Note that the shad-
owed red and blue areas correspond to the energy barrier
(under the actuation using the pair of vertical forces) between
the sheared deformation mode and symmetric deformation
mode.

b. Robust solver for bifurcation manifold exploration. A
prerequisite for both active and passive nudging is the ability
to identify most, and if possible all, stable paths in a structure’s
equilibrium manifold. This requires a robust path-following
method that can identify equilibrium paths branching off the
natural loading path, as well as isolated stable equilibria. For
the former, pinpointing critical points and branch switching is
sufficient. For the latter, we adopted homotopy continuation
[41] based on previous knowledge of the existence and
shape of isolated equilibria. In general however, in order to
solve for isolated equilibria without existing knowledge of
stable states, techniques such as deflated continuation would
be necessary [42].

c. Effectiveness of active modal nudging. To effectively
achieve active modal nudging, the actuator must exert control
authority [37,43] over the metamaterial. For instance, it is not
possible to achieve mode switching between the symmetric
deformation mode and the sheared deformation mode through
a single horizontal concentrated force applied at the top edge
of the metamaterial. This force only allows mode switching
between two sheared deformation modes; more details on this
can be found in Sec. 4 in Ref. [39]. Therefore shape control
over the central hole is an important prerequisite to achieve
mode switching. In general, for nonlinear structures with more
complex bifurcation landscapes and multiple stable equilib-
rium branches, a more systematic approach to determine the
active nudging input would be required. One potential solu-
tion could be adopting a variational formulation of motion
design [44] to determine the path with lowest actuation energy
and the required actuation force along the path.

VIII. APPLICATION: A SOFT CRAWLING ROBOT

The previous sections have established that (1) passive
nudging can be used to target one preferred postcritical
mode over another throughout a loading sequence into the

214103-10



ACTIVE RECONFIGURATION OF MULTISTABLE … PHYSICAL REVIEW B 107, 214103 (2023)

FIG. 11. [(a) and (b)] Top and side views of the crawling robot
setup. The lattice metamaterial is attached to the blue and black
fixtures, which are connected to carriages sitting on smooth glides.
Pneumatic actuator bellows are embedded in the central hole, as well
as in both fixtures. (c) Pneumatic bellow fixed onto the connector
providing asymmetric friction such that the lattice metamaterial can
move leftwards while mode switching between sheared and sym-
metric deformation modes. (d) “On” and “off” states of the bellow
actuators under the fixture. The “on” and “off” states allow the
carriage to be fixed or move freely on the glide.

postbuckling regime and (2) active nudging can be used to
switch between different postcritical modes.

We now demonstrate the use of passive and active nudging
in combination to develop a crawling soft robot; see Fig. 11. A
lattice metamaterial of planar dimensions L = 125.5 mm and
H = 125.5 mm (geometry shown in Table 2 scaled 2.5×) is
set within two fixtures (blue and black). The vertical position
of the fixtures can be adjusted to apply different levels of

FIG. 12. (a) A typical actuation cycle for the robot. Yellow and
red lines are the reference line indicating the initial and final positions
of the right and left edges. The yellow arrows represent the motion
of the fixture within the step. (b) The location of the crawling robot
in the initial state, after four and eight iterations. A movie of the
movement of the demo robot can be found in the video folder of
Ref. [39].

compression (ε̄ = 0.06 is applied herein). Said compression
initially deforms the metamaterial in the symmetric defor-
mation mode, following passive nudging to bias the natural
response towards symmetry. In addition, to ensure reliable
and repeatable transition to and from the symmetric and a
preferred sheared deformation mode, a passive nudge affine
to one of the sheared deformation modes should also be intro-
duced upon manufacturing. However, in the present setup, this
was not necessary as biased manufacturing and installation
errors alongside biased friction of the glide lead to the sam-
ple preferring one sheared deformation mode over the other
spontaneously.

The fixtures are connected onto carriages that can move
freely on glides along the horizontal direction. Mode switch-
ing is achieved via a pneumatic bellow embedded in the
central hole, which applies a pair of forces as shown in Fig. 8.
To make the crawling robot move forwards, asymmetric
friction mechanisms are introduced in the black and blue
fixtures through additional pneumatic bellows; see Figs. 11(b)
and 11(c). Figure 11(d) illustrates this mechanism. Upon pres-
surization of the pneumatic bellow below the black fixture,
full contact with the worktop is established providing enough
friction to prevent free movement along the glide; upon de-
pressurization the bellow detaches from the worktop and the
fixture can move freely again.

Figure 12(a) presents a typical actuation cycle—post appli-
cation of the initial compression—where lateral movement is
driven by synchronized activation of the bellow in the central
hole and those under the fixtures:
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Step 0: the actuators under the top (blue) and bottom
(black) fixtures are “on” (inflated) and “off,” respectively.
The metamaterial is in the stable symmetric deformation
mode.
Step 1: inflation of the central hole. The metamaterial is
actively nudged into the sheared deformation mode by a snap-
through instability. Since the top fixture cannot move in the
horizontal direction due to friction, the bottom fixture moves
leftwards.
Step 2: the status of the actuators under the top and bot-
tom fixtures is swapped, i.e., actuators under the top and
bottom fixture are, respectively, “off” and “on.” The bellow
in the central hole is deflated. The metamaterial undergoes
snap-through and returns to the symmetric deformation mode.
Since the bottom fixture is fixed in the horizontal direction
and the top fixture is free to move, the top fixture moves
leftwards.

By repeating the above steps cyclically, the soft robot will
keep moving leftwards. Figure 12(b) shows the initial position
of the robot and the positions after four and eight cycles, re-
spectively. A movie featuring the crawling action can be found
in the video folder of Ref. [39]. Note that we can also reverse
locomotion in the opposite direction (moving rightwards) by
swapping the sequence of actuation in the top and bottom
fixtures, where the top blue fixture will move rightwards in
step 1 and the bottom black fixture will move rightwards in
step 2.

The soft crawling robot is controlled using the model-based
open-loop strategy [45,46] or morphological control [47],
which relies on knowledge of the nonlinear response of the
lattice metamaterial to active nudging actuation based on
nonlinear finite element simulations. By introducing a biased
geometric perturbation in the lattice structure, the actuator can
behave in a deterministic and desired manner. This approach
enables the actuator to achieve the desired motion without
requiring feedback control. However, as with other open-loop
soft robotic systems, the main drawback is that it can only
perform structured repetitive tasks that are preprogrammed in
advance. In this case, the actuator is currently limited to linear
locomotion. To perform more complex and unstructured
tasks, the implementation of a closed-loop control system
that incorporates sensors and control modules is necessary.
As this is beyond the scope of the present study, it will be
explored in future work.

IX. CONCLUSIONS

Although the work in this paper concerns a specific
metamaterial architecture, some of the conclusions are gen-
eralizable. Namely, that the postbuckling behavior of lattice
metamaterials can be programed through passive and ac-
tive nudging techniques. For the metamaterial and boundary
conditions considered here, there are three distinct stable
postbuckling modes—two sheared deformation modes and a
symmetric deformation mode. Under compressive loading,
the baseline metamaterial buckles into one of the sheared
deformation modes. The equilibrium path corresponding to
the symmetric deformation mode is detached from the nat-
ural loading path. We demonstrate that the natural buckling
response can be changed to the symmetric deformation mode
using passive modal nudging, i.e., by applying a geomet-
ric perturbation affine to the symmetric deformation mode.
Robust passive nudging is attained past a critical threshold
magnitude of the perturbation.

In addition, we demonstrate that mode switching, in this
case, between a symmetric deformation mode and a sheared
deformation mode, is possible through internal (embedded)
actuation, i.e., by actuation at the local length scale of the
“microstructure” of the metamaterial. In the present study,
this is achieved by controlling the shape of the central hole
of the metamaterial. We show that shape-shifting between
the sheared and symmetric postbuckling modes can be used
to achieve locomotion. A demonstration crawling soft robot,
exploiting both passive and active nudging is designed, man-
ufactured and tested. Compared with traditional, globally
applied actuation mechanisms, active modal nudging at the
“microstructure” level is energetically more efficient.

While in this study we consider a specific type of soft
metamaterial and a specific application, the design paradigms
introduced can be extended to wider scenarios, such as adap-
tive wing structures [48,49] or facade systems [50]. As such,
said paradigm has the potential to serve as a competitive
means to design for energetically efficient adaptive structures.
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