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Transferring orbital angular momentum to an electron beam reveals toroidal and chiral order
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Orbital angular momentum (OAM) and torque transfer play central roles in a wide range of magnetic textures
and devices including skyrmions and spin-torque electronics. Analogous topological structures are now also
being explored in ferroelectrics, including polarization vortex arrays in ferroelectric/dielectric superlattices.
Unlike magnetic toroidal order, electric toroidal order does not couple directly to linear external fields. Instead,
we find that the presence of an electric toroidal moment in a ferrorotational phase transfers measurable
torque and OAM to a localized electron beam in the ballistic limit. We record these torque transfers from
a high-energy electron beam using a momentum-resolved detector. This approach provides a high-sensitivity
method to detect polarization fields and their more complex order parameters and topologies. In addition to
toroidal order, we also demonstrate high-precision measurements of vorticity and chirality for polar vortexlike
phases.

DOI: 10.1103/PhysRevB.107.205419

I. INTRODUCTION

Topological states of electrical polarization have emerged
as an area of research having both fundamental [1,2] and
technological relevance [3]. While absent in bulk, nontrivial
polarization field textures, including structures with ferroaxial
or toroidal order parameters, were predicted to arise from
the close interplay between the geometry of low-dimensional
structures and the topology of the polarization field P(r)
[4,5], where r locates the position of the local polarization.
The resulting vortexlike topological features which arise from
continuous rotations of the polarization field can be char-
acterized by the electric toroidal moment order parameter
g = 1

2

∫
r×P(r)d3r [6–8], giving rise to a host of cou-

pling mechanisms (e.g., pyrotoroidic, piezotoroidic, electric
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toroidal susceptibility). Theoretical studies have suggested
possible routes to control ferroelectric toroidal order pa-
rameters in ferroelectric nanostructures [9–13], and recently,
ordered vortexlike textures of electrical polarization have
been experimentally stabilized [2]. These were achieved in
(SrTiO3)x/(PbTiO3)x superlattices [2], where the balance be-
tween electrostatic and strain boundary conditions resulted in
nanometer-scale polarization vortex arrays possessing an elec-
tric toroidal moment. In addition, variant topological domains
have been observed in ferroelectric perovskite thin films such
as flux closures [14], skyrmions [15], and merons [16]. While
the discovery of these emerging topological ferroelectrics has
been promising for future technologies such as spin-torque
electronics [17–20], understanding the underlying physical
phenomena within these structures can reveal mechanisms
to control and switch them in real devices. One example is
utilizing soft x-ray dichroism measured on polarization vor-
tices to investigate the underlying macroscopic chirality from
ordered regions of vortexlike polar line defects [21]. While
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these studies provide a spatially averaged measurement of the
ferrotoroidal state, the microscopic details of the chiral nature
of this phase are still unclear.

Here, we show how the toroidal moment can be directly
measured, with high sensitivity and spatial resolution, using
(i) a generation of momentum-resolved electron microscope
pixel array detectors (EMPADs) and (ii) the proportional
relationship between the orbital angular momentum (OAM)
transferred to the electron beam L and the toroidal moment of
the superlattice g. Our technique can recover torque transfer
and OAM with high fidelity and resolution, without com-
promising the beam shape, and in a geometry where it is
possible to simultaneously measure and distinguish electric
fields, polarity, and crystal tilt, the latter being a serious
challenge for traditional approaches such as holography and
differential phase contrast [22]. Furthermore, our approach
is based on spatially resolved diffraction that has already
demonstrated subpicometer precision for nonpolar measure-
ments [23], as it is insensitive to the scan instabilities that
limit conventional approaches to 5–10 pm uncertainty. This
increased sensitivity is needed to allow us to take differential
measures of the polarity fields such as the vorticity ∇×P(r).
The underlying center-of-mass (COM) analysis for mapping
polarity described in our arXiv preprint [24] of this paper has
already proved useful for observing chirality and resolving
handedness in vortexlike phases [25].

II. EXPERIMENTAL AND THEORETICAL METHODS

Superlattice samples were imaged using an in-focus probe
with a semiconvergence angle of 3 mrad at 200 keV (depth
of focus ∼280 nm) on an uncorrected FEI Tecnai F20. For
our 60–300 keV FEI Titan Themis experiments, we also
imaged using an in-focus probe as well and a 1.72 mrad
semiconvergence angle at 300 keV (depth of focus ∼666 nm).
Typical beam currents and dwell times were ∼20 pA and
1 ms. The same EMPAD was used on both instruments.
Pulsed laser deposition was used to synthesize superlattice
films of PbTiO3/SrTiO3. All films were grown on SrRuO3-
buffered (110)-oriented DyScO3 single-crystalline substrate.
Reflection high-energy electron diffraction was used to mon-
itor the growth dynamics of PbTiO3 and SrTiO3. The growth
conditions were carefully optimized to obtain layer-by-layer
(Frank–van der Merwe) growth of PbTiO3 and SrTiO3, which
was sustained for the entire growth of 100-nm-thick super-
lattice film. For a detailed account on growth conditions and
optimization of other parameters, see the Methods sections of
Refs. [2,26].

Atomic simulations of the PbTiO3/SrTiO3 superlattice use
potentials that are identical to those in Ref. [27]. The in-
teractions within the PbTiO3 or SrTiO3 layers were based
on the previously introduced potentials for the bulk com-
pounds, which give a qualitatively correct description of
the lattice dynamical properties and structural phase tran-
sitions of both materials. For the interactions between ion
pairs at the interface, simple numerical averages were used.
For the periodicities of the superlattices studied in this pa-
per, the main effects of the stacking are purely electrostatic.
Those long-range dipole-dipole interactions are governed by
the Born effective charges of the bulk parent compounds

and a bare electronic dielectric constant ε∞ that is taken
as a weighted average of the first-principles results for
bulk PbTiO3 (ε∞,PTO = 8.5) and SrTiO3 (ε∞,STO = 6.2) with
weights reflecting the composition of the superlattice. To
preserve the electrostatic interactions within each material
as close as possible to the bulk parent compounds, we have
rescaled the Born effective charge tensors of the inner atoms
by

√
ε∞/ε∞,ABO3 (where ABO3 stands for PbTiO3 or SrTiO3

depending on the layer to which the atom belongs). In this
way, following eq. (23) of Ref. [28], the dipole-dipole in-
teractions remain the same as in bulk even if we adopt a
common value of ε∞ for the whole heterostructure. The Born
tensors corresponding to the atoms at the interfaces were left
untouched.

We assume in-plane lattice constants of a = b = 3.901 Å
and γ = 90◦. To counteract the underestimate of the lattice
constant due to the well-known overbinding error of the local
density approximation, which is the first-principles theory
used to compute the parameters of our model, an external
expansive hydrostatic pressure of −11.2 GPa is imposed.
These approximations and adjustments allow us to construct
models for superlattices of arbitrary n stacking. For computa-
tional feasibility, we have focused on a simulation supercell
made from a periodic repetition of 2n×n×2n elemental per-
ovskite unit cells, sufficiently large to simulate domains in the
n = 10 superlattice. We solved the models by running Monte
Carlo simulations typically comprising 10 000 thermalization
sweeps followed by 40 000 sweeps to compute thermal aver-
ages. We ran Monte Carlo simulated annealing down to very
low temperatures to perform structural relaxations and found
the ground state or metastable solutions.

III. RESULTS

To date, the electron microscopy approach to measuring
OAM has been to start with a beam that has been structured
with special apertures to possess a well-defined OAM, such
as a vortex beam. In this approach, the vortex beam scat-
ters through the sample, and a change is recorded with a
localized detector. This approach has been used for magnetic
measurements from inelastic scattering [29–32] but precludes
the simultaneous momentum measurements needed to reli-
ably recover polarity in ferroelectrics. Our approach is, in a
sense, to run this experiment backwards, i.e., using a simple
and local beam (i.e., with zero OAM), and having it scatter
through a sample that has vorticity where the final OAM is
recorded with an angle-resolved and phase-sensitive detection
method. There are also schemes to build OAM eigenvalue
sorters where the detector is also placed after the sample,
and while promising, they currently lack the spatial resolution
or sensitivity needed for polarization detection [33,34]. Our
approach is enabled by a four-dimensional scanning trans-
mission electron microscopy (4D-STEM) with the EMPAD
[35], schematized for the case of a (PbTiO3)12/(SrTiO3)12

superlattice in Fig. 1(a). In this way, we can simultaneously
measure the linear momentum transfer to the scattered elec-
tron beam 〈p〉, which recovers polarity [26,36] by measuring
the probability current flow [35,37,38] in ferroelectric polar
vortices, and develop an approach to measure OAM, detailed
in the following section.
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FIG. 1. Measuring complex polarization textures with electron
microscopy pixel array detector (EMPAD). (a) Schematic of EMPAD
placed in the diffraction plane, where a convergent beam electron
diffraction (CBED) pattern is formed at the detector. Polarity causes
an asymmetry in intensities of the conjugated pairs of diffracted disks
at +G and −G, where G is the reciprocal lattice vector, indicated
as light and dark gray disks. We utilize this aspect of the electron
scattering distribution by taking the probability current flow to track
the change in polarization around a single vortex. (b) A single vortex
shown with corresponding CBED patterns observed in different re-
gions of the vortex (c)–(f) show how the CBED patterns change with
respect to position. Scale bar in (b) is 1 nm and in (f) is 6 mrad for
the CBED patterns in (c)–(f).

Using this approach, we can see the change in polarization
around each vortex directly in our convergent beam electron
diffraction (CBED) patterns (Fig. 1) and find that the inten-
sity of the CBED patterns observed in different regions of
the vortex [Figs. 1(c)–1(f)] changes direction with the polar-
ization. The polarization texture [Fig. 1(b)], where the local
dipoles within the PbTiO3 layer continuously rotate forming
a sequence of clockwise/counterclockwise arrays of vortices
along the [100] direction, obtained with this method is per-
fectly compatible with the one observed by high-resolution
transmission electron microscopy [2] but has a much higher
signal-to-noise (SNR) ratio and can now resolve details of the
decay of the fringe field into the SrTiO3 layer.

Utilizing information from 4D-STEM, we use ptychogra-
phy [39–41] to first calculate OAM of the probe by explicitly
calculating

〈L〉 = 〈�|r̂×p̂|�〉 =
∫

�∗(r)[r̂×p̂]�(r)dr, (1)

where � is the exit wave function of the electron beam after
scattering in the sample, r is the probe coordinate in real space
with respect to the incident probe position, and r̂ and p̂ are
the position and momentum operators, respectively. Experi-
mentally, within nonoverlapping diffraction disks, there is a
finite width to their size and an intrinsic uncertainty such that
a relation between r̂ and p̂ becomes measurable. Furthermore,
we find that this method recovers the phase and amplitude of
the exit wave function and is exact for all sample thicknesses
to within the accuracy of the ptychographic reconstruction.

However, ptychography is computationally intensive and re-
quires high sampling densities in real space.

Here, we also propose a faster and more efficient two-step
approach that is less restricted by in-plane sampling require-
ments. The first step is a change in the focus from the direct
measurement of the OAM to the change (derivative) of its
expectation value. This is given by the torque exercised by
the sample on the probe 〈�〉, given by

〈�〉 = d〈L〉
dt

= 〈�|[r×(−∇V )]|�〉, (2)

where V is the sample potential [see Appendix B, Eq. (B4)]
[42].

The second step is to take the integral over time of 〈�〉 in
Eq. (2) to get the total change of the expectation value of 〈L〉.
For elastic scattering, the electron travels at constant velocity
where the integration over time for the propagation of the
wave packet through the sample becomes an integration over
sample thickness. We then use the strong phase approximation
to connect the probability current images 〈p〉 [Fig. 2(d)] to ∇V
[Appendix B, Eqs. (B8)–(B18)] [43–47]. The result provides
the z component of the torque (in the coordinate system of
the microscope) convolved incoherently with the probe shape,
where the electron trajectory as a diffraction-limited electron
probe with incident wave packet �0(�r − �rp) centered about
incident probe position �rp:

〈�z(rp)〉 =
∫

{(�r − �rp)×[− �∇V (�r)]}z|�0(�r − �rp)|2d�r, (3)

which can be separated in Fourier space, and then corrected
for probe shape [Eq. (B18)]. Since we are imaging in pro-
jection, the passage of the beam through the sample gives
〈Lz〉 = ∫ 〈�z〉dt . Here, we need to integrate this expectation
value over the thickness of the specimen, giving us noninteger
values of OAM.

To test the numerical accuracy of both ptychographic and
torque transfer approaches, we perform the multislice sim-
ulations [42] on the model polarization vortex structures.
Figure 2(e) shows the change in OAM calculated using pty-
chography, and Fig. 2(f) is the total torque transfer 〈Lz〉,
calculated from 〈px〉 and 〈py〉 images using Eq. (B18); here,
we find that there is good agreement between the angular
momentum and torque transfer approaches for a moderate
thickness sample (<20 nm). In thick simulated samples, the
two approaches begin to diverge as the strong phase approx-
imation breaks down once beam propagation effects become
significant (Fig. 3).

We then utilize our faster, efficient torque transfer ap-
proach on experimental results of the (PbTiO3)12/(SrTiO3)12

superlattice. First, we plotted the {200} probability current
in Fig. 4(a) as a vector map to show the ordered arrays of
polarization vortices, where we find the vortices have off-
set cores and slightly asymmetric shapes. Second, we show
the measured 〈Lz〉 [Fig. 4(b)] using the total torque transfer
[Eq. (B18)] from the same region as Fig. 4(a) at high and
low magnification in Fig. 4(d), where we make picometer-
precision measurements over arbitrarily large fields of view.
We find that our detection scheme overcomes a limitation
of real-space imaging; here, the sensitivity is set by the
SNR on the detector in momentum space, rather than the
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FIG. 2. Cross-sections along the vortex axis for a simulated
10 × 10 PbTiO3/SrTiO3 superlattice: (a) ADF image from recon-
struction and (b) atomic-model structure of the superlattice. (c) “2nd
principles” calculation of the polarization field. (d) Reconstructed
vortices from 〈px〉 and 〈py〉 images of the (200) and (2̄00) diffracted
disks calculated from the propagation of the electron beam through
the simulated structure. (e) Change in orbital angular momentum
reconstructed from the full wave function and (f) integrated torque
transfer from the electron to the sample calculated from Eq. (B18)
showing good agreement with the exact momentum transfer. Cal-
culated vortex Lz = 〈r〉 × 〈p〉 with coordinates centered at center of
a vortex from reconstructed vortices from 〈px〉 and 〈py〉 images of
the diffracted disks showing (g) clockwise and (h) counter-clockwise
rotations.

FIG. 3. Reconstructed vortices from 〈px〉 and 〈py〉 images of the
(200) and (2̄00) diffracted disks calculated from a simulated structure
at thicknesses of 5, 20, 40 and 50 nanometers. Here, we observed that
channeling of the electron beam causes the polarization direction to
switch depending on the thickness with a period of 20 nanometers,
reflecting contrast reversals in the underlying {200} diffraction peaks
from dynamical scattering in the sample. Black scale bar represents
3 nanometers.

FIG. 4. Using our analysis of polarity and analytical expression
for orbital angular momentum (OAM), we can use our results to ex-
tract the OAM of the polarization vortices quantitatively. (a) Polarity
vortices reconstructed from experimentally measured 〈px〉 and 〈py〉
along with (b) the measured torque transfer to electron beam for
the same region and (c) ADF image of the region. (d) Larger field
of view of the sample showing torque transfer overlayed with the
polarity map. Colorbar shows the change in angular momentum from
the torque transfer in units of h̄. Black scale bar in (b) is 2 nanometers
and (c) is 5 nanometers.

picometer-scale instabilities in the scan position of the elec-
tron beam, since it is no longer necessary to resolve and count
individual atoms. Furthermore, our approach measures both
linear and angular momentum, where beam 〈L〉 measures the
vorticity and the sample 〈L〉 takes on an additional signifi-
cance, as it is proportional to the toroidal moment and order
parameter g (see Appendix B) for ferroaxial textures.

For reasonably thin specimens where the strong phase ap-
proximation holds [Eq. (B7)], the probability current images
can be further simplified as a convolution of the incident beam
shape and the gradient of the sample potential V (�rp) [47]:

〈 �p(�rp)〉 = h̄σ |�0(�rp)|2 ⊗ �∇V (�rp), (4)

from which we can now calculate and measure the OAM
〈L〉. We note that 〈L〉(= r̂×p̂) is proportional to the toroidal
moment and order parameter g = 1

2

∫
r×P(r)d3r, where P(r)

is local dipole density [6], as P(r) is proportional to 〈p〉 con-
structed from Friedel pairs in thin samples. This can be seen
numerically in Fig. 2(c) vs Fig. 2(d), where the polarization
field tracks the contrast in the probability current images 〈px〉
and 〈py〉.

There are two different orbital angular momenta that we
can measure: that of the beam and the sample. When the
beam is much smaller than the sample, the OAM of the beam
maps the local vorticity, i.e., the beam is rotated by the curl
of the vector field, in this case, ∇× �P. In this way, the angular
momentum that we are measuring comes from a torque that
is applied perpendicular to the direction of the motion of the
electron beam causing a change to the OAM of the electron
beam and not its spin angular momentum [48]. This is like
putting a small float into a vortex and watching its rotation.
It will be maximal at the center of the vortex. Furthermore, a
nonzero ∇× �P is a very important signature for distinguishing
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FIG. 5. Plane view imaging of the polarization textures. The underlying polarization texture relative to the electron microscope image
is sketched in (a), where vortices in the superlattice are represented as arrows describing circles in the (x, y) plane plus dots and crosses
indicating polarization pointing along the positive or negative z axis. Here, the top half of the vortices is highlighted in red representing the
fact that the probability current signal comes mostly from the top half of the vortices [see text and Figs. 6(c)–6(d)]. Experimental images
of (b) 〈px〉 and (c) 〈pz〉 images from a 12 × 12 superlattice using a 1.4 mrad semiconverged angle probe at 300 keV. We observed that the
stripes have higher contrast in 〈px〉 than in 〈pz〉, although faint contrast is seen in 〈pz〉. Full multiple scattering simulations of electron beam
propagation through structures calculated by “2nd principles” calculation of the polarization field for a 10 × 10 superlattice show projected
polarization of 〈px〉 and 〈pz〉 as line profiles for both (d) right-handed and the (e) left-handed chiral structures and are in good agreement with
experiment. Experimentally, we overlay our results from (b) 〈px〉 and (c) 〈pz〉 images with false color in (h), red and cyan respectively. From
the line profiles in (h) at two different regions in the same image, we observed both (f) right-handed and (g) left-handed chirality in different
domain regions. Black scale bar under (c) represents 20 nm.

a vortex phase from the classical Kittel flux-closure domain
[49]. The OAM of the vortex itself can also be calculated from
Lz = 〈�r×〈�p〉〉 where r is now the coordinate centered on the
vortex and not the beam, as shown in Figs. 2(g) and 2(h). As
expected, the OAM at the center of the vortex goes to zero.
Consequently, we find that we can utilize this approach to
uncover the theoretically predicted [27] chiral nature of the
vortex states. Here, Fig. 4(d) shows the toroidal ordering is
that of off-centered, alternating, and asymmetric vortices that
lack an axis of symmetry. This is a necessary but not sufficient
condition for chirality.

To determine if the vortex structures are chiral in three
dimensions, we need to also investigate if there is net
polarization along the axial direction of the vortex. To
do this, we prepared plan-view thinned samples of the
(PbTiO3)12/(SrTiO3)12 superlattice and imaged down the
[001] zone of the superlattice [Fig. 5(a)]. In this orientation,
the net polarity needed for a chiral structure will appear as
a nonzero 〈pz〉 component on the EMPAD (again, x and y

are in the detector coordinate system with z along the axial
direction of the vortices). Figures 5(b) and 5(c) show 〈px〉
and 〈pz〉 images, respectively, where a small but nonzero
〈pz〉 is indeed detected, having 6 times less intensity than
〈px〉 (Fig. 6). The reduced axial intensity is a consequence
of the strong dechanneling of the electron beam on lead atom
columns (Fig. 7), which means we do not sample all depths
through the sample with equal weighting; here, we observed
that most of our signal for 〈px〉 and 〈pz〉 comes from the
top half of the vortices [shown as the red-shaded region in
Fig. 5(a)]. This reduces sensitivity to the axial component
and is present both for our method and the less-sensitive
high-angle annular dark-field (ADF)-based method to mea-
sure polar displacements. By comparing second-principles
simulations of the projected polarization for left- and right-
handed chiral structures [Figs. 5(d) and 5(e)], we again see
the polarization weighted from beam propagation toward the
entrance surface. Here, we observed that a left-handed chi-
ral structure shows 〈px〉 and 〈pz〉 components out of phase,
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FIG. 6. Plane view imaging of the polarization textures. The
underlying polarization texture relative to the electron microscope
image is sketched (a), where vortices in the superlattice are repre-
sented as arrows describing circles in the (x, y) plane plus dots and
crosses indicating polarization pointing along the positive or negative
y axis. (b) Annular dark field (ADF), (c) 〈px〉 and (d) 〈pz〉 images
reconstructed from the coordinates of a 10 × 10 superlattice using
1.76 mrad semiconverged angle probe at 300 keV. (e)–(g) Show the
features of the polarization texture for which the measurements in the
panels above and below are sensitive. The fading of the sketches in
(e)–(g) represent the fact that the probability current signal comes
mostly from the top half of the vortices (see text). Experimental
results from 12 × 12 superlattice using the same imaging parameters
as simulation for (h) ADF, (i) 〈px〉 and (j) 〈pz〉. By looking at a larger
field of view in (h) ADF, and probability current flow (i) 〈px〉 and (j)
〈pz〉 we observed that the stripes have higher contrast in 〈px〉 than in
〈pz〉, although faint contrast is seen in 〈pz〉. Fourier transforms (FT)
of (h)–(j) is represented as insets to each figure respectively. Here, we
observed double periodicity in the FT (j) of the ADF. For (i) 〈px〉 and
(j) 〈pz〉, we added the ratio of their intensities to the total intensity of
their FTs to show single periodicity with the (k) FT of 〈px〉 having
6 times more intensity than the (l) FT of 〈pz〉. White scale bar in (d)
represents 5 nm. Black scale bar under (j) represents 30 nm.

whereas a right-handed chiral structure has them tracking one
another. Experimental results for 〈px〉 and 〈pz〉 [Figs. 5(b) and
5(c)] are superimposed to visualize their relative alignments
in Fig. 5(h). We observed both left- and right-handed chiral

FIG. 7. Multislice simulation of 6×6 PbTiO3/SrTiO3 down the
[001] zone axis using 1.76-mrad convergence angle at 300 keV.
Multislice conditions are the same as experimental conditions used
to those recorded with the electron microscopy pixel array detector
(EMPAD) on a FEI Titan Themis.

domains [Figs. 5(f) and 5(g), respectively]; the small domain
size (50–100 nm) could account for the weak chiral signal
observed by x-ray scattering [21], where the superposition
of both domains would reduce the net macroscopic chiral
signal. In contrast, from both our simulation and experiment,
we find that this should be a strongly chiral material within
each domain but overall exhibiting both right- and left-handed
chiral domains in proximity.

Electron channeling plays an important role in the depth
dependence of the probability current signal where the signal
is not a simple projection through the sample. The dechan-
neling in the two in-plane directions is quite similar, as it
is dominated by the atomic column more so than the small
displacements, where so much of the thickness variation can
be compensated by comparing the relative intensities of the
〈px〉 and 〈pz〉 components (Fig. 5). Although, electron chan-
neling plays an important role in the depth dependence of the
probability current signal where the signal is not a simple
projection through the sample, we find that vorticity of the
reconstructed vortices is retained at thicknesses of 5, 20, 40,
and 50 nm in Fig. 3. Furthermore, we observed that electron
dechanneling causes the polarization direction to switch de-
pending on the thickness with a period of 20 nm, reflecting
contrast reversals in the underlying {200} diffraction peaks
from dynamical scattering in the sample. By matching the
measured diffraction patterns to the multislice simulations,
we found the thickness of the plan-view transmission electron
microscopy sample to be 21 ± 2 nm.

When looking at the structure of the polarization vortices
along the axial direction, we imaged down the [001] (plan
view). Electron channeling causes most of the signal to be
generated toward the entrance surface of the beam and thus
weights information toward the upper half of the vortex, with
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far less from the bottom half of the vortex structure. To
interpret the contrast that we expect for 〈px〉 and 〈pz〉, we use
multislice simulations [Figs. 6(c) and 6(d)], which are in good
agreement with the experimental results [Figs. 6(i) and 6(j)].
Relating this result to effects of the electron beam channeling
down [001] in Fig. 7 and extended data fig. 7(d) of Ref. [15],
we find that the probe wave function peaks and scatters early
in the sample where 〈px〉 is larger, and 〈pz〉 is still small. This
asymmetric weighting is present in both diffraction and ADF
measurements and can be tuned by changing the convergence
angle. We note that, if the channeling were not present, the
〈px〉 signal in the upper half of the vortex would cancel that in
the lower half and become unmeasurable in projection.

IV. SUMMARY

By applying our detection methods for mapping polar and
toroidal order, we directly observe the emergence of chirality
in such vortices. Furthermore, our approach to investigate
these more complex polar orders at the length scale of a
single vortex can be used for future investigations of possible
chiral nature in other topological ferroelectric materials, e.g.,
Refs. [14–16]. The approach is especially valuable for mul-
tilayer heterostructures, which are often too thick for reliable
direct imaging by ADF STEM, as the ADF signal is generated
too close to the entrance surface (<6 nm) to measure the
buried ferroelectric layer. As shown here, the more parallel
beam used for the diffraction-based approach provides a di-
rectly interpretable signal up to ∼20 nm, and the signal is
still strong and readily quantified in thicker samples once
corrections for sample thickness are made—this can help to
minimize the effect of surface relaxation on the polar order.
Sample thickness can be determined locally by matching
to diffraction simulations. Our direct experimental approach
shows that one can take two materials that by themselves
are nonhanded but, when assembled under certain boundary
conditions in which the two primary energy scales (the elastic
and electrostatic energies), are almost of the same order of
magnitude, and they compete with one another. This leads to
order parameter topologies that are chiral with a characteris-
tic length scale of 5–10 nm. Finally, we note that, although
the calculations of torque transfer were performed for high-
energy electrons, the same symmetry elements and invariants
are also present in Bloch wave theory [50], suggesting that
a similar scattering mechanism may be detectable in the bal-
listic limit with low-energy (i.e., few electronvolts) electrons
as well, giving an electrical read-out mechanism for toroidal
order that would be useful for interrogating a ferroelectric
equivalent of a magnetic racetrack memory.

All data needed to evaluate the conclusions are present
in this paper. Additional data related to this paper may be
requested from the authors.
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APPENDIX A: FOURIER CONVENTION

Fourier transform convention:

F (�k) = 1

2π

∫
f (�r)exp(−i�k · �r)d�r, (A1)

f (�r) = 1

2π

∫
F (�k)exp(i�k · �r)d�k. (A2)

When using this convention, we get these properties:

F[A(�r)B(�r)] = 1

2π
A(�k) ⊗ B(�k), (A3)

F[A(�r) ⊗ B(�r)] = 2πA(�k)B(�k), (A4)

F
[

∂n

∂xn
i

A(�r)

]
= (iki )

nA(�k), (A5)

where � represents the convolution operator.

APPENDIX B: MEASURING POLARITY AND TORQUE
TRANSFER FROM PROBABILITY CURRENT IMAGES

Here, we derive the central relationship that connects the
measured probability current flow of an electron beam with
wave function �(�r, �rp) centered about probe position �rp to
the torque transfer using the strong phase approximation. The
starting point is the measurement of the COM image, 〈 �p〉
formed by scanning the probe position �rp and measuring the
angular distribution of scattered electron beam at each probe
position |�(�k, �rp)|2, where �k and �r are the conjugate variables
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in the back focal plane and image plane, respectively [45,51].
A COM image has each pixel value equal to the centroid of
the associated diffraction pattern, where

〈 �p(�rp)〉 =
∫

h̄�k|�(�k, �rp)|2d�k, (B1)

which follows from the definition of 〈 �p〉 written out in a
momentum basis [45,51].

Expanding 〈 �p〉 = 〈�| p̂|�〉 in a position basis and using
p̂ = −ih̄ �∇, we obtain

〈 �p(�rp)〉 = −h̄i
∫

�∗(�r, �rp
) �∇�(�r, �rp)d�r. (B2)

Considering that the momentum operator is a Hermitian
(i.e., self-adjoint operator), then

〈 �p(�rp)〉 = h̄i
∫

�(�r, �rp) �∇�∗(�r, �rp)d�r. (B3)

Adding together the two last equations, we arrive to the
conclusion that 〈 �p〉 differs from the expectation value of prob-
ability current flow 〈�j〉 by a factor of twice the mass of the
electron m [45,51]:

〈 �p(�rp)〉 = h̄

2i

∫
�∗(�r, �rp) �∇�(�r, �rp)

− �(�r, �rp) �∇�∗(�r, �rp)d�r = 2m〈�j〉. (B4)

From Eq. (B4), we find that the expectation value of mo-
mentum or COM 〈 �p〉 can be used interchangeably with the
probability current flow 〈�j〉. Furthermore, this is the classical
definition of a current, where the rate of flow from an electric
charge is related to the net flow of electron beam in the sample
measured as 〈 �p〉.

In Appendix B 1, we review the already derived connection
between the COM images and the gradient of the potential to
establish a consistent notation. In Appendix B 2, we derive the
relationship between torque transfer and the COM images. In
Appendixes B 3 and B 4, we show how polarity is encoded in
the probability current flow to a pair of conjugate diffracted
beams.

1. Relation between COM and potential gradient images

To connect 〈 �p〉 of the exit wave to the scattering potential,
we next make the strong phase approximation which should
hold if the probe amplitude does not change dramatically in
the sample. In the strong phase approximation, the exit wave
function is just a product of the initial wave function �0 and a
phase term from the sample potential V (�r):

�(�r, �rp) = exp[iσV (�r)]�0(�r − �rp), (B5)

where σ is the usual interaction parameter [42]. Substituting
Eq. (B5) into Eq. (B2) gives

〈 �p(�rp)〉 = −ih̄
∫

[iσ �∇V (�r)�0(�r − �rp) + �∇�0(�r − �rp)]

× exp[iσV (�r)] exp[−iσV (�r)]�∗
0 (�r − �rp)d�r,

〈 �p(�rp)〉 = −ih̄
∫

�∗
0 (�r − �rp) �∇�0(�r − �rp)d�r

+ h̄σ

∫
�∇V (�r)|�0(�r − �rp)|2d�r. (B6)

If the beam is symmetric [52], then the first term goes to
zero, and the second term can be written as a convolution:

〈 �p(�rp)〉 = h̄σ |�0(�rp)|2 ⊗ �∇V (�rp), (B7)

which establishes the conditions under which the COM image
is a convolution of the potential gradient and the probe. If
the beam is not symmetric, then the first term, which depends
only on the incident beam, provides a constant offset uniform
background which can be subtracted off, and the second term
changes Eq. (B7) to a cross-correlation [43].

2. Calculating torque from COM images

To calculate torque, we start with a relation in Ehrenfest’s
theorem that connects 〈 �p〉 to the gradient of the projected
potential [45,51]. Second, we find that the torque operator for
an electron in the beam can be defined as

�̂ = �̂r× − �∇V̂ . (B8)

We can calculate its expectation value by expanding in the
position basis:

〈�̂〉 = 〈�|�̂|�〉, (B9)

and the z component is

〈�̂z〉 =
∫

〈�|�r′′〉〈�r′′|x̂|�r′〉〈�r′| − ∂V̂

∂y
|�r〉〈�r|�〉d�rd�r′d�r′′

+
∫

〈�|�r′′〉〈�r′′|ŷ|�r′〉〈�r′|∂V̂

∂x
|�r〉〈�r|�〉d�rd�r′d�r′′.

(B10)

Since the position bases are eigenvectors of the position
and potential operators, we can expand the integral:

〈�̂z〉 =
∫

x
−∂V

∂y
(�r′)�*(�r′′)�(�r)δ(�r′′ − �r′)δ(�r′ − �r)

× d�rd�r′d�r′′ +
∫

y
∂V

∂x
(�r′)�*(�r′′)�(�r)δ(�r′′ − �r′)

× δ(�r′ − �r)d�rd�r′d�r′′. (B11)

We only show the calculation for one of the terms in the
sum. Both are similar, and combining gives

〈�̂z〉 =
∫

x
−∂V

∂y
|�(�r)|2d�r +

∫
y
∂V

∂x
|�(�r)|2d�r. (B12)

This is the general formula where �(�r) is the exit wave
function. In the context of a scanning beam, we can write our
exit wave function as the probe shifted to the relevant scan
point �(�r − �rp). We also want to measure with respect to �rp

as the origin. Therefore, we rewrite for the torque in the z
direction as

�z(�rp) =
∫

{(�r − �rp)×[− �∇V (�r)]}z|�(�r − �rp)|2d�r, (B13)

where V (�r) is the potential of the specimen.
We take advantage of the symmetry of the probe to rewrite

this equation to look like a convolution (for asymmetric
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probes, this will remain a cross-correlation, a result which will
carry through without loss of generality):

�z(�rp) =
∫

[(�rp − �r)× − �∇V (�r)]z|�(�rp − �r)|2d�r. (B14)

Here, we have introduced Eqs. (B13) and (B14) in vector
form, from which we could relate this back to Eq. (B12).
Furthermore, convolutions in real space are multiplications in
Fourier space [Eq. (A3)] which, by taking a Fourier transform,
gives

F[�z(�r)] = −F
[−∂V

∂y
(�r)

]
F[x|�(�r)|2] + F

[
∂V

∂x
(�r)

]
×F[y|�(�r)|2]. (B15)

At this point, we need to find the gradient of the potential.
As shown in Eq. (B7), by using the strong phase approxi-
mation, our COM images are related to the gradient of the
potential by a convolution. For example, the COM in the x
direction is with �0 being the incident wave function given
by

〈px(�rp)〉 = h̄σ |�0(�rp)|2 ⊗ ∂V (�rp)

∂x
. (B16)

Taking a Fourier transform gives

F[〈px(�rp)〉] = h̄σF[|�(�r)|2]F
[
∂V

∂x
(�r)

]
. (B17)

We can now write Eq. (B15) as

�z(�r) = F−1

{
−F[〈py(�r)〉]F[x|�(�r)|2] + F[〈px(�r)〉]F[y|�(�r)|2]

h̄σF[|�(�r)|2]

}
. (B18)

This is the desired result, describing the torque in terms
of only the experimentally measured quantities 〈px(�rp)〉,
〈py(�rp)〉, |�0(�r)|2. A key observation here is that, in the
strong phase approximation [Eq. (B4)], |�(�r)|2 = |�0(�r)|2,
and the incident beam shape can be measured directly at
medium resolution or with the aberration-correction soft-
ware at high resolution. At medium spatial resolution
(nonoverlapping disks), multislice simulations indicate this
approximation is robust for sample thicknesses up to 20 nm at
300 keV.

Now F[|�(�r)|2] is peaked at zero frequency and is zero at
frequencies with k-vector magnitudes larger than the diameter
of the probe-forming aperture. To avoid dividing by zero or
by values arbitrarily close to zero in F[|�(�r)|2], we pass this
through a low-pass filter to suppress the high-frequency noise
beyond the aperture cutoff. Equation (B18) can be trivially
modified to incorporate an optimal Wiener filter, recognizing
that Eq. (B18) is essentially deconvolving the effect of the
probe contrast transfer function (CTF) from the torque mea-

surement. Omitting the division by the probe CTF leaves us
with the torque measurement blurred out to probe resolution.
This may be preferable for noisy data or thick samples where
the strong phase approximation may no longer hold.

3. Measuring polarity from the COM image
in the strong phase approximation

Polarity is usually calculated within a Bloch-wave formal-
ism [50] to account for the multiple scattering of the electron
beam through the sample. While there are analytic results for
special cases, that approach is more useful computationally
than for insight. Here, we consider a thin sample described by
the strong phase approximation that provides a simpler result,
useful for understanding the contributions to the polarity mea-
surement, while still retaining the key symmetries of the more
complicated theory.

Starting with Eq. (B4), and as shown by Deb et al. [53], the
diffraction pattern expanded out to third order is

|�(�k, �rp)|2 = |�0(�k)|2 + σ

π
Im{�0(�k, �rp)[�∗

0 (�k, �rp) ⊗ V ∗(�k)]} + σ 2

4π2
(|�0(�k, �rp) ⊗ V (�k)|2

− Re{�0(�k, �rp)[�∗
0 (�k, �rp) ⊗ V ∗

2 (�k)]}) + σ 3

8π3
(Im{[�0(�k, �rp) ⊗ V (�k)][�∗

0 (�k, �rp) ⊗ V ∗
2 (�k)]}

− 1

3
Im{�0(�k, �rp)[�∗

0 (�k, �rp) ⊗ V ∗
3 (�k)]}) + · · · , (B19)

where

�0(�k, �rp) = �0(�k) exp(−i�k · �rp), (B20)

V2(�k) = V (�k) ⊗ V (�k), (B21)

V3(�k) = V (�k) ⊗ V (�k) ⊗ V (�k). (B22)

The only term outside the bright disk field that is asym-
metric and therefore contributes to the COM signal from the
diffracted beams is the third-order term:

Im{[�0(�k, �rp) ⊗ V(�k)][�∗
0 (�k, �rp) ⊗ V ∗

2 (�k)]}. (B23)
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We assume our sample is a crystal and can therefore write
our crystal potential in reciprocal space as

V (�k) = F[V (�r)] =
∑

�G
U �G exp(iφ �G)δ(�k − �G), (B24)

where �G = h�g1 + k�g2 + l�g3 is a reciprocal lattice vector and
U �G and φ �G are real. Substituting V (�k) from Eq. (B24) into
Eq. (B23) introduces three sums over reciprocal lattice vec-
tors labeled �G1, �G2, �G3, and after some algebra, Eq. (B23)
becomes

Im{[�0(�k, �rp) ⊗ V (�k)][�∗
0 (�k, �rp) ⊗ V ∗

2 (�k)]}
=

∑
�G1, �G2, �G3

�0(�k − �G1)�∗
0 (�k − �G2 − �G3)U �G1

U �G2
U �G3

× sin
(
φ �G1

− φ �G2
− φ �G3

)
. (B25)

Equation (B25) gives rise to the polarity term, and the
phase portion in Eq. (B25) is recognized as the three-phase
invariant of crystallography:

φ = φ �G1
− φ �G2

− φ �G1− �G2
, (B26)

which is invariant under a change of origin in real space:
A shift in the origin by �r0 leads to a phase shift φ

′
�G =

φ �G + �G · �r0, but as the vectors �G1 − �G2 − �G1 + �G2 = 0, the
offset ( �G1 − �G2 − �G1 + �G2) · �r0 = 0 as well; thus, there is
no phase shift when choosing a new origin, making sin(φ)
a good metric for tracking components of the polar order
parameter.

4. Polarity from the COM of conjugate diffraction spots

Polarity can be sensed most simply using Friedel pairs
at �G1 and − �G1. Focusing on the diffraction spot centered
around �G1, we remove the �G1 summation from Eq. (B25)
and similarly for − �G1. The probability current flow given by
the COM measurement will then become the sum of the first
moments of the �G1 and − �G1 spots:∫

�k
∑
−→
G 2

|�0(
−→
k − −→

G 1)|2U �G1
U �G2

U �G1− �G2
sin

(
φ �G1

− φ �G2
− φ �G1− �G2

)
d�k +

∫
�k
∑
−→
G 3

|�0(�k + �G1)|2U− �G1
U �G3

U �G1− �G3

× sin
(
φ− �G1

− φ �G3
− φ �G1− �G1

)
d�k, (B26)

where we have separated the integral for later convenience. We can make a variable substitution for the integration variables k̃
so that they are centered around the diffraction spot:∑

−→
G 2

U−→
G 1

U−→
G 2

U−→
G 1−−→

G 2
sin(φ−→

G 1
− φ−→

G 2
− φ−→

G 1−−→
G 2

)
∫

(�k + −→
G 1)|�0(�k)|2d�k+

∑
−→
G 3

U−−→
G 1

U−→
G 3

U−→
G 1−−→

G 3

× sin(φ−−→
G 1

− φ−→
G 3

− φ−→
G 1−−→

G 3
)
∫

(�k − −→
G 1)|�0(�k)|2d�k (B27)

The first part of each integral
∫ �k|�0(�k)|2d�k is just the first moment of the unscattered bright-field disk, which is zero for a

nonaberrated or symmetric incident beam. The second part is just the total intensity of the beam I0 times the reciprocal lattice
vector. This simplifies the expression to

�G1I0

∑
�G2

U �G1
U �G2

U �G1− �G2
sin

(
φ �G1

− φ �G2
− φ �G1− �G2

) − �G1I0

∑
�G3

U− �G1
U �G3

U �G1− �G3
sin

(
φ− �G1

− φ �G3
− φ �G1− �G3

)
. (B28)

We can re-index �G3 = − �G2 without changing the second summation:

�G1I0

∑
�G2

U �G1
U �G2

U �G1− �G2
sin

(
φ �G1

− φ �G2
− φ �G1− �G2

) − U− �G1
U− �G2

U− �G1+ �G2
sin

(
φ− �G1

− φ− �G2
− φ− �G1+ �G2

)
. (B29)

For a real potential V (�r), V ∗(�k) = V (−�k). This means
U �G = U− �G and φ �G = −φ− �G, which gives our final expression
for the COM of the Friedel pair:

〈
�p{ �G1}

〉 =
(

h̄σ 3

8π3

)
2 �G1I0

∑
�G2

U �G1
U �G2

U �G1− �G2
sin(φ), (B30)

where three-phase invariant φ = φ �G1
− φ �G2

− φ �G1− �G2
as be-

fore. However, if the crystal is also centrosymmetric, i.e.,
V (�r) = V (−�r), then the Fourier transform is also pure real, so

all φ �G = 0 which means Eq. (B30) simplifies to 0 for nonpolar
materials. This result remains 0 even under a shift in origin
that breaks the even symmetry of the crystal potential V (�r)
thanks to the three-phase invariant. More generally, as sin(φ)
is independent of the choice of origin in real space, it can be
used as a good order parameter for describing the component
of the polarity along �G1.

Finally, the Fourier coefficients of the potential U �G are
sensitive to both the nuclear and electronic contributions of
the total potential for electron scattering. In other words, the
measured dipole density probed is net/total dipole density.
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