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Valleytronics using two-dimensional materials opens unprecedented opportunities for information processing
using a valley polarizer as a basic building block. Various methodologies, such as strain engineering, the
inclusion of line defects, and the application of static magnetic fields, have been widely explored for creating
valley polarization. However, these methods suffer from low transmission or lack of polarization directionality.
To overcome the above limitations, we propose an all-electrical valley polarizer using zigzag edge graphene
nanoribbons in a multiterminal device geometry. The proposed device can be gate-tuned to operate along
two independent regimes: (i) a terminal-specific valley filter that utilizes band-structure engineering, and (ii) a
parity-specific valley filter that exploits the parity selection rule in zigzag edge graphene. We show that the device
exhibits intriguing physics in the multimode regime of operation affecting the valley polarization; we investigate
various factors influencing polarization in wide-device geometries, such as optical analogs of graphene Dirac
fermions, angle-selective transmission via p-n junctions, and the localization of edge states. Furthermore, we
evaluate the performance of the proposed device structures in the presence of Anderson short-range disorder
at the edges and the bulk, and we find it to be resilient to edge disorder even for a higher disorder strength.
The device geometry is optimized to achieve maximum valley polarization, thereby paving the way for a
physics-based tunable valleytronic device.
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I. INTRODUCTION

The field of valleytronics provides the ability to control
and manipulate the valley degree of freedom, opening new
possibilities for energy-efficient devices for both classical
and quantum information processing [1,2]. Two-dimensional
(2D) materials such as graphene [3,4] and transition-
metal dichalcogenides (TMDs) having momentum-separated
nonequivalent valleys [5] are at the forefront of current re-
search for valleytronic applications. Several techniques, such
as introducing circularly polarized light [6–10], external mag-
netic fields [11,12], Rashba spin-orbit coupling (SOC), or
exchange field [13–15], defect engineering [16–18], and strain
engineering [19–23], are being typically employed to access
the valleys [24]. However, in light of the current technological
compatibility, an all-electrical control of the valley degree
of freedom is typically desired. In 2D materials, valleys are
electrically accessible via the presence of uneven Berry curva-
tures in the vicinity of the K and K ′ points [14,25–27]. While
broken inversion symmetry in TMDs naturally induces a finite
band gap and a valley-contrasting Berry curvature across the
valleys [28], it is monolayer graphene that is a highly pur-
sued and mature system for electronics applications [29,30].
Therefore, it is certainly worth delving into the physics of har-
nessing the valley degree of freedom in monolayer graphene.

The presence of inversion symmetry in monolayer
graphene, however, complicates its potential for valleytronic
applications. Given that the building block for valleytronics
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is the valley polarizer, several methods have been proposed
for creating a high degree of polarization using mono-
layer graphene. These includes sublattice staggered potentials
[31,32] that break the inversion symmetry [33,34], line-defect
engineering [17,18], the application of uniform strain [20,21]
and magnetic fields, and [35–38] the inclusion of various
strain profiles [22,39–44], to name a few. Utilizing electro-
static potential barriers [45,46] that exploit the anisotropy
of the Fermi surfaces for valley splitting caused by trigonal
warping [47,48] is also a crucial aspect. While the aforemen-
tioned approaches exhibit polarization, they are limited by
directionality and low transmission and are hard to realize
on-chip.

The aim of this paper is hence to propose an all-electrical
valley polarizer based on monolayer graphene nanoribbons
(GNRs) that can be further gate-tuned to operate in two
regimes; Regime 1: terminal-specific valley filter (TSVF)
attributed to band-structure engineering, and Regime 2:
parity-specific valley filter (PSVF) which uses the parity se-
lection rule to operate as a valley filter. To put these ideas on a
realizable footing, we propose a multiterminal p-n junction
(PNJ) device structure and delve into the physics of com-
plexities such as modal discrepancies at multiple terminals,
related Dirac fermion optics, angle-selective transmission, and
edge-state localization on the valley-filter operation.

The proposed multiterminal device [49,50], schematized in
Fig. 1(a), exhibits the two independent operating regimes of
valley polarization. In Regime 1, each terminal is designed to
allow a specific valley component to transmit, depending on
the edge-state slope polarity, enabling each terminal to act as
a valley-selective transmitter. The PSVF regime, on the other
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FIG. 1. Overview of our setup. (a) Schematic illustration of the
proposed device comprising one input lead, two output leads, the
a device region with electrostatically doped p- and n-regions, and
the back gate. The leads and the scattering region are antizigzag
graphene, while the output lead W2 is bearded graphene. (b) Trans-
mission spectrum as a function of ky. The maximum transmission
value is unity and is depicted by bright yellow, while reflection is
shown by deep blue. (c) The device shows two regimes of polariza-
tion: Regimes 1 and 2. (d) Regime 1, identified as a terminal-specific
valley filter (TSVF), is due to band-structure engineering; Regime 2,
identified as a parity-specific valley filter (PSVF), is due to the odd
parity of zigzag atomic rows along the width governed by the parity
selection rules.

hand, is based on the parity of the number of zigzag atomic
rows giving rise to the valley-filter effect. The geometrical
parameters of the device influencing the polarization in this
regime reveal intriguing physics that contribute to it.

The paper is organized as follows. Section II describes the
modeling and simulation of the device in detail. Section III
is devoted to the results and a discussion, with Sec. III A dis-
cussing in detail the polarization in Regime 1, and Sec. III B
discussing the polarization in Regime 2. Section III B also
provides insights into the optimization of the maximum polar-
ization conditions. The effects of varying the input width with
respect to the width of the scattering region and the variation
of the lengths of the p and n regions are analyzed. Section IV
discusses in detail the performance evaluation of the device
polarization in the presence of short-range Anderson disorder
for different strengths of edge and bulk disorders. Finally, the
main conclusions and outlook are laid out in Sec. V.

II. DEVICE AND SIMULATIONS DETAILS

The schematic diagram of the proposed device is shown
in Fig. 1(a). It consists of one input lead, two output leads
(W1 and W2), and a scattering region. The scattering region,
the input lead, and the output lead W1 consist of antizigzag

graphene, while the output lead W2 consists of bearded
graphene. A zigzag GNR having an odd number of atomic
rows “N” is termed antizigzag graphene. When the Klein
nodes are attached on both the edges of zigzag graphene,
it is termed bearded graphene, which is shown in Fig. 1(a),
W2. The width and length of the scattering region are 70 and
100 nm, respectively, with N ∼ 329 (it can be any odd number
corresponding to width). The width of the input lead is gener-
ally equal to the width of the scattering region. The width of
the two output leads is about half the width of the scattering
region. The scattering region is electrostatically doped to form
a symmetric abrupt PNJ. The Fermi level lies 0.25 eV below
the Dirac point for the p region and above for the n region. The
back gate is used to tune the energy range for device operation.

The simulations are carried out using the scattering ma-
trix formalism [51]. The scattering matrix approach is then
implemented within the Landauer-Büttiker formalism, where
the entire structure is partitioned into several sections along
the length, such that the transport across the consecutive
sections is ballistic. For each section, a scattering matrix is
formed which relates the amplitudes of an incoming wave to
the outgoing wave for each mode. The cascading of these
matrices yields the overall scattering matrix for the entire
structure. The transmission amplitudes for all propagating
modes are directly obtained from this scattering matrix, which
is then used to calculate the current in a linear and a nonlin-
ear response regime, provided the transport is phase-coherent
[52]. The Hamiltonian represented in the second quantiza-
tion form is constructed using the tight-binding model for
graphene given by

Ĥ = −t
∑
i, j

ĉ†
i ĉ j + H.c., (1)

where t is a hopping integral across the nearest neighbor i, j
with the energy equal to −2.7 eV. Here, H.c. stands for the
Hermitian conjugate, ĉ(†)

i annihilates (creates) an electron at a
site i on sublattice A (B), and the value of the lattice constant
a is set to be 0.246 nm.

The valley-resolved transmission is calculated for both out-
put leads W1 and W2, which are annotated as TK1 and TK ′

1
for

K and K ′ in W1 and TK2 and TK ′
2

in W2, respectively [49]. The
polarization P1,2 in the leads W1 and W2 is given by

P1,2 = TK1,2 − TK ′
1,2

TK1,2 + TK ′
1,2

. (2)

The total transmission T through the device is given by the
sum of both K and K ′ components from both outputs leads W1

and W2, given by

T = TK1 + TK2 + TK ′
1
+ TK ′

2
. (3)

Using this formulation, we compute the transmission across
the output leads of the device for various parameters.
Figure 1(b) shows the transmission spectra for one input/
output lead PNJ configuration. The device is translation-
invariant along the y direction, thus conserving the ky

component of the wave vector while transmitting across
PNJ. A carrier with normal incidence tunnels through the
barrier irrespective of its height and width due to the pseu-
dospin conservation. This peculiar transport results in zero
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backscattering for normal incidence, known as Klein tunnel-
ing [53–55]. From the transmission plot, it can be inferred
that the spectra of ky values increase with increasing energy in
the low-energy regime. When the incident electron’s energy is
equal to half the barrier height, (V0/2), the conditions for the
evanescent wave and critical angle are met. Thereby, with a
further increase in energy, higher ky components in transmis-
sion are suppressed. At the energy equal to barrier energy (V0),
also known as grazing energy, only normal components, i.e.,
ky = 0, transmit with unity probability, otherwise transmis-
sion is through evanescent waves. Around the grazing energy,
the device shows polarization in Regime 2.

Figure 1(c) shows the polarization with a clear demarcation
between two polarization regimes. The polarization in Regime
1 is due to the band-structure engineering (TSVF), while that
in Regime 2 is due to the odd parity of the zigzag ribbon
governed by the parity selection rules (PSVF), as summarized
in Fig. 1(d). The polarization at two output leads in Regime 1
is opposite, i.e., one corresponds to K and the other to K ′ due
to output lead configuration. In Regime 2, both output leads
correspond to the same polarization, which may be either K
or K ′ depending on whether the energy level is just above
or below the Fermi level. The interesting transport physics in
each of the polarization regimes will be discussed henceforth.

III. RESULTS AND DISCUSSION

A. Regime 1: Terminal-specific valley filter

The valley-selective transmission at the output leads over
a given energy range is attributed to the band-structure en-
gineering. To understand transport physics, it is crucial to
discuss the lattice structure and the corresponding band-
structure properties of the graphene nanoribbons used. As
mentioned earlier, two types of lattice configurations are used
in the proposed device: (i) an antizigzag and (ii) bearded
zigzag graphene.

Figures 2(a) and 2(b) show the lattice structures and the
computed E − k relations for each of the configurations. The
zigzag lattice with an odd number of zigzag atomic rows (N)
is known as antizigzag graphene. The difference between a
zigzag (N is even) and an antizigzag (N is odd) GNR lies
in the transport properties of the edge states across the pn
interface. The lattice structure is called a bearded zigzag lat-
tice when the Klein nodes are attached to the zigzag-edged
graphene. Both lattice structures have different sublattice
atoms at the two edges, and the finite overlap of these edge
wave functions gives rise to the specialized edge states. In
Figs. 2(a) and 2(b), the edge states are highlighted by dark
blue lines, while the bulk states are depicted by magenta and
light blue lines, respectively.

These specialized edge states manifest as a partially flat
region over a finite k range, giving rise to a substantial density
of states (DOS) at the Fermi level. The range of k over which a
flat band exists varies for each lattice type, as observed in the
E − k dispersion plots. For the antizigzag edge GNR, edge
states are completely flat over the 2π/3 < |k| < π range and
are dispersive for k values in the first Brillouin zone. The range
of k over which edge states are completely flat for the bearded
zigzag GNR is 0 < |k| < 2π/3. The energy range over which

FIG. 2. The TSVF regime: Band structures of (a) zigzag and
(b) bearded graphene with corresponding lattice configurations
shown in the insets. The range of k over which the flat band exists
is depicted by dark blue lines and is different for each of the lattice
types. (c) Schematic of the transport through the device for output
lead W2, made up of bearded graphene and half the width of the input
lead. The green-shaded region shows the single-mode energy range
for the input lead. The single-mode energy range for the W2 lead
comprises the yellow and green shaded areas. This range is larger
than that for the input lead due to its smaller width.

only edge states conduct is between the bulk states, i.e., the
second lowest of the conduction band and the second highest
energy state of the valance band. Over this energy range, the
edge states provide a single mode for conductance. The energy
range is called a single-mode energy (SME) range. The SME
range is dependent on the physical dimension of the device,
like the width, and is given by [56]

�S = 4t cos

(
N − 1

2N + 1
π

)
. (4)

We schematically present the transport mechanism when
antizigzag (input) and bearded (output) graphene leads are
adjoined at either side of a pn-junction in Fig. 2(c). It shows
the band structure at the input side (on the left), the scattering
region (in the middle), and the band structure of an output lead
(on the right). The SME range for an input lead SI , shown by
the green shaded energy range, is smaller as compared to the
SME of output lead SO shown by the yellow+green shaded
area. The energy range shown by the green color in regions 1
and 3 corresponds to single-mode operation, whereas region
2 has multiple modes because of doping.

The terminal-specific valley transmission depends on the
polarity of the edge-state slope in the E − k dispersion of
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FIG. 3. Transmission and valley polarization in the TSVF
regime. (a) Total transmission plot and (b) polarization plot as a
function of electron energy. The single-mode energy range for input
lead SI (green) and output lead SO (yellow + green) are highlighted.
In the SI range, the polarization is the same for both output leads. For
the SO energy range, the polarization is different in each output lead.

an output lead. For the output leads W1 (antizigzag) and W2

(bearded-zigzag), the polarity of an edge-state slope at the
Dirac points (i.e., at |k| = 2π/3) is opposite, as shown in
Figs. 2(a) and 2(b) by dark blue lines. In the energy range
marked by yellow in Fig. 2(c), the input lead operates in the
multimode regime with both positive and negative moving
states, while the output leads are still in the SME range. A
multimode operation is also observed across the PNJ due to
significant doping. Therefore, a single allowed transmitting
state at each output is either positive (K) or negative (K ′)
based on the positive or negative edge state slope. Due to the
opposite polarity of the edge state slope, two output leads can
transmit two valleys in the yellow energy range.

Figure 3 shows the total transmission of the proposed
structure and valley polarization. The total transmission as
a function of the energy of the incoming electron is plotted
in Fig. 3(a). In the SME regime (shown in green), the total
transmission through the device is unity combining both of
the output leads. In the multimode energy (MME) regime
(yellow), the total transmission through the device is 2 as both
of the output leads have a single mode available contributing
unity each to the total transmission. It is worth noting that the
transmission value is dominated by the region with the lowest
number of modes.

The dip in the total transmission plot is due to backscatter-
ing, which is prominent near zero energy. The backscattering
occurs due to a mismatched boundary across the het-
erointerface between zigzag and bearded graphene. The
backscattering decreases the conductance and degrades the
polarization value at the output lead W2 [56]. Figure 3(b)
shows the polarization plot that manifests the valley-selective
functionality at the output leads.

FIG. 4. The PSVF regime: parity-selective transmission condi-
tion and LDOS plots. (a) The shaded region shows the transverse
extent ζ of the edge states in the device as a function of the device
width W and the electron kinetic energy, ε. At zero kinetic energy,
states are localized at the edges, and the black dots show the span
of wave-vector interval. For zigzag graphene, with N being even, the
incoming K state is reflected as a K ′ state, giving rise to the valley
valve effect. For an odd value of N , the incoming state is transmitted
as a K ′ state, leading to the valley filter effect for the lowest energy
mode. (b) LDOS plot at E = 0.125 eV and at (c) E = 0.25 eV shows
different distributions; LDOS is accumulated at the device edges for
E = 0.25 eV.

B. Regime 2: Parity-specific valley filter in a multimode setup

Intervalley scattering is typical to graphene PNJs with
zigzag edges, regardless of whether the interface region is
sharp or atomically smooth [57]. The reason for intervalley
scattering is localized edge states, which are the lowest energy
modes. The edge states connect two different valleys, so the
incoming and outgoing states come from different valleys.
The wave vector across the PNJ can get transmitted (val-
ley filter effect) or reflected (valley valve effect) without the
flipping of valleys. Thus, the scattering over the PNJ must
change the valleys in order to maintain the current flow. In our
simulations, we consider a sharp PNJ profile. The edge states
are completely localized at the zigzag edges of the device. The
transverse extent ζ of the edge states along the width of the
device depends on the kinetic energy of the incoming electron
ε, which is given by

ε = EF − V0, (5)

ζ (ε) = W/ ln |εW/v f h̄|. (6)

The shaded region with hashed lines in Fig. 4(a) shows the
transverse extent ζ of the edge-state wave vector k as a func-
tion of kinetic energy ε and the device width W as given in
Eq. (6). Here, E f is the Fermi energy, V0 is the barrier height,
h̄ is Planck’s constant, and v f is the Fermi velocity. The width
ζ decreases as the kinetic energy decreases and attains its
minimum at zero kinetic energy. This minimum is of the order
equivalent to the lattice constant a as shown by the points S0

and S1 in Fig. 4(a). The wave vector of the edge state spans the
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interval of order 1/a between K and K ′, thereby facilitating in-
tervalley scattering processes. An incoming state, say K (blue)
at the interface (dashed line), switches to K ′ state while being
transmitted or reflected, assisted by the intervalley scattering.
The transmission or reflection of an incoming state depends
on the parity of N . For even N , the parity of sublattice states
across the PNJ is not the same, thus the intervalley scattering
reflects an incoming state. This configuration manifests the
valley valve effect for the lowest energy state. In the case
of odd N , the sublattice states across PNJ are of the same
parity, giving rise to the valley filter effect by transmitting
an incoming state. The complete derivation and discussion
regarding the parity selection rule are elaborated in [57–59].

The LDOS plots at two different carrier energies are shown
in Figs. 4(b) and 4(c). The LDOS is uniformly distributed
in the device at E = 0.125 eV, as can be seen in Fig. 4(b),
whereas, at the grazing energy of E = 0.25 eV, only the
edge states conduct up to the single channel energy range,
which is localized at the edges of the device. Thus, the charge
density is accumulated at the device edges, as depicted in
Fig. 4(c). It can be inferred that the main contribution to the
conductance is through the edges for a single-channel energy
range. Thus, interesting polarization effects or even complete
valley-switching of the electronic states can be realized by
tailoring the edge states at the input and output leads of a
graphene PNJ.

We now focus our discussion on how the width of the
input lead and the lengths of p- and n-doped regions influ-
ence the transmission and valley polarization in the regime
of multimode operation. The multimode state is referred for
the input side. Although at grazing energy the device operates
with a single mode, the degree of polarization has a strong
dependence on the way input modes approach the PNJ. So, it
is essential to consider the behavior of carriers in graphene for
analyzing the way input modes approach the interface.

Low-energy carriers in graphene behave as relativistic par-
ticles, and therefore a PNJ exhibits an electronic analog of
Snell’s law and Veselago lensing. Following the optics anal-
ogy, the input lead in the multimode setup acts as an optical
slit, and its width determines the angular dispersion of the
incoming modes at the PN interface. We consider two cases:
Case A: When the width of the input lead is equal to the
width of the device, as illustrated in Fig. 5. Case B: When the
input lead width is half and centered along the device width,
as seen in Fig. 6. The ray trace in Fig. 5 shows that all the
electron trajectories are parallel to the device edges and are
perpendicular to the PNJ interface throughout the width of the
device. The ray trace in Fig. 6 shows the ray dispersion along
the lead edges. The rays are perpendicular in the middle of the
device width and diverge out towards the edges along the PN
interface (see Appendix A).

The degree of valley filtering also depends on the doping
profile in the PNJ. First, the doping level decides the energy
range where polarization is observed. Second, the length of
the doped regions is equivalent to the potential barrier width in
respective energy ranges. A narrow barrier width allows con-
ventional tunneling through it. Thus, here we have considered
the effect of barrier width variation along with the input lead
variation for optimizing the conditions to achieve maximum
polarization.

FIG. 5. Case A: Width of the input lead equal to the width of
the scattering region. The ray trace shows that the carrier trajectories
coming from the input lead are parallel throughout the width of the
device. With respect to the input lead, three junction positions, at
A1: 50 nm, A2: 25 nm, and A3: 75 nm, have been considered. For
each of these device configurations, (a) the total transmission plot,
transmission for K and K ′ at output leads (b) W1 and (c) W2, and
(d) polarization are shown. For the positive energy range, the length
of the n-region affects the transmission and polarization value. The
length of the n-region is sufficiently large for devices A1 and A2.
Over the single-mode energy range, the total transmission value is
1 and attains the maximum polarization. In device A3, the length of
the n-region is small, and due to the quantum tunneling, the total
transmission value is above 1, and the overall polarization value
degrades.

For the variation in the length of the doped region, the
transmission in the device simplifies to the transport calcula-
tions through the potential barrier in graphene. In the positive
energy range, the length of the n-region acts as the barrier
width, and for the negative energy range, the p-region length
acts as the barrier width. In a graphene PNJ, the transmission
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FIG. 6. Case B: The width of the input lead is half the width of
the scattering region. The ray trace shows that the carrier trajectories
coming from the input lead spread out across the width of the device.
Similar to the earlier case, three device configurations, with junction
positions at B1: 50 nm, B2: 25 nm, and B3: 75 nm, have been
considered. For each of these device configurations, (a) the total
transmission plot, transmission for K and K ′ at output leads (b) W1

and (c) W2, and (d) polarization are shown. The total transmission
value is lower than in the previous case due to the lower number
of modes present at the input lead. For devices B1 and B2 (wider
n-region), the total transmission value is approximately 1 in the
single mode energy range, while for device B3 (narrower n-region) it
is above 1 due to the quantum tunneling. There is a finite transmission
for K and K ′ in each case, and so the polarization degrades. The
worst-case polarization is observed for device B3 due to the com-
bined effect of dispersed carrier trajectories and quantum tunneling.

probability of an incoming wave depends on the angle of
incidence with respect to the PN interface. Above the critical
angle, the incident wave is totally reflected. The critical angle
condition is realized when the energy of an incoming electron
E is greater than half the barrier height. When the critical

angle condition is met, the evanescent waves are formed, and
total internal reflection results in total reflection for the PNJ.
On the contrary, in the case of the potential barrier, evanescent
waves appear in the barrier region and give rise to quantum
tunneling [53]. So, the narrower the barrier region, the higher
the quantum tunneling, which comprises the tunneling of both
the K and K ′ components. This has direct implications on the
degree of polarization at the output lead.

We now elaborate on the results shown in Figs. 5 and 6. The
position of the PNJ is varied along the device length. We have
considered three device configurations represented as A(B)1,
A(B)2, and A(B)3, wherein the junction is positioned at 50,
25, and 75 nm, respectively, from the input lead. The total
transmission plots, i.e., the sum of K and K ′ transmission
components from both output leads, are shown by A(B)i(a),
where i = 1, 2, 3. The A(B)i(b and c) show the transmission
of K and K ′ components in output lead W1 and W2, respec-
tively. And finally, the A(B)i(d) shows the polarization at both
output leads.

The total transmission plots for all three cases show an
increase in transmission value with an increase in electron
energy as a number of modes get added. When the electron
energy reaches half the potential height, i.e., 0.125 eV, the
critical angle condition is formed and the higher angular
modes are suppressed. When the energy of the incoming
carrier approaches the potential barrier height, i.e., 0.25 eV,
only edge states conduct and pseudospin conservation is valid
only for the normal incident case. Thus, in SME the total
transmission value for A1(a) and A2(a) is unity, while for case
A3(a) it is higher than 1 and the transmission curve is smooth,
which shows that the transmission is via quantum tunneling
due to a narrower n-region. With a pseudo-spin-conserved
transmission, the total transmission in the SME range is 1.
For two output leads, the maximum transmission value is half
for K and K ′ as observed in A1(b and c) and A2(b and c).
But for A3(b and c) the value is slightly higher for both K
and K ′ components, which in turn degrades the polarization.
The polarization is maximum in A2(d) and slightly lower in
A1(d). The polarization dropped to nearly half its maximum
value for case A3(d) due to the quantum tunneling.

For case B, i.e., when the width of an input lead is half
that of the scattering region, the results are similar to that
in the previous case. But, now as the input lead width is
half of what it was in the previous case, the maximum total
transmission is smaller. This is because of the lower number
of modes present in the input lead. As of the previous case,
the transmission in cases B1(a) and B2(a) in the single-mode
energy range is approximately equal to unity, while in B3(a)
it is higher because of quantum tunneling due to the narrower
n region. The transmission of K and K ′ in W1 and W2, plotted
in B1(b and c) and B2(b and c), shows the flickering curve
due to quantum tunneling because of a reduced wave-function
amplitude at the edges coupled with an angle-selective trans-
mission at the PN interface (Appendix A). The incidence
angle at the PN interface is related to the input lead width
and the diffraction effect. A large dispersion angle from the
input lead edge results in reduced wave-function amplitude at
the PN interface. At grazing energy, only normally incident
wave functions can conserve pseudospin across the PN in-
terface, otherwise the transmission is dominated by quantum
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tunneling. In quantum tunneling, there is a finite transmission
probability of both valleys, and thus the polarization in B1(d)
and B2(d) is lower as compared to the A1(d) and A2(d) cases.
The worst polarization B3(d) is due to the combined effects
of the narrower n-region and dispersed electron trajectories
because of the variation of the input lead.

Thus, the conditions for achieving the maximum polar-
ization could be summarized as follows: (i) Zigzag-edged
graphene should have odd parity for N to allow intervalley
scattering across the PNJ interface and achieve polarization
at the lowest energy mode, i.e., edge states. (ii) The edge
states conducting during a single-mode energy range are com-
pletely localized at the physical device edges [60,61]. (iii) At
grazing energy, only normally incident electrons have com-
plete transmission probability, otherwise the transmission is
via evanescent waves or through quantum tunneling. So, to
get maximum polarization, the electron should be incident
normally at the PN interface and especially at the edges of
the device where LDOS is concentrated. If the electron is in-
cident at an angle other than the normal angle, first because of
the diffraction effect the amplitude is reduced, and secondly,
due to angle-selective transmission across the PN interface at
grazing energy, the quantum tunneling probability increases
and polarization degrades.

IV. ROLE OF SHORT-RANGE ANDERSON DISORDER

In graphene, quantum transport properties are significantly
affected by perturbations due to underlying symmetries and
uneven edges [62]. In terms of the experimental realization
of the proposed device structure, we note that fabrication-
induced disorders like edge roughness, dislocations, impurity
atoms, scatterers, and defects may lead to unavoidable non-
idealities. We now analyze the sensitivity of the valley
polarization due to such nonidealities by augmenting the ef-
fect of disorders in an ideal device structure.

We introduce a short-range Anderson disorder along
the device edges and the scattering region. The Anderson
short-range disorder is defined as distribution-based poten-
tial fluctuations introduced to the on-site energies of the
π -orbitals [63]. It is called a short-range disorder because the
lengthscale over which the disorder potential varies is smaller
than a lattice constant. The presence of short-range poten-
tial fluctuations forms local PNJs. In zigzag edge graphene,
locally formed PNJs lead to intervalley scattering and zero
backscattering, thus locally breaking the time-reversal sym-
metry (TRS) while preserving it as a whole [64–66].

We have introduced the Anderson short-range disorder in
two ways, one along the edges and the other in the bulk. The
uncorrelated disorder potential is uniformly distributed, and
the final on-site potential is given by

ε(e,b) = εi + δε(e,b), (7)

where the subscript e, b corresponds to the edge disorder
and the bulk disorder, respectively. The quantity δεe,b =
[−γ /2, γ /2], where γ is the strength of the disorder potential
and εi is the on-site energy due to electrostatic doping. For
edge disorder, we have considered three atomic row thick-
nesses on both edge sides, and we introduced the scattering
potential over p- and n-electrostatically doped regions. For the

FIG. 7. Valley polarization plots with the introduction of edge
and bulk Anderson short-range disorder of both weak and mod-
erate disorder strengths for (a) weak edge disorder with strength
γ = 0.8 eV, (b) moderate edge disorder with strength γ = 1.5 eV,
(c) weak bulk disorder with strength γ = 0.8 eV, and (d) moderate
bulk disorder with strength γ = 1.5 eV. The bulk disorder has a
significant effect on the polarization for increasing disorder strength

bulk disorder, similarly, we have introduced the δεb potential
all over the scattering region [67].

For a given hopping integral value t = −2.7 eV, the disor-
der strength in the range of [0.26–1] eV is considered to be a
weak disorder, whereas the values ranging around [1.35,2.7]
are taken as strong. Here, we have considered the two val-
ues of the disorder strength γ = 0.8 and 1.5 eV, which are
classified as weak and moderate disorders, respectively. To
average the effects of the different spatial distributions of the
disorder potential, we simulate and average the results of 40
configurations of each type.

Figures 7(a) and 7(b) show the polarization plots for edge
disorder with weak and moderate strengths. It can be inferred
that the polarization slightly degrades with increasing disorder
strength but mostly withstands the edge-disorder effect. This
can be attributed to the presence of a large LDOS accumulated
near the charge neutrality point in a narrow energy range
confined at the edges. Thus, when the carriers are injected
with energy states above the narrow energy spectrum, but
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within the SME range, they avoid edges, leaving these strips
immune to edge disorder [68]. Figures 7(c) and 7(d) represent
bulk disorder with weak and moderate disorder strength. For
bulk disorder, even for a weaker strength, the transmission
(not shown) is significantly affected and thereby results in the
polarization plot noted in Fig. 7(c). At moderate strengths,
the polarization completely vanishes as shown in Fig. 7(d).
Thus, the polarization is more immune to edge disorder in
comparison with bulk disorder at different disorder strengths.
Here, we have considered the case of the input lead width
being equal to that of the scattering region. The results would
show much inferior performance for the case when the input
lead is half that of the scattering region.

V. CONCLUSION

In this work, we proposed an all-electrical valley polarizer
using zigzag edge graphene nanoribbons in a multiterminal
device geometry that can be gate-tuned to operate along two
independent regimes: (i) a terminal-specific valley filter that
utilizes band-structure engineering, and (ii) a parity-specific
valley filter that exploits the parity selection rule in zigzag
edge graphene. We showed that the device exhibits intriguing
physics in the multimode regime of operation that affects the
valley polarization, and hence we investigate various factors
affecting the polarization in wide device geometries, such as
an optical analog of graphene Dirac fermions, angle-selective
transmission via p-n junctions, and the localization of edge
states. We optimized the geometry of the proposed device to
achieve maximum valley polarization, thereby paving the way
toward a physics-based tunable valleytronic device design
with monolayer graphene. The performance of the proposed
device was evaluated in the presence of Anderson short-range
disorder at the edges and the bulk. The polarization was quite
resistant to edge disorder compared to bulk disorder at var-
ious disorder strengths. The proposed concepts can also be
extended to the photonic crystals [69] for the experimental
implementation of a valley polarizer without the requisite
polarized light.
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APPENDIX A: DIFFRACTION

Dirac fermions in graphene obey the laws of ray optics,
such as Snell’s law, and exhibit Veselago lensing. It is im-
portant to note that the incoming electron trajectory must
have a finite angle with respect to the axis perpendicular
to the PN interface for exhibiting the Veselago lensing and
negative refraction effect [70,71]. However, for the normal
incidence, fermions just transmit through the barrier following
Klein tunneling. The angular dispersive behavior of graphene
fermions is the result of diffraction [72,73].

FIG. 8. Optical slit analogy. (a) No diffraction is observed when
the input lead and the scattering region have the same width. (b) Ray
diffracts when the input lead width is smaller than the scattering
region. (c) For increasing lead widths, the angle between the axis
normal to the interface from the lead top end point and the point P at
the interface end points at device edges decreases. (d) Intensity dis-
tribution plot for different input lead widths at a constant wavelength.

In our work, we show that the input lead acts as an optical
slit for incoming modes in the scattering region. When the
width of the input lead is equal to the scattering region width,
there is no diffraction and all modes are parallel to each other
[Fig. 8(a)]. In the case of the smaller width of the input
lead, the electron trajectories show a diffraction effect. There
is bending at the edges of the input lead for an incoming
mode resulting in angular dispersion of the electron trajectory
[Fig. 8(b)].

For an incident intensity of I0, the intensity distribution in
the diffracted orders is given by [74]

I = I0

[
sin(β/2)

β/2

]2

, (A1)

where W is the width of the slit, the wavelength of the Dirac
fermion with energy E is λ = hν f /E , where ν f = 106 m/s,
and the angle θ is the angle from the point of interest, i.e., P
(in red) [Fig. 8(c)] to the axis perpendicular to the slit plane
shown by the white dashed line. The β is the total phase
difference between the two rays approaching from the top and
bottom of the slit to point P. The path difference between the
ray from the top of the slit to the ray in the middle of the slit
with width W is W/2 sin θ . Thus, W sin θ is equal to twice
the difference between the top and bottom rays. The phase
difference is 2π/λ times the path difference. Thus, the total
phase difference can be written as β = 2π/λ ∗ (W sin θ ). The
expression of intensity in terms of angle θ is

I = I0

[
sin[πW (sin θ )/λ]

πW (sin θ )/λ

]2

. (A2)

The plot Fig. 8(d) shows the intensity distribution as a func-
tion of angle θ and the W/λ ratio. Here, we considered the
value of E = 0.25 eV, λ = 16.52 nm, and we varied the value
of width W . The ratios W/λ = 0.6, 1.21, 2.42 are plotted in
pink, blue, and green, respectively, in Fig. 8(d). From the plot,
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it can be observed that the curve for W/λ = 0.6 is widespread
over the angular spectrum. As the width W increases, the
intensity gets maximized in zeroth order suppressing higher-
order side lobes.

Consider an example with different widths of input lead
L1, L2, and L3 with respect to scattering region width W as
shown in Fig. 8(c). In Fig. 8(c), the smallest slit gives the
largest diffraction angle (θ1) with some amount of intensity
being distributed in the corresponding diffracted orders [blue
curve in Fig. 8(d)]. Thus, the electron wave function reaches
point P with a finite angle and reduced amplitude. Again by
angular selective transmission at the PN interface, there is a
further reduction in the transmission. At grazing energy, the
conductance is mostly due to quantum tunneling.

Similarly, if we consider the case with equal widths of
both regions, there is no diffraction. At grazing energy, Klein
tunneling contributes to single-mode conductance due to an
antizigzag configuration with a lesser probability of quantum
tunneling. Figures 8(a) and 8(b) show the ray trace for equal
and smaller input lead width, respectively, which forms the
basis for the explanation of the results.

APPENDIX B: TRANSMISSION ACROSS THE PN
INTERFACE UNDER DIFFERENT SCENARIOS

1. Doped region length variation: Transmission across
a potential barrier

The PNJ has highly angle-dependent transmission. The
transmission coefficient vanishes after a certain angle, called

a critical angle. The condition for a critical angle is

sin θ = V0 − E

E
. (B1)

Beyond the critical angle, evanescent waves are present on
another side of the junction, and total reflection is observed.
In the case of the potential barrier, once the condition of the
critical angle is reached, the evanescent wave penetrates the
other side of the junction. Unlike the PNJ, there is no total
reflection in the case of barrier potential. The presence of
a second junction in the barrier case allows the wave to be
transmitted through the barrier via quantum tunneling with
diminished amplitude.

2. Quantum tunneling at grazing energy

The transmission of the carrier arriving with energy E ,
which is exactly equal to barrier energy, is via evanescent
waves except for normal incidence. The transmission prob-
ability decreases with an increase in incident angle. Thus,
for the maximum polarization, there must be a normal inci-
dence in which pseudospin is conserved, while in quantum
tunneling the transmission probability is the same for both K
and K ′. Thus, the polarization is lowered. A detailed expla-
nation for transmission across PNJ and a barrier is provided
in Ref. [53]. Note: The polarization results for Regime 2 are
valid with input and one output lead device setup also, while
the polarization in Regime 1 requires a different output lead
configuration for showing opposite valley polarization.
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