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Chiral current induced by torsional Weyl anomaly
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Torsion can be realized as dislocation in the crystal lattice of material. It is particularly interesting if the
material has fermions in the spectrum, such as graphene, topological insulators, and Dirac and Weyl semimetals,
as it’s transport properties can be affected by the torsion. In this paper, we find that, due to Weyl anomaly, torsion
in Dirac and Weyl semimetals can induce novel chiral currents, either near a boundary or in a “conformally
flat space.” We briefly discuss how to measure this interesting effect in experiment. It is remarkable that these
experiments can help to clarify the theoretical controversy of whether an imaginary Pontryagin density could
appear in the Weyl anomaly.
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I. INTRODUCTION

The study of anomaly induced transport is an interesting
subject (see [1] for a recent review). Although anomaly was
originally discovered in particle physics, due to its universal
nature anomaly has nontrivial implications to a large number
of physical phenomena ranging over vastly different scales.
For example, the chiral anomaly of nonabelian gauge theory
imposes nontrivial constraints on the fundamental interaction
of chiral fermions in the standard model [2]. Chiral anomaly
also affects the transport dynamics of systems with chiral
fermions [3–12] due to the well-known chiral magnetic and
chiral vortical effects (see [13–15] for review). Interestingly,
this kind of anomalous transport occurs only in a material
system since nonvanishing chemical potentials are required.
As anomaly itself is intrinsic to the quantum vacuum, it is an
interesting question to ask if anomaly induced transport can
occur independent of the chemical potentials.

Recently, chiral response associated with chiral anomaly
in a torsional background has been a subject of intensive
study. In general, a curved spacetime is equipped with a metric
which fixes the causal structure and metric relations, and a
connection which defines the parallel transport of tensors on
the manifold. While the path dependence of parallel transport
is measured by the curvature, the nonclosure of parallelism of
parallel transport is measured by the torsion. For the parallel
transport,

∇μV ρ = ∂μV ρ + �ρ
μνV ν, (1)
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the torsion

T ρ
μν := �ρ

μν − �ρ
νμ (2)

is given by the antisymmetric part of the connection. In Ein-
stein general relativity (GR), the geometry of spacetime is
taken to be torsion free since there is seemingly no observa-
tional evidence for torsion in the spacetime of our universe
[16]. However, perhaps unexpectedly, torsion finds a legit-
imate position in condensed matter physics since torsion
appears to be naturally suited for the geometrical descrip-
tion of dislocation defects in crystals [17–20]. Torsion has
been realized and studied in diverse material systems such as
graphene [21,22], topological insulators [23–25], and Dirac
and Weyl semimetals [26–31]. As a result of the specific man-
ner, fermion is coupled to torsion, and chiral anomaly could
emerge and give rise to a novel chiral response in torsional
material systems [32–40].

Just as a system may possess a chiral anomaly which
characterizes the quantum chiral dependence of the system,
generally a system may also possess a Weyl anomaly which
characterizes the quantum scale dependence of the system. In
general, the Weyl anomaly is defined as a difference between
the trace of a renormalized stress tensor and the renormalized
trace of a stress tensor [41,42]:

A =
∫

M

√−g [gμν〈Tμν〉 − 〈gμνTμν〉]. (3)

In the presence of a background gauge field, the Weyl anomaly
receives a contribution

A =
∫

M

√−g b1FμνFμν (4)

whose form is universal and is entirely determined by the
coefficient b1, a bulk central charge of the theory. For the
normalization of the gauge field kinetic term S = −1/4

∫
F 2,

b1 is given by the beta function of the theory as b1 = −β/2.
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As Weyl anomaly is independent of the chiral anomaly, it is
interesting to ask if and how it give rises to any transport
phenomena in a system. The answer is positive. Recently, a
new kind of induced transport was discovered for boundary
vacuum systems as a result of the Weyl anomaly. It was found
that [43,44] for any renormalizable quantum field theory with
a current coupled to an external electromagnetic (EM) field

SA =
∫

M

√−g JμAμ, (5)

the Weyl anomaly give rises to an induced magnetization
current in the vicinity of the boundary of the vacuum system

〈Jμ〉 = −2βFμνnν

x
+ · · · , x ∼ 0. (6)

Here x is the proper distance to the boundary, nμ is the inner
normal vector, ... denote higher order terms in O(x), and β is
the beta function. Hereafter we will drop the symbol 〈 〉 for
the expectation value. It is instructive to review the derivation
of this result to appreciate how it could be derived from
the Weyl anomaly. In general, for a boundary quantum field
theory, the renormalized current is generally singular near the
boundary and the expectation value takes the asymptotic form
near x ∼ 0:

Jμ = 1

x3
J (3)
μ + 1

x2
J (2)
μ + 1

x
J (1)
μ + J (0) log x + · · · , (7)

where · · · denotes terms regular at x = 0, and J (n)
μ depend

only on the background geometry, the background vector field
strength, and the type of fields under consideration. For cur-
rent that is conserved

DμJμ = 0 (8)

up to possibly an anomaly term, one can easily obtain the
gauge invariant solution

J (3)
μ = 0, J (2)

μ = 0,

J (1)
μ = α1Fμνnν + α2Dμk + α3Dνkν

μ + α4 � Fμν nν
(9)

where Fμν , �Fμν , nμ, Dm, kμν, and hμν are respectively the
background field strength, Hodge dual of field strength, the
normal vector, induced covariant derivative, extrinsic curva-
ture, and induced metric of the boundary. Now the Weyl
anomaly A is a function of the background gauge field. Since
it is related to the Logarithmic UV divergent term of effective
action, one can establish the following “integrability” relation
[43,54,60]:

(δA)∂Mε
=

(∫
Mε

dx4√gJμδAμ

)
log 1

ε

, (10)

where here a regulator x � ε to the boundary is introduced
for the integral on the right hand side (RHS) of (10) and
Jμ is the renormalized current. The relation (10) identifies
the boundary contribution of the variation of the integrated
anomaly A under an arbitrary variation of the gauge field
δAμ with the UV logarithmic divergent part of the integral
involving the expectation value Jμ of the renormalized U (1)
current. The power of the relation (10) lies in the fact that
the left hand side of (10) is a total variation and imposes
constraints on the RHS of (10) that are powerful enough to to

completely fix the asymptotic behavior of the current in terms
of the Weyl anomaly of the theory. Using (10), one obtains
the result (6) for the renormalized current immediately. We
note that the result (6) is universal in two remarkable ways.
First, it works for any quantum field theory, and not just
conformal field theory. Moreover, it is independent of the
choices of boundary conditions since only the bulk central
charge, instead of boundary central charge, appears. It should
be mentioned that the induced magnetization current for free
theories in the vicinity of the the boundary was first obtained
by Osborn and McAvity in [45], the universal result (6) as
well as its intimate relation with the Weyl anomaly were
originally established in [43]. The Weyl anomaly also has an
interesting effect in cosmological spacetime. It was found that
in a conformally flat spacetime ds2 = e2σ ημνdxμdxν without
boundaries, the anomalous current is given by [46,47]

〈Jμ〉 = −2βFμν∂νσ + O(σ 2) (11)

to the leading order of small σ . Generalization of the result
(6) to higher dimensions and the result (11) for arbitrary finite
σ can be found in [48,49] and [50], respectively. In addition,
there is also an effect of vacuum spin transport induced by
electromagnetic field [51].

Central to these results is the fact that the anomalous cur-
rents [(6) and (11)] emerge as a direct response of the Weyl
anomaly arising from background. Motivated by this observa-
tion, it is natural to expect that similar induced phenomena
may occur if the fermions are allowed to couple to other
external backgrounds. Now apart from EM background or
spacetime curvature, spacetime torsion is another interesting
background to consider. In this paper, we will study the quan-
tum transport phenomena induced by the Weyl anomaly in a
torsional material. In the following, we first derive in Sec. II
the Weyl anomaly for Dirac fermions coupled to torsion.
Using this result, we derive the Weyl anomaly induced chiral
and vector currents in Sec. III. The discussion is extended to
Weyl fermions in Sec. IV. We propose that measurements of
the induced currents in Weyl semimetals could help to clarify
the theoretical controversy of whether the Pontryagin density
appears in the Weyl anomaly.

II. TORSION AND WEYL ANOMALY

Generally a spacetime is equipped with a metric and a
connection. In Einstein general relativity (GR), the metricity
condition and a symmetric connection are adopted so that con-
nection is not independent but given by the metric. In general,
departure from GR is characterized [16] by the nonmetricity
tensor Qμνρ := ∇μgνρ and the torsion tensor (2) defined as the
antisymmetric part of the connection. For simplicity, we will
focus in this paper on the particular interesting generalization
of GR called the Einstein-Cartan theory, where Q = 0 and the
connection is independently characterized by the torsion ten-
sor. In this case, the gravitational coupling in four dimensions
takes the general form

S =
∫

M
d4x

√−gψ̄ iγ μ(∇μ − iVμ − iγ5Sμ)ψ, (12)
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where ∇μ is the covariant derivative defined with the standard
Levi-Civita metric connection, and the components of torsion

Vμ := T ρ
ρμ, Sμ := εμνρσ T νρσ (13)

behave effectively as vectors and axial vectors [21]. For three
dimensions, there is no Sμ. Instead

Ŝ := ενρσ T νρσ (14)

behaves as pseudoscalar and the action in three dimensions
becomes [21,22]

S =
∫

M
d3x

√−gψ̄ iγ μ(∇μ − iVμ − iγ5Ŝ)ψ. (15)

We use the mostly negative convention for the signature of the
metric, and the torsion will be taken as a background.

The action (12) is classically Weyl invariant under the
local scaling transformation: ψ → e−3σ/2ψ , gμν → e2σ gμν ,
Vμ → Vμ, and Sμ → Sμ. However, quantum mechanically
there is an anomaly. For a manifold with a boundary, boundary
conditions should be imposed on half of the spinor com-
ponents. It can be shown that [52] Hermicity of the Dirac
operator selects the following specific ones out of the general
chiral bag boundary conditions:

(1 ± iγ nγ 5)ψ |∂M = 0, (16)

where n denotes the normal direction. The one-loop Weyl
anomaly can be obtained by applying the heat kernel expan-
sion [52]. Let us focus on four dimensions; the Weyl anomaly
reads

A = 1

24π2

∫
M

d4x
√−g[FμνFμν + HμνHμν]

+ 1

12π2

∫
∂M

d3x
√−h[B1(S) − B2(S) − B3(S)], (17)

where F = dV , H = dS, hμν is the induced metric on the
boundary ∂M; kμν = hρ

μhσ
ν ∇ρnσ is the extrinsic curvature; k̄μν

and k denote the traceless part and the trace of extrinsic cur-
vatures, respectively; and B1(S) := 2

3 k(hμν + nμnν )SμSν +
Sn∇μSμ + 2Sμhμν∇nSν , B2(S) := 1

3 kSμSμ + nμSν∇νSμ, and
B3(S) := 1

5 k̄μνSμSν . Here we choose the normal vector so
that nμ = −nμ = (0,−1, 0, 0) in a flat half space. The Weyl
anomaly (17) is Weyl invariant and satisfies the Wess-Zumino
consistency condition [53]. Note that the bulk contribution to
the torsional Weyl anomaly is discussed in [55–57].

We are interested in the expectation value of the chiral cur-
rent and vector current in the theory. In four dimensions, the
renormalized vacuum expectation value of the chiral current
is derived by the variation of effective action with respect to
the background “axial vector”

Jμ
S = 〈ψ̄γ μγ5ψ〉 = 1√−g

δIeff

δSμ

. (18)

In the following, we show that the knowledge of the Weyl
anomaly (17) allows one immediately to determine (18) in
closed analytic form.

III. CHIRAL CURRENT

A. Boundary theory

Let us first study the chiral current in four dimensional
spacetime with a boundary, say, at x = 0 of the coordinate
system. We follow the methods of [43,54], where we have
studied the expectation value of current and stress tensor in
boundary quantum field theories [58]. To start with, we note
that since the mass dimension of chiral current is three, it takes
the asymptotic form [59]

Jμ
S = Jμ

0

x3
+ Jμ

1

x2
+ Jμ

2

x
+ O(ln x) (19)

near the boundary. Here x is the proper distance from the
boundary, Jμ

n have mass dimension n and depend on only
the background geometry and the background torsion. Jμ

n can
be solved by imposing the conservation law ∇μJμ

S = O(1)
[43], where O(1) denotes the finite part of the chiral anomaly
which is irrelevant to the divergent part of renormalized cur-
rent. We obtain

Jμ
0 = 0, Jμ

1 = λ hμνSν, (20)

where λ is some constant. The key point in the above deriva-
tions is that the leading term of chiral current cannot be
proportional to the normal vector nμ, otherwise it cannot
satisfy the conservation law ∇μ(nμ/x3) ∼ 1/x4 �= O(1). We
note that unlike the case of gauge field [43], the transformation
δSμ = ∂μα changes the torsion and is not required to be a
symmetry of the theory, therefore a nonvanishing Jμ

1 term as
in (20) is allowed.

Now let us use the “integrability” relation (10) for
the renormalized chiral current Jμ

S . To proceed, let us
employ the Gauss normal coordinates to express the
metric ds2 = −dx2 + (hi j − 2xki j + · · · )dyidy j and expand
Sμ(x) = S0 μ + xS1 μ + O(x2), where x ∈ [0,+∞) and Si

give the ith derivatives of S at x = 0. Substituting (17), (19),
and (20) into (10), after some calculations we obtain the chiral
current near the boundary:

Ja
S = Sa

0

6π2x2
+ 2ka

bSb
0 + kSa

0

10π2x
+ O(ln x),

Jn
S = (DaSa)0

6π2x
+ O(ln x), x ∼ 0, (21)

where n and a respectively denote the normal and tangential
directions, Da is the covariant derivative on the boundary,
and we denote for any function F (x) that F0 = F (x = 0).
A couple of remarks are in order. We note that as in the
discussion [43,54], the total chiral current is finite since there
are boundary contributions to the chiral current which cancel
the divergence from the bulk contribution (21). We note that
the result (21) applies not only to conformal field theory
(CFT) but also the general quantum field theory (QFT) since
the Weyl anomaly is welldefined for general quantum field
theories [41,42]. We remark that (21) can be verified by the
Green’s function method [61,62]. In a flat half space with
kab = 0, the correction of Green function due to torsion is
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given by

Gc(x, x′) = −
∫

M
d4y

√
|g|G0(x, y)γ μγ5Sμ(y)G0(y, x′)

+ O(S2), (22)

where G0 is Green’s function without torsion. From (22), we
can obtain the chiral current by

Jμ
S (x) = −i lim

x′→x
Trreg[γ μγ5Gc(x, x′)], (23)

which agrees with (21). Here Trreg means we have subtracted
the reference current without boundaries. Another interesting
remark is about the universal nature of the boundary current
(21). In [38] it was shown that torsion does not lead to new
chiral transport effects in the bulk since the response to torsion
can be viewed as a manifestation of the chiral vortical effect.
To see this, it was noted that in the presence of torsion, the
chiral anomaly receives in addition to the electromagnetic
contribution a torsion contribution:

∂μJμ
S − T λ

λμJμ
S = cF εμνρσ FμνFρσ + cT εμνρσ ηabT a

μνT b
ρσ ,

(24)

where the last term denotes the famous Nieh-Yan term (here
we have focused on the space without curvatures for sim-
plicity) and the coefficients cF and cT have mass dimensions
zero and two„ respectively. As a result, unlike cF , cT depends
on regularization and can be removed by a suitable local
counterterm in the background fields [1]. Thus, the Nieh-Yan
anomaly is not independent, and can be considered a manifes-
tation of the chiral anomaly [38]. In fact, the form of current
nonconservation will depend on the precise definition of the
current [38]. Moreover, a choice of current that is based on
physical symmetries was suggested and it was shown that the
Neh-Yan anomaly does not appear [38].

Remarkably, the boundary chiral current induced by the
Weyl anomaly (17) is different as, unlike the effect of torsion
on the bulk current in (24), the effect of torsion on the bound-
ary current (17) is nonremovable. Note that all the coefficients
of the Weyl anomaly (17) are dimensionless. As a result,
the Weyl-anomaly induced chiral current is universal near
the boundary, and cannot be removed by local counterterms.
The universality of the current (21) near the boundary does
not contradict the nonuniversality of torsion-induced chiral
current in the bulk. It arises from a novel boundary effect that
is independent of renormalization scheme.

Let us briefly comment on how the chiral current (21)
may be measured in Dirac semimetals. As shown in Fig. 1,
we perform the Screw dislocation of lattices so that the red
parallelogram does not close, and the missing part is defined
by the blue Burgers vector. The density of the Burgers vector �b
behaves as the axial vector in Dirac and Weyl semimetals [21].
From (21) together with �S ∼ �b, we draw conclusions that the
Screw dislocation induces an anomalous chiral current near
the boundary in Dirac and Weyl semimetals:

�JS ∼ �b
x2

, x � a, (25)

where a denotes the lattice length, and we mainly focus
on spatial �b in this paper. Note that our result (21) for the

FIG. 1. Chiral current �JS ∼ �b/x2 induced by Screw dislocation,
where �b is the Burgers vector.

continuum is UV finite and is independent of regularization.
However, as we go from the continuum to a lattice, the details
of the lattice will enter in general, such as in (25). In principle,
other parameters of the system such as mass, temperature, hy-
drodynamic velocity, etc., may also appear in dimensionless
combination and correct the overall coefficient of the induced
current. Note that, to obey the bag boundary condition (16),
we should place an insulator on the boundary of the materials
so that no current can flow out of the boundary x = 0.

Finally we make a remark for three dimensions. Fol-
lowing the same analysis as for the derivation of (19) and
(20), the renormalized expectation value of the vector current
Jμ

V = 〈ψ̄γ μψ〉 takes the form

Jμ
V = F nμ(α1 + α2 ln x), (26)

where α1, α2 are constant parameters which are sensitive to
the boundary condition. We note that in dimensions d < 4,
the current is not related to the Weyl anomaly. Hence the pa-
rameters α1, α2 are not determined just by the central charges,
but by further specific details of theory.

B. Conformally flat spacetime

There are also chiral currents in four dimensional confor-
mally flat spacetime without boundaries. To demonstrate this,
let us start by deriving the anomalous transformation rule for
the chiral current. Consider the theory (12) with metric and
chiral vector field given by (gμν, Sμ). Due to the anomaly,
the renormalized effective action Ieff is not invariant under the
Weyl transformation. Generally, we have [63]

δ

δσ
Ieff (e−2σ gμν ) = A(e−2σ gμν ) (27)

for arbitrary finite σ (x). This can be integrated to give the ef-
fective action [53,64,65]. Using the fact that the anomaly (17)
is a Weyl invariant, we immediately obtain the transformation
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rule for the effective action:

Ieff (e−2σ gμν ) = Ieff (gμν ) + 1

24π2

∫
M

d4x
√−gHμνHμνσ

(28)

plus a boundary term 1
12π2

∫
∂M

√−h[−1
5 k̄μνSμSν+B1 − B2]σ ,

which we drop in spacetime without boundaries. One can
check that the dilaton effective action satisfies the Wess-
Zumino consistency [δσ1 , δσ2 ]Ieff = 0. Using (28), we finally
obtain the transformation rule for the chiral current (18) under
Weyl transformation gμν → g′

μν = e−2σ gμν , Sμ → S′
μ = Sμ,

Jμ
S = 1

6π2
∇ν (H νμσ ), (29)

plus a trivial term e−4σ J ′μ
S . Here Jμ

S (J ′
S
μ, respectively) denotes

the vacuum expectation value of the chiral current of the the-
ory (12) in the background spacetime gμν (g′

μν, respectively).
Taking g′

μν to be the flat spacetime metric and assuming
that the chiral current vanishes in some region of the flat
spacetime, we finally obtain (29) as the chiral current in con-
formally flat spacetime,

ds2 = e2σ ημνdxμdxν . (30)

Note that the conformal factor σ in (29) is arbitrary
and needs not to be small. Therefore we can use (29) to
calculate the current in general conformally flat spacetimes
such as Anti-de-Sitter space, de-Sitter space, and Robertson-
Walker universe. For Robertson-Walker universe ds2 = dt2 −
a(t )2(dx2 + dy2 + dz2), we have at time t = t∗,

Jμ
S = 1

6π2
H0μH, (31)

where H = ȧ/a is the Hubble parameter. For simplicity we
have chosen a(t∗) = 1. In materials, curvature and torsion can
be mimicked by disclinations and dislocations, respectively.
Thus, one may measure the effect (29) in Dirac semimetals
with suitable disclinations and dislocations.

IV. WEYL FERMIONS

So far we have focused on Dirac fermions. The discussions
can be generalized to Weyl fermions straightforwardly. The
real part of the Weyl anomaly for Weyl fermions is half
of that of Dirac fermions (17). As a result, the anomalous
chiral current is also half of the Dirac fermions (21), (29).

The imaginary part of the Weyl anomaly is parity odd and
it is controversial whether such a term exists [66,67]. This
imaginary part implies that the theory is nonunitary or there
is absorption and dissipation in materials. For simplicity, let
us take the vector parts of torsion Vμ as an example. The
discussion for axial vector parts of torsion Sμ is similar. The
Weyl anomaly of Weyl fermions related to Vμ is

A = 1

48π2

∫
M

d4x
√−g

[
FμνFμν + i

3

2
ηFμν

∗Fμν

]
, (32)

where ∗Fμν = 1
2εμναβFαβ , η = 0 or 1 denote the controversy.

Following the above approach, we derive the currents

Jμ
V = nνF νμ + i 3

2η nν
∗F νμ

12π2x
+ O(ln x) (33)

near a boundary and

Jμ
V = e−4σ J ′μ

V + 1

12π2
∇ν

(
F νμσ + i

3

2
η ∗F νμσ

)
(34)

in a conformally flat space without boundaries. Recall that the
edge dislocations and screw dislocations can induce effective
vectors and axial vectors coupled with fermions in materials,
respectively. Thus, the vector Vμ can be realized by either an
electromagnetic field or suitable edge dislocations in Weyl
semimetals. It is interesting to measure the predicted current
(33) and (34) in Weyl semimetals, which can help to clarify
the theoretical controversy that an imaginary Pontryagin den-
sity could appear in the Weyl anomaly [66,67].

Summarizing, we have shown in this paper that, due to the
Weyl anomaly, torsion can lead to novel currents and chiral
currents for Dirac and Weyl fermions. We propose to measure
these interesting effects in Dirac and Weyl semimetals with
suitable dislocations. These experiments can help to clarify
the theoretical controversy that an imaginary Pontryagin den-
sity could appear in the Weyl anomaly.
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