
PHYSICAL REVIEW B 107, 205409 (2023)

Signatures of nonlocal electrical conductivity in near-field microscopy
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We propose and theoretically substantiate a method to study the nonlocal conductivity of two-dimensional
electron systems (2DESs) using the tools of near-field microscopy. We show that the height-dependent polariz-
ability of an illuminated near-field probe is substantially different for various transport regimes of charge carriers
in a 2DES. For the hydrodynamic transport regime, the polarizability scales as z−2

0 , where z0 is the elevation of
the probe above the 2DES. Both for Drude and for classical ballistic regimes of conduction, the polarizability
scales as z−3

0 . In the former case, the polarization is carrier density independent, while in the latter it largely
depends on carrier density. More generally, we find that the polarizability of the probe is proportional to the
Laplace transform of the wave-vector-dependent conductivity and the inverse dielectric function of the 2DES
over the wave vectors q. Our results should provide a simple tool for studies of nonlocal conductivity in solids,
which is challenging to address with other techniques.
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I. INTRODUCTION

The relations between the electric field and the current in
solids are generally nonlocal, which implies that the current
density at a given point j(r) can be affected by the field at
remote positions E(r′):

j(r) =
∫

σ (r, r′)E(r′)dr′. (1)

The nonlocality comes from thermal or quantum motion of
charge carriers. Formally, this motion results in explicit de-
pendence of the conductivity kernel σ (r, r′) on positions r
and r′. At zero frequency, the conductivity kernel is large
only at distances |r′ − r| less than the electron mean free
path. At finite frequencies, the kernel typically decays at the
electron path during the field cycle lω = v0/ω, where v0 is
the thermal or Fermi velocity of charge carriers [1]. At even
smaller (quantum) distances |r′ − r|, the conductivity kernel
may possess extra features associated with Friedel oscillations
[2,3] or cyclotron motion [4,5] of electrons in a magnetic field.

Once the nonlocal conductivity kernel σ (r, r′) is known,
it may be tempting to decode the information about carrier
dynamics from it [6]. Such a method may become a simple
complement to complex angle-resolved photoelectron spec-
troscopy. Most straightforward ways to measure the nonlocal
dielectric function rely on electron energy loss spectroscopy
[7], which requires ultrahigh vacuum and atomically clean
surfaces. There exist all-electrical methods for studies of
nonlocal conduction, where current is injected between two
contacts, while the voltage is measured between another two
contacts [8–11]. Such a technique, however, is limited by the
initially defined geometry of the contacts, and the nonlocal
resistance signal may not have a simple and direct interpreta-
tion [12]. Recently, indirect evidence of transport nonlocality
was theoretically revealed in height-dependent magnetic noise
above two-dimensional (2D) electronic systems [13] and

magnets [14]. Measurements of local shot noise using near-
field probes recently evidenced the nonlocal character of
energy dissipation [15]; yet this quantitative observation was
insufficient to distinguish the regime of carrier transport.

In recent years, great attention has been attracted to the
technique of near-field optical microscopy by scattering from
the tip [16]. It enables the reconstruction of optical prop-
erties in nonuniform structures [dielectric function ε(r) or
surface conductivity σ (r)] with resolution reaching ∼10−3λ0

[17–20]. All such studies, however, assume the local relations
between the current and the electric field, j(r) ≈ σ (r)E(r).
Attempts to extract the nonlocal conductivity (even in uni-
form structures) from near-field measurements are yet in their
initial stage. In particular, the nonlocality of conductivity can
affect the speed of collective excitations, namely, plasmons
[21,22], which, in turn, can be extracted from polariton in-
terferometry [23,24]. Such a technique allows one to extract
the information about nonlocality only at “interlocked” values
of frequency ω and wave vector q satisfying the plasmon
dispersion relation.

In this paper, we substantiate theoretically a method for
studies of nonlocal carrier dynamics from the near-field op-
tical signals. We show that electromagnetic scattering from
a near-field probe located at a small distance z0 above a 2D
conductor is strongly affected by the nonlocality of the con-
ductivity kernel. For more precise formulation, we introduce
the effective polarizability of the tip αeff , which is the propor-
tionality coefficient between dipole moment d and incident
field at the probe position E(i)(z0), d(z0) = αeff (z0)E(i)(z0).
We find that αeff (z0) − αeff (∞) is a power-law function ∝ z−n

0 .
The exponent of this dependence n is linked to the asymptotics
of Fourier-transformed nonlocal conductivity σ2D(q) at large
field momenta q. As a prototypical example, we consider
the scaling of near-field signals for 2D electrons obeying the
laws of drift and diffusion (Drude conduction), the classical
ballistic motion, or the laws of hydrodynamics. We find that
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FIG. 1. Schematic of the setup. A near-field probe (gray) is il-
luminated by an incident plane wave. Its near field (magenta) is
reflected by a two-dimensional electron system (2DES), which reacts
to the field nonlocally. The reflected wave modifies the dipole mo-
ment of the probe d. This dipole produces a scattered far field which
carries information about the surface conductivity of the 2DES.

αeff ∝ z−3
0 in the two former cases and αeff ∝ z−2

0 in the case
of hydrodynamics. More generally, we find that the induced
dipole moment dz(z0) of the near-field probe can be presented
as a Laplace transform of nonlocal conductivity σ2D(q) di-
vided by 2D dielectric function ε2D(q) with respect to the field
momentum q.

II. SOLUTION OF THE SCATTERING PROBLEM
FOR NONLOCAL CONDUCTIVITY

The studied system represents an extended two-
dimensional electron system (2DES) located at z = 0 and a
near-field probe elevated at height z0 above it (Fig. 1). The
in-plane coordinate of the probe is set as ρ = 0. The probe
is illuminated by a plane wave with electric field E0eik0r−iωt .
It polarizes the probe and generates electromagnetic near
fields with large spatial Fourier harmonics Eq. These near
fields are reflected from the 2DES; their reflection coefficient
is generally determined by nonlocal conductivity σ (q).
Reflected waves modify the dipole moment of the probe d
and therefore modify its far-field radiation. One may suggest
that the characteristic wave vector of tip-induced near fields is
q � z−1

0 . By placing the tip at progressively smaller distances,
one collects information about the surface conductivity at
larger and larger wave vectors.

To justify the suggested scheme, we present an exact so-
lution for the scattering problem presented in Fig. 1 with
full account taken for conduction nonlocality. For analyti-
cal traceability, the tip is modeled as a point dipole with
moment d = {0, 0, dz}. In the first stage, we find the fields
in all space E(r) provided that d is fixed and assuming no
external illumination. A similar problem of dipole radiation
above the nonlocal surface is known for bulk metals [25] but
has not been reported for 2D. This is done, most conveniently,
by solving the wave equation for the vector potential in the

Lorenz gauge:
(

k2
z − ∂2

∂z2

)
A(q, z) = 4π

c
[jdip(q)δ(z − z0) + j2D(q)δ(z)].

(2)
In the above equation, we have introduced the Fourier trans-
form with respect to the in-plane coordinate, A(q, z) =∫

A(ρ, z)eiqρdρ, k2
z = q2 − k2

0 is the squared transverse wave
vector, k0 = ω/c is the wave number of the incident light,
jdip(q) = −iωd is the current density at the oscillating dipole,
and j2D(q) is the surface current density at the 2DES. We link
it to the in-plane electric field via the nonlocal Ohm’s law,

j2D(q) = σ2D(q)E‖(q, z = 0), (3)

while the electric field is obtained via the vector potential as

E‖(q, z) = i

k0

[
iq(∇ · A) + k2

0A‖
]
. (4)

Combining the above equations, we arrive at a simple second-
order equation for the vector potential with two delta sources
on the right-hand side. The above equation is readily solved
(Appendix A) with the following result:

Az(q, z) = Adipeikz |z−z0|, (5)

A‖(q, z) = −Adipeikz (|z|+z0 ) q
k0

η(q)

1 + η(q)kz/k0
. (6)

Above, we have introduced the characteristic vector potential
created by dipole source Adip and dimensionless 2D conduc-
tivity η(q):

Adip = 2π
k0

kz
d, (7)

η(q) = 2πσ2D(q)

c
. (8)

Several important properties of the fields created by a fixed
dipole [(5) and (6)] should be mentioned before proceeding to
an actual scattering problem. First of all, the net field cannot
be presented as a superposition of the dipole field and its
image field unless the 2DES is perfectly reflecting (|η| � 1).
This holds even in the case of local 2D conductivity due to the
explicit q dependence of the effective 2D dielectric function
ε2D(q) = 1 + η(q)

√
k2

0 − q2/k0. Second, the field (6) carries
information about the nonlocality of the 2D conductivity via
the factors η(q). However, most such information is lost when
observing the radiated far field (see Appendix B for more
details). Indeed, the radiative Fourier harmonics are bounded
by q < k0, while an appreciable spatial dispersion of conduc-
tivity emerges at q � ω/v0 � k0, where v0 is the carrier Fermi
velocity. Therefore, to access the full spatial dispersion, it is
not sufficient to consider the radiation of a fixed dipole. It is
rather necessary to go further and study the modifications of
dipole polarizability in external fields.

In the second stage, we use the superposition principle
to find the total field E(�) created by external illumination,
E(i), and dipole with moment dz, E. We limit ourselves to the
p-polarized incident fields and consider the near-field probe
to be polarizable only in the vertical z direction. The only
component of the electric field of interest is its z component,
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and the superposition principle reads as

E (�)
z (r) = E (i)

z (r) + Ez(r), (9)

where the external illumination is due to incident and re-
flected waves, E (i)

z (r) = E0 sin θ (e−ik0 cos θz + rpeik0 cos θz ), θ is
the gliding angle, and rp = [1 + 1/(η cos θ )]−1 is the reflec-
tion coefficient for the p-polarized wave.

In the last stage, we release the assumption of the fixed
dipole moment and link it to the local field Ez at r = r0

(ρ = 0, z = z0) via the polarizability α:

dz = αEz(r0)

= α

[
E (i)

z (z0) +
∫

d2q
(2π )2

Ẽz(q, z0)

]
. (10)

Certain care should be taken upon evaluation of the last inte-
gral. Strictly speaking, it diverges because the field created
by the point dipole at its own origin is infinite. This self-
action term should be subtracted (see Appendix C). As a
result, the dipole is polarized according to the magnitude of
smooth fields modified by the presence of the 2DES, denoted
as Ẽz(q, z0). Solving Eq. (10), which is linear with respect to
d, we find

dz = α

1 − αIz
E (i)

z (z0), (11)

where Iz is the polarization factor containing the information
about nonlocal 2D conductivity:

Iz = 1

k0

∫ ∞

0

η(q)

1 + η(q)kz/k0
q3e−2kzz0 dq. (12)

The result coincides with that reported in Ref. [26] if
expressed through wave-vector-dependent reflection coeffi-
cients.

An important property of the polarization factor Iz can be
observed without specification of the transport model in the
2DES. The scaled 2D conductivity η(q) in Eq. (12) appears
both in the numerator and in the denominator. This implies
that for large η, the polarizability of the probe approaches the
universal limit, as it should for a perfectly reflecting surface.
In most practical situations, this behavior is not realized, either
because η 
 1 at most typical electron densities or because
η(q) decays at large q. The only exception to this rule is
expected for very high mobility 2DESs in GaAs quantum
wells, where η ∼ 1 can be reached [27].

Generally, the polarizability of the near-field probes is very
small, of the order of r3

tip, where r3
tip ∼ 10 nm is the curvature

radius of the tip. This justifies the expansion of Eq. (11) in
powers of α:

dz = E (i)
z (z0)

(
α + α2Iz + α3I2

z + · · · ). (13)

The linear-in-α term contains no information about near
fields; it is sensitive only to the reflection of the incident plane
wave from the uniform 2DES, rp. The α2 term is the largest
one that carries information about the near-field reflection. It
will be the focus of subsequent analysis, while the quantity
αIz will be called the effective polarizability. Practically, the

FIG. 2. Effective polarizability of the near-field probe αIz vs the
probe elevation z0 (in units of free-space wavelength λ0) for Drude
conduction in a 2DES. Solid lines are the results of exact integration
[Eq. (12)], and dashed lines are power-law asymptotes. Incident wave
frequency ω/2π = 1 THz, momentum relaxation time τp = 2 ps,
effective mass m = 0.067m0, background dielectric constant εb = 4,
and tip radius rtip = 10 nm.

linear-in-α contribution to the scattered far field is filtered out
by modulating the elevation of the probe above the 2DES [16].

III. ANALYSIS OF THE INDUCED DIPOLE MOMENT
FOR PARTICULAR TRANSPORT REGIMES

The dipole moment of the near-field probe contains in-
formation about nonlocal conductivity. Indeed, according to
Eq. (12), Iz is a convolution of the wave-vector-dependent
conductivity σ (q), the inverse 2D permittivity, and the height-
dependent factor e−2

√
q2−k2

0 z0 . We shall further analyze the
height dependence of effective polarizability and show that
it indeed depends on the regime of carrier transport in
the 2DES.

Before proceeding, we note that in the far-field zone, z0 �
λ0, the effective polarizability displays an inverse proportion-
ality to z0. This result is independent of the particular transport
regime in the 2DES. Indeed, in the far zone, the wave vectors
q � k0 yield the dominant contribution to the integral (12).
The spatial dispersion of conductivity does not develop at such
small wave vectors. For this reason, all further considerations
will be restricted to the near-field region k0z0 
 1.

A. Drude conductivity

The simplest model of 2DES conductivity is the Drude
model, wherein the spatial dispersion is completely absent:

σD = ne2

me(ω + i/τp)
, (14)

where n is the density of 2D electrons, me is their effective
mass, and τp is the momentum relaxation time. The resulting
height-dependent effective polarizability is shown in Fig. 2
for three characteristic carrier densities, n = 1012, 1011, and
1010 cm−2, and rtip = 10 nm. The overall dependence has two
distinct regions with different height scalings.
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The effective polarizability in this case is evaluated analyt-
ically to yield

Iz = iπσD

c

qpl

k0

{
q3

ple
−2qplz0 (Ei(2qplz0) − iπ )

− qplz0(2qplz0 + 1) + 1

4z3
0

}
, (15)

where it was convenient to introduce the wave vector of 2D
plasmons:

qpl = εbω(ω + i/τp)

2πnee2/me
. (16)

The only dimensionless parameter governing the principal
height dependence of Iz is the ratio of the probe elevation and
the 2D plasmon wavelength. At moderate heights, qplz0 � 1
(but still z0k0 
 1), the height dependence follows the z−4

0
asymptotics:

Iz(qplz0 � 1) ≈ 3iπ

8

σD

c

1

k0z4
0

. (17)

At even smaller distances, qplz0 
 1, the scaling of the polar-
izability is inverse cubic:

Iz(qplz0 � 1) ≈ εb

8z3
0

(1 + qplz0). (18)

It is remarkable that the leading term of the induced dipole
moment is independent of the carrier density at small heights.
Indeed, at large q, the dielectric function of the 2DES, ε2D, is
directly proportional to the conductivity. The integrand in (12)
becomes independent of the surface conductivity; we may
speculate that the 2D conductor acts as a perfect mirror in this
limit.

B. Hydrodynamic transport

The hydrodynamic transport mode in a 2DES is established
if the carrier-carrier collisions are so rapid that electrons be-
have as a viscous fluid. Parametrically, this corresponds to
ωτee 
 1 and qlfp 
 1, where τee is the mean free time be-
tween electron-electron collisions and lfp = v0τee is the mean
free path [28,29]. In this limit, the conductivity is given by

σhd = ne2ω/me

ω(ω + i/τp) − v2
0q2/2

. (19)

The full plot of polarization factor Iz in such a transport
mode is shown in Fig. 3. At very low heights, z0 � v0/ω, the
scaling is inverse quadratic (compared with inverse cubic for
Drude conductivity). The reason for this difference lies in the
asymptotic behavior of the conductivity σhd ∝ q−2 at large
wave vectors. The conductivity decays very rapidly at large
wave vectors (small heights); thus the 2DES does not actively
reflect the electromagnetic near fields. As a result, it fails to
build up a large dipole moment of the probe. This contrasts to
the Drude case, when Iz diverged as z−3

0 at very small heights.
Taking only the leading terms in the expansion of σhd at

large q, we get the following asymptotic behavior:

I (z0) ≈ iπ

2

σω

c

k2
s

k0z2
0

, (20)

FIG. 3. Effective polarizability of the near-field probe αIz vs the
probe elevation z0 for hydrodynamic transport in a 2DES. Solid
lines are the results of exact integration [Eq. (12)], and dashed lines
are power-law asymptotes. Incident wave frequency ω/2π = 2 THz,
momentum relaxation time τp = 2 ps, effective mass m = 0.067m0,
background dielectric constant εb = 4, tip radius rtip = 10 nm, and
Fermi velocity v0 = 106 m/s.

where σω = ne2/meω and we have introduced the wave vec-
tor of sound waves supported by the 2DES, ks = √

2ω/v0.
This asymptotic behavior, shown in Fig. 3 with dashed lines,
matches well the full expression for Iz at small heights.

C. Ballistic transport

Another limiting case for spatially dispersive conductivity
of a 2DES is realized for very long free paths, both for carrier
collisions with disorder and with each other, ωτp � 1 and
ωτee � 1. If the frequencies and wave vectors still lie in
the classical domain, ω 
 εF /v0 and q 
 kF , the ballistic
conductivity can be found from the kinetic equation with the
following result [30]:

σbal = ne2/me√
(ω + i/τp)2 − v2

0q2
. (21)

For short wavelengths, q > ω/v0, the conductivity is purely
real even at ultimately scarce collisions. This is a manifesta-
tion of the Landau damping effect. In the short-wavelength
limit, the decay of ballistic conductivity (σbal ∝ q−1) is in-
termediate between those in hydrodynamic (σhd ∝ q−2) and
Drude (σD ∝ q0) regimes. Taking such a limit for the conduc-
tivity, we evaluate the asymptotics of Iz at very small height:

Iz ≈ εb

4z3
0

p

1 + ip
, p = ε−1

b

2πσω

v0
. (22)

At a first glance, the scaling of induced dipole moment Iz ∝
z−3

0 for ballistic transport (Fig. 4) is not different from that
for Drude conductivity. However, ballistic conduction leads
to a carrier-density-dependent prefactor in the induced dipole
moment, while for Drude conduction the asymptotics is den-
sity independent. Experimentally, these two transport modes
can be conveniently distinguished by varying the 2D electron
density with the gate voltage.
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FIG. 4. Effective polarizability of the near-field probe αIz vs the
probe elevation z0 for ballistic transport in a 2DES. Solid lines are the
results of exact integration [Eq. (12)], and dashed lines are power-law
asymptotes. Incident wave frequency ω/2π = 2 THz, momentum
relaxation time τp = 2 ps, effective mass m = 0.067m0, background
dielectric constant εb = 4, tip radius rtip = 10 nm, and Fermi velocity
v0 = 106 m/s.

IV. DISCUSSION AND POSSIBLE GENERALIZATIONS

The possible generalizations of our work can be catego-
rized as “kinetic” ones and “electrodynamic” ones. In the first
case, one takes a more detailed view of the microscopic origin
of the nonlocal conductivity in different transport regimes. In
the second case, one can apply more sophisticated models of
light scattering by the tip and the surface.

From the kinetic viewpoint, the obtained results are valid
both for graphene and a 2DES with parabolic bands, such
as quantum wells based on III-V compounds. In the former
case, the carrier effective mass in expressions for the conduc-
tivity [(14), (19), and (21)] should be interpreted as εF /v2

0 ,
where εF is the carrier Fermi energy and v0 = 106 m/s is
the constant Fermi velocity. In the case of a parabolic-band
2DES, the Fermi velocity is dependent on the Fermi energy:
v0 = √

2meεF , where me is the constant effective mass.
It is possible to extend the discussion to the quantum

regimes of electron conductivity realized at q ∼ kF , where kF

is the Fermi wave vector. While the detailed analysis of such
cases is beyond the scope of this paper, we note a very differ-
ent scaling of ultraquantum conductivities for graphene and a
parabolic-band 2DES. In the case of graphene, σ (q � kF ) ∝
q−1 [22], while in the case of a parabolic-band 2DES, σ (q �
kF ) ∝ q−5 [30]. A rapid drop in the conductivity at large q
in a parabolic-band 2DES should lead to height-independent
behavior of Iz at z0kF ∼ 1.

Strictly speaking, the method presented works fine only for
translation-invariant 2DESs, i.e., those without roughness and
defects. Only in such cases is the concept of wave-vector-
dependent conductivity well defined. At the same time, we
expect that the method would work both for very long scale
roughness and for very short scale roughness. In the former
case, when the roughness correlation length lc exceeds the
free path v0τp and v0/ω, the nonlocal conductivity can be
measured in each uniform section of the 2DES. In the latter
case, when the roughness correlation length lc is the shortest

(      )

FIG. 5. Effect of finite probe size on the scaling of effective
polarizability αIz. The solid line corresponds to the point dipole
model, and dashed lines correspond to the elongated dipole model
with various sizes of the dipole �r. All calculations correspond
to the Drude conductivity with n = 1012 cm−2, ω/2π = 2 THz,
τp = 2 ps, and α = 10−24 cm−3.

length scale in the problem, the method would measure the
disorder-averaged nonlocal conductivity, where the effects of
roughness are absorbed in scattering time τp.

From the electrodynamic viewpoint, the presented calcu-
lation was performed for a point-dipole model of a near-field
tip. We realize that interpretation of the current experimental
results requires more complex models, such as an elongated
dipole [31], exact conformal mappings [32], or fully numer-
ical simulations [26]. Without going into the details of such
models, we can account for “elongation” of the dipole at the
probe tip by modeling it as two charges, Q and −Q, separated
by a finite distance �r. The dipole moment can be still es-
timated as Q�r = αE (z0), where α is the tip polarizability
and E (z0) is the electric field between the two charges. The
expression for the dipole moment in such a situation is slightly
modified:

Iz = 1

k0

∫ ∞

0

2π iσ (q, ω)

c

sinh q�r

q�r
e−2qz0

q3dq

ε2D(q, ω)
. (23)

The resulting dependence of polarizability Iz on height z0

at various dipole elongations �r is shown in Fig. 5. Naturally,
the range of accessible heights for such a model is limited to
z0 > �r/2. Otherwise, the lower charge falls below the 2DES
plane, and the expression (23) formally diverges. It is also
instructive that for small heights and relatively large elonga-
tion (|z0 − �r/2| 
 z0) we restore the monopole model of the
probe. In this case, only the lower charge interacts efficiently
with the 2DES, and scaling of Iz with height can be different.

The previous calculations have been performed for iden-
tical dielectric permittivities of media above and below the
2DES, while typical 2D materials reside on substrates. This
fact can also be accounted for in future calculations. We can
expect in advance that substrates with a very large dielectric
constant would screen out the effect of 2D conductivity (no
matter whether it is local or not) on probe polarizability.

So far, we have considered the behavior of effective probe
polarizability for selected modes of transport. It is now
tempting to restore the full spatial dispersion of conductiv-
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ity σ (q, ω) from the measured complex quantity Iz(z0). This
problem is equivalent to the solution of the integral equation

Iz(z0) = 1

k0

∫ ∞

0
f (q)q3e−2qz0 dq (24)

with respect to the dimensionless function

f (q) = 2π iσ (q, ω)/c

ε2D(q, ω)
. (25)

In essence, the problem lies in finding the numerical inverse
Laplace transform [33]. Strictly speaking, this inversion re-
quires knowledge of Iz(z0) at complex values z0 which are
not accessible experimentally. Nevertheless, an experimen-
tally measured dependence Iz(z0) can be approximately fitted
as a power series in z0 with negative powers:

Iz(z0) =
Nmax∑
n=0

anz−n−1
0 . (26)

Above, the coefficients an have to be determined by the nu-
merical fitting procedure, and Nmax is chosen to ensure fitting
to the desired accuracy. Now, the solution of integral equa-
tion (24) can be sought for as a series in powers of q:

f (q) =
Nmax∑
n=0

cnqn−3. (27)

Substituting the ansatz (27) into the right-hand side of the
integral equation (24), using the fitted series (26) for the left-
hand side, and equating the coefficients at equal powers of z0,
we get

cn = ank0

2n+1n!
. (28)

Expression (28) establishes the relation between the power
series of the nonlocal conductivity in terms of q and the power
series of the probe polarizability in terms of height z0.

V. CONCLUSIONS

We have demonstrated the possibility to distinguish be-
tween transport regimes in two-dimensional electron systems
via the height dependence of the near-field tip dipole moment.
The height dependence follows the z−3

0 law for classical ballis-
tic and Drude regimes of conduction in 2DESs. In the former
case, the prefactor of the power law is dependent on the carrier
density, and in the latter case it is density independent. For
the hydrodynamic regime of carrier transport, the buildup of
dipole moment at small heights is not as rapid and obeys the
z−3

0 law.
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APPENDIX A: SOLUTION OF THE WAVE EQUATION
FOR A FIXED DIPOLE SOURCE

Here, we solve the wave equation for the vector potential
A(q, z) if the dipole moment dz of the probe is known and
fixed. Expressing the currents due to the dipole and the 2DES
in Eq. (2) explicitly, we find

(
k2

z − ∂2

∂z2

)
A(q, z) = 4π

c
[−iωdδ(z − z0) + j2D(q)δ(z)],

(A1)
where we have introduced the z component of the wave vector
k2

z = k2
0 − q2.

The equation for the component of the vector potential Az

is decoupled from currents in the 2DES, as the latter have no
out-of-plane component. It has a simple form:

k2
z Az + ∂2Az

∂z2
= 4π iω

c
dzδ(z − z0), (A2)

where we have skipped the arguments (q, z). The solution of
(5) decaying at z → ±∞ is given by

Az = Adipeikz |z−z0|, (A3)

Adip = 2π
k0

kz
dz. (A4)

We now proceed to the in-plane component of the vector po-
tential, which is governed by the currents in the 2DES solely:

k2
z A‖ + ∂2A‖

∂z2
= −4π

c
j2Dδ(z). (A5)

A formal solution of this equation has a simple exponential
form:

A‖(q, z) = A‖(q, 0)eikz |z|, (A6)

A‖(q, 0) = 2π i

ckz
j2D(q). (A7)

In order to express the in-plane vector potential via the dipole
moment, we use the nonlocal Ohm’s law for the 2D current
density (3) along with the expression for the E field via the
vector potential in the Lorenz gauge (4). In extended form, it
reads as

E‖ = ik0A‖ − q
k0

(
iqA‖ + ∂Az

∂z

)
. (A8)

The self-consistency procedure mentioned above leads us to
the explicit expression for A‖:

A‖(q, z) = −Adipeikz (|z|+z0 ) q
k0

η(q)

1 + η(q)kz/k0
. (A9)

APPENDIX B: RADIATION OF A DIPOLE ABOVE A 2DES

To find the power radiated by a dipole above a 2DES, it is
necessary to compute the flux of the Poynting vector through
the surface enclosing the dipole. Due to the cylindrical sym-
metry of the problem, it is convenient to enclose the dipole
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and 2DES in a cylinder with the axis along the z direction and
radius R → ∞. The height of the cylinder H is chosen such
that λ0 + z0 
 H 
 R. Under such conditions, the energy
flux through the side surfaces of the cylinder can be neglected.
The power flowing through the top surface of the cylinder can
be expressed as

P↑ =
∫

2πρdρSz(ρ) ≡ c

2π

∫
2πρdρ Re

[
EρH∗

ϕ

]
, (B1)

where the components of the electric and magnetic vector are
now expressed in the cylindrical coordinates.

To compute the power flow, we first switch to full coordi-
nate representation of the vector potential. Once Az(q, z) and
A‖(q, z) are known [Eqs. (5) and (6)], the ρ-dependent fields
are found using inverse Fourier transforms:

Az(ρ, z) = 1

(2π )2

∫
Az(q, z)eiqρdq

=
∫

2πqdq

(2π )2 J0(qρ)Az(q, z), (B2)

A‖(ρ, z) = 1

(2π )2

∫
A‖(q, z)nqeiqρdq

= nρ

∫
2πqdq

(2π )2 iJ1(qρ)A‖(q, z). (B3)

The necessary components of electric and magnetic fields, Eρ

and Hϕ , are found from (B2) and (B3) using the definitions
H = [∇ × A] and E = ik0A − ∇ϕ:

Hϕ (ρ, z) = ∂Aρ

∂z
− ∂Az

∂ρ
, (B4)

Eρ (ρ, z) = i

k0

∂

∂z

(
∂Az

∂ρ
− ∂Aρ

∂z

)
. (B5)

We introduce the expressions for electric and magnetic fields
(B2)–(B5) into the integral for the power flow (B1) and use
the orthogonality relation:∫ ∞

0
ρdρJν (qρ)Jν

(
q′ρ

) = 1

q
δ
(
q − q′). (B6)

This results in the following expression for the power flow:

P↑ = c

(2π )2

∫ k0

0
qdq

kz

k0
|kzA‖(q, z) − qAz(q, z)|2. (B7)

The integration limits cover only a finite range of wave vectors
q ∈ [0, k0]. Waves with larger wave vectors are evanescent
and do not contribute to the flow.

After expressing all fields via the source dipole moment dz,
the power flow acquires a very simple form:

P↑ = c|dz|2
∫ k0

0
q3dq

k0

kz

∣∣∣∣1 + e2ikzz0

1 + k0/(ηkz )

∣∣∣∣
2

= c|dz|2k4
0

∫ 1

0

(
1 − τ 2

)
dτ

∣∣∣∣1 + e2iτ (k0z0 )

1 + 1/(ητ )

∣∣∣∣
2

. (B8)

It is easy to verify that Eq. (B8) reproduces the known lim-
iting cases. For a nearly transparent 2DES, η 
 1, one gets
P = 2ω4|dz|2/3c3, which is half of the full power of dipole
emission (the other half is emitted through the bottom sur-
face of the cylinder). For a mirror-type 2DES, η � 1, one
obtains

P↑,mirror = 2ω4|dz|2
c3

(
2

3
+ 1

(k0z0)2 − sin 2k0z0

2(k0z0)3

)
, (B9)

which corresponds to the fourfold enhancement of radiated
power due to in-phase oscillation of the original dipole and
its image. For finite values of η, the radiated power is readily
evaluated numerically.

Strictly speaking, the scaled 2D conductivity in Eq. (B8)
depends on wave vector η ≡ η(q). However, radiative compo-
nents are limited to a very narrow range q ∈ [0, k0], such that
spatial dispersion of the conductivity is not yet developed. As
a result, η in Eq. (B8) can be treated as a constant η(q = 0).

APPENDIX C: POLARIZABILITY OF A DIPOLE ABOVE A
2DES IN THE PRESENCE OF EXTERNAL ILLUMINATION

An illuminated dipole is polarized according to the total
field, which is composed of the external illumination field E(i)

and the field created by the dipole itself in the presence of the
2DES, Ẽ:

dz = α

[
E (i)

z (z0) +
∫

d2q
(2π )2

Ẽz(q, z0)

]
. (C1)

The Fourier representation for the field Ez(q, z) can be ob-
tained from the known vector potentials Az(q, z) and A‖(q, z)
[Eqs. (5) and (6)]:

Ez(q, z) =
(

ik0 + i

k0

∂2

∂z2

)
Az(q, z) − ∂

∂z

qA‖(q, z)

k0
. (C2)

The first and second terms of Eq. (C2) correspond to the part
of the dipole field that is singular at z → z0. The third term
is nonsingular. Physically, it corresponds to the evanescent
field of the dipole after its reflection from the 2DES. This is
further confirmed by the fact that A‖ is proportional to 2D
sheet conductivity η(q) [see Eq. (6)]. Upon computation of
the dipole moment, only the last term in the expression for the
field (C2) should be taken into account:

Ẽz(q, z) = − ∂

∂z

qA‖(q, z)

k0
. (C3)

Introducing A‖ from Eq. (6) into (C3), we arrive at expression
(12) for the effective polarizability.
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