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Two copies of spin helices with stretching pitch and compensating helicity
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Persistent spin helix (PSH) manifests itself as an effective knob to tackle spin decay inevitably occurring
in disordered two-dimensional electron gases. Here, for ordinary (110)-oriented two-subband GaInAs wells
subjected to top and back gate voltages, we theoretically achieve adjusting the Dresselhaus terms of the two
bands while meanwhile consistently pinning the system at symmetric configuration [i.e., locking the Rashba
spin-orbit (SO) terms to zero], thus enabling simultaneous formation of two copies of PSHs of flexible control.
Strikingly, we are able to stretch the pitch—spin density wave length—of PSH by far more than one period,
enabling helix-stretch functional spin field-effect transistor (FET), with both on and off states protected by the
PSH symmetry. Moreover, we attain a scenario in which the helicities of the two copies of PSHs are sufficiently
compensated. This makes possible a new concept: “orbit (band) filter,” which resembles spin FET while with
novel functionality of orbit filtering, opening up a new route towards spintronic and orbitronic combined
applications.
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I. INTRODUCTION

The spin-orbit (SO) interaction facilitates coherent spin
manipulation [1,2], and is of profound importance for diverse
fields of condensed matter such as topological insulators [3]
and Majorana fermions [4,5]. However, the SO interaction
inevitably causes spin decay and rotation-angle randomization
[6–8], which acts as fundamental challenges, not only limiting
the functionality of SO based devices such as spin field-effect
transistor (FET) but also setting great restrictions in quantum
information science.

The persistent spin helix (PSH), which features invariance
with respect to spin rotations [SU(2) symmetry] and is robust
against any time-reversal conserving interaction [9–17], pro-
vides a route to overcome spin decay occurring in disordered
two-dimensional electron gases (2DEGs) [18–22]. Since the
experimental verification of PSH through transient spin grat-
ing spectroscopy [11] and time-resolved Kerr rotation [12],
it has been exploited in various different forms including the
drifting PSH driven by an in-plane electric field [23–27] and
the spin relaxation anisotropy mediated by an external mag-
netic field [28,29], as well as its recent extension to Josephson
junctions [30,31] and even cavity photons [32]. Our recent
proposals on the stretchable PSH [33] and its symmetry break-
ing [34] as well as the PSH-based persistent skyrmion lattice
[35], further manifest the importance of PSH.
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Here, we theoretically demonstrate the emergence of
two copies of PSHs, having not only stretchy pitch—spin
density wave length—but also compensating helicity, in
(110)-oriented GaInAs wells with two subbands. We utilize
a technique, which relies on a combination of top (VT) and
back (VB) gates [Fig. 1(a)]. With the help of self-consistent
calculation of the Poisson and Schrödinger equations under
the Hartree approximation, we obtain a full dual-gate multi-
band SO control [36]. In particular, we achieve adjusting the
Dresselhaus SO couplings of the two bands while meanwhile
locking the Rashba SO terms to zero, enabling simultaneous
formation of two copies of PSHs (one for each band). Strik-
ingly, we are able to stretch the pitch of PSH by far more
than one period, enabling helix-stretch functional spin FET
[Fig. 2(a)], which works in two-dimensional (2D) diffusive
regime with both on and off states protected by the PSH sym-
metry. Further, we attain a scenario that the helicities of the
two copies of PSHs are sufficiently compensated [Fig. 1(e)],
resulting in persistent spin textures in both real and momen-
tum spaces. This makes possible a new concept: “orbit (band)
filter” [Fig. 2(b)], which resembles spin FET while with novel
functionality of orbit filtering, opening up a new route towards
spintronic and orbitronic combined applications.

II. THEORETICAL FRAMEWORK: FROM A 3D
TO AN EFFECTIVE 2D HAMILTONIAN

We start with the three-dimensional (3D) Rashba-
Dresselhaus SO Hamiltonian for electrons hosted in
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FIG. 1. (a) Growth profile of a (110)-oriented Al0.48In0.52As/
Ga0.47In0.53As well subjected to top (VT) and back (VB) gates, and
(b) its potential profile and wave functions of two subbands. (c) Three
distinct regimes of dual-gate SO control: (i) α1,2 = 0 (green); (ii)
α2 = 0 (blue); and (iii) β1 + β2 = 0 (red). The contours of constant
density (in unit of 1011 cm−2; gray) are also shown. (d) SO coeffi-
cients (upper panel: interband; lower panel: intraband) against VT and
VB along the line of α1,2 = 0 in (c). Black circle in (c) and (d) marks
the “overlap” between regimes (i) and (iii). (e) Gate control of two-
band PSHs via βν (ν = 1, 2), the value of which complies with the
lower panel in (d). The PSH for band 2 (green arrows) is greatly
stretched, though only one period of stretching with β2 ranging from
0.1 to 0.2 meV · nm is shown, as guided by the vertical and curved
(dashed) black lines; the PSH for band 1 (pink arrows) essentially
maintains the same pitch, cf. β1 and β2 in the lower panel of (d). The
shadowed regions at β1 = −β2 = −0.18 meV · nm indicate that the
helicities of the copies of PSHs are sufficiently compensated. (f), (g)
Schematic of opposite Dresselhaus fields for the first (g) and second
(f) bands, with β1 < 0 and β2 > 0.

(110)-oriented wells in a reference frame of x||[001], y||[11̄0],
and z||[110] (for convenience):

H = HQW + β(z)σzky + α(z)(σykx − σxky), (1)

where HQW = (k2
x + k2

y )/2m∗ + k2
z /2m∗ + Vsc(z) is spin in-

dependent, with m∗ the effective electron mass, kx,y,z the
wave vector components, and Vsc the self-consistent poten-
tial comprising the structural Vw, the electron Hartree Ve,
the doping Vd, and the gate Vg(VT,VB) contributions. The
second (third) term describes the Dresselhaus (Rashba) SO

interaction, in which β(z) = −(1/2)[kzγ (z)kz + γ (z)(2k2
x −

k2
y )] and α(z) = ηw∂zVw + ηH∂z(Vg + Ve + Vd ) define the cor-

responding SO strength [37] and σx,y,z are the spin Pauli
matrices. Here, ηw and ηH contain bulk quantities of the well
layer [33,35,38], and γ (z) the layer-dependent bulk Dressel-
haus parameter. Note that, for β(z), only dominant terms are
kept, as widely done in literatures [8,21,39], and for the other
terms, see the Supplemental Material (SM, Sec. I) [40].

By projecting the 3D form [Eq. (1)] onto the two spin-
degenerate eigensolutions of HQW: 〈r|k, ν, σ 〉=eik·rψν (z)|σz〉,
ν = 1, 2, σz = ↑,↓, with energies εν,k = εν + h̄2k2/2m∗,
where k is the in-plane electron wave vector and εν is the νth
energy level, we obtain the 4×4 2D Hamiltonian

H =
(

h̄2k2

2m∗ + ε+

)
1 ⊗ 1 − ε−τz ⊗ 1 +HRD, (2)

in which ε± = (ε2 ± ε1)/2, τx,y,z denote the “pseudospin”
Pauli matrices in the orbital (band) subspace, and HRD de-
scribes the 2D Rashba and Dresselhaus couplings

HRD = 1

2
gμB

∑
ν=1,2

[
τν ⊗ σ · Bν

SO + τx ⊗ σ · B12
SO

]
, (3)

with g the electron g factor, μB the Bohr magneton, and τ1,2 =
(1 ± τz )/2. The intraband SO field reads

Bν
SO = − 2

gμB
k

[
αν (sinθ x̂ − cos θ ŷ) + 1

2
βν sin θ ẑ

]
. (4)

Here we have defined tan θ = ky/kx, and the intraband SO
couplings αν = 〈ν|α(z)|ν〉 (Rashba) and βν = β1,ν − β3,ν

(Dresselhaus), with β1,ν = 〈ν|kzγ (z)kz|ν〉 the linear term hav-
ing interface contribution [2,37] and β3,ν = 〈ν|γ (z)|ν〉k2/4
the cubic renormalization. The interband SO field is written
as

B12
SO = − 2

gμB
k

[
η(sinθ x̂ − cos θ ŷ) + 1

2
 sin θ ẑ

]
, (5)

where η = 〈ν|α(z)|ν ′〉 (Rashba) and  = 〈ν|β(z)|ν ′〉 (Dres-
selhaus) denote the interband SO couplings. For detailed
derivations of 2D Hamiltonian including both the first and
third harmonic terms, see the SM (Sec. I) [40].

III. RESULTS AND DISCUSSION

A. Three distinct regimes for dual-gate SO control

We consider an Al0.48In0.52As/Ga0.47In0.53As/Al0.48In0.52

As quantum well grown along the z||[110] direction, of width
24 nm subjected to top (VT) and back (VB) gates [Fig. 1(a)],
similar to experimental samples of Ref. [41] while with two
bands [Fig. 1(b)]. Our structure contains two symmetrically
doped layers of width 6 nm sitting 18 nm away from ei-
ther side of the well, with the donor concentration ρ =
10×1018 cm−3. By adjusting VT and VB, which may compen-
sate each other in varying the well symmetry, we achieve three
distinct regimes for SO control: (i) Rashba terms α1 and α2

are simultaneously locked to zero, following the well being
pinned at symmetric configuration [green line in Fig. 1(c)];
(ii) α2 maintains zero but α1 is largely finite [blue line in
Fig. 1(c)]; and (iii) Dresselhaus terms β1 and β2 have equal
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FIG. 2. Side view of dual-gate helix-stretch functional spin FET
(a) and orbit filter (b). The labels S and D respectively denote fer-
romagnetic source and drain with the 2DEG channel sandwiched in
between, and 1 (2) stands for the first (second) band. (c)–(f) Coherent
superposition of two copies of PSHs, when s1(0) = s2(0) = |↑x〉
(c), (d); s1(0) = s2(0) = |↑xz〉 (e); and s1(0) = |↑y〉, s2(0) = |↑x〉
(f), where |↑xz〉 refers to the spin state pointing along the direction
bisecting the angle between x and z axes. The size of circles (arrows)
denote sz (sx,y), and red circles stand for spin up. In (c), β2 = −2β1;
in (d)–(f), β2 = −β1, with β1 = −0.18 meV nm [Fig. 1(e)].

strength but opposite signs [red line in Fig. 1(c)]. These three
regimes underlie our PSH control, as we discuss next.

B. PSH pitch stretching and helix-stretch functional
spin-FET in symmetric well

In regime (i), since the Rashba α1 and α2 both identically
vanish, the overall SO field within the νth band is solely
determined by the Dresselhaus field Bν

D, which is intrinsically
perpendicular to the 2DEG plane [Figs. 1(f) and 1(g)], ensur-
ing simultaneous formation of two copies of PSHs (one for
each band). In particular, for band 2, we are able to enhance
the Dresselhaus strength β2 by nearly a factor of four as VB

(≈ VT) varying from −0.5 to 0.5 eV [Fig. 1(d)], resulting
in the PSH pitch, P2 = 2π/Q2, Q2 = m∗β2/h̄2, a stretch of
far more than one period, see the stretching green arrows
from y = 5.05 to 10.05 µm in Fig. 1(e). This offers a unique
platform for 2D diffusive spin-FET functioning for disordered
electrons [Fig. 2(a)], with both on and off states controlled by
Vg(VT,VB) and protected by the PSH symmetry, robust against
any time-reversal conserving interactions (e.g., disorder). In
contrast, regarding band 1, we reveal that β1 exhibits inertia
against Vg(VT,VB), thus the corresponding PSH essentially
maintains unstretched [pink arrows in Fig. 1(e)].

C. Subband-selective PSH in asymmetric well

The Rashba terms are usually nonzero in structurally
asymmetric wells [42]. Interestingly, for 2DEGs of double

occupancy, due to delicate interplay of distinct SO contri-
butions from several constituent potentials [i.e., Vw, Ve, Vd,
and Vg(VT,VB)], we reveal that the electrons occupying the
second band may see a local symmetry such that α2 vanishes
even in the well with an overall asymmetry (though α1 is
nonzero). This refers to our regime (ii), in which the PSH only
survives for the second band, allowing subband-selective PSH
control in asymmetric wells. And, here we achieve continuous
selective control of the PSH, see in Fig. 1(c) the blue line,
along which the SO manipulation is given in the SM (Sec. IV)
[40].

D. PSHs with compensating helicity: Orbit (pseudospin) filter

We attain a scenario which features an overlap between
regimes (i) and (iii), namely the relations α1 = α2 = 0
and β1 = −β2 simultaneously hold, see the black circle in
Figs. 1(c) and 1(d). The former relation, originating from the
well being pinned at symmetric configuration, ensures that
the two copies of PSHs—one for each band—form simultane-
ously. And, the latter one leads to the two PSHs being of not
only equal pitch P1 = P2, Pν = 2π/|Qν |, Qν = m∗βν/h̄2, but
also opposite helicity, see in Fig. 1(e) the lower (band 1) and
upper (band 2) shadowed regions. The compensating helicity
of the two PSHs directly follows from that the first- and
second-band electrons see the SO field of opposite directions
[cf. Figs. 1(f) and 1(g)].

These features underneath the two copies of PSHs make
possible a new concept: “orbit (band) filter.” It resembles
spin FET while embraces novel functionality of orbit filtering
[Fig. 2(b)], which is controllable by Vg(VT,VB), opening up
a new route towards spin-orbitronic applications. And, the
electrons occupying the first band in Fig. 2(b) are filtered
out due to opposite spins between the 2DEG channel and the
drain, facilitating band-selective spin manipulation.

In contrast to (110) wells considered here, note that in
(001) wells, as we recently proposed persistent skyrmion lat-
tice formed by the so-called two-band “crossed” PSHs [35],
the SO fields of the two bands align in the 2DEG plane and are
orthogonal. Also, to stretch the PSH in (001) wells, one needs
to tune the Rashba and Dresselhaus SO terms independently
so that the two terms are not only adjusted simultaneously but
also locked to equal strengths [33,34]. Thus, in practice, it is
essentially not feasible to achieve the orbit filter by resorting
to a well grown along the (001) direction.

E. Robust persistent spin textures in real space:
Spatial superposition of two copies of PSHs

The unidirectional Dresselhaus field for (110) wells
defines the persistent spin texture in momentum space
[44–47]. Now, we move to spatial superposition of PSHs
with compensating helicity. For realistic considerations, we
take into account the presence of spin-independent potential
V (r), which may arise from a nonmagnetic disorder, to
determine robust eigenspinors for 2DEGs hosted in (110)
wells with two bands. Then, the electron Hamiltonian reads,
Him = H + (1 ⊗ 1)V (r), withH given in Eq. (2). For GaAs
and GaInAs based wells of typical electron densities such that
the Fermi wave vector is far away from the crossings of energy
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dispersions of the two bands, the interband terms
can be treated as a perturbation [35,48]. Accord-
ingly, we have Him → ∑

ν τν ⊗Hν
im, with Hν

im =
[εν + h̄2k2/2m + V (r)]1 + (1/2)gμBBν

Dσz, which admits

eigenstates of the form ψ
↑z
ν (r) = φ(r)ei Qν y

2 |↑z〉 and

ψ
↓z
ν (r) = φ(r)e−i Qν y

2 |↓z〉. Also, the function φ(r) fulfills the
spin-independent equation [−(h̄2/2m∗)∇2 + V (r)]φ(r) =
(ε − εν + m∗β2

ν /8h̄2)φ(r), where ε is the eigenvalue for
either ψ

↑z
ν (r) or ψ

↓z
ν (r). Thus, the two spin states are doubly

degenerate owing to time reversal symmetry and are robust
against any nonmagnetic scatterings. The underlying physics
is rooted in the commutation relation [Hν

im, σz] = 0, valid for
both bands. Next, we construct superposition of two copies of
PSHs of compensating helicity.

Let ψν (r) = φ(r)[exp(iQνy/2)|↑z〉+ exp(−iQνy/2)|↓z〉)]
/
√

2 such that the stationary spin states at r = 0 point
along the x direction for both bands ν = 1, 2. This re-
sults in the νth band spin density sν (r) = (1/2)ψ†

ν (r)σψν (r).
Then, for coherent superposition of stationary states ψ (r) =
(1/

√
2)[ψ1(r) ⊕ ψ2(r)], the overall spin density s(r) =

(1/2)ψ†(r)(1 ⊗ σ )ψ (r) reads

s(r) = 1

4
|φ(r)|2

∑
ν

[cos(Qνy)x̂ − sin(Qνy)ŷ]. (6)

Here the last term of sin(Qνy), which depends on the sign
of βν , dominates the helicity of s(r). Besides the quantum-
mechanical approach, we also obtain Eq. (6) via the semiclas-
sical approach based on 2D diffusive kinetic equation [26,27]
(see the SM, Sec. V) [40]. Accordingly, in the scenario of
β ≡ β1 (= −β2), i.e., Q ≡ Q1 (= −Q2), the helicity of the
overall spin density vanishes as a result of the helicities of s1

and s2 being sufficiently compensated (see the SM, Sec. III)
[40], leading to persistent (unidirectional) spin texture even
in real space [Fig. 2(d)]. Without lack of generality, to ob-
tain Fig. 2(d), we have taken |φ(r)|2 = 1, referring to weak
disorder, for which φ(r) → exp(ik · r). In contrast, when β1

and β2 have different magnitudes, the overall spin density s(r)
still displays partial helicity, owing to distinct pitches of the
two-band PSHs [Fig. 2(c)]. In addition, when both s1 and s2
at r = 0 are oriented in a direction bisecting the x and z axes,
the sx component exhibits similar spatial distribution to that
in Fig. 2(d), while the sz component maintains unchanged as
it aligns with the Dresselhaus field [cf. Figs. 2(e) and 2(d)].
Further, it is noteworthy that in the case of β1 = −β2, even
when s1(0) and s2(0) point along distinct directions [49], e.g.,
y and x directions for bands 1 and 2, respectively, the helicity
of coherently superimposed s(r) also vanishes [Fig. 2(f)].

F. The interband SO (� and η) contributions:
Band dispersion, spin texture, and spin relaxation

For the well being pinned at symmetric configurations
so that the two copies of PSHs form simultaneously, we
reveal that the interband Dresselhaus  vanishes due to dis-
tinct parities of the wave functions of the two bands [upper
panel of Fig. 1(d)], similar to intraband Rashba αν . When
β1 and β2 have opposite signs, referring to the scenario of
two PSHs having compensating helicity, we observe that η

maintains the feature of crossing of uncoupled (η = 0) band

FIG. 3. (a) Spin-resolved energy dispersion (scaled by a factor
of 50 for visibility) for the (110) well in the scenario of β1 = −β2,
α1,2 = 0 (intraband), and  = 0, η �= 0 (interband), as marked by
black circle in Figs. 1(c) and 1(d). The size of circles denotes the
magnitude of spin and the color stands for sz, with the red (blue)
referring to spin up (down), indicating that there is no spin hybridiza-
tion occurring. (b) A counterpart to (a) while with β1 and β2 having
the same sign. (c) Constant energy contours and spin textures at
E = EF = −0.37 eV [see (b)] [43]. The shadowed region indicates
spin hybridization of distinct spin branches. (d) 〈σz〉 versus ky, with
the line type (and color) corresponding to respective energy branches
in (c). The parameters in (c) and (d) are the same as those in (b).

dispersions, as indicated by the spin-polarized electronic
structure in Fig. 3(a). Clearly, the spins for all the four en-
ergy branches (two for each band) remain invariant, which
indicates that the spin states maintain unhybridized even in
the presence of interband coupling, greatly quenching the
detrimental effect of η on the two copies of PSHs. Also,
the D’yakonov-Perel spin relaxation [50] due to either third
harmonic terms or interband corrections is suppressed, as both
factors do not alter the fundamental symmetry of the SO field
in (110)-oriented wells (see the SM, Secs. I and II) [40]. While
the interband scattering may lead to the Elliott-Yafet type spin
relaxation [8,51,52] we obtain, the relaxation time is compa-
rable to that of the cubic Dresselhaus (D’yakonov-Perel type)
in (001) wells [10–12] in limiting the PSH lifetime (see the
SM, Sec. VI) [40]. All these justify our proposed two copies
of PSHs as well as the related applications (e.g., diffusive
spin-FET and orbit filter) in (110) wells being feasible for
experimental realizations.

For a full picture, in Fig. 3(b) we show the spin-resolved
electronic structure for the usual scenario of β1 and β2 hav-
ing the same sign [e.g., see the SM, Fig. S2] [40]. Clearly,
the original crossing for the uncoupled bands turns to be
an avoided crossing, cf. black lines and colored circles. By
setting the Fermi level EF = −0.37 eV [43], we also re-
veal anisotropic energy dispersions and the spin hybridization
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between the middle two branches, see the shadowed region
in Fig. 3(c). And, the spin polarization may even vanish near
the avoided crossing [Fig. 3(d)]. These vertex corrections
due to interband effect may lead to intriguing possibilities
for spintronic applications, e.g., high-efficiency spin-charge
conversion devices [53].

IV. CONCLUDING REMARKS

Multiband SO phenomena are now attracting growing in-
terest [35,54–57]. Here, focusing on (110) GaInAs wells
with two bands, we have achieved three distinct regimes
of dual-gate SO manipulation, and further demonstrated the
emergence of two copies of PSHs with not only stretchy
pitch but also compensating helicity. Benefiting from them,
we have not only proposed helix-stretch functional spin FET
with both on and off states protected by the PSH symmetry,
but also put forward a new concept: “orbit (band) filter,” open-
ing up a new avenue for spintronic and orbitronic combined
applications. Our work would attract diverse interests in the
communities of spintronics, orbitronics, and even quantum
information science requiring long time and long-ranged co-
herent spin control. As a final remark, similar SO control can

also be achieved via optical means that we recently proposed
in Ref. [58], by resorting to intense high-frequency laser fields
(see also the SM, Sec. VII) [40], making our results more
reliable for experimental realizations.
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