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Theoretical calculation and comparison of H diffusion on Cu(111), Ni(111), Pd(111), and Au(111)
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We calculated the diffusion coefficient of hydrogen (H) on metal surfaces. In our method, the potential energy
surface obtained from the ab initio calculations is diagonalized to calculate the wave function of H, which is used
to obtain the free energy surface. We combined this free energy surface with transition state theory to obtain the
diffusion coefficient. This combination of the free energy surface and transition state theory allowed us to include
quantum effects and entropy effects in the transition state theory without stochastic simulations. In addition, by
defining diffusion sited from the free energy surface rather than the potential energy surface, the shape and size
of the diffusion sites became temperature dependent. The calculated diffusion coefficients were compared with
previous studies. Although the present method reproduced the results at and above the crossover temperatures,
it was found that more sophisticated quantum mechanical schemes are required at cryogenic temperatures.
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I. INTRODUCTION

Surface diffusion is a topic of fundamental importance
not only in catalysis [1] but also in a diverse range of sci-
entific fields such as astrophysics [2] and surface science
[3–5]. In contrast to interfacial and bulk diffusion, surface
diffusion can be measured directly, and therefore, it is an
ideal benchmark system for theoretical analysis [6]. However,
our understanding of this phenomenon is incomplete. The
quantum effect hampers easy comprehension. In this context,
attention has been paid to a hydrogen atom on metal surfaces
with a rather flat potential energy surface, where the quantum
effect is expected to emerge nontrivially. Interestingly, the
strong quantum effect of H [7] changes the diffusion scheme.
For example, the zero point energy (ZPE) in the orthogonal
direction of the diffusion path creates isotope effect in the
diffusion coefficient [8]. Importantly, tunneling is dominant
at low temperatures, yielding quantum classical crossover.

The crossover has been measured for several metals [6,9–
12], although some results are controversial. For instance,
Lauhon and Ho [6] measured the diffusion on a Cu(100)
surface using scanning tunneling microscopy and found that
crossover occurs at approximately 60 K. Experiments on the
Ni(111) surface have also been reported. In early experiments
[12,13], crossover was clearly observed with sharp bending in
the diffusion coefficient, whereas in a later experiment [14],
the curve of the crossover was found to be gradual.

To theoretically interpret the crossover, Nikitin et al. [15]
applied the transition state wave packet (TSWP) approach
[16,17] to Pd(111), where the wave packet was allowed
to evolve in imaginary time. The diffusion coefficient was
then calculated based on the quantum transition state the-
ory (QTST) proposed by Miller, Schwartz, and Tromp [18].

*Corresponding author: y.kataoka@issp.u-tokyo.ac.jp

Moreover, McIntosh et al. applied path integral molecular
dynamics (PIMD) to Ru(1000) [19]. The diffusion coefficient
was then calculated based on the QTST proposed by Voth,
Chandler, and Miller [20]. In this method, molecular dynam-
ics simulation of the beads was performed to treat the H
atom quantum mechanically, or to consider the incommutable
momentum and position operators. Further, Suleimanov [21]
applied ring polymer molecular dynamics (RPMD) [22] to
Ni(100). Note that the RPMD method is formulated without
relying on QTST, unlike the TSWP or PIMD methods. Aside
from this technical difference, all these methods stochastically
sample the phase space using the Boltzmann weight factor.
Therefore, calculations become increasingly demanding as
the temperature is reduced and sampling becomes difficult.

In this context, we developed a method that does not rely
on a stochastic simulation. We diagonalized the Hamiltonian
to obtain the eigenstate. All the states were used to evaluate
the Boltzmann factor, and the result was used to calculate the
free energy surface (FES). The Boltzmann factor is vanish-
ingly small for a state whose eigenenergy is much smaller
than the thermal energy. Therefore, more eigenvalues are re-
quired for calculations at higher temperatures than at lower
temperatures. In this sense, our method is complementary to
conventional ones.

By summing over the eigenstates, the kinetic energy effect
is included in the Boltzmann factor, thereby deviating from
the conventional classical treatment. In this case, the FES
is obtained when summation is performed by restricting the
location of an H atom. This fact makes it natural to formulate
the transition state theory (TST) based on the FES, although
TST has been traditionally formulated based on the potential
energy surface (PES). This also modifies the transition state
configuration at low temperatures, as discussed below.

In this paper, we theoretically demonstrate our method by
applying it to the diffusion of H on the (111) surfaces of Cu,
Ni, Pd, and Au. The diffusion coefficient calculated using our
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FIG. 1. Six-layer model of H on fcc metal (111) surface. Small
(pink) and large (gold) spheres represent H and metal atoms, respec-
tively. (a) Top view and (b) side view.

proposed method is compared with those obtained through
experiments and theoretical calculations.

II. METHODS

A. PES calculation

The PES of H on the metal (111) surface was deter-
mined by ab initio calculations using density functional theory
(DFT). The calculations were performed using the elec-
tric structure calculation package VASP [23–26]. Throughout
the DFT calculations, we used the Perdew-Burke-Ernzerhof
(PBE) [27] potential to describe the exchange-correlation of
electrons. We also calculated the diffusion coefficient with
RPBE [28] but were not significantly different from those
calculated with PBE. We also described the Kohn-Sham or-
bitals using the plane wave within a cutoff energy of 400 eV
and the projected augmented wave (PAW) scheme [29]. We
optimized the cell parameters of the bulk metal using the
Monkhorst-Pack [30] k points (32 × 32 × 32) and calculated
the surface properties from the resulting parameters. A slab
model consisting of six layers of the metal with the H atom
on the surface was created to determine the PES (Fig. 1).
The vacuum for the slab model was approximately 20 Å.
The surface was discretized into 12 and 20 points in the
x and y directions, respectively, resulting in a total of 240
points. One H atom was placed on a mesh point to relax
its position in the z direction. All metal atoms were fixed
during the optimization process, which was performed using
8 × 8 × 1 Monkhorst-Pack kpoints with a 400-eV plane
wave cutoff. It is worth mentioning here two approximations
made in our study. In the first approximation, following the
adiabatic approximation of Hopkinson and Robert [31], the
metal atoms at the surface are assumed to be stationary on
the time scale of fast H dynamics. Suleimanov showed that
the motion of metal atoms has a small effect on the diffusion
of H in H/Ni(100) [21]. As a second approximation, the PES
was approximated as a two-dimensional V (x, y), neglecting
the effect of surface corrugations, i.e., the kinetic energy in
the direction perpendicular to the surface.

B. FES calculation

The FES was determined based on the PES obtained from
the DFT calculations. The FES can also be obtained by
performing a molecular dynamics (MD) simulation for each
temperature. However, instead of performing an MD simula-
tion, we exploited the periodicity of the system and calculated
the wave functions first. Then, we converted these wave func-
tions into the FES. As we fixed all the metal atoms, the PES
was expressed using only the positions of the H atom, x and
y, as V (x, y). Therefore, the Schrödinger-like equation for H
nuclei was expressed as

− h̄2

2m
∇2φi(x, y) + V (x, y)φi(x, y) = ∈iφi(x, y), (1)

where φi(x, y) and ∈i are the wave function and energy in the
ith energy level, respectively. Equation (1) was solved under
a periodic condition using a plane wave. In this study, we
interpolated the DFT-calculated 12 × 20 PES into a 48 × 80
PES using the Fourier series.

The wave function of the H atom nuclei and the energy ob-
tained from Eq. (1) were used to compute the configurational
partition function Q(x, y) and FES F (x, y) as follows:

Q(x, y) =
∑

i|φi(x, y)|2 e−β∈i∑
je

−β∈j
, (2)

F (x, y) = − 1

β
[ln Q(x, y) − ln Q(x0, y0)], (3)

where β and (x0, y0) are the inverse temperature and reference
point, respectively. By calculating FES using Eqs. (1)–(3),
we avoided using an MD simulation. There are also meth-
ods that do not involve sampling, such as the thermalized
microcanonical instanton method [32], and some studies have
applied this to one dimensional calculation [33]. In the classi-
cal limit, the value of F at the transition state corresponds to
the enthalpy required to activate the diffusion plus the entropic
contribution in accordance with the original transition state
theory. Quantum effect is considered through the discretized
energy levels in our formulation. We neglected the excitation
of the surface metal atoms, and therefore, the formula is not
applicable when the coupling is strong between the diffusing
adatom and the surface metal atoms. We also neglected the
quantum statistics, or the Fermionic and Bosonic statistics, as
conventionally done in the ring polymer simulations.

C. Jump rate and diffusion coefficient

The jump rate was calculated based on the TST devel-
oped by Vineyard [34]. In another quantum diffusion method,
Kimizuka et al. [8] used the same equation but also employed
the free energy profile computed based on PIMD. The jump
rate from site A to site B and vice versa is expressed as

kA→B = 1√
2πmβ

Qts

QA
, (4)

kB→A = 1√
2πmβ

Qts

QB
, (5)

where m is the mass of the diffusing particle and the configu-
rational partition function Q is expressed by the integration of
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TABLE I. Calculated lattice parameters. The experimental val-
ues for the lattice constants are referred from Ref. [36].

Lattice constant Lattice constant
Metal (calculated) (Å) (experimental) (Å)

Cu 3.64 3.597
Ni 3.51 3.499
Pd 3.94 3.859
Au 4.16 4.065

the FES. For instance,

QA =
∫

A
exp [−βF (x, y)]dxdy (6)

transition state. As mentioned before, the entropic and quan-
tum effects are included in Eq. (6).

From the jump rate expressed by Eqs. (4) and (5), the
diffusion coefficient was calculated using the random walk
model [35]. We first note that D is related to the variance,
〈�x2〉 and 〈�y2〉, by the two-dimensional Einstein relation:

4Dt = 〈�x2〉 + 〈�y2〉, (7)

where t is the diffusion interval. The variance is related to the
rate by the random walk as follows [35]:

〈�x2〉 = 〈�y2〉 = a2 kA→BkB→A

kA→B + kB→A
t, (8)

where a is the distance between sites A and B. For a, we
used the distance between the center of each site. Finally, the
diffusion coefficient was expressed as

D = a2

2

kA→BkB→A

kA→B + kB→A
. (9)

III. RESULTS AND DISCUSSION

A. PES

The lattice constants of the bulk metals were obtained by
DFT calculations (Table I). The deviations from experimental
values [36] were small, with the largest deviation being that
of Au at 2.3%.

The PES was obtained using the lattice constant in Table I
(Fig. 2). For all four metal surfaces, the minimum of the PES
was located at the fcc site, and the second minimum was
located at the hcp site. For Au, the top site was an additional
local minimum site. The shape of the Au PES was flatter than
the other three metals. Another characteristic of the PES for
Au was that the shape of the barrier between the fcc and hcp
sites was trapezoidal and flat at the top of the barrier. For the
other three metals, the shapes of the barriers between the two
sites were parabolic (see Fig. S3 of the Supplemental Material
[37].) The energy difference between the hcp and fcc sites
was small for Cu and Ni but not for Pd. In other words, the
PES for Cu and Ni had almost symmetric hcp and fcc sites,
whereas that for Pd had asymmetric hcp and fcc sites. The
PES obtained in this calculation was similar to that reported
in previous research with a 2 × 2 cell [38].
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FIG. 2. PES for H on (111) surface of Cu, Ni, Pd and Au. The x
and y axes indicate the position of the PES in the x and y directions,
respectively. Energy refers to the value at the most stable site, specif-
ically, the fcc site, of each metal. Plot is based on values for a 48 ×
80 mesh obtained by Fourier interpolation of results obtained from
calculations based on a 12 × 20 mesh.

B. Configurational partition function and FES

The configurational partition function was obtained from
Eqs. (1) and (2) by using the calculated PES. The configu-
rational partition function for each temperature is shown in
Fig. 3. At a high temperature (1300 K), H was distributed
in a wide range of regions. The differences in the H con-
figurational partition function between metal surfaces were
small for Cu, Ni, and Pd. For Au, H was distributed in a
relatively wider range owing to the flat PES of the Au surface.
At a low temperature, the configurational partition function
on Au was located along the minimum energy path (MEP)
between the hcp and fcc sites, whereas that on Ni and Cu was
located around the stable fcc and hcp sites. Pd had a large
configurational partition function value at the fcc site owing
to the energy related to the asymmetry of the hcp and fcc
sites in Pd PES. This can be explained qualitatively as follows.
From Eq. (2), especially in the low-temperature region, it was
a good approximation to express the configurational partition
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FIG. 3. Configurational partition function of H on the (111) sur-
faces of Cu, Ni, Pd, and Au. The x and y axes indicate the position
of the configurational partition function along the x and y directions,
respectively, at (a) 1300 K and (b) 100 K.
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FIG. 4. FES for H on the (111) surface of Cu, Ni, Pd, and Au at
(a) 1300 K and (b) 100 K. The x and y axes indicate the position of
the FES along the x and y directions, respectively. Energy scale is
same as the energy scale of PES (see Fig. 2).

function by using only low energy levels because the contribu-
tion from a high energy level will be cut off by the Boltzmann
factor. Therefore, the configurational partition function was
approximated as

Q(x, y) ∝ |φfcc(x, y)|2 + |φhcp(x, y)|2 e−β�∈, (10)

where � ∈= ∈hcp − ∈fcc. From Eq. (10), we see that the large
� ∈ value made the configurational partition function at the
hcp sites small (see Fig. SI.2 of the Supplemental Material
[37]).

FES was calculated from Eq. (3), and the results are shown
in Fig. 4 for 1300 and 100 K. At 1300 K, FES was similar to
PES for all metal surfaces. However, FES and PES were never
the same because of the ZPE. At 100 K, FES was smaller than
that at 1300 K. In classical statistical mechanics, FES is the
same as PES. This was because

Q(x, y) ∝ exp [−βV (x, y)], (11)

F (x, y) = V (x, y) − V (x0, y0), (12)

where Eq. (12) is obtained by substituting Eq. (13) into
Eq. (3). Therefore, the temperature dependence of FES comes
from quantum effects. FES at 1300 and 100 K were similar for
Au, however, for Cu, Ni, and Pd, the fcc and hcp regions were
expanded at 100 K. This indicates that the quantum effects
of H on Cu, Ni, and Pd were stronger than that of H on Au.
These facts characterize the diffusion coefficients (Fig. 7) and
crossover temperature (Table II).

C. Jump rate and diffusion coefficients

We calculated the jump rate and diffusion coefficients be-
tween the fcc and hcp sites. To calculate the jump rate, we
calculated Qfcc, Qhcp, and Qts. For integration in Eq. (6), the
integral region for the fcc and hcp sites and the transition state
had to be defined. In this study, we defined the fcc and hcp
sites as shown in Fig. 5. The transition state was drawn by
connecting the saddle point with the ridgeline (black line in

0 1 2

1

2

3

4

x [Å]

y [Å]

hcp

fcc

FIG. 5. Regions of the hcp (orange) and fcc (blue) sites. The x
and y axes indicate the position of PES along the x and y directions,
respectively. The contour indicates the PES of H on Cu (see Fig. 2).
The black line between the two sites indicates the transition state.
Qfcc, Qhcp, and Qts are calculated by integrating Q(x, y) in the blue
area, orange area, and black line, respectively.

Fig. 5), and the blue and orange region surrounded by the tran-
sition state were defined as the hcp and fcc sites, respectively.

The jump rates were calculated from Eqs. (4) and (5), and
the results are shown in Fig. 6. As the temperature decreases,
the jump rate changed from its classical value. For the jump
rate from the fcc to the hcp site, the temperature dependence
on the jump rate vanished and turned into a straight line. By
contrast, we found that the jump rate for Pd tended to increase
after the crossover. In Sec. III B, we discussed the configura-
tional partition function at low temperatures using Eq. (10).
As the hcp configurational partition function decreases with
decreasing temperature, the jump rate becomes artificially
high. This can be confirmed from Eq. (4). As mentioned
earlier, the asymmetry was the largest for Pd, and this led to
the formation of a large curve in the jump rate. However, this
increase at low temperature may not have a physical meaning
because the QTST used in this study is known to break down
at temperatures lower than that at the crossover [39].

From the jump rate, we calculated the diffusion coeffi-
cient (Fig. 7). The dotted straight line indicates the diffusion
coefficient for the classical case. The curve was found for
all H diffusion coefficients of the metal surfaces. Compared
to the other three metal surfaces, Au had a lower crossover
temperature Tc. This was attributable to the shape of the PES.
As mentioned in Sec. III A, the barrier between hcp and fcc
has a trapezoidal shape, and this affects the tunneling regime.
This was also found in the one-dimensional model calculation
[33]. In Ref. [33], owing to the shape of the potential for the
Au surface, Tc is calculated from Eq. (13):

Tc = h̄

kB

Ea

2
∫ √

2mV (y)dy
, (13)

where Ea and V (y) are the activation energy and potential
along the MEP (the one-dimensional potential is shown in the
Supplemental Material [37]), respectively. The calculated Tc

is shown in Table II. Tc was located at the curvature of the dif-
fusion coefficient. From the PES, the diffusion coefficient on
the Au surface may have been the largest because the barrier
was the smallest for Au. However, the order of the diffusion
coefficient changed with Cu and Ni at around 80 K. Among
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(a)

(b)

FIG. 6. Jump rate of H on (111) surfaces of Cu, Ni, Pd, and Au.
Jump rates from the (a) hcp to fcc site and (b) fcc to hcp site. The
bottom and top x axes indicate the inverse temperature and tempera-
ture, respectively. The y axis indicates the diffusion coefficient. The
classical results are indicated by dotted lines.

FIG. 7. Diffusion coefficient for H on the (111) surface of Cu,
Ni, Pd, and Au. The bottom and top x axes indicate the inverse
temperature and temperature, respectively. The y axis indicates the
diffusion coefficient. The classical results are indicated by dotted
lines.

TABLE II. Calculated crossover temperature.

Metal K

Cu 93.9
Ni 90.6
Pd 80.1
Au 52.4

the four metal surfaces used in this study, Pd had the smallest
diffusion coefficient value, and this may be attributable to the
asymmetric shape of the PES for Pd. When we imagine the
double well potential, we believe that tunneling is likely to
occur with the same energy level. To conform with the results
for Pd, we used the one-dimensional model potential that can
change the height of the two wells. We used an asymmetric
function:

V (x) =
{

1
2ω2

(
x4 − 3x2

2 − x cos φ
)

when −
√

5
2 < x <

√
5

2
1
2ω2

(
x2 − x cos φ − 25

16

)
otherwise.

,

(14)

where ω is the strength of the potential, and φ is the degree of
asymmetry at which the potential is symmetric for φ = π/2
and asymmetric otherwise. The potential exhibits two minima
when 0 < φ < π [Fig. 8(a)]. The Hamiltonian is expressed as

H = −1

2

d2

dx2
+ V (x). (15)

We obtained the diffusion coefficients by using Eq. (15)
and Eqs. (1)–(9). The results are plotted in Fig. 8(b) as a func-
tion of the barrier heights corresponding to the left and right
minima, that is, the difference in the energy of the potential
in the transition state and at the local minimum. The diffusion
coefficient was the largest in the symmetric case, as can be ob-
served by moving horizontally or vertically [Fig. 10(b)]. Thus,
the symmetric PES gave the largest diffusion coefficient.

D. Comparison with other works

We compared the diffusion coefficients calculated using
our methods and the TSWP [15] (Fig. 9). Our calculated diffu-
sion coefficients were smaller than those calculated by TSWP
in both the classical and quantum cases. This difference is
due to the difference in the TSTs used. The difference in the
quantum diffusion coefficients becomes smaller as the tem-
perature gets lower, and the qualitative behavior reproduces
the calculations of previous studies.

We compared our result of H diffusion on Ni(111) with
experiments [12–14] and theoretical calculation [31] (Fig. 10).
Our calculated diffusion coefficients were smaller than those
calculated by TSWP in both the classical and quantum cases.
Although there was the difference in value, the crossover
occurs similarly as the temperature is decreased. Our results
overestimate the experiments although the crossover behavior
is reproduced reasonably well. The reason for the discrep-
ancy is not clear, but one might rule out the possibility that
the electronic friction will play a role because of the low
velocity that the diffusing H atom can take thermally. Also,
our results confirm isotope effects, which are not confirmed
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by experimental results. Note that prior PACMD calculations
significantly overestimated the experiment. The TST we used
in this calculation is semiclassical, and the time dependent
transmission coefficient [40], which is included in TSWP and
RPMD but not in PIMD, is neglected. However, this factor is

FIG. 9. Diffusion coefficient of H on the Pd(111) surface. The
purple line indicates our result, and the green line indicates that
calculated by TSWP [15]. Dotted lines indicate the classical case.

FIG. 10. Diffusion coefficient of H on Ni(111) surface. Purple
and green lines show the results obtained for 1H and 2H, respectively,
using our methods. The black crosses and circles indicate the results
of 1H and 2H, respectively, from previously published experiments
[12]. The blue crosses and circles indicate the results of 1H and 2H,
respectively, from previously published experiments [13]. The red
crosses and circles indicate the results of 1H and 2H, respectively,
from previously published experiments [14]. The red orange and pink
lines indicate the results of 1H and 2H, respectively, from previously
published calculation [31].

important at temperatures lower than Tc. Therefore, it is still
questionable whether this theoretical calculation can repro-
duce the experiment quantitatively at very low temperature.

IV. FURTHER DISCUSSION

To obtain the diffusion coefficient for H, we defined the
regions of the hcp and fcc sites as shown in Fig. 5. However,
we can define the regions in a different way. Figure 5 was de-
fined based on the PES; however, we can alternatively define
sites based on the FES. The FES changed its shape with a
change in temperature. This means that if we define the sites
using FES, the regions of hcp and fcc sites change between
temperatures. By this definition, a position at which the slope
of the FES was zero defined the sites. An example of the site
definition is shown in Fig. 11. Compared to the site definition

0 1 2

1

2

3

4

x [Å]

y [Å]

hcp

fcc

FIG. 11. Regions of hcp (orange) and fcc (blue) sites. The x
and y axes indicate the position of FES for the x and y directions,
respectively. The contour indicates the FES of H on Pd at 60 K. The
black line between two sites indicates the transition state. Qfcc, Qhcp,
and Qts are calculated by integrating Q(x, y) in the blue area, orange
area, and along black line, respectively.
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FIG. 12. Diffusion coefficient for H on the (111) surface of Cu,
Ni, Pd, and Au as calculated from the site defined by FES. The
bottom and top x axes indicate the inverse temperature and tempera-
ture, respectively. The y axis indicates the diffusion coefficient. The
classical result is indicated by the dotted lines.

based on PES, the size and shape of the hcp and fcc sites were
not symmetric.

The diffusion coefficient was then calculated, and the re-
sult is shown in Fig. 12. At high temperatures, the diffusion
coefficient was the same as that obtained based on the PES
defined site. However, the FES-based diffusion coefficient
differs from the PES-based one at low temperatures. This
can be explained by comparing our calculation methods with
RPMD-based methods. In our calculation, the time dependent
transmission coefficient was considered to be equal to 1 [20].
At high temperatures, the time dependent transmission coeffi-
cient is approximately 1, however at temperatures below Tc, it
is smaller than 1 [21]. For the RPMD calculation, this factor
makes the diffusion coefficient independent of the transition
state definition. However, in our method, this factor was not
included, and it causes a dependence on the regional definition
and breakdown at low temperatures [39].

V. CONCLUSION

We proposed a calculation method of FES that does
not require sampling. In this method, we use the basis set
of the Hamiltonian instead of the position and momentum
used in PIMD. Our method is effective for small surfaces
with periodic conditions because we can diagonalize the
Hamiltonian of the system easily. Moreover, at low temper-
ature, the contribution from high energy to FES is cut out by
the Boltzmann factor, and this reduces the calculation cost.
By using this method, we calculated the diffusion coefficient
of H on four (111) metal surfaces: Cu, Ni, Pd, and Au. Cu and
Ni have approximately symmetric energy levels on their hcp
and fcc sites, but Pd and Au do not. This symmetry makes the
diffusion coefficient bigger for Cu and Ni. Au has a flat PES
shape between the fcc and hcp sites; this lowers the crossover
temperature.

By using the proposed method, we calculated the diffusion
coefficient without any sampling, thereby reducing our calcu-
lation cost. However, as the degrees of freedom increase, the
calculation cost increases. This makes it difficult to calculate,
for instance, the diffusion coefficient on a moving surface. We
can include these effects in RPMD [21]. Additionally, at very
low temperatures (T < Tc), the TST we used in our method
breaks down [39] because of our semiclassical approach. We
will calculate the time dependent transmission coefficient in
our future studies.
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