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Explicit derivation of the chiral and generic helical edge states for the Kane-Mele model:
Closed expressions for the wave function, dispersion relation, and spin rotation

Fatemeh Rahmati, Mohsen Amini ,* Morteza Soltani,† and Mozhgan Sadeghizadeh
Department of Physics, Faculty of Physics, University of Isfahan, Isfahan 81746-73441, Iran

(Received 3 January 2023; accepted 9 May 2023; published 17 May 2023)

Although one of the most important and intriguing features of the topological insulators is the presence
of edge states, the closed-form expressions for the edge states of some famous topological models are still
lacking. Here, we focus on the Kane-Mele model with and without Rashba spin-orbit coupling as a well-known
model to describe a two-dimensional version of the Z2 topological insulator to study the properties of its edge
states analytically. By considering the tight-binding model on a honeycomb lattice with zigzag boundaries and
introducing a perturbative approach, we derive explicit expressions for the wave functions, energy dispersion
relations, and the spin rotations of the (generic) helical edge states. To this end, we first map the edge states
of the ribbon geometry into an effective two-leg ladder model with momentum-dependent energy parameters.
Then, we split the Hamiltonian of the system into an unperturbed part and a perturbation. The unperturbed
part has a flat-band energy spectrum and can be solved exactly, which allows us to consider the remaining part
of the Hamiltonian perturbatively. The resulting energy dispersion relation within the first-order perturbation,
surprisingly, is in excellent agreement with the numerical spectra over a very wide range of wave numbers. Our
perturbative framework also allows deriving an explicit form for the rotation of the spins of the momentum edge
states in the absence of axial spin symmetry due to the Rashba spin-orbit interaction.
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I. INTRODUCTION

Since the pioneering description of the Hall coefficient of
the integer quantum Hall effect (IQHE) in terms of topological
invariants [1], the study of topological insulators has always
been one of the most fascinating fields of research and in-
novation in modern condensed-matter physics [2,3]. On one
side, topological invariants are nonlocal bulk properties of
the system which can be fully classified by the symmetries
of the Hamiltonian (in the absence of interaction) and allows
the distinction of different gapped phases of the system. On
the other side, the presence of such topological invariants is
directly related to the emergence of boundary modes (edge
states). In the IQHE, the proper topological invariant is the
integral of the k-space Berry curvature over the Brillouin zone,
which is called the Chern number and counts the number of
gapless chiral edge states of the system [1,4]. Although the
IQHE can occur only when time-reversal symmetry is broken,
it is possible to have a topological quantum state in the pres-
ence of time-reversal symmetry, which is called the quantum
spin Hall effect (QSHE). The proper topological invariant for
characterizing QSHE is the Z2 invariant that is related to the
number of boundary Kramer’s pairs localized at the edges in
a strip geometry [5–7].

An important model system with fascinating theoretical
insights to study two-dimensional QSHE is the well-known
Kane-Mele model of graphene with spin-orbit couplings
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(SOCs) [6]. This model exhibits a pair of helical edge modes
with opposite spin polarization and wave numbers, which are
connected by time-reversal symmetry. In the presence of the
axial spin symmetry, this model can be considered as two
decoupled copies of the Haldane’s model [4] for electrons
with opposite direction of spin. Therefore, in this regime each
helical edge mode can be viewed as a chiral edge mode. If
the axial spin symmetry is broken by adding the Rashba SOC
as a common spin-flipping interaction, spin is no longer a
good quantum number. In this regime, each momentum eigen-
state can generally be a linear combinations of the spin-up
and spin-down eigenstates and, hence, called generic helical
mode [8].

It is then surprising that, despite the vast amount of theoret-
ical [8–18] and experimental [19–24] researches on the helical
edge states, an explicit closed-form analytic expressions for
different properties of such kinds of edge states (e.g., wave
functions, dispersion relations, and spin rotations) are still
lacking. Analytical investigations so far have been restricted
to the use of a combination of analytical and numerical meth-
ods. For instance, the chiral edge states of the Haldane model
are studied in Ref. [9] by using the Harper equation to find
the wave-function transfer relation between two edges in a
graphene ribbon. The same method is used to study the edge
states of the Kane-Mele model for similar systems [10].

In this paper, we introduce a framework that allows de-
riving the explicit analytical expressions for the edge states
of the Kane-Mele model both in the presence and absence of
the Rashba SOC (with and without the axial spin symmetry).
We consider a ribbon geometry of the honeycomb lattice with
translational symmetry along the longitudinal direction which
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allows us to use the corresponding Fourier transform opera-
tors and write the Hamiltonian in the momentum space. We
then introduce a map between the transformed Hamiltonian
and a two-leg ladder structure with momentum-dependent
hopping and on-site parameters. We show that the resulting
Hamiltonian for this system can be split into two parts. The
first term H0(kx ), which could be solved nonperturbatively
supports zero-energy edge states with flat bands. The sec-
ond term H1(kx ) can be treated perturbatively to obtain a
closed-form expression for the wave functions and energy
dispersion relations. Our analysis shows that the first-order
perturbation correction is sufficient to achieve an excellent
agreement between the resulting solution and their numerical
counterparts. We also derive explicitly the rotation of the spin
of the momentum eigenstates when the axial spin symmetry
breaks in a helical edge state.

The rest of the paper is organized as follows. In Sec. II,
we describe the topological model employed in this paper.
Section III contains a detailed introducing of our perturbative
framework to derive the edge states of the system in different
symmetry cases for the axial spin symmetry. This framework
requires a map between the edge states of the ribbon geom-
etry and a two-leg ladder model with momentum-dependent
hopping and one-site energies which is discussed here. This
section also provides the resulting explicit expressions derived
using this approach and a comparison with the exact numeri-
cal results. We finally conclude with a summary in Sec. IV.

II. MODEL HAMILTONIAN

We consider the Kane-Mele model in a ribbon geometry
of a two-dimensional honeycomb lattice with zigzag edges,
which is shown in Fig. 1(a). The Hamiltonian of the Kane-
Mele model is [5,6] as follows:

HKM = t
∑

〈i, j〉,α
c†

iαc jα + iλSO

∑
〈〈i, j〉〉,αβ

vi jc
†
iαsz

αβc jβ

(1)
+ iλR

∑
〈i, j〉,αβ

c†
iα (s × d i j )

z
αβc jβ + λν

∑
iα

ξic
†
iαciα.

The first term describes the nearest-neighbor (NN) hopping
with amplitude t in which c†

iα and ciα represent the creation
and annihilation operators of an electron with spin α at site i,
and 〈i, j〉 runs over all the NN sites. The second term is the
intrinsic SOC with coupling λSO between the next-nearest-
neighbor (NNN) sites shown by 〈〈i, j〉〉 in the summation
index where s = (sx, sy, sz ) are the Pauli matrices for physical
spins. The factor vi j = d i×d j

|d i×d j | = ±1, with di and d j as the two
nearest bonds connecting NNN sites i and j, depends on the
hoping path and shown in Fig. 1(a).The third term represents
the Rashba SOC where λR controls the Rashba interaction
strength, and d i j represents a unit vector pointing from site
j to site i. The last term describes the staggered sublattice
potential of strength λν in which ξi = ±1 on each sublattice.

III. ANALYTIC PERTURBATIVE APPROACH

In this section, we will present our perturbative approach,
which allows us to derive analytical expressions for the helical
edge states of the topological Kane-Mele model. We consider

FIG. 1. (a) Schematic of a two-dimensional ribbon with honey-
comb lattice structure and zigzag edges. The ribbon is infinite along
the x direction and finite along the y direction. The nearest-neighbor
hopping parameter is t , and the second-nearest hopping parameter
λSO depends on the clockwise (ν = −1) or counterclockwise (ν =
+1) direction of the hopping. The corresponding unit cell of the
ribbon is shown with a rectangle with the dashed line and width
a = 1. (b) The sketch of corresponding effective chain of the ribbon
geometry parametrized with kx , which is obtained after performing
the Fourier transformation (2). The momentum-dependent hopping
and on-site parameters t ′, t ′′, and ±� shown with different types of
lines and colors.

two different cases: one where the Rashba SOC is absent
and the other where it is present. In the first case due to
the existence of the axial spin symmetry, one can take only
a single-edge mode with up- or down-spin orientation and
consider it as a chiral edge mode. Instead, in the second case
where the axial spin symmetry is broken the helical edge
eigenstates are generally linear combinations of both spin-up
and spin-down eigenstates. In what follows, we will derive
and discuss different aspects of the above-mentioned edge
states in detail.

A. Chiral edge state wave function

We start our approach by first considering the Hamiltonian
of Eq. (1) without the Rashba term λR = 0 and let the stag-
gered sublattice potential vanishes, λν = 0 for simplicity. In
this regime, the model contains two copies of the Haldane
model, one associated with each spin direction and has two
chiral edge states with opposite chiralities and opposite prop-
agation directions. Therefore, we can consider our system as
two decoupled Haldane models and to shorten the notations
can drop the spin indices in this Section. Let us call the
right-moving mode (the edge mode moving along the positive
direction) |ψ+

edge〉 and its counterpart mode moving in the
opposite direction and carrying the opposite spin polarization
|ψ−

edge〉.
As we mentioned [and shown in Fig. 1(a)], we will con-

sider a horizontal ribbon geometry of the honeycomb lattice
that has finite width W (the number of zigzag chains) in
the y-direction with zigzag edges and infinite length in the x
direction. It is important to note that, in what follows, we will
focus only on the top (or equivalently bottom) edge state of
the ribbon, therefore, width W has to be sufficiently large to
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avoid the overlap between the wave functions localized on the
top and bottom edges. In our numerical computation we take
W = 50. Due to the translational invariant of the system along
the x direction, the Bloch wave number in this direction kx is
a good quantum number. Therefore, we can use the following
momentum representation of the electron operator as

c†
j = 1√

Nx

∑
kx

c†
kx

e−ikxx j , (2)

where Nx is the number of sites in the x direction. This will
map the Hamiltonian of Eq. (1) to a linear chain of sites along
the y direction, which is shown in Fig. 1(b). After Fourier
transformation, the resulting Hamiltonian can be separated
into two parts (for the reason that will be clear below) as the
following:

H(kx ) = H0(kx ) + H1(kx ), (3)

where

H0(kx ) =
∑
m=2

m:even

tc†
kx,m+1ckx,m

+
∑
m=1

t ′′(kx )c†
kx,m+2ckx,m + H.c., (4)

and

H1(kx ) =
∑
m=1

m:odd

t ′(kx )c†
kx,m+1ckx,m + H.c.

+�(kx )
∑
m=1

(−1)m+1c†
kx,m

ckx,m. (5)

In the above equations, the following parameters are de-
fined: t ′′(kx ) = 2λSO sin( kx

2 ), t ′(kx ) = 2t cos( kx
2 ), and �(kx ) =

2λSO sin(kx ). Here, we should emphasize that we considered
the unit-cell length to be a = 1 and used the gauge transfor-
mation [25] ckx,m → ei(kx/2)ckx,m only on the sites located on
the right side of the unit cell (with index m = 2, 3, 6, 7, . . .)
to get rid of the factor ei(kx/2) in hopping amplitudes t ′ and t ′′
as well.

Before proceeding further, some clarification of our ap-
proach is helpful. Let us take the point kx = π for which
the term H1(kx ) vanishes, H1(kx = π ) = 0. It is due to the
vanishing of the momentum-dependent parameters t ′ and �,
namely, t ′(kx = π ) = �(kx = π ) = 0. Therefore, due to the
existence of the zero-energy edge states in the spectrum of the
Hamiltonian H(kx = π ), the term H0 should provide zero-
energy edge states at this point. Our numerical check shows
that this is not only true for kx = π , but also for any kx. It
means that the edge states of the Hamiltonian H0(kx ) form
a zero-energy flat band. In what follows, we first take the
term H0(kx ) and derive the wave function associated with its
zero-energy flat band. Then, we will use this wave function
to take into account the effect of H1(kx ) perturbatively, which
makes the edge band dispersive.

From the Hamiltonian (4), it is obvious that the only
relevant parameters in Fig. 1 are the momentum-dependent
hopping amplitudes t ′′ and t . Indeed, this system is equivalent
to a two-leg ladder model shown in Fig. 2. The unit cell of this
ladder is a plaquette composed of four sites a–d . We denote

FIG. 2. Sketch of the of two neighboring plaquettes of the corre-
sponding two-leg ladder system of the Hamiltonian H0(kx ) obtained
for the chain shown in Fig. 1(b). Each plaquette consists of four
different sites a, b, c, and d .

the operators b†
n and c†

n as the creation operators for sites
on the top leg, and at the same time, the operators a†

n and d†
n

for the same thing on the bottom leg in the nth plaquette. This
allows to write the Hamiltonian of Eq. (4) as the following:

H0(kx ) =
N∑

n=1

φ†
nHφn + φ

†
n+1T φn, (6)

where φ†
n = (a†

n b†
n c†

n d†
n ) and N is the total number of pla-

quettes. Here, H and T are two 4 × 4 matrices defined as

H (kx ) =

⎡
⎢⎢⎢⎣

0 0 t ′′(kx ) 0
0 0 t −t ′′(kx )

t ′′(kx ) t 0 0
0 −t ′′(kx ) 0 0

⎤
⎥⎥⎥⎦, (7)

and

T (kx ) =

⎡
⎢⎢⎢⎣

0 0 t ′′(kx ) t
0 0 0 −t ′′(kx )

t ′′(kx ) 0 0 0
t −t ′′(kx ) 0 0

⎤
⎥⎥⎥⎦. (8)

As stated above, we are interested in the zero-energy edge
states. Thus, we need to find the solution to the following
Schrödinger equation:

H0(kx )|ψ+
edge(kx )〉 = 0. (9)

Based on our numerical check, we propose a solution that has
zero amplitudes on sites cn and dn, which means

〈0|c†
nd†

n |ψ+
edge(kx )〉 = 0, (10)

where |0〉 is the fermionic vacuum state. Therefore, the single-
particle edge state of the system is given by

|ψ+
edge(kx )〉 =

∑
n

[
ψa

n (kx )a†
n + ψb

n (kx )b†
n

]|0〉, (11)

in which ψa(b)
n is the amplitude of the edge state on the a(b)

site of the nth plaquette. By inserting this wave function into
the eigenvalue equation of Eq. (9) we obtain the following
equation:

t1

[
ψa

n (kx )

ψb
n (kx )

]
+ t2

[
ψa

n+1(kx )

ψb
n+1(kx )

]
= 0, (12)
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where

t1 =
[

0 t ′′(kx )

−t ′′(kx ) t

]
, (13)

and

t2 =
[

t −t ′′(kx )

t ′′(kx ) 0

]
. (14)

Here and in the following, we drop the momentum depen-
dence of the parameters t1 and t2 for notational brevity.
However, based on Eq. (12), the following recursion relation
can be obtained [

ψa
n+1(kx )

ψb
n+1(kx )

]
= M

[
ψa

n (kx )

ψb
n (kx )

]
, (15)

with

M = −(t2)−1t1, (16)

which can be solved simply as[
ψa

n+1(kx )

ψb
n+1(kx )

]
= Mn

[
ψa

1 (kx )

ψb
1 (kx )

]
, (17)

whereas the initial components (ψa
1 , ψb

1 ) are known. It is now
convenient to calculate the powers of M using its eigenbasis.
In doing so, we write the explicit form of M using Eqs. (13),
(14), and (16) as

M =
[

1 − t
t ′′

− t
t ′′ 1 + (

t
t ′′

)2

]
. (18)

This matrix has two eigenvalues and two eigenvectors corre-
spondingly, which can be obtained by writing M in terms of
the Pauli matrices σ i and identity matrix I2×2 as

M =
[

1 + 1

2

(
t

t ′′

)2
]

I2×2 − t

t ′′ σ
x + 1

2

(
t

t ′′

)2

σ z. (19)

Therefore, the eigenvalues are the following:

�1,�2 =
[

1 + 1

2

(
t

t ′′

)2
]

∓ t

t ′′

√
1

4

(
t

t ′′

)2

+ 1. (20)

It is obvious that �1 < 1 and �2 > 1 and, hence, we need
only to obtain the corresponding eigenvector of the �1 for a
convergent solution which reads as follows:

[
αa

1 (
kx )

αb
1(
kx )

]
=

⎡
⎢⎣sin

(

kx

2

)
cos

(

kx

2

)
⎤
⎥⎦, (21)

where 
kx = tan−1( 2t ′′(kx )
t (kx ) ). Now, one can immediately use

ψa
1 (kx ) = αa

1 (
kx ) and ψb
1 (kx ) = αb

1(
kx ) in Eq. (17) to
obtain the components of the wave function at the nth
plaquette as ψa

n+1(kx ) = [�1(kx )]n sin( 
kx
2 ) and ψb

n+1(kx ) =
[�1(kx )]n cos( 
kx

2 ). Figure 3 shows a graphical representa-
tion of the absolute values of the wave-function components
|ψa

n+1(kx )| and |ψb
n+1(kx )| as a function of the plaquette num-

ber n in the logarithmic-linear scale for two different values

FIG. 3. The logarithmic-linear plot of the absolute values of the
nonzero amplitudes of the chiral edge states as a function of the
plaquette index n (shown in Fig. 2) for the Hamiltonian H0(kx )
evaluated for two different wave-numbers kx = π, 5π/4. The plot
with square (circle) symbols corresponds to the amplitudes of the
edge states on the a(b) sites.

of the wave-number kx = π (solid lines) and kx = 5π
4 (dashed

lines). It is obvious that the wave function with a larger wave
number decays more rapidly and, hence, its localization length
is smaller.

Using the expressions obtained above for the components
of the wave function, it is now possible to write the explicit
expression of the edge state in Eq. (11) as

|ψ+
edge(kx )〉 = γ

N∑
n=1

[�1(kx )]n−1

×
[

sin

(

kx

2

)
a†

n + cos

(

kx

2

)
b†

n

]
|0〉, (22)

in which the coefficient γ is the normalization factor of the
wave function, and it is easy to show that γ (kx ) = 1√

1−[�1(kx )]2
.

Before ending this section we should emphasize that the other
edge mode |ψ−

edge(kx )〉 that has both the opposite spin and
the moving direction (left-moving mode) can be achieved by
simply replacing λSO with −λSO in the above expressions.
So far, we have obtained the edge states of the H0(kx ) and
will use them in the following section to take into account
the effect of H1(kx ) and derive the edge band dispersion
relations.

B. Chiral edge states dispersion relation

It is now the time to calculate the effect of considering
the term H1(kx ) on the flat edge band and its corresponding
wave function, which we obtained until now. Let us start to
calculate the energy corrections by applying the first-order
perturbation theory. The standard first-order correction in the
perturbation theory can be obtained by calculating the ex-
pectation value of the perturbing Hamiltonian H1(kx ) in the
edge states of the unperturbed Hamiltonian H0(kx ) as the
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FIG. 4. The analytical (solid lines) and numerical (points) repre-
sentation of the electronic band dispersion of the chiral edge states
[E+

1 (kx ) and E−
1 (kx ) obtained in Eq. (26)] for the Kane-Mele model

with t = 1 and λSO = 0.3 in the absence of the Rashba SOC (λR =
0). The points kx = π − kc and kx = π + kc denoted by the vertical
dashed lines are the points where the edge bands connect the valence
and conduction bands. The width of the ribbon for the numerical
calculations is W = 50.

following:

E+
1 (kx ) = 〈ψ+

edge(kx )|H1(kx )|ψ+
edge(kx )〉

= [
αa

1

(

kx

)
αb

1

(

kx

)]
[�(kx )σ x

+ t ′(kx )σ z]

[
αa

1

(

kx

)
αb

1

(

kx

)
]
. (23)

Using the wave-function components αa
1 and αb

1 given in
Eq. (21) and, after performing some algebra, we will find the
following dispersion relation for the right-moving edge state:

E+
1 (kx ) = − 3t cos

( kx
2

)
√

t2

4[t ′′(kx )]2 + 1
. (24)

By the same token, we can obtain the energy band dispersion
relation for the left-moving edge state as the following:

E−
1 (kx ) = 〈ψ−

edge(kx )|H1(kx )|ψ−
edge(kx )〉 = −E+

1 (kx ). (25)

Thus, the energy dispersion relation for the chiral edge states
of the Haldane model, which are moving towards right and
left can be written as

E±
1 (kx ) = ∓ 3t cos

( kx
2

)
√

t2

16λ2
SO sin2 ( kx

2 ) + 1
, (26)

correspondingly.
Figure 4 shows a comparison between these analytical

expressions for the band dispersions of the edge states with
the numerical band structure obtained for a zigzag ribbon. As
it is obvious, our analytical expression is in excellent agree-
ment with its corresponding numerical result for π − kc �
kx � π + kc where π ± kc are the points where the edge band
touches the bulk bands. We should note that the reason for this
excellent agreement is that, as is obvious, the edge bands for

FIG. 5. (Left side) The illustration of the hopping terms as-
sociated with the Rashba SOC and (right side) its corresponding
momentum-dependent hopping amplitudes for the chain is shown in
Fig. 1(b).

a very wide range of momentum are detached from the bulk
bands, which first allows considering a flat zero energy band
for the solution of the unperturbed part H0(kx ) (for all values
of kx) and second, the first-order perturbation correction is
sufficient due to the large energy gap between the edge and
the bulk bands. By the same reasoning, we do not need to
worry about the higher-order corrections to the edge states
wave functions.

C. Generic helical edge state analysis

Let us now consider the effect of the Rashba spin-orbit
coupling term in the Hamiltonian (1). It breaks the axial spin
symmetry of the system and, hence, the z component of the
spin of an electron is no longer conserved generally. This
means that for each value of the energy (or equivalently mo-
mentum) the edge states in the presence of Rashba interaction
can be written as linear combinations of the spin-up state
[|ψ+

edge(kx )〉] and spin-down state |ψ−
edge(kx )〉. Such resulting

k-dependent edge states are called generic edge states. In what
follows, we will try to obtain and discuss these edge states
analytically.

To investigate the helical edge states, we need to use the ex-
plicit spin dependence of the Rashba term in the Hamiltonian
(1), which results in the new hopping parameters tR = iλRSx

and t ′
R = −iλR(

√
3Sy + Sx ) as shown in Fig. 5. After perform-

ing the same Fourier transformation as in Eq. (2), one can
immediately write the following Hamiltonian for the Rashba
term:

HR(kx ) =
∑
m=2

m:even

tR(kx )c†
kx,m+1ckx,m

+
∑
m=1

m:odd

t ′
R(kx )c†

kx,m+1ckx,m + H.c., (27)

in which t ′
R(kx ) = −iλR[

√
3 sin( kx

2 )Sy + cos( kx
2 )Sx] and

tR(kx ) = tR = iλRSx. Furthermore, we need to rewrite
the parameters t, t ′, t ′′, and � used in Eqs. (4) and
(5) as the following t = t I2×2, t ′(kx ) = 2t cos( kx

2 )I2×2,
t ′′(kx ) = 2λSO sin( kx

2 )Sz, and �(kx ) = 2λSO sin(kx )Sz.
In order to proceed further, we use the basis states

|ψ+
edge(kx )〉 and |ψ−

edge(kx )〉 and write the Hamiltonian
HKM(kx ) = H(kx ) + HR(kx ) where H(kx ) and HR(kx ) are de-
fined in Eqs. (3) and (27), respectively. It is obvious that the
Hamiltonian H(kx ) only contributes to the diagonal matrix
elements, and HR(kx ) only contributes to the off-diagonal
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FIG. 6. The analytical (solid lines) and numerical (points) repre-
sentation of the electronic band dispersion of the helical edge states
[E+

KM(kx ) and E−
KM(kx ) obtained in Eq. (31)] for the Kane-Mele model

with t = 1, λSO = 0.3, and (λR = 0.1). The points kx = π − kc and
kx = π + kc denoted by the vertical dashed lines are the points where
the energy of the edge bands closes to the valence and conduction
bands. The width of the ribbon for the numerical calculations is
W = 50.

matrix elements. Thus, one can write it as

HKM(kx ) =
[

E+(kx ) ER(kx )

E∗
R (kx ) E−(kx )

]
, (28)

in which E±(kx ) given by Eq. (26) and

ER(kx ) = 〈ψ+
edge(kx )|HR(kx )|ψ−

edge(kx )〉

= −iλR
cos

( kx
2

)
√

t2

16λ2
SO sin2 ( kx

2 )+1

. (29)

Now, we can immediately rewrite this Hamiltonian as

HKM(kx ) = E+(kx )Sz + ER(kx )Sy, (30)

which results in the following energy spectrum:

E±
KM(kx ) = ±

√
|ER(kx )|2 + [E+(kx )]2

= ±
cos

( kx
2

)√
(3t )2 + λ2

R√
t2

16λ2
SO sin2 ( kx

2 )+1

. (31)

Figure 6 shows a graphical representation of the expres-
sions obtained in Eq. (31) for the energy spectrum of the chiral
edge modes with t = 1.0, λSO = 0.3, and λR = 0.1. Again,
it is obvious that for a wide range of wave-numbers kx, the
analytical perturbation corrections to the edge band dispersion
relation are in complete agreement with the numerical band
structure obtained for a ribbon with zigzag edges. The only
deviations are found near the energies close to the bulk bands.
The reason for this discrepancy for very high-energy states is
that in the vicinity of bulk bands one needs to consider the
higher-order corrections in the perturbation analysis.

D. Spin rotation of the momentum eigenstates

The last quantity of interest is the rotation of the spin of the
momentum eigenstates. This is an important issue since, in the
presence of the Rashba interaction, the electron spin compo-
nent along a fixed direction is not necessarily a good quantum
number. As we already discussed, the spins of the new edge
state moving in the right and left directions can be rotated with
respect to a fixed quantization axis and are generally linear
combinations of the old spin-up and spin-down eigenstates.
According to the Hamiltonian (30), it is now possible to obtain
the new edge states |ψ↑

R 〉 and |ψ↓
R 〉, which are the edge states

in the presence of Rashba term in terms of the |ψ+
edge〉 and

|ψ−
edge〉 as the following:

|ψ↑
R 〉 = cos

(

′

2

)
|ψ+

edge〉|↑〉 + i sin

(

′

2

)
|ψ−

edge〉|↓〉, (32)

and

|ψ↓
R 〉 = − sin

(

′

2

)
|ψ+

edge〉|↑〉 + i cos

(

′

2

)
|ψ−

edge〉|↓〉,
(33)

where

tan(
′) = λR

3t
. (34)

This shows that although the spins of the right- and left-
moving states are still opposite, the rotation of the spin
quantization axis of different momentum eigenstates does not
depend on their momentum kx. This is in contrast to the
usual treatment of the generic helical edge states in which a
momentum-dependent rotation of the spin of the momentum
eigenstates is expected [8,16,17,26]. However, our analysis
shows that, within the first-order perturbation theory, this is
a constant rotation matrix. Before closing this subsection it is
worth commenting on the difference between the analytical
edge states of Eqs. (32) and (33) and their exact numerical
results. In our analysis, we found that our analytic solutions
for the wave function are in very good agreement (∼95%)
with the exact numerical eigenstates for the states with mo-
mentum kx ≈ π close to the Dirac point. However, for the
states away from the Dirac point, the approximated wave
functions start to deviate from the exact numerical wave func-
tions depending on their momentum difference to the Dirac
point.

IV. CONCLUDING REMARKS

Despite their rather long history and important roles in
the physics of topological insulators, the edge states of some
well-known topological models were not derived explicitly. In
this paper, we aimed at providing a fascinating perturbative
framework that allows obtaining the helical edge states of
the Kane-Mele model analytically. In our analysis, we con-
sidered two different regimes. The first regime is the one in
which the Rashba SOC vanishes and, hence, the edge state
for each spin direction can be viewed as a chiral edge mode.
In contrast, in the second regime, the spin quantum number
is no longer a good one due to the presence of Rashba SOC
and the momentum eigenstates obtained as combinations of
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up and down spins. We have derived analytical expressions
for the wave functions and their energy spectra of the chiral
and (generic) helical edge states. Finally, we presented that
the rotation of the spin-quantization axis takes place with a
momentum-independent angle within the first-order perturba-
tion theory, which we argued to be sufficient for momenta
close to the time-reversal invariant point kx = π . Moreover,
our analytical perturbative approach can, in principle, provide
a way to obtain the closed-form expressions for the Green’s

function and other related transport quantities, such as those
obtained in Refs. [15,27,28].
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