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DMRG analysis of magnetic order in the zigzag edges of hexagonal CrN nanoribbons
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We investigate the finite-temperature magnetic order at the edges of hexagonal CrN nanoribbons by using
density functional theory combined with the density matrix renormalization group (DMRG) method. More-
over, the spin-dependent transport in nanoribbons is calculated within the semiclassical Boltzmann transport
theory. We find that the zigzag edges have lower energy with respect to armchair edges. The zigzag edges
of CrN nanoribbon show half-metallic electronic character, which is the same as for the two-dimensional
(2D) monolayer. The localized electronic states on the zigzag edges reduce the electronic band gap energy
for spin-down electrons. The ab initio electronic results are mapped into an effective 1D Heisenberg spin
model up to the next-nearest-neighbor exchange interaction term. For zigzag ribbons, the nearest-neighbor and
next-nearest-neighbor magnetic exchange are around 10–12 and −2 to 0 meV/Cr atom, respectively. The finite
spin correlation length in 1D nanoribbons drops sharply to zero with temperature. The absence of long-range
spin correlations at the edges is a practical drawback for future room temperature 2D spintronic devices. The
maximally localized Wannier functions are used for band interpolation and spin-dependent transport calculations
by using the semiclassical Boltzmann equation. We show that the zigzag edges of CrN are a perfect spin filter
under both electron and hole doping.

DOI: 10.1103/PhysRevB.107.205418

I. INTRODUCTION

In the past few years, various two-dimensional (2D) mono-
layer materials, with different physical properties, such as
metals, semiconductors, insulators, topological insulators, and
ferroelectrics, have been synthesized in laboratories and in-
vestigated theoretically. The low-dimensional magnetic order
was not reported among physical properties until very re-
cent discoveries. Besides the experimental observation of the
ferromagnetic phase in CrI3 [1–6], VSe2 [7,8], few- layer
CrTe2 [9], MnSe2 [10], and GdAg2 [11] at low tempera-
ture, ferromagnetism (FM) has been proposed in many other
2D monolayers, including transition metal dichalcogenides,
trihalides, and dihalides. The theoretically suggested FM
monolayers include VS2 [12,13], VSSe [14], CoBr2 [15,16],
CrN [17,18], CrGeS3 [19], and MnX (where X = P, As,
Sb) [20]. For example, it was shown that CoBr2 is an in-
trinsic ferromagnetic semiconducting material with a Curie
temperature of around 30 K [15,16]. Also, hexagonal CrN is
a half-metallic ferromagnetic 2D monolayer, with the Curie
temperature around 200 K, which can be used in nanodevices
with 100% spin polarization abilities [17]. The magnetic or-
derings below the critical temperature in 2D monolayers are
essential parts of many possible future technologies such as
spin valves or magnetic data storage devices.
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However, in practice, all experimental samples have a finite
size and are limited by edges. The edge effect is an interesting
question as we move toward a theoretical and experimental
understanding of 2D ferromagnetic monolayers. The mag-
netic phase is a very well studied phenomenon for zigzag
edges of graphene nanoribbon [21,22]. Ferromagnetism and
half-metallicity are reported for hydrogen-saturated InSe
nanoribbons [23]. However, to the best of our knowledge,
the effect of edges has not been addressed for intrinsic FM
monolayers. An important question is the effect of zigzag
edges on the electronic and magnetic properties of nanorib-
bons. Nowadays, high-performance computers with advanced
computational packages are a standard tool for material in-
vestigation. In this paper, we address the electronic and
finite-temperature magnetic properties of 1D zigzag-edged
CrN (Z-CrN) nanoribbons by using density functional theory
(DFT) and the density matrix renormalization group (DMRG)
method. We report the variation of the magnetic exchange
interaction between the nearest and next-nearest Cr atoms as
a function of ribbon width. By using the calculated effective
magnetic exchange between Cr atoms, the magnetic moment
correlation at a finite temperature is estimated, proving the
usefulness of this material for future nanodevices at high
temperatures. Moreover, we investigate the spin-dependent
transport through zigzag-edged nanoribbons by using the
Boltzmann transport theory and show possible perfect spin
polarization for pure and doped CrN zigzag nanoribbons. CrN
ribbons have not yet been experimentally realized; however,
there are experiments in which narrow ribbons have been syn-
thesized from a variety of monolayer materials with a width

2469-9950/2023/107(20)/205418(7) 205418-1 ©2023 American Physical Society

https://orcid.org/0000-0002-5802-2881
https://orcid.org/0000-0003-3638-3966
https://orcid.org/0000-0002-0119-4156
https://orcid.org/0000-0002-0008-8175
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.205418&domain=pdf&date_stamp=2023-05-25
https://doi.org/10.1103/PhysRevB.107.205418
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FIG. 1. The atomic and spin configuration for CrN zigzag nanoribbons with N = 20 and (a) FM, (b) AFM1, and (c) AFM2 spin
configuration. Blue (red) Cr atoms have moments oriented in up (down) directions. The assumed ribbon supercell is marked by a black
rectangle. Nearest and second-nearest metal neighbors are marked by purple and green arrows, respectively. The electronic band structure for
Z-CrN nanoribbons of width (d) N = 8, (e) N = 14, and (f) N = 20 atomic sites. The spin-resolved density of states (DOS) for bulk and edge
states on (g) Cr and (h) N atoms.

of several dozen atomic layers [24,25], even with a precisely
controlled zigzag edge [26].

II. MODEL AND METHODS

A. Electronic and magnetic structure

First-principles electronic calculations were performed
based on the DFT code implemented in the QUANTUM

ESPRESSO package [27,28]. The ribbon’s periodic direction is
considered along the x axis. The DFT supercell is marked
by a black rectangle in Figs. 1(a)–1(c). Moreover, we use a
20 Å vacuum spacing surrounding the supercell along the y
and z directions to avoid interaction with the neighbor cells.
A plane wave basis set is used with a cutoff energy of nearly
1100 eV. The core electrons are modeled within the ultrasoft
pseudopotential model. The exchange correlation between
electrons is modeled by using generalized-gradient approx-
imation with the Perdew-Burke-Ernzerhof functional [29].
For the highly localized Cr-d orbitals, we apply the Hub-
bard model with an effective on-site Coulomb repulsion for
d orbitals of Cr atoms. The Hubbard U parameter is set to

3 eV as for the 2D CrN monolayer [17,30]. The integration
over the first Brillouin zone (BZ) is performed by using the
Monkhorst-Pack algorithm [31] with a 40 × 1 × 1 k-point
mesh. We define ribbon width N (varying from 6 to 22) as the
number of Cr and N atoms along the nonperiodic direction
(y axis). The zigzag edges of CrN ribbon are passivated with
H atoms to close the dangling bonds. All the analyzed CrN
nanoribbons are fully relaxed to find the minimum-energy
atomic configuration. In the relaxed atomic configuration [see
Figs. 1(a)–1(c)] the Hellmann-Feynman force acting on each
atom is smaller than 0.002 eV/Å.

We performed the DFT+U calculations for three differ-
ent magnetic configurations as presented in Figs. 1(a)–1(c),
for a ribbon with N = 20, with blue (red) colors denoting
Cr atoms with spin aligned in the up (down) direction. We
select the spin configurations of Cr atoms that preserve trans-
lational symmetry along the ribbon. These are the strictly
polarized ferromagnetic (FM) state [see Fig. 1(a)] and two
antiferromagnetic (AFM) states: one with collinear antifer-
romagnetic ordering between the nearest-neighbor Cr atoms
(AFM1) [Fig. 1(b)] and the second with two magnetic do-
mains oriented in an antiparallel manner (AFM2) giving a
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configuration where the moments at the two zigzag edges are
aligned oppositely [Fig. 1(c)].

The energy difference between the FM state and the
AFM1 state and that between the FM state and the AFM2
state are mapped into the Heisenberg spin model up to
the second-nearest-neighbor interaction (the so-called J1-J2

model [32,33]) as

H = −
∑
〈i, j〉

J1,i jSi · S j −
∑
〈〈i, j〉〉

J2,i jSi · S j, (1)

where J1 (J2) is the exchange interaction strength between
the nearest-neighbor (next-nearest-neighbor) Cr atoms. The
AFM1 state minimizes antiferromagnetic ordering for nega-
tive J2 < 0, while the AFM2 is chosen just to have a second
independent equation to determine the J1 and J2 integral
values. The values of magnetic exchange interactions are ob-
tained by comparing the energy difference between the FM
state and the AFM1 state and that between the FM state and
the AFM2 state in the DFT+U and the Heisenberg spin model
giving

J1 = 1

2(N − 2)

(
�E1 − N − 2

4
�E2

)
,

J2 = − 1

4(N − 2)

(
�E1 − N − 2

2
�E2

)
, (2)

where we define the energy differences as �E1 = EAFM1 −
EFM and �E2 = EAFM2 − EFM.

The spin transport through Z-CrN nanoribbon is calcu-
lated within the semiclassical Boltzmann transport theory by
using the BOLTZWANN code [34] in connection with the WAN-
NIER90 package [35]. The latter is used to interpolate the band
structure by means of the maximally localized Wannier func-
tions [36,37]. The electrical conductivity along the i direction
is calculated as follows:

σii(μ, T ) = e2
∫ +∞

−∞
dε

(
−∂ f (ε, μ, T )

∂ε

)
�ii(ε), (3)

where f (ε, μ, T ) is the Fermi-Dirac distribution function and
�i j (ε) is the transport distribution function,

�i j (ε) = 1

V

∑
n,k

viv j (n, k)τ (n, k)δ(ε − εn,k ). (4)

Here, εn,k is the energy of the nth band at wave vector k,
vi( j)(n, k) is the ith ( jth) component of the group veloc-
ity, V is the unit cell volume, and τ is the relaxation time.
In all transport calculations, the relaxation time approxima-
tion is employed with the constant relaxation time set to
τ = 10 fs, and the room temperature T = 300 K.

B. DMRG solution of the 1D effective Heisenberg Hamiltonian

The finite-temperature correlation effect has been exam-
ined in the proposed effective Heisenberg spin model using
a DMRG-like approach. The DMRG method was originally
developed for numerically finding the ground state of a one-
dimensional gapped spin system with only nearest-neighbor
interactions [38,39]. The main idea of the DMRG-like ap-
proach is to restrict the Hilbert space to the subspace
containing only a low-energy spectrum. It has been shown for

1D systems with local interactions that the wanted subspace
is spanned by the eigenvectors corresponding to the most
significant eigenvalues of the reduced density matrix [40,41].
Let us assume that the system is spatially divided into two
subsystems. The reduced density matrix is obtained after a
partial trace over one of the subsystems from the full density
matrix. The eigenvalues of such a system are proportional to
the entanglement entropy between two parts of that system.
DMRG is such a powerful method for these kinds of systems
because the ground-state entanglement entropy, associated
with the eigenvalues of the reduced density matrix, increases
proportionally to the edge of the system, which is called the
area law [41]. For a 1D system, the edges of the system
consist of just two ends of the chain, so its area is constant,
which implies that the dimension of the low-energy subspace
is constant.

The modern approach to the DMRG method, based on the
matrix product states (MPSs) and matrix product operators
(MPOs), allows one to simulate two-dimensional structures
such as CrI3 [42] and the real time and imaginary time
evolution of quantum states [40,43,44]. The dimension of
MPSs and MPOs is reduced in the same way as in the orig-
inal DMRG method. One of the methods to examine the
finite-temperature properties of the quantum system is a ther-
malization of a quantum state from the infinite temperature by

the application of the operator in the form e
−H
kBT , where kB is the

Boltzmann constant. To use this method, the original studied
system has to be in contact with some thermal bath. This can
be effectively done using the DMRG method in the MPS and
MPO formulation. The original system is enlarged by its copy,
which acts as a thermal bath [40,44]. Then, the state vector
|ψ〉 has the form of the tensor product of the real and auxiliary
sites (called ancillas). Let us denote the energy eigenstates of
the real system by |n〉 and the corresponding eigenstates of the
auxiliary systems by |ñ〉. Then, the un-normalized vector state
in a nonzero temperature T can be defined in the following
way:

|ψ (T )〉 = e
−H

2kBT |ψ (∞)〉 =
∑

n

e
−En
2kBT |nñ〉, (5)

where |ψ (∞)〉 = ∑
n |nñ〉 corresponds to the state at infinite

temperature. It is important to note that the Hamiltonian H
acts only on the physical part of the vector states and ancillas
evolve only by the entanglement with the real sites. Therefore
entanglement between real and auxiliary sites is crucial, and
instead of choosing the vector state for infinite temperature in
the form |ψ (∞)〉 = ∑

n |nñ〉 it is more accurate to choose it
as |ψ (∞)〉 = ∑

s |ss̃〉, where s represents the real spin site and
s̃ corresponds to the auxiliary ones. Now, the average value of
any operator O at temperature T could be calculated in the
following simple way:

〈O〉 = 〈ψ (T )|O|ψ (T )〉
〈ψ (T )|ψ (T )〉 . (6)

We have used this approach to examine the thermodynamic
properties of the proposed spin chain model (1). The evolution
in imaginary time has been done iteratively by applying the
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evolution operator U (−�β ) acting on the state vector,∣∣∣∣ψ
(

T − 1

kB�β

)〉
= U (−�β )|ψ (T )〉 = e

−H�β

2 |ψ (T )〉. (7)

The effective approach for the system with not only nearest-
neighbor interactions but also next-nearest-neighbor interac-
tions has also been used for the operator U [45]. Then, for
the state at temperature T , the correlation function C(ri j ) =
Si · Sj has to be calculated. The correlation length ε, which
is crucial for our considerations, has been calculated by sim-
ply fitting an exponential function to the correlation function

C(ri j ) = Ae
−|ri−r j |

ε , where ri and r j are the positions of the i
and j sites.

In the Supplemental Material [46], we analyze the scaling
of the correlation length ε with the spin chain length and
maximum MPS dimension. After this analysis, the latter cal-
culations were performed for the chain of L = 120 spins and
the maximum MPS dimension χ = 600. The length of such a
chain is equal to 207.6 in the units of the Cr-N bond. In the
DMRG simulations, we assumed quite long chains (L = 120)
to correctly capture the spin correlation length effect, which
might be much longer than the ribbon width N . Our calcula-
tions have been performed by using the open-source library
for DMRG simulations, TENPY [47].

III. RESULTS AND DISCUSSION

A. Electronic structure and finite-temperature magnetism

Two types of nanoribbons can be constructed by cutting the
hexagonal CrN monolayer, namely, nanoribbons with zigzag
edges and nanoribbons with armchair edges. Typically, the
highly reactive dangling edge bonds are saturated by hydrogen
atoms (see Fig. 1). In the case of graphene, there is an antifer-
romagnetic spin order on the two opposite zigzag edges of
a ribbon. Here, for the sake of comparison of magnetic order,
we chose to focus only on zigzag (Z-) edges in hexagonal CrN.
We compare the electronic energies of FM, AFM1, and AFM2
configurations for Z-CrN ribbons and find that the FM phase is
the ground state for all the zigzag ribbon widths. Between the
antiferromagnetic phases, the AFM2 configuration has lower
energy, which is a similar result to the ground state of zigzag
graphene nanoribbons [48]. The average Cr-N bond length is
1.87 Å, which is close to the bond length in a 2D hexagonal
CrN monolayer [18]. The electronic band structures of Z-CrN
nanoribbons for N = 8, 14, and 20 are presented in Figs. 1(d)–
1(f). The Fermi level crosses spin-up electronic states, while
there is an energy gap for spin-down states. The valence band
maxima for spin-down states are at the edge of the first BZ.
The DFT electronic bands are successfully interpolated us-
ing the maximally localized Wannier functions. The Wannier
model is also used to calculate the spin-dependent electronic
conductivity. The net magnetic moment in the FM phase Cr
atom is 3 μB per Cr atom, which is equal to the 2D monolayer
CrN [17,18]. The electronic bands of FM, AFM1, and AFM2
for N = 20 are compared in the Supplemental Material [46]
(see Fig. S2). To observe the effect of localized edge states,
the projected densities of states, on the edges, and for bulk Cr
and N atoms, are plotted in Figs. 1(g) and 1(h). For both Cr
and N, the edge and bulk atoms contribute almost equally to

spin-up states around the Fermi level aligned to zero energy.
However, for spin-down states, only edge atoms contribute
to localized bands between −3 and −2 eV. These localized
bands arise from both Cr and N atoms. The energy band gap
between spin-down states is 2.9, 2.8, and 2.76 eV for N = 8,
14, and 20, respectively [see Figs. 1(d)–1(f)]. The edge states
on Cr and N atoms reduce the energy band gap for spin-down
states with respect to the 4 eV for 2D monolayer CrN [17,18].
The inset in Fig. 1(g) presents the calculated spin polarization
for the FM ground state in Z-CrN nanoribbon with N = 20.
The N atoms gain a net magnetic moment antiparallel to the
Cr moments. The half-metallicity feature of monolayer CrN is
conserved in Z-CrN nanoribbons, which motivates its future
spintronic applications.

In this and the following section, we will study the spin
correlation length at finite temperature and spin-dependent
transport properties of Z-CrN nanoribbons. The energy dif-
ference between FM and AFM phases is mapped into the
Heisenberg spin model with the nearest- and next-nearest-
neighbor exchange interactions between Cr atoms. The Cr
magnetic moments induce a net magnetic moment in the N
atoms (approximately −0.2 μB/atom) which is neglected in
the DMRG analysis. The exchange interactions J1 and J2 are
plotted as a function of ribbon width in Fig. 2(a). The positive
value of J1 and negative value for J2 confirm the parallel and
antiparallel coupling between the nearest and next-nearest Cr
atoms. The value of the J1 parameter is nearly independent of
the ribbon width and varies between 10 and 12 meV for rib-
bons with N = 6 and N = 20. The value of the J2 parameter
is around −2.5 meV for narrow ribbons and goes to zero for
wider Z-CrN nanoribbons. The J1 value is larger than the J2

absolute value by almost one order of magnitude for wider
nanoribbons.

The Mermin-Wagner-Hohenberg theorem prohibits the
long-range magnetic order at finite temperature for the
isotropic Heisenberg Hamiltonian in low-dimensional sys-
tems (D � 2) [49,50]. It was shown that magnetic anisotropy
energy stabilizes finite-temperature long-range magnetic or-
der in 2D monolayers [17,30,51]. However, in 1D, the
spontaneous formation of FM domains, separated by kinks,
avoids the magnetic long-range order in both Ising and
Heisenberg spin models [52]. Consequently, there is a
finite-range magnetic correlation between localized magnetic
moments in the CrN nanoribbons. In Fig. 2(b), the spin corre-
lation length is plotted as a function of ribbon width in units
of the Cr-N atomic bond length with the inclusion (solid lines)
and exclusion (dashed lines) of magnetic anisotropy. Here the
value of the single-ion magnetic anisotropy is set to 0.73 meV,
equal to the monolayer value [17]. The width dependency
arises from different values of J1 and J2 for narrow and wide
nanoribbons. The spin correlation is mainly determined by the
value of the next-nearest-neighbor exchange. At sufficiently
low temperatures, for wide ribbons, the spin correlation length
is much longer than the Cr-N bond length, which is desired
for realistic 1D nanodevices. With increasing temperature,
the spin correlation reduces to only one Cr-N bond length,
which shows the absence of local 1D magnetic order at high
temperatures. The effect of the single-ion magnetic anisotropy
energy depends on the temperature. At a very low temperature
(T = 10 K), the correlation length is doubled by the inclusion
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FIG. 2. (a) Width-dependent exchange interaction between nearest- and next-nearest-neighbor Cr atoms. (b) The spin correlation length as
a function of ribbon width at different temperatures. The solid and dashed lines represent the inclusion and exclusion of magnetic anisotropy
in the DMRG analysis, respectively.

of the small magnetic anisotropy energy. With increasing tem-
perature the effect of the magnetic anisotropy energy on the
correlation length disappears, which is related to the thermal
fluctuations. Although the inclusion of magnetic anisotropy
energy increases the spin correlation length at low temper-
atures, it does not produce 1D long-range magnetic order.
The Curie temperature for a 2D CrN monolayer is estimated
to be 1084 K [17], but the magnetic order at zigzag edges
completely disappeared above 100 K. The effective Heisen-
berg Hamiltonian and the absence of long-range magnetic
order at the edges can be valid for all 2D magnetic mono-
layers. According to our result, the experimental observation

of macroscopic magnetization at 2D requires high-quality sur-
faces with large grain boundaries.

B. Spin-dependent transport

To observe the effect of magnetic moments on the trans-
port properties of Z-CrN nanoribbons, we also calculate the
spin-resolved conductivity as a function of chemical poten-
tial. Here the change in chemical potential can be interpreted
as n- and p-type doping. The spin-dependent conductivity
for different ribbon widths is plotted in Fig. 3(a). The half-
metallicity of Z-CrN nanoribbons is reflected as pure spin-up

FIG. 3. (a) Spin-dependent electronic conductivity and (b) spin polarization ratio as a function of chemical potential for Z-CrN nanoribbons
with N = 8, 14, and 20.
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polarization at small values of the chemical potential. The
value of relaxation time τ can change the spin-dependent
conductivity in Fig. 3(a). However, it does not change our
main conclusion for the pure spin current at low values of the
chemical potential. Also, one can show that in the absence of
heavy-atom impurities, the spin-flip scattering rate is several
orders of magnitude smaller than the spin transport scattering
rate [17]. The conductivity weakly depends on the ribbon
width. For example, the ribbon with N = 14 is nearly twice as
wide as the one with N = 8, while the conductivity at μ = 0 is
almost equal for these two nanoribbons. The spin polarization
is defined as the ratio of the difference between the spin-up
and spin-down conductivities to the total conductivity, SP =
[ σ↑−σ↓
σ↑+σ↓ ] × 100. The spin polarization for N = 8, 14, and 20

as a function of chemical potential is plotted in Fig. 3(b). For
pure (μ = 0) and p-doped (−2 < μ < 0) Z-CrN nanoribbons,
the only contribution to spin conductivity arises from spin-up
states, and spin polarization reaches 100%, which is motivat-
ing for more theoretical and experimental investigations. Also,
on the other hand, for n-doped nanoribbons, the spin polar-
ization is reduced sharply for μ > 0.5. When increasing the
n-doped level and further increasing the chemical potential,
the conductivity is reduced, which is not desired for spintronic
devices. In general, the Z-CrN nanoribbons are functioning as
spin polarizers sensitive to the doping level.

IV. CONCLUSION

In summary, we study the electronic, magnetic, and elec-
tronic transport properties of zigzag CrN nanoribbons within

the combination of DFT and DMRG frameworks. The zigzag
CrN nanoribbons are in the FM ground state with a net mag-
netic moment of 3 μB per Cr atom. The nearest Cr atoms
are coupled in parallel with J1 equal to 10–12 meV, while
the next-nearest-neighbor atoms are coupled in an antipar-
allel manner with J2 equal to −2 to −0.5 meV. According
to the spin-dependent transport calculations, the pure and
p-doped Z-CrN nanoribbons are potentially perfect spin po-
larizers, suitable for future spintronic applications. However,
the DMRG analysis of spin-spin correlation length shows that
the possible technological application of Z-CrN nanoribbons
is limited to narrow ribbons and to relatively low temperature
regimes.
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