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Machine-learning-enabled optimization of atomic structures using atoms with fractional existence
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We introduce a method for global optimization of the structure of atomic systems that uses additional atoms
with fractional existence. The method allows for movement of atoms over long distances bypassing energy
barriers encountered in the conventional position space. The method is based on Gaussian processes, where
the extrapolation to fractional existence is performed with a vectorial fingerprint. The method is applied to
clusters and two-dimensional systems, where the fractional existence variables are optimized while keeping the
atomic positions fixed on a lattice. Simultaneous optimization of atomic coordinates and existence variables
is demonstrated on copper clusters of varying size. The existence variables are shown to speed up the global
optimization of large and particularly difficult-to-optimize clusters.
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I. INTRODUCTION

The atomic-scale structure is of critical relevance to the
physical and chemical properties of materials and nanopar-
ticles. In the low-temperature limit, the most stable atomic
configuration is found by minimizing the total energy, but the
optimization problem is difficult because of many metastable
states, and in many cases, the total energy evaluations are
computationally time-consuming.

To address these problems several algorithms of automa-
tized structure prediction have been proposed [1], including
random searches [2], genetic searches [3–6], basin hopping
[7], and particle swarm optimizations [8]. Central to most
of these machine learning models is that they rely on carry-
ing out large numbers of time-consuming calculations with
density functional theory (DFT) or other quantum chemistry
methods. Gaussian processes have been shown to be effec-
tive in constructing fast surrogate potential energy surfaces
(PESs) [9,10], which can be explored by random searching
and updated by a Bayesian search machine learning model,
as demonstrated with the so-called global optimization with
first-principles energy expressions (GOFEE) algorithm in
Ref. [11]. This methodology is generalized to include training
on forces in the BEACON (Bayesian Exploration of Atomic
Configurations for Optimization) code [12]. GOFEE can de-
crease the number of energy evaluations necessary to find the
global minimum by up to several orders of magnitude [13].

The efficiency of random searching can be improved by
inclusion of hyperdimensions [14], which make it possible to
circumvent barriers in configuration space. However, the en-
ergy function has to be defined for the extra hyperdimensions,
and it is not clear how to do this for potential energy surfaces
based on quantum mechanical calculations.

An alternative way to increase the dimensionality of con-
figuration space and circumvent barriers is to interpolate
between chemical elements (“ICE”) as implemented in the

ICE-BEACON code [15]. Here, additional dimensions are in-
troduced so that an atom can be a fractional mixture of two
chemical elements. In this paper, we apply the idea of ex-
panded dimensionality in a different way by introducing extra
variables which allow the atoms to have partial existence. The
idea is that additional atoms of fractional existence can act
as candidate sites for real atoms, allowing existence to be
transferred from less to more favorable sites over arbitrarily
long distances bypassing energy barriers in the conventional
position space. Since some of the atoms end up with very little
or no existence, we shall refer to the additional atoms as ghost
atoms, and we will refer to the approach as ghost-BEACON. An
illustration of the algorithm is shown in Fig. 1.

II. RESULTS

A. Fingerprint-enabled removal of energy barriers

In the model, a system with N atoms is treated as a sur-
rogate system with N∗ > N atoms, where every atom (with
index i) is given a fractional existence qi ∈ [0, 1] with the
constraint that the fractions sum to the number of real atoms∑N∗

i qi = N . The system is thus characterized by 3N∗ spa-
tial coordinates and N∗ existence variables. The existence
variables are incorporated into a structural fingerprint with
radial and angular parts that resemble the corresponding dis-
tribution functions. The radial part reads

ρR(r) =
∑
i, j
i �= j

qiq j
1

r2
i j

fc(ri j ) e−|r−ri j |2/2δ2
R , (1)

where r is the distance variable, ri j are the interatomic dis-
tances, fc is a cutoff function, and δR is a length parameter.
The angular part has a similar form. (See the details of the
machine learning model and the fingerprint in Appendix B.)

The radial fingerprint is, in general, quadratic in the ex-
istence variables. However, let us consider a situation where
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FIG. 1. (a) Illustration of different levels of fractional atomic
existence q of a copper atom ranging from zero existence at q = 0
to full existence at q = 1. The low to zero existence limit is referred
to as a ghost atom. (b) Illustration of the ghost-BEACON algorithm
with seven real atoms and two ghost atoms. N∗ is the total number
of atoms, N is the number of real atoms, and Nghost is the number
of ghost atoms. The fractional existence values q are spread across
all atoms during the relaxation. Except for the inclusion of existence
variables, the cycle is identical to that of GOFEE [11].

all atoms either fully exist (q = 1) or are completely removed
(q = 0) except for two atoms, say, numbers 1 and 2, whose
distance is larger than the cutoff distance. In that case, the
fingerprint becomes linear in q1 and q2. If we furthermore
assume that the surroundings of the two atoms are identical,
the transfer of existence from atom 2 to atom 1 (q2 = 1 − q1)
leaves the fingerprint completely unchanged during the trans-
fer. This means that any machine-learning model based on the
fingerprint shows no energy barrier for the process. This anal-
ysis also holds if the angular fingerprint is included. (Shown
explicitly in the Supplemental Material, Fig. S1 [16]).

To illustrate the removal of energy barriers further, we
show in Fig. 2(a) a system with seven copper atoms ac-
companied by a ghost atom with the energies calculated
with an effective-medium-theory (EMT) interatomic potential
[17,18]. We investigate the energy profile of moving an atom
from a less favorable site (site 8) to a more favorable one
(site 1) by following the trajectory shown in blue, which is the
minimal-energy path found with a nudged-elastic-band (NEB)
calculation [19,20]. We compare this motion to the alterna-
tive path of existence transfer. A Gaussian-process surrogate
model is trained on eight points along the NEB trajectory. The
black curve in Fig. 2(b) shows the EMT energies along the
NEB path, while the blue curve is the surrogate energy along
the same path. The curves exhibit two energy barriers in the
energy landscape corresponding to atom 8 bypassing atoms 5
and 2. The yellow curve in Fig. 2(b) shows the energy during
the transfer of existence from atom 8 to 1 with the reaction

FIG. 2. (a) The 2D test system with eight atoms, labeled from 1
to 8. In this configuration, atom 1 is a ghost atom, and atoms 2–8
are real. The blue curve shows the real-space minimum-energy path,
where atom 8 is moved to the empty site, site 1. (b) Different energy
profiles while moving the atom from site 8 to site 1 in (a). The black
curve shows the EMT energies along the minimum-energy path, and
the blue curve shows surrogate energies along the same path. The
yellow curve shows the energy profile in the case where no atoms
are moved, but the existence is transferred from atom 8 to atom 1.
(c) The variation of the existence variables during the transfer of
existence from atom 8 to 1.

coordinate q1 = 1 − q8 and all other existence variables fixed.
The energy is almost linear with no potential barrier.

Figure 2(c) visualizes the energy minimization process
where, initially, q1 = 0 and qi = 1 for i = 2, 3, . . . , 8. During
the relaxation, the existence of atom 8 decreases, while the
existence of atom 1 increases. The process also involves atoms
2 and 3, which temporarily lose some of their existence. At
the end of the relaxation, the existence has been completely
transferred from atom 8 to atom 1.

We further illustrate the property of the surrogate PES
when varying the existence variables in Fig. 3. Atom 8 is now
moved along the indicated linear path in Fig. 3(c) with differ-
ent amounts of existence q8, where the remaining existence
is taken up by atom 1, q1 = 1 − q8. Atom 8 is more weakly
interacting with the rest of the cluster when its existence
is reduced, but the bonding distance remains essentially the
same. An atom with varying existence will tend to position
itself at similar geometries, making the transfer of existence
more relevant. Atoms without existence do not interact and
therefore cannot move, making it unlikely that they take part
in optimization. For efficient structure optimizations, it is
therefore necessary to introduce a lower bound for the exis-
tence variables and, consequently, increase the total existence.

The extension of the machine learning model to the frac-
tional existence space is an extrapolation that cannot be
controlled by the addition of data points. The quality of the
model therefore depends on the way the existence fractions
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FIG. 3. (a) Energy curve of copper atom 8 as a function of the
distance between copper atom 8 and the remaining cluster along the
direction of the blue arrow depicted in (b) for different existence
fractions of atom 8. Training is done with EMT for 10 different
distances of atom 8. All existence not carried in atom 8 is placed
in atom 1 (q1 = 1 − q8). The energy curves are seen to exhibit a
minimum at approximately the same distance.

are included in the fingerprint and the choice of hyperparam-
eters for the machine learning model.

B. Optimization of atomic existence fractions on a grid

We now turn to structural optimizations in which the ener-
gies and forces are based on DFT as specified in Appendix A.
The optimization algorithm is as follows (see Fig. 1): Given
a database of structures with DFT calculated energies and
forces, a surrogate PES is constructed using a Gaussian pro-
cess in which the structures are described by the fingerprint.
All systems in the database have N atoms, but the surrogate
model can be used to make predictions for systems with
N∗ atoms with fractional existence. The surrogate PES is
explored with random searching, that is, with 40 local relax-
ations based on random initial configurations. The relaxations
can be performed in either the atomic coordinates or the
fractional existence variables or both. If the existence vari-
ables take on fractional values after relaxation, the N largest
fractions are set to 1, and the remaining ones are set to 0. The
relaxed structures are evaluated with an acquisition function—
we use the lower-confidence bound (LCB)—and the structure
with the lowest value is added to the DFT database. This
procedure is iteratively repeated while keeping track of the
low-energy structures obtained. The full simulation procedure
is repeated to obtain the statistics of the performance. The de-
tails of the algorithm, including the computational parameters,
can be found in Appendix B.

We first consider some examples in which the atomic posi-
tions are fixed and only the existence variables are optimized.
Figures 4(a)–4(d) show four different systems: Figure 4(a)
shows a single layer of carbon atoms on a periodic triangular
lattice with an equilibrium interatomic distance of 1.42 Å,
corresponding to that of graphene. The system contains a total
of 72 atoms with 48 real atoms, which is the number of atoms
corresponding to a layer of graphene. Figure 4(b) shows a
dense layer of carbon atoms on a periodic rectangular grid

FIG. 4. (a)–(d) Atomic grids (top) and global minimum-energy
structures (bottom) of (a) carbon (48 atoms) on a periodic triangular
lattice (72 atoms), (b) carbon (8 atoms) on a dense rectangular lattice
(48 atoms total), (c) C60 on a 147-atom icosahedral grid, and (d) Au20

on a 64-atom fcc grid. (e) Success curves for finding the global
minimum-energy structure for each setup shown in (a)–(d). Only the
existence variables are optimized while keeping the atomic positions
fixed on the grid. The uncertainties are Bayesian estimates.

with interatomic distance a = 0.710 Å in one direction and
0.5

√
3a in the other direction. The total number of atoms is

48, with 8 real atoms again corresponding to the density of
graphene. Figure 4(c) shows an icosahedron of carbon atoms
with 147 atoms in total and 60 real atoms with an interatomic
distance of 1.44 Å between atoms belonging to the same
icosahedral layer, roughly agreeing with the bond lengths for
a buckyball. Figure 4(d) shows a cluster of fcc gold containing
a total of 64 atoms and 20 real atoms.

Each optimization has an initial training set of two ran-
dom sets of existence variables: one in which the atoms are
chosen at random and one in which the atoms are chosen
at random but so that the final structure is connected. The
obtained minimum-energy structures for the four systems are
shown in the lower panels of Figs. 4(a)–4(d). The minimum-
energy structure for Figs. 4(a) and 4(b) is a graphene layer, for
Fig. 4(c) it is a C60 buckyball, and for Fig. 4(d) it is the tetra-
hedral Au20 cluster [21]. The statistics of the optimizations are
shown in the success curves in Fig. 4(e). In all four cases 10 in-
dependent simulations have been performed, and the success
curves show the fraction of simulations which have found the
lowest-energy structure as a function of the number of DFT
calculations being performed. Success is registered once a
structure satisfies the correct nearest-neighbor distribution for
all atoms in the cluster compared to the global minimum. Suc-
cess curve uncertainty is calculated by a Bayesian approach as
documented in Appendix C.

The algorithm succeeded in finding the global optimum
within 50 DFT calculations in 10/10 runs for both grid types
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FIG. 5. (a) Random initial configuration of Cu20 with 10 ghost
atoms. Existence fractions are represented by the transparencies of
the atoms. (b) and (d) Global minimum structures of Cu10 and Cu20

and (c) the two lowest-energy minima of Cu30, which are so close
in energy that they are almost inseparable. (e) Success curves of
20 independent runs without ghost atoms (BEACON) and with 50%
ghost atoms added. Each iteration of the BEACON cycle was based on
40 surrogate relaxations. Each run had an initial training set of two
random structures.

of graphene and in 9/10 and 7/10 attempts for C60 and Au20,
respectively.

C. Simultaneous optimization of atomic coordinates
and existence fractions

The method also allows for simultaneous optimization of
atomic coordinates and existence fractions, as we shall now
illustrate with copper clusters of varying size. We compare
the performance of BEACON, which optimizes only the atomic
coordinates, and the present approach, ghost-BEACON, which
optimizes both atomic coordinates and existence variables.
We consider copper clusters with sizes of 10, 20, and 30
atoms, and in each case we add 50% ghost atoms and perform
20 independent simulations. The resulting minimum-energy
structures are shown in Fig. 5 together with the success curves,
where success is declared when a structure is within 0.1 eV
of the lowest energy encountered across all runs of a given
cluster size. Further analysis shows that the declared suc-
cessful structures for Cu10 are all identical, while in the case
of Cu20 two distinct structures are identified. In the case of
Cu30 several structures have low energies, most of them slight
alterations of the structures shown in Fig. 5(d).

We first note that the number of DFT calculations nec-
essary to determine low-energy structures does not vary
monotonically with cluster size. The Cu10 cluster requires
considerably more computational effort than Cu20. This might
seem surprising because the number of variables to consider
in the optimization of course increases with cluster size. How-
ever, it should be recalled that we are doing random searching

FIG. 6. Distribution of the energies obtained with 1000 relax-
ations on a surrogate PES for Cu30. The inset shows the variation
of the average energies as a function of the number of ghost atoms.

on the surrogate PES (with or without the existence variables)
starting from random initial configurations, and the basin of
attraction for the different local minima might vary substan-
tially. This is the case for Cu10 and Cu20, for which the third-
and second-lowest-energy structures, respectively, are found
more frequently than the ground state (shown with success
curves in Figs. S2 and S3). The use of an LCB acquisition
function promotes the necessary exploration of the configu-
ration space. The exploration is especially pronounced in the
early phases of the optimizations, as shown in Fig. S4.

Overall, the presence of ghost atoms is seen to improve
the searches considerably, in particular in the cases where
BEACON does not easily identify the ground state.

The structures in Figs. 5(b)–5(d) are different from the ones
found using empirical potentials or tight-binding molecular
dynamics [22–24]. They are also different and lower in energy
than the structures found using DFT in Ref. [25], as verified
by relaxing all candidate structures with DFT.

D. On the number of ghost atoms

The main function of the ghost atoms is to open new re-
laxation pathways, as discussed above. To analyze this more,
we construct a surrogate PES for Cu30 from a training set con-
sisting of 151 configurations, including some of the identified
low-energy structures. We perform 1000 relaxations on the
potential energy surface from random initial configurations
for different choices of ghost atoms. The distributions of the
obtained relaxed surrogate energies are shown in Fig. 6. We
see that when ghost atoms are introduced, the distribution is
shifted to lower energies as an indication that the relaxations
are not trapped as much in higher-lying local minima as is
the case for BEACON. The inset in Fig. 6 shows the average
energies of the distributions. Clearly, the main effect comes
from introducing just a few ghost atoms into the system, and
the effect quickly levels off with the number of ghost atoms.
The fact that very few ghost atoms improve the efficiency is
also seen for Cu10 and Cu20 and is also observed in the success
curves (Figs. S3 and S5).
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E. Concluding remarks

Increased efficiency of global optimization of N-atom
structures using N∗ > N atoms with fractional existence has
been demonstrated. Several modifications and extensions of
the approach presented here are possible. In the present imple-
mentation, the sum of the existence variables is constrained to
be the number of real atoms in the system. However, one could
generalize this to treat open systems with a variable number
of atoms controlled by a chemical potential.

The ghost-BEACON code with demo examples as well as
the optimized structures and grids generated during the cur-
rent study are available in the GPATOM package and can be
accessed via GitLab [26].
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APPENDIX A: DENSITY FUNCTIONAL THEORY

The DFT calculations are performed using GPAW [27,28]
and the Atomic Simulation Environment [29,30]. We apply
the Perdew-Burke-Ernzerhof [31] exchange-correlation func-
tional but note that, in principle, any other functional or
alternative quantum chemical method can be used. The plane
wave cutoff is 700 eV, and the Fermi temperature is 0.1 eV.
Only the � point is used for k-point sampling except for
graphene on a dense grid (Fig. 4) where (3, 2, 1) k points
are used. The convergence criterion for relaxations is that all
atomic forces are smaller than 0.01 eV/Å.

APPENDIX B: MACHINE LEARNING MODEL

1. Fingerprint

The fingerprint is based on the one used in BEACON [12]
with the inclusion of existence fractions qi ∈ [0, 1] for each
atom i. The fingerprint is denoted by ρ(x, Q), where x is
the full set of Cartesian coordinates and Q is the full set
of existence fractions. ρ(x, Q) is a concatenation of a radial
part ρR(r; x, Q) and an angular part ρα (θ ; x, Q), which for a
single-element system are given by

ρR(r; x, Q) =
∑
i, j
i �= j

qiq j
1

r2
i j

fc
(
ri j ; RR

c

)
e−|r−ri j |2/2δ2

R , (B1)

ρα (θ ; x, Q)=
∑
i, j,k

i �= j �=k

[
qiq jqk fc

(
ri j ; Rα

c

)
fc

(
r jk; Rα

c

)
e−|θ−θi jk |2/2δ2

α

]
,

(B2)

fc(ri j ; Rc) =
{

1 − (1 + γ )
( ri j

Rc

)γ + γ
( ri j

Rc

)1+γ
if ri j � Rc,

0 if ri j > Rc,

(B3)

where the indices i, j, and k run over all atoms. Here, ri j is
the distance between atoms i and j; θi jk is the angle between
atoms i, j, and k, while fc is a smooth cutoff function going
to zero at the radial and angular cutoff radii RR

c = 5rcov and
Rα

c = 3rcov, respectively with rcov being the covalent radius

of the element. γ is a parameter set to 2. The constants δR =
0.4 Å and δα = 0.4 rad are identical for all systems. The radial
and angular fingerprint consist of 200 and 100 grid points,
respectively.

2. Gaussian process in the Ghost-BEACON framework

The energies and forces, μ = (E ,−F ), are calculated with
the standard expression for a Gaussian process [32,33]:

μ(x, Q) = μp(x, Q) + K (ρ[x, Q], P)C(P, P)−1[y − μp(X )],
(B4)

where μp(x, Q) and ρ(x, Q) are the prior mean and the finger-
print, respectively, K and C are the covariance matrix without
and with regularization, P is a matrix containing the training
data fingerprints, y is the training data targets, and μp(X ) is
the prior function applied to all structures in the training data.
The uncertainty of the predicted energy is given by

�(x, Q) = {K̃ (ρ[x, Q], ρ[x, Q])

− K (ρ[x, Q], P)C(P, P)−1K (P, ρ[x, Q])}1/2,

(B5)

where K̃ (ρ[x, Q], ρ[x, Q]) represents the covariance matrix
for the fingerprint. We observe from Eqs. (B4) and (B5) that
K , K̃ , and μp(x, Q) are the only terms including the existence
fractions. The details of the construction of K , C, and y are
reported in Ref. [12].

We use a squared exponential kernel function

k(ρ1, ρ2) = σ 2 exp

(−D(ρ1 − ρ2)2

2l2

)
, (B6)

where D(ρ1 − ρ2) is the Euclidean distance between two fin-
gerprints and σ 2 and l denote the prefactor and length scale
hyperparameters, respectively. The routine for the optimiza-
tion of the hyperparameters is described in the Supplemental
Material [16].

3. Prior function

For the simultaneous optimization of positions and exis-
tence fractions of Figs. 5 and 6, a repulsive prior modified to
include the existence fractions is used [11,12]:

μp(x, Q) = μc +
∑
i, j
i �= j

ri j<2r̃cov

qiq j

(
2σpr̃cov

ri j

)12

, (B7)

where σp = 0.4 is a repulsive constant, r̃cov is an atomic radius
set to be 0.8rcov of the element, and μc is a constant prior
updated throughout the run (see the Supplemental Material
[16]). The potential drops to zero if atom centers are farther
than 2r̃cov apart. This prior represents our physical knowl-
edge that atoms repel when squeezed too closely together
while hindering low existence atoms from interfering with the
clustering of high existence atoms. For all other simulations
the repulsive part is omitted, and the prior is simply set to
μp = μc.
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4. Acquisition function

To select which of the relaxed structures to include in the
DFT database, we use a lower confidence bound acquisition
function:

f (x) = μ(x) − κ�(x), (B8)

where κ = 2 is a constant and μ(x) and �(x) are the predicted
energy and uncertainty of Eqs. (B4) and (B5) [11,12]. The
dependence on Q is omitted as the acquisition function is
always evaluated on structures without ghost atoms.

5. Structure exclusion

To hinder inclusion of identical or highly similar structures
in the database, structures closer than dfp from already known
structures in fingerprint space are discarded.

We set dfp = 5 for optimization of both atomic coordinates
and existence values and dfp = 0.05 for optimization on a
grid. If all candidates are discarded, a random structure is
added to the database instead.

6. Random structure generation

All random configurations not placed on a grid are set
up using a cubic box with a volume 5 times the sum of the
volumes of atomic spheres with radius rcov surrounded by an
additional 7.5 Å of vacuum to complete the unit cell. The
atoms initially placed randomly in the box are repelled until
all atom centers are at least 1.6rcov away from each other. This
procedure ensures a similar initial atomic packing fraction
independent of the number of atoms in the BEACON/ghost-
BEACON runs. The initial training sets were made in the same
way, omitting the ghost atoms. For atoms on a grid the posi-
tions are always the same, and only the initial fractions differ.

7. Random fraction generation

The random sampling of the initial existence values is done
using the Dirichlet-rescale algorithm [34,35]. This allows
for a uniform distribution of the existence values satisfying

the constraints qi ∈ [qmin, 1] and
∑

i qi = N + (N∗ − N )qmin,
where 0 � qmin < 1 is a lower existence bound.

8. Surrogate surface relaxations

As atoms with qi = 0 become immobile, the following
procedure is adopted for simultaneous optimization of coor-
dinates and existence fractions:

(1) Initialize a system of random atomic positions and exis-
tence fractions between qinit

min (> 0) and 1 with a total existence
of N + (N∗ − N )qinit

min.
(2) Relax the system on the surrogate PES for nrelax steps.
(3) Decrease the lower limit in nD steps of qinit

min/nD, and at
each level, perform a relaxation with nd steps.

(4) Relax the system for np steps with all existence vari-
ables fixed to 0 or 1 to effectively remove the ghost atoms.

The simultaneous relaxations of existence and positions
is done with nrelax = 200, qinit

min = 0.05, nD = 5, nd = 20, and
np = 100. All nonghost BEACON runs are performed with
nrelax = 400 with N∗ = N and all fractions fixed to 1. The
relaxations on a grid are performed with nrelax = 200 and
q ∈ [0, 1].

All relaxations are performed using sequential least
squares programming [36] as implemented in the SCIPY pack-
age [37] with the convergence criterion set to 0.001.

APPENDIX C: SUCCESS CURVE
UNCERTAINTY ESTIMATES

We model a success curve as n + m independent attempts
at finding the global optimum, with n and m denoting the num-
bers of successful and unsuccessful attempts, respectively.
Using Bayes theorem with a uniform prior, the posterior prob-
ability of success ps becomes a beta distribution B(ps|α =
n + 1, β = m + 1). We use the mode of this distribution,
mode(ps) = n/(n + m), as the value of the success curve. For
the uncertainty, we use the square root of the variance,

√
var(ps) =

√
(n + 1)(m + 1)

(n + m + 2)2(n + m + 3)
. (C1)
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