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Interference effects in polarization-controlled Rayleigh scattering in twisted bilayer graphene
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We calculate the polarization-controlled Rayleigh scattering response of twisted bilayer graphene (tBLG)
based on the continuum electronic band model developed by Bistritzer and MacDonald while considering
its refinements which address the effects of structural corrugation, doping-dependent Hartree interactions and
particle-hole asymmetry. The dominant wave vectors for the Rayleigh scattering process emanate from various
regions of the moiré Brillouin zone (MBZ) in contrast to single-layer graphene (SLG) and AB-stacked bilayer
graphene (AB-BLG), where the dominant contributions always stem from the vicinity of the K point for
optical laser energies and below. Compared to SLG, the integrated Rayleigh intensity is strongly enhanced for
small twist angles (e.g., at a twist angle θ = 1.2◦, the integrated Rayleigh intensity at laser energy El = 2 eV
enhances by a factor of ∼100 for the case of parallel polarization). While for the case of cross-polarization, it
exhibits a markedly complex behavior suggestive of strong interference effects mediated by the optical matrix
elements. We find that at small twist angles, e.g., θ = 1.05◦, the corrugation effects strongly enhances the ratio
RA = integrated Rayleigh intensity for parallel polarization

integrated Rayleigh intensity for cross-polarization by ∼1300 times viz-à-viz SLG or AB-BLG. Measured as a function
of the incoming laser energy El , RA exhibits a characteristic evolution as the twist angle reduces, thus providing
a unique fingerprint of the prevailing twist angle of the tBLG sample under study, which would be interesting to
verify experimentally.

DOI: 10.1103/PhysRevB.107.205423

I. INTRODUCTION

Although the two-dimensional superlattice twisted bi-
layer graphene (tBLG) was fabricated nearly a decade
ago [1–5], it has again garnered attention for its ability
to host strongly correlated phases, particularly at the so-
called magic angles of twist or misorientation θ . These
include the observations of alternating superconducting [6–8]
and interaction-induced insulating phases [9–15], magnetism
[16,17], linear-in-temperature low-temperature resistivity, and
anomalous quantum Hall state [18–20]. Experimental studies
also reveal that the twisting between the two layers can greatly
enhance the optoelectronic properties like optical conductivity
[21–24], photo luminescence [25,26], optical absorption [27],
and photocurrent [28]. In the literature, there are various the-
oretical models [29–37] demonstrating that as θ is reduced,
the interference of two lattice periods results in the formation
of a moiré pattern with a long wavelength, where features
like band gaps and Van Hove singularities appear in the far-
infrared spectrum, and the band velocity of the Dirac cone is
significantly decreased [38,39].

Spectroscopic techniques such as Rayleigh (elastic)
[40–43] and Raman (inelastic) [44,45] scattering provide
an invaluable insight into the electronic [38,46–48] and vi-
brational structure [49–51] of sp2-type carbons [52–54].
Experimentally, the most prominent among them is Raman
scattering which serves as a nondestructive technique for the
ready identification of the structural properties in graphene
and nearly all its conceivable aggregations [50], such as the
number of layers, lattice orientation [49], level of doping
[55], and disorder [56,57]. First-order Raman and double res-
onance Raman scattering have been extensively studied in sp2

carbons [57–64]. The most prominent features observed in the
Raman spectra of monolayer graphene are the G and 2D bands
appearing at 1582 and 2700 cm−1, respectively, at a laser
energy of 2.41 eV. A disorder-induced D band is observed for
a disordered sample at about half of the frequency of the 2D
band [59]. The analysis of double-resonant Raman scattering
in graphite shows that in the full integration of the Raman
cross section, the contributions by phonons from exactly the
K point cancel due to destructive interference [65]. Indeed
tBLG is no exception, and each twist angle is characterized
by a unique set of phonon frequencies, which together provide
a Raman signature, while their linewidths provide a straight-
forward test for structural homogeneity [66]. In tBLG, the
phonons are activated in the interior of the moiré Brillouin
zone (MBZ) due to a θ -dependent wave vector generated by
the superlattice that is used to probe the phonon dispersion in
tBLG, and despite the absence of a stacking arrangement in
tBLG, layer breathing vibrations (namely the ZO′ phonons)
are observed [67]. In a small range of twist angles where the
intensity of the G Raman peak is strongly enhanced, two new
Raman modes (below 100 cm−1) are observed. This suggests
that these low energy modes and the G Raman mode share
the same resonance enhancement mechanism as a function
of twist angle [68]. Recent research demonstrates that the
linewidth of the G band close to the magic angle is affected by
the electron-phonon interaction regardless of laser excitation
wavelength [69]. Nevertheless, the Raman-scattered photons
are in the minority compared to those scattered elastically
(Rayleigh) [70]. It remains to be established where the actual
source of dominant contribution to the Rayleigh response
of tBLG lies given its markedly complex manifold of elec-
tronic bands [29,31,32] as the probing laser energy El , and
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FIG. 1. (a) Schematic of one-photon absorption and emission.
(b) The corresponding Feynman diagram for Rayleigh scattering
process. Red (green) arrows indicate the polarization directions of
incoming (outgoing) light for (c) parallel (XX or YY ) and (b) cross-
polarization (XY ).

polarizer-analyzer orientation is varied. From a theoretical
standpoint, it is also judicious to view the Rayleigh scattering
phenomenon as elementary to all the higher-order processes
involving light-matter interaction, which, besides the afore-
mentioned Raman scattering, include, e.g., one-, two-, or
three-photon scattering [71,72].

In this paper, we delve into the Rayleigh or elastic scatter-
ing process in tBLG for a range of twist angles θ , probing laser
energies El , and polarizer-analyzer orientation combinations.
For reference, we present a comparison with the Rayleigh
scattering response of single-layer [73,74] and AB-stacked
bilayer graphene [75]. Our calculations show that in remark-
able contrast to single-layer graphene (SLG) or AB-stacked
bilayer graphene (AB-BLG), the dominant contribution to the
Rayleigh scattering process in tBLG is not restricted to the
wave vectors near the K point in the Brillouin zone. Instead,
it highly depends on the twist angle and incoming laser en-
ergy and emanates from different parts of the MBZ. We also
observe that for each twist angle, RA exhibits a characteristic
evolution with laser energy, which gives a unique fingerprint
for experimental identification of different twist angles.

This paper is organized as follows: Section II discusses the
theoretical background and provides the relevant expressions
used in our calculations. The interaction of photons with tBLG
is discussed and derived in Sec. III. Section IV discusses the
behavior of optical matrix elements and provides a detailed
analysis of the Rayleigh scattered signal for parallel and cross-
polarization along with its dependency on the laser energy
and twist angle. Our conclusions and scope of future work
are outlined in Sec. V.

II. THEORETICAL APPROACH

This section briefly reviews the theory of one-photon ab-
sorption and emission corresponding to Rayleigh scattering,
which derives from second-order perturbation theory [72,76].
Figure 1(a) shows the schematic of an experimental setup

for the one-photon absorption and emission, and the Feyn-
man diagram corresponding to Rayleigh scattering is shown
in Fig. 1(b). We have a laser source that emits photons of
energy El , a polarizer and analyzer, the material system under
consideration (tBLG in our case), and a spectrometer. The
photons produced by the laser source pass through the polar-
izer and interact with the electronic subsystem of the material
via the light-matter interaction Hamiltonian HeR = p · A. The
electron makes a transition from its initial (ground) state,
characterized by a state |i〉 to an excited state |m〉, eventually
returning to its final state | f 〉 by emitting photons of energy
Es. The emitted photons pass through the analyzer, which
further constrains their optical polarization, and the output
intensity is measured by the spectrometer; k(k′) and ε(ε′)
represent the wave vector and polarization direction of the
incident (emitted) photons. The red (green) arrow in Figs. 1(c)
and 1(d) represents the polarization direction of the incident
(emitted) light for parallel (XX or YY ) and cross-polarization
(XY ), respectively. In the former, the polarizer and analyzer
are aligned either along the zigzag (X ) or armchair edge (Y ) of
an unrotated graphene sheet [Fig. 2(a) shows the orientation],
while in the latter, incoming and outgoing light have a 90◦ out-
of-phase difference between their optical polarizations [78],
e.g., if one is aligned along the zigzag edge, then the other is
along the armchair edge [see Fig. 1(d)].

From second-order perturbation theory, the transition ma-
trix [72,79] for the above process is given as

T f i =
∑

m

〈ψ f |HeR|ψm〉〈ψm|HeR|ψi〉
[Ei + El − (Em + ιγ )]

, (1)

and the transition probability rate is given by

w f i = 2π

h̄

∫
k
|T f i|2δ[Ei + El − (E f − Es)]d2k. (2)

The domain of integration over k includes the entire Brillouin
zone (BZ) of the crystalline material system under study. For
the case of tBLG, the integration domain is over the so-called
MBZ [5,80] as defined by Bistritzer and MacDonald [29].
ψi, ψ f , and ψm represent the initial, final, and intermediate
states with energies Ei, E f , and Em, respectively, with γ as the
broadening parameter, which is taken to be a fixed fraction
≈ 1

20 th of the laser energy for all the considered transitions.
HeR is the light-matter interaction Hamiltonian and is given
by p · A, where p = h̄∇/i is the linear momentum operator
and A is the vector potential of the light of amplitude A and
the polarization vector ε. The term appearing in the numerator
of Eq. (1), 〈ψc|HeR|ψv〉, describes the transition from a state
in the valence band to a state in the conduction band and can
be written as [81]

Vcv = h̄e

icm
A · 〈ψc(kc)|∇|ψv (kv )〉, (3)

where kv and kc are the wave vectors associated with valence
and conduction band state, respectively. Under the assumption
that the photon wave vector is negligible as compared to the
electronic wave vector (dipole approximation) [82], the vec-
tor potential A can be separated from the expectation value.
The term Pcv = A · 〈ψc(kc)|∇|ψv (kv )〉 will be generically re-
ferred to as the “optical matrix element” in the subsequent
discussion.
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FIG. 2. (a) The real space honeycomb lattice comprising two carbon atoms A and B with a1 and a2 marking the primitive lattice vectors.
The black-dotted rhombus marks the unit cell. The first nearest-neighbor atoms are highlighted in green circle with vectors δi (i = 1, 2, 3)
connecting them. (b) The real space lattice of twisted bilayer graphene at an arbitrary twist angle θ . The black hexagon marks the moiré unit
cell. (c) The pink and blue hexagons represent the rotated BZ, where Kt and Kb represent the Dirac points of top and bottom layer, respectively,
separated by 8π

3a sin 1
2 θ . A small red hexagon outlines the MBZ. (d) Band structure along the high symmetry path (HSP) of the MBZ for θ = 5◦

and (e) θ = 1.05◦, respectively, with wo = 0.0797 and w1 = 0.0975 eV. Values adapted from Ref. [77].

In Sec. III, we briefly discuss the continuum model
of tBLG by including various effects, such as corru-
gation [77,83–87], doping-dependent Hartree interactions
[83–85,88,89], and particle-hole (ph) asymmetry [90,91]. We
identify the perturbed part of the Hamiltonian after employing
light-matter interaction. The eigenvectors of the unperturbed
Hamiltonian will be treated as the eigenfunctions appearing in
〈ψc(kc)|HP|ψv (kv )〉.

III. INTERACTION OF THE PHOTON WITH TWISTED
BILAYER GRAPHENE

Figure 2(b) represents a two-dimensional (top) view of
tBLG with two graphene layers marked in pink (rotated by
θ/2) and blue (rotated by −θ/2), such that the angle of misori-
entation between the two layers is θ with the AA- and AB-rich
regions marked. The black hexagon outlines the moiré unit
cell. Figure 2(c) shows the corresponding rotated Brillouin
zones where Kt and Kb mark the Dirac points of the top
and bottom layers, separated by the vectors qb, qtr, and qtl as
shown. They represent the momentum transfer corresponding
to the three interlayer hopping processes shown in Fig. 2(c).
By considering the effects of corrugation, doping-dependent
Hartree interactions, and ph asymmetry, the real-space model
Hamiltonian for tBLG is [29,30,77,90,91]

H (r) =
[

h(θ/2) + VH (r) T ′(r)

T ′†(r) h(−θ/2) + VH (r)

]
, (4)

where h(θ ) = −ih̄ vF σθ · ∇ and σθ = eiσz θ/2(σx, σy)e−iσz θ/2

are the rotated Pauli matrices. The electronic band structure of
doped tBLG changes significantly when electron-electron in-
teractions are included via self-consistent Hartree calculations
[83–85,88,89]. For our purpose, we employ the parametriza-
tion provided by Goodwin et al. [84], according to whom the
doping and twist angle-dependent Hartree potential energy is
described by

VH (r) ≈ Vθ

3∑
j=1

cos(G j .r), (5)

where Vθ = V (θ )[ν − νo(θ )]. The quantity νo(θ ) represents
the doping level at which the Hartree potential vanishes, V (θ )
is a twist angle-dependent energy parameter, ν is the filling
factor, and G j denotes the three reciprocal lattice vectors that
are used to describe the out-of-plane corrugation of tBLG
[77]. This equation has a form similar to the continuum model
provided in Ref. [88]. The spatially dependent interlayer
tunneling matrices T ′(r) appearing as off-diagonal elements
in Eq. (4) form a smooth moiré potential [29]

T ′(r) =
3∑

j=1

e−iq j ·rT ′
j . (6)

Considering the initial configuration as AA stacking, the T ′
j

matrices are given by [90–92]

T ′
j = (woσo + iw3σz ) + w1[σx cos(φ′) + σy sin(φ′)]. (7)
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Here φ′ = 2π ( j − 1)/3 and σ are the Pauli matrices. The
wo term contributes to the diagonal elements and represents
the interlayer coupling between the A(B) sublattice of the
top layer and the A(B) sublattice of the bottom layer. The
w1 term only contributes to the off-diagonal elements and is
thus associated with the interlayer coupling between the A(B)
sublattice of the top layer and B(A) sublattice of the bottom
layer. w3 is defined as the interlayer contact coupling and as
shown by Kang et al. [91]; it accounts for the dominant source
of the non-negligible ph asymmetry in the model of Ref. [14].
Setting wo = w1, w3 = 0, and keeping q j in the first shell
recover the tunneling matrices of the original BM continuum
model [29]. A minor contribution arises from the gradient
coupling λ which has therefore not been taken into account
for the purpose of our calculations in this paper. We show
in Appendix B that the Rayleigh scattering process remains
unaffected by the inclusion of ph asymmetry and doping-
dependent Hartree interactions in the system. The corrugation
effect substantially alter the electron band structure near the �

point of the MBZ and can be included by setting wo �= w1 in
Eq. (7).

By switching on the light-matter interaction, the opera-
tor ∇ is replaced by ∇ → ∇ + ieA/h̄ [93–95], where A is
the vector potential of incident light. Under this interaction,
the Hamiltonian of tBLG in the simplest limit in which the
momentum-space lattice is truncated at the first honeycomb
shell is

H (k) =

⎛
⎜⎜⎜⎝

hk′
(

θ
2

)
T ′

b T ′
tr T ′

tl
T ′†

b hk′
b

(− θ
2

)
VθI VθI

T ′†
tr VθI hk′

tr

(− θ
2

)
VθI

T ′†
tl VθI VθI hk′

tl

(− θ
2

)

⎞
⎟⎟⎟⎠, (8)

where k′
j = k + q j + e A/h̄ with ( j = b, tr, tl). Extracting

the A-dependent part of Eq. (8) gives

HP =

⎛
⎜⎜⎝

M1 0 0 0
0 M2 0 0
0 0 M2 0
0 0 0 M2

⎞
⎟⎟⎠ (9)

as the perturbation. In Eq. (9), Mj is a square matrix of
dimensions 2 × 2 which has has a dependency on the x and
y components of the vector potential A of the incident light as

Mj = c1

[
0 (Ax + i Ay)ei(−1) jθ/2

(Ax − i Ay)ei(−1) j+1θ/2 0

]
,

(10)

where c1 = h̄v f e and j = 1(2) for the graphene layer rotated
by θ/2(−θ/2), respectively. The diagonal terms of Eq. (8)
represent the Hamiltonian for an isolated rotated graphene
layer of the form

hk(θ ) = −h̄v f |k|
[

0 ei(θk−θ )

e−i(θk−θ ) 0

]
, (11)

where v f is the Fermi velocity of SLG, k is momentum mea-

sured from the layer’s Dirac point, and θk = tan−1( ky

kx
) is the

momentum orientation relative to the x axis. The off-diagonal
matrices are defined by Eq. (7).

TABLE I. Expressions to calculate the optical matrix elements
for XX (zigzag-zigzag), YY (armchair-armchair) and XY (zigzag-
armchair).

Incoming Outgoing Expression

X X |P∗x
cv (k)Px

cv (k)|
Y Y |P∗y

cv (k)Py
cv (k)|

X Y |P∗y
cv (k)Px

cv (k)|

In order to calculate the optical matrix elements and
Rayleigh intensity, the eigenvectors of the unperturbed,
i.e, the A-independent part of the Hamiltonian given by
Eq. (8) will be treated as the eigenfunctions appearing in
〈ψc(kc)|HP|ψv (kv )〉, where the perturbed Hamiltonian HP, is
given by Eq. (9).

In order to select the optimum model for our calcula-
tions, we provide a stepwise modification to the pristine
BM model by including corrugation [77,83–86], doping-
dependent Hartree interactions [83–85,88,89], and ph asym-
metry [90,91] in Appendix B and infer that the latter two
have a negligible effect on the Rayleigh response of twisted
bilayer graphene. Therefore, in Sec. IV, we present our results
based on the model that incorporates the corrugation effects
in the pristine BM model. For reference, the band structure
of two sample twist angles, θ = 5◦ and 1.05◦, are presented
in Figs. 2(d) and 2(e), respectively, for |E | � 3 eV, with the
highest bands converged up to 10−5 eV (by diagonalizing
the Hamiltonian of dimensions 232 × 232 and 1178 × 1178,
respectively). It is observed that as the twist angle is lowered,
the complexity of the manifold of electronic bands increases
markedly within the same energy range [29,32,96].

IV. RESULTS

A. Optical matrix elements

The optical matrix elements describe the transition be-
tween a valence band state and a state in the conduction band
and are given by A · 〈ψc(kc)|∇|ψv (kv )〉, where kc and kv are
the wave vectors corresponding to the conduction and valence
band, respectively. Depending on the polarizer-analyzer orien-
tation, we have several possible combinations of the incoming
and outgoing polarization. For the sake of brevity in our paper,
we will focus on two cases of the parallel polarization on the
one hand and cross-polarization on the other. The expressions
used for evaluating the optical matrix elements are given in
Table I.

We explicitly evaluate the optical matrix elements for
tBLG by considering transitions between all the possible pairs
of valence and conduction bands within an energy range
|E | � 3 eV. We represent the contour plots of these matrix
elements as a function of kx and ky in the entire MBZ for
incoming and outgoing polarization directions as XX , YY ,
and XY , respectively, in Figs. 3(a) and 3(c) by considering a
transition between the lowest pair of valence and conduction
band for various twist angles. We find that as the twist angle
θ reduces from 3◦ to 0.8◦, the dominant regions of the MBZ
contributing to the matrix elements shift away from K point
towards the center of the MBZ, i.e., the � point. At very small
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FIG. 3. Contour plots for the optical matrix elements Pcv as a function of kx and ky in the entire MBZ corresponding to incoming and
outgoing polarization directions (a) zigzag-zigzag (XX ), (b) armchair-armchair (YY ), and (c) zigzag-armchair (XY ), respectively for various
twist angles. The red solid line outlines the corresponding hexagonal MBZ.

twist angles, e.g., θ = 0.6◦, the location of these wave vectors
start shifting from the � point to the M point of the MBZ.

For comparison, we provide the contour plots of the optical
matrix elements for SLG and AB-BLG [97–99] in Figs. 4(a),
4(b) and 4(c), respectively. We observe that for direct tran-
sitions, i.e., v1 → c1 or v2 → c2 in AB-BLG, these matrix
elements vanish at the Dirac points [Fig. 4(b)] in contrast
to the case of SLG [Fig. 4(a)]. However, for the transitions
involving the crossing pair of bands [Fig. 4(c)], i.e., v1 →
c2 or v2 → c1, optical matrix elements show a maximum pre-
cisely at the Dirac points. Unlike tBLG, for SLG or AB-BLG,
there is only a negligible contribution to these matrix elements
from the center of the Brillouin zone �. The reason lies in
the well-established band structure of SLG and AB-BLG. In
both cases, there is an energy gap of ≈16 eV [75] at the �

point which is inaccessible by optical experiments. For a more
easily accessible optical laser energy ≈2 eV, we are forced
to confine ourselves near the K point. The band structure of
tBLG represented in Figs. 2(d) and 2(e) suggests that it is
reasonably possible to cover the entire MBZ with the same
optical laser energy source used for SLG or AB-BLG.

B. Transition matrix: Identifying the resonant region

When an electron makes a transition from an initial state
to a final state by interacting with a photon of energy El ,
the probability of transition is maximum when |El − (E f −
Ei )| ≈ 0, i.e., the energy gap between the initial and final state
is in resonance with the incoming laser energy El . E f and Ei

represent the energies of the final and initial transition states,

respectively. For Rayleigh scattering, the transition matrix is
defined by the following equation [72,76]

T f i =
∑

m

〈ψ f |HeR|ψm〉〈ψm|HeR|ψi〉
[Ei + El − (Em + ιγ )]

, (12)

The summation is carried over all the possible intermediate
states m. |ψi〉, |ψm〉, and |ψ f 〉 represent the electronic states
for initial, intermediate, and final transition states with ener-
gies Ei, Em, and E f , respectively. Due to the unavailability
of the dependence of broadening parameter γ at low laser
energies in the literature, we have assumed that the broadening
parameter γ is 1

20 th of the laser energy El . The Rayleigh
intensity is proportional to the absolute value of transition
matrix |T f i|2 [72], and the contour plots for |T f i|2 as a function
of kx and ky in the entire MBZ at laser energies 2.2 and 0.2 eV
are shown in Figs. 5 and 6, respectively. In order to identify
the most dominant region of the Brillouin zone contributing
to the Rayleigh scattering, we have restricted our data range
to the top 2%. Parts (a), (b), and (c) of these figures correspond
to the incoming and outgoing polarization directions XX , YY ,
and XY , respectively. The laser energy ≈2.2 eV marks the on-
set of visible spectra and is easily accessible for experimental
purposes. We observe that the location of the dominant wave
vectors that contribute to Rayleigh scattering is highly depen-
dent on the twist angle θ as well as the incoming laser energy
El . A detailed discussion of this dependency is presented in
the following subsections.
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1. Incoming laser energy is fixed and twist angle is varied

Figure 5 shows the contour plots of |T f i|2 as a function
of kx and ky at a fixed incoming laser energy El = 2.2 eV
for parallel and cross-polarization. For the former case, we
observe that at higher twist angles, such as, θ = 5◦, the wave
vectors near the M point of the MBZ are responsible for the
dominant contribution to the Rayleigh scattering process. This
region gradually shifts to the center of MBZ for twist angle
θ ≈ 2◦. At θ = 1.6◦, the resonant region is observed to make
a transition from � to M point of the MBZ. For smaller angles,
like θ = 1.05◦, this region shifts towards the K point of MBZ.
Similar behavior is observed for the case of cross-polarization.

Figure 6 shows the contour plots of |T f i|2 for a low
incoming laser energy El = 0.2 eV for parallel and cross-
polarization. In this case we see that the higher twist angles
like θ = 5◦ exhibit similar behavior as that of SLG (refer Ap-
pendix A for detail), i.e., the wave vectors giving the dominant
contribution are restricted around the region near the K point
of MBZ. The resonant region is observed to make a gradual
shift from the K point to the � point of the MBZ as the twist
angle is reduced from 5◦ to 1.6◦. At θ = 1.05◦, the major
contribution arises from the region around halfway between
the K and M points.

2. Twist angle is fixed and incoming laser energy is varied

As indicated by the denominator of Eq. (12), we see that
the transition matrix |T f i|2 is dependent on the incoming
laser energy El . In order to see the effect of this dependency,
we identified the wave vectors responsible for the maximum

FIG. 4. Contour plots of the optical matrix elements as a function
of kx and ky in the entire Brillouin zone (measured in arbitrary units)
for (a) SLG and (b) AB-BLG corresponding to the transition between
direct bands vα → cβ (α = β ) and (c) AB-stacked BLG for tran-
sition between crossing bands vα → cβ (α �= β ) for incoming and
outgoing polarization directions as zigzag-zigzag (XX ), armchair-
armchair (YY ), and zigzag-armchair (XY ). The red solid lines outline
the corresponding hexagonal Brillouin zone.

contribution to the Rayleigh scattering process for incoming
laser energies varying from El = 0.2 to 2.5 eV. Figure 7
provides a clear indication of the involvement of the dif-
ferent regions of the MBZ in the scattering process as the
laser energy is varied from 0.2 to 2.5 eV for (a) θ = 5◦,
(b) θ = 2◦, and (c) θ = 1.05◦, respectively. For the sake of
conciseness, we have presented this result only for the case
of parallel polarization (XX ). Similar behavior is observed
for cross-polarization. We observe that for higher twist angles
like θ = 5◦ [Fig. 7(a)], at low values of laser energies (0.2 or
0.5 eV), the regions around the K point of MBZ provide the
dominant contribution to the Rayleigh scattering intensity. As
the laser energy increases, this region moves away from the K
point. Similarly, at the magic angle, i.e., θ = 1.05◦ [Fig. 7(c)],
a continuous evolution of the resonant region is observed from
the K point to � point as the laser energy is increased from 0.5
to 1.5 eV. However, at El = 2.2 eV, the resonant region shifts
back near the K point. For θ = 2◦, at the same laser energy,
i.e., 2.2 eV, these wave vectors stem from region round the �

point. From these observations, we infer that, unlike SLG or
AB-BLG, the Rayleigh scattering process is highly dependent
on the laser energy and each twist angle is characterized by
its unique region of resonance. Our analysis also suggests
that the strength of the transition matrix |T f i|2 for the same
twist angle is weaker in the cross-polarization case compared
to parallel one, e.g., at laser energy El = 2.2 eV, the strength
of transition matrix is ∼99 times weaker in cross-polarization
compared to parallel polarization for twist angle θ = 2◦.

C. The Rayleigh spectra and integrated Rayleigh intensity

Figure 8(A) shows the variation of the Rayleigh intensity
measured by the spectrometer as a function of the emitted
photon energy Es at the incoming laser energy 2 eV for the
model case of (a) constant optical matrix elements, (b) parallel
(XX or YY ), and (c) cross-polarization (XY ), respectively.
The maximum intensity value for parallel polarization in-
creases as the twist angle decreases, but for cross-polarization,
an opposite trend is observed. The corresponding integrated
Rayleigh intensity (plotted as a function of twist angle) is
shown in Fig. 8(B). It is observed that when the optical matrix
elements are assumed to be constant, the integrated Rayleigh
intensity rises exponentially with the lowering of the twist
angle. Figure 8(B) shows a similar exponential enhancement
observed for parallel polarization case, albeit with a reduc-
tion in the value of integrated Rayleigh intensity. However,
in the case of cross-polarization, the value of the integrated
Rayleigh intensity decreases with the decrease in twist angle
[Figs. 8(B)(c)], exhibiting a hockey stick-like curve for inte-
grated Rayleigh intensity. A complex behavior is observed
at small twist angles with the values strongly diminished
compared with the parallel case. Such behavior is suggestive
of strong interference effects [60] at play, mediated by the
incoming and outgoing optical matrix elements for the case
of cross-polarization.

The variation of the ratio RA as the laser energy El is
increased from 0.5 to 2 eV is shown in Fig. 9. Irrespective
of the laser energy, the saturation of this ratio RA to the value
3.33 reminiscent of SLG and AB-BLG graphene is observed
at higher twist angles, θ ≈ 4◦. For a given twist angle, the
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FIG. 5. Contour plots showing the strength of transition matrix |T f i|2 (at laser energy El = 2.2 eV) as a function of kx and ky in the entire
MBZ corresponding to the (a) XX , (b) YY , and (c) XY polarization cases. The red solid line outlines the corresponding hexagonal MBZ.

value of RA continuously enhances as the laser energy is
increased. For low values of twist angles, the ratio RA is
strongly enhanced and is accompanied by oscillations. This
is due to the complexity involved in the behavior exhibited
by integrated Rayleigh intensity for cross-polarization [Fig. 8
(B)(c)] due to the aforementioned interplay of interference of

the optical matrix elements and complex manifold of bands at
such El .

Figure 10 exhibits the isotropic nature of the integrated
Rayleigh intensity when the polarizer and analyzer are rotated
in-phase from 0◦ to 180◦. The polar axis marks the angle by
which the polarizer and analyzer are rotated (in-phase), and

FIG. 6. Contour plots showing the strength of transition matrix |T f i|2 (at laser energy El = 0.2 eV) as a function of kx and ky in the entire
MBZ corresponding to (a) XX , (b) YY , and (c) XY polarization cases. The red solid line outlines the corresponding hexagonal MBZ.
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FIG. 7. Contour plots for |T f i|2 for varying laser energies as a function of kx and ky in the entire MBZ corresponding to parallel polarization
(XX ) for twist angles (a) θ = 5◦, (b) θ = 2◦, and (c) θ = 1.05◦. The red solid line outlines the corresponding hexagonal MBZ.

the radial axis marks the magnitude of the integrated Rayleigh
intensity [plotted in Fig. 8(B) with the red solid line].

We plot the Rayleigh intensity as a function of emitted
photon energy Es for different values of incoming laser en-
ergies in Fig. 11 for (a) parallel and (b) cross-polarization at
a fixed value of twist angle, θ = 2◦. For both the cases, we
observe that the curve becomes narrower (since the value of
broadening parameter γ reduces proportionally according to
our model) with an increase in the maximum intensity value
as the laser energy is decreased from 3 to 0.5 eV for parallel
polarization. However, a complex behavior in the maximum
Rayleigh intensity with the variation in laser energy is ob-
served in the cross-polarization case.

The data represented via the red solid line in Fig. 12 shows
the variation of the ratio RA as the incoming laser energy is
varied from 0.1 to 3 eV for various twist angles θ . As the twist
angle θ is reduced from 4◦ to 0.6◦, a continuous enhancement
is observed in the maximum value of the ratio RA. The peak
position is specific to the twist angle. We observe that each
twist angle is characterized by a series of unique peaks, which
ought to serve as a fingerprint for identifying the twist angle
warranting further experimental investigation.

V. CONCLUSION

In summary, we have carried out a detailed study of
polarization-controlled Rayleigh scattering in tBLG and ob-
served the following salient features.

In contrast to SLG or AB-BLG, the dominant wave vectors
of the optical matrix elements in tBLG are no longer restricted
only to the vicinity of the K point. From Fig. 3, we observe
that as the twist angle is reduced from 3◦ to 0.8◦, the location
of these wave vectors shifts from the K point to the � of the
MBZ. For smaller angles, though, e.g., θ = 0.6◦, there is a

shift observed back to the M point of MBZ. However, in the
case of the seminal BM model, the maximum contribution to
the optical matrix elements arises exactly from the � point
for θ = 1.05◦. By further considering the parametrized con-
tinuum models and including the effect of Hartree interactions
and ph asymmetry in tBLG, we observe an essentially negli-
gible change in our results.

From Figs. 5–7, we observe that the location of wave
vectors responsible for the Rayleigh scattering process is
highly dependent on the twist angle θ and incoming laser
energy, El . From the calculations shown in Appendix B, we
also conclude that, irrespective of the incoming laser energy,
the location of these wave vectors remain unaffected by the
doping-dependent Hartree interactions and the ph asymmetry.
It can be understood by the fact that doping only modi-
fies the bands nearest to the Fermi level, which has a band
gap (Eg = Ei − Em) of a few meV. At laser energies used
in optical experiments, the transition between these bands
plays a negligible role as Eg � El , which may be appreci-
ated by considering the contribution of the denominator of
Eq. (12).

The Rayleigh intensity as a function of scattered photon
energy is investigated for the model case of (a) constant op-
tical matrix elements, (b) parallel, and (c) cross-polarization
(Fig. 8). We find that the integrated Rayleigh intensity en-
hances continuously as the twist angle decreases for parallel
polarization. In the case of cross-polarization, we observe a
hockey stick–like curve with complex oscillatory behavior at
small twist angles [inset of Fig. 8(B)(c)]. The ratio RA hav-
ing a value of ∼3.33 in SLG/AB-BLG is strongly enhanced
to ∼2500 for θ = 1.2◦ at laser energy El = 2 eV (showing
nearly 3 orders of magnitude increase viz à viz SLG and
AB-BLG) and begins saturating for θ > 4◦ (Fig. 9). It is also
observed that for a given twist angle, the value of RA increases
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FIG. 8. (A) The Rayleigh intensity as a function of emitted pho-
ton’s energy for various twist angles. (B) The integrated Rayleigh
intensity as a function of twist angle θ at an incoming laser energy
El = 2 eV for the model case of (a) constant optical matrix elements
(b) parallel (XX or YY ), and (c) cross-polarization (XY ), respec-
tively. The inset shows a zoom-in for small θ .

as the laser energy is increased. The integrated intensities are
isotropic in nature with the in-phase rotation of the polarizer
and analyzer from 0 to 180◦ (Fig. 10).

The Rayleigh intensity spectra (for an arbitrary twist angle
θ = 2◦) for various values of incoming laser energies are
shown in Fig. 11. A broadening of the curve is observed with
the increase in laser energy for parallel and cross-polarization.
The maximum Rayleigh intensity decreases with the increase
in laser energy for the case of parallel polarization, while a
complex behavior is observed in the cross-polarization.

The evolution of RA with the incoming laser energy varying
from 0.1 to 3 eV for various twist angles is shown in Fig. 12.
It suggests that each twist angle is characterized by a series
of unique peaks, which serve as a fingerprint for its identifi-
cation. RA shows a maximum value at El ≈ 3 eV and El ≈
2.2 eV for twist angles θ = 4◦ and θ = 0.6◦, respectively,
suggesting that maximum value of RA is laser energy specific
for each twist angle. In Figs. 20 and 21, we show that the
position of these peaks remain unaltered on the inclusion of
ph asymmetry and the doping-dependent Hartree interactions.
The θ -dependent quantities appearing in Eq. (5) are taken
from Ref. [84].

FIG. 9. Variation of RA with twist angle θ for various incoming
laser energies.

From our calculations, we conclude that the optical
response of tBLG remains unaffected by varying the dop-
ing level in the system or by including other interactions,
such as ph asymmetry. This is because, experimentally,
the Rayleigh scattering process is studied under an easily
accessible laser energy, like 2.2 eV, which marks the on-
set of visible spectra. Any interactions and doping alters
the bands nearest to the Fermi level. The energy gap be-
tween these bands is of the order of few meV and, hence,
the transition between them contributes negligibly to the
process.

Our work also represents, to the best of our knowledge
[100,101], the first explicit calculation of the optical matrix
elements of twisted bilayer graphene based on the model of
Bistritzer and MacDonald [102]. In the preceding sections,
we have demonstrated that by switching them off and by
contrasting the cases of parallel and cross-polarization, the

(a)

(b)

FIG. 10. Variation of the integrated Rayleigh intensity (at El =
2 eV) when the polarizer-analyzer orientation is rotated in phase for
(a) parallel and (b) cross- polarization, respectively.
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FIG. 11. The Rayleigh intensity (measured in arbitrary units) for
twist angle θ = 2◦ at various values of El (indicated in the legend) as
a function of emitted photon’s energy Es for (a) parallel and (b) cross-
polarization.

optical matrix elements are mediators of strong interference
effects which are in play in the Rayleigh scattering response
of tBLG. Indeed, even at reasonable laser energies, they allow
access to parts of the moiré Brillouin zone of tBLG, which
are simply off-limits to those in SLG and AB-BLG. Given
that Rayleigh scattering is elementary to all higher-order
spectroscopies, e.g., Raman, and two-photon spectroscopies,
our results argue that the consideration of the optical matrix
elements shall be indispensable to all spectroscopic inves-
tigations of tBLG, particularly when assessments are made
of the origin and relative intensities of its spectral peaks,
e.g., the novel peaks observed in the Raman response of
tBLG [103,104]. As regards to the explicit consideration of
the incoming and outgoing polarization, we remark that typ-
ical laboratory spectroscopic experiments have a preferred
polarization not least due to the inherent polarization of
the laser source, e.g., a linearly polarized He-Ne cw-laser.
Based on our previous work [62], we also anticipate that
our optical-matrix elements-reliant approach would be crucial
while interpreting the optical response of tBLG with low-
ered structural symmetry, e.g., uniaxial and locally distorted
tBLG which are extant in the literature [105–108] where
polarization-controlled experiments [21] ought to provide a

FIG. 12. Variation of RA with incoming laser energy El for dif-
ferent twist angles θ .

nonisotropic response at a given laser energy El , therefore
providing experimentally facile signatures of the local strain
state.
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APPENDIX A: ANALYTICAL EXPRESSIONS FOR THE
OPTICAL MATRIX ELEMENTS

In the first nearest-neighbor approximation, expression for
the optical matrix elements describing a transition between a
valence and a conduction band state (characterized by wave
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FIG. 13. Vectors connecting the nearest-neighbor atoms from
(a) atom A to B and (b) atom B to A via vectors rl

A and rl
B (l =

1, 2, 3), respectively.

vectors kv and kc, respectively) is given by [81,97,109]

〈ψc(kc)|∇|ψv (kv )〉

= −2
√

3mopt

a
Re

[
cc∗

B (k)cv
A(k)

∑
l

rl
Ae−irl

A.k

]
(A1)

where a = 0.246 nm is the lattice constant of graphene and
mopt denotes the constant optical matrix element for the two
nearest-neighbor atoms. rl

A (l = 1, 2, 3) are the vectors con-
necting first nearest-neighbor atoms of graphene shown in
Fig. 13. ci

j (k) are the expansion coefficients where the su-
perscript i refers to the valence or conduction band and the
subscript j represents the sublattice index.

1. Single-layer graphene

When the vector potential A is polarized along the X di-
rection (i.e., along the zigzag edge of graphene), the optical
matrix elements are given as:

Px
cv (k) = Re(A + B − C)

2
∣∣eiaky/

√
3 + 2e−iaky/2

√
3 cos 1

2 akx

∣∣ (A2)

A = 2a√
3

e
√

3
2 iaky cos

1

2
akx

B = a√
3

e−
√

3
2 iaky cos

1

2
akx

C = 1√
3

a cos akx

and for the Y -polarized (i.e., along the armchair-edge of
graphene) vector potential,

Py
cv (k) =

√
3Re(A1 × B1 × C)

2|eiaky/
√

3 + 2e−iaky/2
√

3 cos 1
2 akx|

(A3)

A1 = e−iakx

B1 = −1 + eiaky

C1 = 1 + eiakx + e
1
2 ia(

√
3ky+kx ).

Re denotes the real part of [...] and “a” is the lattice con-
stant of graphene. In the low energy limit, the above two
equations reduce to:

Px
cv (k + K) = 3 mopt

2|k| (ky,−kx, 0) (A4)

FIG. 14. Contour plots for the strength of transition matrix |T f i|2
as a function of kx and ky for incoming and outgoing polarization as
(a) XX , (b) YY , and (c) XY for SLG.

and

Py
cv (k + K) = 3 mopt

2|k| (−ky, kx, 0), (A5)

with mopt as a constant (having value 3 nm−1) and |k| =√
k2

x + k2
y .

Depending on the incoming and outgoing polarization
directions, the following expressions are calculated using
Eqs. (A2) and (A3).

The contour plots for the product of incoming and outgoing
optical matrix elements as a function of kx and ky in the entire
BZ for various polarization cases are plotted in Fig. 4(a). We
observe that there is a finite contribution arising only from the
wave vectors near the K point. Figure 14 shows contour plots
marking the most resonant region in k space responsible for
the Rayleigh scattering. It shows that for SLG, we are confined
to the regions around the K point while the rest of the region
of the BZ has a negligible contribution to Rayleigh scattering
process. This could be understood from the band structure of
SLG which suggests that the energy gap increases on moving
away from the K point making it challenging to access such a
large energy gap.

2. Bernal-stacked bilayer graphene

The unit cell of AB-BLG comprises four carbon atoms,
A1, B1 (in layer 1) and A2, B2 (in layer 2), with an interplanar
spacing of d ≈ 0.34 nm. The band structure along the high-
symmetry path for AB-BLG is shown in Fig. 15(b). γo is the
tight-binding parameter defining the interaction between two
nearest carbon atoms within the same layer and γ1 describes
the coupling between atoms A1 and B2 on different layers.
The blue arrows in Fig. 15(b) mark the transition between
same pair of bands (or direct bands), i.e., v1 → c1 or v2 → c2,
and the green arrows mark the transition between the crossing
bands, i.e., v1 → c2 or v2 → c1. In the first nearest-neighbor
tight-binding approximation, the optical matrix elements [99]
for transition between interbands are as follows:

Vvαcα

k = h̄e

icm
A · 2moptγo√(

4| f (k)|2γ 2
o + γ 2

1

)Re(χ ) (A6)

and for the transition involving cross bands

Vvαcβ

k = h̄e

icm
A · i mopt γ1

| f (k)|2γo

[
1 + γ 2

1

| f (k)|2γ 2
o

]−1/2

Im(χ ).

(A7)
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FIG. 15. Band structure along the HSP for (a) SLG and (b) AB-
BLG, respectively, with the Rayleigh intensity (as a function of Es)
plotted in (c) and (d). The tight binding parameters are set to be
γo ≈ −2.7 eV and so ≈ −0.07 for SLG. For AB-BLG, γo ≈ −2.6
and γ1 ≈ 0.36 eV (values taken from Refs. [99,110]). Note that
RA ≈ 3.3 for SLG and BLG, i.e., integrated Rayleigh intensity for
cross-polarization, is one-third of the integrated Rayleigh intensity
for parallel polarization.

In Eqs. (A6) and (A7), χ = [ f ∗(k)
∑3

i=1 eik.rl
A

rl
A

|rl
A| ], and

f (k) = ∑3
i eik·rl

A describes the contribution arising form the
nearest-neighbor atoms shown in Fig. 13. The x and y compo-
nents of the term χ gives the X and Y part of the optical matrix
element. Figures 4(b) and 4(c) show contour plots of the opti-
cal matrix elements involving transition between direct bands
[vα → cβ, (α = β )] and cross bands [vα → cβ, (α �= β )], re-
spectively. α and β represent the band indices and can take
values either 1 or 2 as shown by arrows in the band structure
of AB-BLG [Fig. 15(b)]. In the first case, the matrix elements
vanish at the Dirac points [Fig. 4(b)] which is in contradictory
to SLG, whereas, in the second case, represented in Fig. 4(c),
matrix elements show a maximum exactly at the Dirac points.

APPENDIX B: STEPWISE MODIFICATION
TO THE PRISTINE BM MODEL

We investigate the Rayleigh response of twisted bilayer
graphene by making stepwise modifications to the pristine
BM model as shown in Fig. 16. Under light matter interaction,
the low energy Hamiltonian described by the BM continuum
model [29],

HBM(k) =

⎡
⎢⎢⎢⎢⎢⎣

hk′
(

θ
2

)
Tb Ttr Ttr

T †
b hk′

b

(− θ
2

)
0 0

T †
tr 0 hk′

tr

(− θ
2

)
0

T †
tl 0 0 hk′

tl

(− θ
2

)

⎤
⎥⎥⎥⎥⎥⎦,

(B1)

FIG. 16. Stepwise modification to the BM model.

where Tj = woσo + w1[σx cos(φ′) + σy sin(φ′)], with wo =
w1. Corrugation effects are included by setting wo �= w1 in
Eq. (B1). Corresponding to the Model III of Fig. 16, Hartree
interactions are included by the parametrization provided by
Ref. [84] (refer to Sec. III for details). The particle-hole trans-
formation operator, P defined as iτy—the interchange of the
two layers and changing the sign of the top layer-followed
by the in-plane inversion r → −r. Retaining only the contact
interlayer terms in the BM model, Kang et al. [91] showed that
P†HBM(k)P = −HBM(−k). This symmetry can be broken
by the higher-order gradient terms and by introducing the
interlayer contact coupling w3 as done in Eq. (7) in the main
text.

In Fig. 17, we plot the contour plot of optical matrix
elements in the entire MBZ for four models described in
Fig. 16(a) and 16(b) θ = 1.54◦ and Fig. 16(c) and 16(d) θ =
1.05◦, respectively. For these two twist angles, the variation of
bands closest to the Fermi level under four different models
are shown in Figs. 17(e) and 17(f). When the pristine BM
model is taken into consideration, the dominant contribution
to the Rayleigh scattering process at θ = 1.05◦ (magic angle)
is due to the wave vectors exactly at the � point of the MBZ.
As soon as corrugation effects are included, the dominant
wave vectors move away from the � point. The location of
the dominant wave vectors in the contour plots of optical ma-
trix elements remains essentially unaltered when the Hartree
interactions and ph asymmetry is introduced.

The location of the wave vectors responsible for the
Rayleigh scattering process for small twist angles is shown
in Fig. 18 at El = (a) 2.2 eV and (b) 0.2 eV, respectively.
We observe that the location of these wave vectors are sig-
nificantly affected by the corrugation; e.g., for θ = 1.41◦, the
dominant wave vectors stem from the K point of the MBZ.
As soon as corrugation is added to the system, the location of
these wave vectors shift to the � point of the MBZ. The other
two additions (Hartree interactions and ph asymmetry) to the
system show a negligible effect to the location of the wave
vectors, irrespective of the incoming laser energy.
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FIG. 17. Contour plots of optical matrix elements Pcv as a function of kx and ky in the entire MBZ for [(a) and (b)] θ = 1.54◦ and [(c) and
(d)] θ = 1.05◦. The lowest two bands for these angles are shown in (e) and (f), respectively. Different colors represent different models as
mentioned in the legend. The black hexagon outlines the MBZ.

The integrated Rayleigh intensity at El = 2 eV is plotted
as a function of twist angle θ in Fig. 19 for (a) parallel
and Fig. 19(b) for cross-polarization, respectively, for four

different models. The variation of ratio RA with θ is plotted in
Fig. 19(c). Due to the unavailability of parameters appearing
in Eq. (5) at all the twist angles considered, we only provide

FIG. 18. Transformation of the dominant wave vectors responsible for Rayleigh scattering process (parallel polarization case, XX ) on
including various effects to the BM model for different twist angles at laser energies El (a) 2.2 and (b) 0.2 eV, respectively. The black hexagon
outlines the MBZ.
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FIG. 19. Integrated Rayleigh intensity (in arbitrary units) for
(a) parallel and (b) cross-polarization, respectively. (c) Variation of
RA with θ at El = 2 eV.

the available data corresponding to model IV (marked in blue
asterisks in Fig. 19). We observe that the blue asterisks show
a reasonably good agreement with the data obtained by em-
ploying model II.

FIG. 20. Variation of the ratio RA with incoming laser energy El

for different twist angles.

Figure 20 plots the variation of ratio RA with the incoming
laser energy, El , for different models labeled in Fig. 16. It is
observed that this ratio is affected only by the corrugation,
while other interactions have a negligible effect. The effect of
the doping level in the Hartree interaction on the ratio RA is
shown in Fig. 21. It is observed that the position of the peaks
remain essentially unchanged on varying the doping level in
tBLG.

FIG. 21. Effect of doping on ratio RA as the incoming laser en-
ergy El is varied for (a) θ = 1.12◦ and θ = 1.05◦, respectively.
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