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Tunable magnetic field effects on the near-field radiative heat transfer in planar three-body systems
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Recently, the application of an external magnetic field to actively control the near-field radiative heat transfer
(NFRHT) has emerged as an appealing and promising technique. Most prior studies have shown that the exter-
nally static magnetic field can only reduce the near-field flux transferred between two planar magneto-optical
(MO) structures, yet so far the thermomagnetic effect in many-body systems consisting of such structures has not
been revealed. Here, we investigate how the presence of an external static magnetic field modifies the nanoscale
heat transfer in a MO many-body configuration comprising three noncontact slabs made of n-doped InSb. To this
end, we first generalize a general Green’s function approach for the calculation of the radiative energy transfer in
many-body planar geometries composed of materials with complex optical anisotropy. Based on this approach,
we show that the presence of a third MO body allows for either the reduction or even the enhancement of the
NFRHT between MO slabs by applying external magnetic fields, which depends on the interplay between the
zero-field surface waves and propagating hyperbolic modes induced by fields. Our study not only deepens the
understanding of the active control of the nanoscale heat transfer via the applied magnetic field, but also paves
the way for the magnetic regulation of energy fluxes in complex macroscopic many-body systems.
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I. INTRODUCTION

Two objects held at different temperatures and separated
by a vacuum gap transfer heat via electromagnetic waves.
As is well known, this radiative heat transfer (RHT) cannot
exceed the blackbody limit set by the Stefan-Boltzmann law
if the separation between objects is greater than the thermal
wavelength. Nevertheless, when objects are in close proximity
to each other, at a distance below this characteristic length,
an additional contribution, known as the near-field radiative
heat transfer (NFRHT), originating from the evanescent field
of surface waves, can overcome by several orders of mag-
nitude the prediction of Planck’s blackbody theory [1–6].
Such a new contribution to the RHT has triggered the re-
search of functional devices for modern energy technologies,
such as thermophotovoltaics [7–10], thermal lithography [11],
heat-assisted magnetic recording [12], and scanning thermal
microscopy [13].

The past decades have seen a growth of interest in modi-
fying the NFRHT by the engineering of photonic structures
as well as the choice of materials whose optical properties
are optimal for the NFRHT [14–19]. In parallel, an impor-
tant problem is the active control and modulation of the
NFRHT, for which many innovative strategies have been
proposed [20–26]. One currently appealing and promising
scenario is the use of an external static magnetic field to ac-
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tively control near-field thermal radiation of magneto-optical
(MO) media [27]. Special attention has been devoted to
magnetic semiconductors such as InSb or Si due to their
unique optical properties sensitive to the action of a mag-
netic field, leading to strong MO activities in the infrared
(highly relevant for thermal radiation). This strategy for con-
trolling the NFRHT was proposed by Moncada-Villa et al.
in Ref. [23], where it was shown theoretically that the RHT
in the near-field regime between two identical MO planar
slabs of n-doped InSb is always reduced by the application
of a static magnetic field. Such a field-induced reduction is
a consequence of the fundamental change of TM evanescent
modes under the action of magnetic fields, i.e., the replace-
ment of surface polariton modes (evanescent inside slabs as
well as in vacuum), which dominate the zero-field heat trans-
fer, by field-induced hyperbolic modes (propagating inside
slabs but evanescent in vacuum) which have a lower tunneling
probability. Similar magnetic field effects were subsequently
observed in several other symmetric configurations, such as
two identical MO nanospheres [28,29] or magnetophotonic
crystals [30,31], where the presence of external fields still
only suppresses the transfer of near-field energy fluxes. These
results make one wonder whether there exist MO systems in
which the applied magnetic field is capable of enhancing the
NFRHT. However, so far, this possibility have been reported
only for the asymmetric configurations, as a semi-infinite InSb
separated by a vacuum gap from a different material such
as gold [32] or drift-current-biased graphene [33]. The field-
induced near-field enhancement in the former nonsymmetric
case results from an increasing contribution from TE modes
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that overcomes the deleterious effect of magnetic fields upon
TM modes due to the appearance of hyperbolic modes, while,
in the latter case, the enhancement behavior is related to the
interplay between the nonreciprocal photon occupation num-
ber from graphene and surface modes of InSb.

The above-mentioned studies on magnetic field effects
upon the NFRHT are confined to MO two-body systems
(involving only two dissimilar temperatures). However, in
an experimental setup, the RHT often takes place between
three or even more bodies, in analogy to standard many-
body problems in condensed matter physics [34,35], atomic
physics [36], etc. In the context of the NFRHT, many-
body systems consisting of more than two thermal emitters
that are primarily small spheres (usually considered as
dipoles) [37–42] or macroscopic planar slabs [43–49] have
attracted wide attention during recent years. In these sys-
tems, plenty of novel physical phenomena with no analogs
in two-body systems have been demonstrated using differ-
ent theoretical frameworks, e.g., the many-body radiative
transfer theory [37], scattering method [50,51], and trace for-
mulas [52–54], to mention just a few. These demonstrations
enable the tailoring of functional devices for thermal manage-
ment following the operating principle of electronic devices,
as the near-field thermal transistor attests [44]. More impor-
tantly, in many-body systems consisting of MO nanospheres
at near-field separations, one has predicted some very peculiar
many-body phenomena, including persistent heat current in
thermal equilibrium [39], the thermal Hall effect [55], the
giant thermal magnetoresistance [56], and so on [57], by
applying a static magnetic field. In spite of these remarkable
advances, the magnetic field effect upon the NFRHT in a
many-body planar configuration composed of MO materi-
als remains unexplored. It is worth noting that MO media,
like magnetic semiconductors, in the magnetic field are
optically anisotropic and nonreciprocal and their permittiv-
ity tensor has complex off-diagonal components, rendering
many-body planar geometries comprising such materials fun-
damentally different from almost all reported ones that involve
only isotropic or uniaxial materials satisfying Lorentz reci-
procity [43–48,51,58–60]. In this regard, investigating the
magnetic field dependence of the heat transfer in compact
MO many-slab systems would be instructive for developing
magnetically thermal functional devices and meaningful for
the NFRHT community.

In this work, we examine theoretically how the presence
of an external static magnetic field influences the near-field
heat transfer in a MO many-body system, consisting of three
noncontact, parallel slabs of n-doped InSb, with a symmetric
arrangement [Fig. 1]. A general Green’s function approach,
which is generalized from the formalism proposed in Ref. [61]
and suitable for describing the RHT in many-body planar
configurations made of optically anisotropic materials, allows
us to precisely calculate the flux transferred in the considered
system. We demonstrate that, under certain choices of the
geometrical and thermal parameters, the presence of the inter-
mediate MO slab makes it possible to either reduce or enhance
the NFRHT in the symmetric MO configuration by applying
a magnetic field, in stark contrast to the previously mentioned

FIG. 1. Schematic representation of three parallel slabs made of
n-doped InSb in the presence of an external static magnetic field
parallel to the transfer direction of fluxes. An intermediate slab with
thickness δ is placed in between the outermost slabs, and separated
by vacuum gaps of size d .

magnetic field behaviors appearing in two-body cases [23,28–
33]. Such a tunable magnetic field effect is due to the interplay
between the zero-field surface modes and the field-induced
propagating hyperbolic modes. Our findings enrich and en-
hance the understanding concerning the use of external fields
to actively control the heat transfer at the nanoscale.

The remainder of this paper is organized as follows. In
Sec. II, we present a description of the system under con-
sideration. In Sec. III, we generalize the Green’s function
approach for the calculation of the RHT in many-body planar
configurations comprising materials with any type of opti-
cal anisotropy. Section IV is devoted to the analysis of the
underlying mechanisms behind the magnetic-field-induced
reduction/enhancement of the NFRHT in MO three-body sys-
tems near thermal equilibrium, and, in Sec. V we briefly
discuss the magnetic field effect upon the radiative energy flux
under a steady-state situation. Our main results are summa-
rized in Sec. VI.

II. PHYSICAL SYSTEM UNDER STUDY

The goal of this paper is the calculation of the NFRHT in a
system out of thermal equilibrium, consisting of three noncon-
tact planar slabs made of MO n-doped InSb, in the presence of
an external static magnetic field B, as depicted in Fig. 1. The
outermost slabs 1 and 3, assumed as semi-infinite, are held at
temperatures T1 and T3 (T1 > T3), respectively, whereas slab
2 placed between them has a temperature T2 and a thickness
δ. This slab is separated by vacuum gaps of size d from the
outermost slabs. From now on, we assume that the orientation
of the applied magnetic field is perpendicular to the surface of
the slabs, i.e., B = Bẑ. It should be mentioned that the rotation
of the field orientation does not radically change the radiation
property of planar InSb [32]. In the presence of an external
field oriented as B = Bẑ, InSb exhibits an optical anisotropy
described by the following dielectric permittivity tensor [62],

ε̂InSb =
⎡
⎣ ε1 −iε2 0

iε2 ε1 0
0 0 ε3

⎤
⎦, (1)
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where

ε1(B) = ε∞

{
1 + ω2

L − ω2
T

ω2
T − ω2 − i�ω

+ ω2
p(ω + iγ )

ω
[
ω2

c − (ω + iγ )2
]
}

,

ε2(B) = ε∞ω2
pωc

ω
[
(ω + iγ )2 − ω2

c

] ,

ε3 = ε∞

[
1 + ω2

L − ω2
T

ω2
T − ω2 − i�ω

− ω2
p

ω(ω + iγ )

]
. (2)

Here, ε∞ = 15.7 is the high frequency permittivity,
ωL = 3.62 × 1013 rad s−1 (ωT = 3.39 × 1013 rad s−1) is the
longitudinal (transverse) phonon frequency, ωp = 3.14 ×
1013 rad s−1 is the plasma frequency, and � = 5.65 ×
1011 rad s−1 (γ = 3.39 × 1012 rad s−1) is the phonon (free car-
rier) damping constants. The effect of the magnetic field is
expressed by cyclotron frequency ωc = eB/m∗, where m∗ =
1.99 × 10−32 kg is the effective mass corresponding to a dop-
ing level of 1.07 × 1017 cm−3. It is worth mentioning that
Eq. (2) does not account for the nonlocal effect [63].

In the absence of magnetic fields, ε1 = ε3 and ε2 = 0, so
InSb is optically isotropic. In this case, the interface between
the InSb slab and vacuum can support either surface plasmon
polaritons (SPPs) at the frequencies below the surface plas-
mon frequency ωspp = ωp/

√
2 or surface phonon polaritons

(SPhPs) in the reststrahlen band ωL < ω < ωT [62]. These
modes are characterized by an evanescent field inside both
InSb and vacuum, with a large component of the wave vector
parallel to the interfaces, thus favoring a strong transfer of
heat fluxes. When the magnetic field is turned on, MO effects
are induced due to the generation of the complex off-diagonal
elements ε2, and in certain frequency regions a different kind
of electromagnetic mode emerges. These modes are referred
to as hyperbolic modes (HMs), and are classified as type I
hyperbolic modes (HMI) with ε1 > 0 and ε3 < 0 and type II
(HMII) with ε1 < 0 and ε3 > 0, as discussed in Ref. [23].
These HMs are propagating inside InSb but evanescent in
vacuum, and their components of the wave vector parallel to
the interfaces is much smaller than those of the surface waves,
so that they are less effective in transferring heat [23,31]. This
is the fundamental reason for the reduced NFRHT between
two identical InSb slabs under the application of magnetic
fields.

We focus on the analysis of the net heat flux, ϕ3, received
by the cold body, i.e., slab 3. Considering the stable nonre-
ciprocity of InSb in the magnetic field [37,56], the net heat
flux ϕ3 in the considered system must be calculated by the
following Landauer-like expression [56],

ϕ3 =
∫ ∞

0

dω

2π

∫
dk

(2π )2

∑
j=1,2

[	 j (ω, Tj )T j→3(k, ω)

− 	3(ω, T3)T3→ j (k, ω)], (3)

where index j = 1, 2; 	 j (ω, Tj ) = h̄ω/[exp(h̄ω/kBTi ) − 1] is
the mean energy of photons with frequency ω; k = (kx, ky) is
the component of the wave vector parallel to the interface;
and T j→3 (T3→ j) denotes the transmission probability for the
thermal photons coming from slab j to slab 3 (slab 3 to slab
j), whose calculation will be described in the next section.

FIG. 2. Schematics of the system comprising any number of
layers (bodies) that may have different thicknesses and temperatures.
Thermal emission of fluctuating currents contained in the z′ plane in
layer e is absorbed by the z plane in the receiving layer r.

III. THEORETICAL APPROACH

As mentioned in the Introduction, almost all previous stud-
ies on the NFRHT in many-body planar systems only involve
isotropic or uniaxial materials with the optical axis parallel
to the heat transfer direction. In such systems, the photonic
transmission probability is usually calculated using the analyt-
ical formula derived from the scattering approach [43,50,51].
This formula, however, fails to obtain the transmission prob-
ability in many-body systems containing complex anisotropic
materials of which the permittivity tensor has off-diagonal
components that give rise to polarization conversion [23,25].

Since thermal radiation stems from random fluctuating
current sources, directly implementing the volume integra-
tion over all these sources is a very effective method, which
has been extensively employed to investigate the NFRHT
in different geometries, mainly involving finite objects (e.g.,
spheres [64,65] and even irregular shapes [66,67]) and infinite
ones (e.g., layered structures [61,68] and period gratings [69]).
In such an approach, the thermal radiation fields are linked to
the fluctuating current sources via the electric and magnetic
Green’s functions. For layered structures, Francoeur et al. [61]
first presented a Green’s function formalism for the descrip-
tion of their RHT, where each layer (i.e., each body) may
have dissimilar temperatures, enabling the calculation of the
transmission probability between any two layers (bodies). In
addition, it allows one to trace the radiative energy flux at any
position in considered layered systems, which is unattainable
for the scattering approach [43,50,51]. Despite its advantage
relative to the scattering approach, this formalism based on
the solution of Green’s functions is still only applicable to
materials that are isotropic or uniaxial anisotropic up to now.
In what follows, we shall generalize it to the case where
layered systems are made of complex anisotropic materials.

Let us consider a system consisting of multiple layers
stacked in the z direction and infinite along the x and y
directions, as sketched in Fig. 2. These layers may have dif-
ferent thicknesses and temperatures, and be made of materials
with optical anisotropy described by a permittivity tensor ε̂.
As a concrete example, we consider the situation where the
radiative flux is transferred from the emitting layer e to the
receiving layer r. In order to determine the photonic transmis-
sion probability between them, the one at the two boundaries
of layer r must be known first. For this purpose, we now
calculate the flux at the arbitrary position z within layer r,
originating from the fluctuating current sources within layer
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e, given by the z component of the Poynting vector,

ϕe→z(r, t ) = S(r, z, t ) = ẑ · 〈E(r, z, t ) × H(r, z, t )〉, (4)

where 〈· · · 〉 denotes the ensemble average, E(r, z, t ) and
H(r, z, t ) are the electric and magnetic fields, and r and t
denote the in-plane coordinate and time, respectively. Using
the Fourier transform in time and space, respectively, defined
as f (t ) = Re

∫ ∞
0 dω f (ω)e−iωt and f (r) = ∫

dk
(2π )2 f (k)eik·r,

Eq. (4) can be rewritten as

S(z)= 1

2

∫ ∞

0
dω

∫
dk

(2π )4 Re{ẑ · 〈E(k, z, ω) × H∗(k, z, ω)〉}.
(5)

For the convenience of calculations, we recast Eq. (5) into
the following form:

S(z)= 1

2

∫ ∞

0
dω

∫
dk

(2π )4 Re{Tr[�̂〈E(k, z, ω)H(k, z, ω)∗〉]}.
(6)

Here, the matrix �̂ = [
0 −1 0
1 0 0
0 0 0

], and 〈EH∗〉 = 〈EαH∗
β〉,

where α and β represent the Cartesian components. The ther-
mally generated electric and magnetic fields in this equation
can be solved by the sum of the contributions from the fluctu-
ating current sources, J(k, z′, ω), at all z′ planes within layer
e as

E(k, z, ω) =
∫

z′
ĜE (k, z, z′, ω)J(k, z′, ω), (7)

H(k, z, ω) =
∫

z′
ĜH (k, z, z′, ω)J(k, z′, ω), (8)

where ĜE and ĜH are the electric and magnetic Green’s func-
tions, which connect the emitting sources in a plane located
at position z′ in the emitting layer e, with the absorbing plane
at position z in the receiving layer r. We note that the Green’s
functions given here differ from those in Ref. [61], and we em-
ploy a scattering matrix formalism [70] to accurately calculate
these functions (see Supplemental Material [71] for details of
the derivation).

From Eqs. (6)–(8) it is clear that the heat flux calcula-
tion involves the ensemble average of the spatial correlation
function of J within layer e, which can be given by the
fluctuation-dissipation theorem [2],

〈J(k, z, ω)J†(k′, z′, ω)〉

= (2π )2 4

π
ωε0	(ω, Te)

ε̂e − ε̂†
e

2i
δ(k − k′)δ(z − z′), (9)

where Te and ε̂e are, respectively, the temperature and the
permittivity tensor of the emitting layer e.

Plugging Eqs. (7)–(9) into Eq. (6), we obtain the following
expression for the radiative heat flux at position z within the
receiving layer r:

S(z) =
∫ ∞

0

dω

2π

∫
dk

(2π )2 4ωε0	(ω, T )
∫

z′
Re

×
{

Tr

[
�̂ĜE (k, z, z′, ω)

ε̂ − ε̂†

2i
Ĝ†

H (k, z, z′, ω)

]}
.

(10)

Comparing this expression to Eq. (3), we identify the z-
position photonic transmission probability:

T (k, z, ω)

= 4ωε0

∫
z′

Re

×
{

Tr

[
�̂ĜE (k, z, z′, ω)

ε̂ − ε̂†

2i
Ĝ†

H (k, z, z′, ω)

]}
. (11)

We note that Eq. (11) allows one to calculate the transmis-
sion probability from the emitting layer e to any position z
within the receiving layer r. Thereby, the transmission proba-
bility between these two layers, T (k, ω), can be obtained by
the difference in the one at the two boundaries of layer r.

Let us finish this section by saying that the numerical
simulation for the MO three-body system we consider has
shown that T j→3(k, ω)=T3→ j (k, ω), with j = 1, 2. This reci-
procity of the heat flux received/emitted by slab 3 is consistent
with the results reported in Ref. [48] for a linear chain of
InSb nanoparticles. It is worthwhile to mention that such
a reciprocity of the heat transfer in nonreciprocal many-
body systems can be analytically demonstrated by using the
symmetry of the magnetic group and the second law of ther-
modynamics, as recently shown in Ref. [72]. With this in
mind, Eq. (3) can be simplified as follows:

ϕ3 =
∫ ∞

0

dω

2π

∫
dk

(2π )2

∑
j=1,2

[	 j (ω, Tj ) − 	3(ω, T3)]

× T j→3(k, ω). (12)

We employ this relation to analyze the magnetic field de-
pendence of the RHT in the system of Fig. 1, for two different
choices of temperatures. The first one, analyzed in the next
section, corresponds to the thermal equilibrium between slabs
2 and 3, i.e., the intermediate slab 2 purely behaving as
an electromagnetic modulator [45,46]. The second choice of
temperatures is determined by the steady-state condition for
the heat flux across the system, for which the net flux passing
through slab 2 vanishes (see Sec. V).

IV. MAGNETIC CONTROL OF HEAT FLUXES ACROSS
AN INTERMEDIATE MODULATOR

We are going to first consider the net heat flux received
by slab 3 due exclusively to the thermal emission from slab
1; i.e., the role of the intermediate body is only modulating
the thermal photons passing through it, behaving as an elec-
tromagnetic signal modulator [45,46]. This situation can be
achieved by maintaining bodies 2 and 3 at the same tempera-
tures T2 = T3 = T , whereas for body 1 we set T1 = T + �T .
Under this condition, there is no heat transfer between bodies
2 and 3. This, in turn, implies that T2→3(k, ω) in Eq. (9) does
not play any role, so that Eq. (12) becomes

ϕ3 =
∫ ∞

0

dω

2π

∫
dk

(2π )2 [	1(ω, T1) − 	3(ω, T3)]T1→3(k, ω).

(13)
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FIG. 3. Heat transfer coefficient h as a function of the intermediate slab thickness δ for different values of the external magnetic field and
of the gap sizes of (a) 5 nm, (b) 10 nm, (c) 10 nm, and (d) 500 nm. The insets show the ratio between the heat transfer coefficients and their
corresponding zero-field values. The temperature T is set to 300 K.

When �T → 0, we can introduce the linear conductance
or the heat transfer coefficient h, defined as

h = lim
�T →0

ϕ3

�T
=

∫ ∞

0

dω

2π

∫
dk

(2π )2

∂	(ω, T )

∂T
T1→3(k, ω).

(14)

In Fig. 3 we summarize the numerical results of the heat
transfer coefficient h as a function of the intermediate slab
thickness δ, varying from 10 nm to 20 µm, for several values
of the magnetic field intensity B and of the gap size d . Mean-
while, to display the field effect more intuitively, we plot the
ratio between the heat transfer coefficient with and without
magnetic fields in the inset of each panel.

We start by discussing the main features of the heat transfer
coefficient h in the absence of a magnetic field (see black
solid lines in all panels of Fig. 3). By comparing the results
for different gap sizes d , keeping a fixed thickness δ, one ob-
serves an expected decrease in the NFRHT as the vacuum gap
overcomes the length scale for the decaying SPP’s and SPhP’s
evanescent fields, which dominate the RHT in the near-field
regime. On the other hand, a comparison of the results of
panels (a)–(d) shows that the dependency of energy received
by slab 3 on the thickness of the intermediate slab yields a
remarkable change as d increases significantly. Specifically,
in the cases of d = 5, 10, and 100 nm, the heat transfer coef-
ficients always exhibit a monotonic decline with the thickness
δ [Figs. 3(a)–3(c)]. This is quite different from that observed

in Fig. 3(d), where the transfer coefficient h for a 500 nm
vacuum gap has a global maximum at δ ≈ 700 nm. Such a
maximum vanishes if d is up to the far-field value (not shown
here). This peculiar transfer behavior with respect to the in-
termediate body size is associated with the near-field effect in
macroscopic three-slab systems. In fact, as shown in Ref. [43],
the intermediate slab may amplify the flux transferred from
slab 1 to slab 3 when its thickness becomes comparable to
the gap size (restricted to the near-field regime), as a result of
the optimal coupling of the surface cavity modes occurring in
vacuum gaps.

Let us turn to discussing magnetic field effects upon
the energy transfer in the system under consideration. As
was mentioned in the Introduction, prior studies have shown
that an external static magnetic field is only responsible for
reducing the NFRHT between two identical MO planar struc-
tures [23,30–32]. However, the situation becomes refreshingly
different in the symmetric three-body configuration. For suf-
ficiently small gap sizes, as d = 5 nm and 10 nm, the applied
field decreases the heat transfer coefficient only when the
intermediate slab thickness δ is close either to 10 nm or to
20 µm, as evident from the insets of Figs. 3(a) and 3(b).
When d is increased to 100 nm, a field-induced reduction
of the RHT arises irrespective of the thickness of slab 2,
this reduction phenomenon being quite pronounced for both
δ ≈ 10 nm and δ ≈ 20 µm [Fig. 3(c)]. Concerning a 500 nm
gap width, the corresponding energy transfer modification is
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FIG. 4. (a) Heat transfer coefficient h as a function of the intermediate slab thickness δ, for magnetic field intensities of 4 and
10 T. Solid lines correspond to the results from our method considering all transmission channels, while dashed lines correspond to the
ones obtained neglecting polarization conversion. (b) Heat transfer coefficient h for TE polarization (dashed lines) and TM polarization (solid
lines) as a function of the thickness δ for magnetic field intensities of 0, 4, and 10 T. (c) Magnetic field effects upon the TM-polarized spectral
heat transfer coefficient hω for δ = 10 nm. (d) Same as in panel (c), but for δ = 270 nm. The gap size d is 10 nm for all calculations.

appreciable only for a thicker intermediate medium, as shown
in Fig. 3(d). On the other hand, we highlight that, for small
gap sizes, there exists a region of values of δ, for which the
presence of magnetic fields is able to enhance the NFRHT, in-
dicating that this peculiar amplification behavior occurs in the
strong near-field regime. As clearly presented in the inset of
Fig. 3(a), corresponding to d = 5 nm, the value of h(B)/h(0)
can be as high as 260% at δ ≈ 215 nm, for a magnetic field
intensity of 10 T. Incidentally, this enhancement value can be
optimized by means of using a stronger external field (see
Supplemental Material [71]), although such high fields are
currently challenging to achieve [73]. This result marks a huge
difference with respect to the case of two InSb planar slabs,
implying an interplay between the HMs induced by magnetic
fields and the zero-field cavity surface modes, mediated by the
intermediate medium.

To elucidate the physical mechanisms behind these mod-
ifications of the NFRHT induced by magnetic fields, it is
necessary to first understand the role played by polarization
conversion (i.e., TM→TE and TE→TM). To this end, we
use the analytic expression presented in Refs. [43,44] for de-
scribing the RHT in three-slab systems comprising isotropic
materials to calculate the heat transfer coefficient h which
neglects polarization conversion, and compare it with the
results from our approach accounting for all transmission

channels (i.e., TE→TE, TE→TM, TM→TM, and TM→TE).
The results for two different strengths of magnetic fields are
shown in Fig. 4(a), where we take the gap size d = 10 nm.
The good agreement between these results indicates that po-
larization conversion does not have a significative impact on
the energy transfer. However, it should be noted that, for the
high field (B = 10 T) and large thickness (δ > 1 µm), our
Green’s function approach allows us to compute exact transfer
coefficients, due to the fact that the influence of polarization
conversion is included. Subsequently, we further separate the
TE- and TM-mode thermal contributions in Fig. 4(b), where,
as a reference, the zero-field result is added. From this plot
it is manifest that the modifications to the RHT occurring at
δ < 1 µm can be fully attributed to the magnetic field effect
upon the transmission of TM-polarized evanescent waves. On
the other hand, when the thickness of the intermediate slab is
pronouncedly larger than 1 µm, the damping of the electro-
magnetic fields inside this slab strongly inhibit the tunneling
of TM evanescent modes from slab 1 to slab 3, and therefore,
the fluxes contributed by TM polarization decrease drastically
until they become comparable to those contributed by TE
polarization. This renders the field-induced reduction of the
energy flux for TE modes comparable to that for TM modes;
that is, the field-induced reduction effect is now linked to the
decrease of both TE- and TM-mode contributions, distinctly
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FIG. 5. Transmission probability for TM polarization from slab 1 to slab 3 as a function of the frequency ω and the parallel wave vector
k for the external magnetic field B = 4 and 10 T. Upper (lower) panels correspond to the intermediate slab thickness δ = 10 nm (270 nm).
The gap size d is 10 nm. Frequency regions corresponding to surface modes (SPPs and SPhPs) and hyperbolic modes are delimited by the
horizontal white dashed lines. The red (green) dashed lines correspond to vacuum (InSb); the light line ω = ck (ω = ck

√|ε3|).

different from the origin of the heat transfer reduction be-
tween two MO planar structures under the action of magnetic
fields [23,30,31].

We have shown that polarization conversion does not play a
significative role in the modifications of the NFRHT induced
by an external magnetic field, yet the underlying physics of
such modifications for TM waves, in the thickness range δ <

1 µm, remains unexplained [see Figs. 3(b) and 4(b)]. For this,
we now focus on the analysis of the field effect upon the TM-
polarized spectral heat transfer coefficients for the thicknesses
δ = 10 nm and 270 nm, shown in Figs. 4(c) and 4(d), respec-
tively. These results clearly show that the variation of energy
fluxes caused by external magnetic fields is quite sensitive to
the geometrical parameter of the modulator slab. Specifically,
for a 10 nm intermediate slab, the applied field reduces the
height of the zero-field peaks in the spectral flux associated
with the SPP and SPhP modes, which is very akin to what was
observed between two InSb infinite slabs [23]. In contrast, for
a 270 nm thick slab, the field significantly increases the height
as well as the width of the four zero-field peaks in the spectra,
accounting for an effective enhancement of energy transferred
to slab 3, as seen in the inset of Fig. 3(b).

These features of the spectral flux can be understood by
analyzing the TM-polarized transmission probability, T p

1→3,
shown in the upper (lower) panels of Fig. 5 for δ = 10 nm
(δ = 270 nm), and for three different strengths of magnetic
fields (i.e., B = 0, 4, and 10 T). In each panel, we plot the
frequency regions that support SPPs, SPhPs, and HMI and

HMII modes when InSb is exposed to the considered field
strengths.

Comparing the transmission probability of Figs. 5(a)
and 5(d) allows us to conclude that a very thin intermediate
slab favors the formation of a zero-field cavity mode by cou-
pling, inside of it, the evanescent fields from surface modes
at the interfaces of slabs 1 and 3. This can be understood
by analyzing the radiation penetration depth l . In the elec-
trostatic limit, the penetration depth of an evanescent wave
can be approximated by l ≈ k−1 [2]. Since only evanescent
waves with l � d can tunnel from slab 1 to slab 2, the largest
contributing parallel wave vector kmax between them, hold-
ing a dominant role in the near field, can be approximated
as kmax ≈ d−1 (a numerical proof is also provided in the
Supplemental Material [71]) with an associated penetration
depth l ≈ d . Therefore, for a 10 nm intermediate slab, we
have l ≈ δ, enabling the coupling of surface modes at the
two interfaces of the intermediate slab [74]. For this reason,
the high transmission zones in Fig. 5(a) follow the dispersion
law of cavity modes [15]. In contrast, when the slab has a
thickness of 270 nm (δ 
 l), this thicker medium inhibits the
coupling of the evanescent modes coming from the outermost
slabs, as demonstrated by the transmission bands resembling
uncoupled dispersion laws of single surfaces.

To display the influence of the intermediate slab thick-
ness on the penetration depth of the evanescent modes more
intuitively, in Figs. 6(a) and 6(b) we plot the spatial pro-
file of the absorbed heat (for TM polarization) inside the
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FIG. 6. Magnetic field dependence of the spatial profile of the TM-polarized energy flux across the intermediate slab with a thickness of
(a) 10 nm and (b) 270 nm.

intermediate slab with δ = 10 and 270 nm, respectively. It
can be clearly observed that, in the absence of a magnetic field
(black curves), the energy flux decays exponentially inside the
270 nm thick slab, as a result of the strong damping of the
fields inside of it. Such a spatial dependence significantly
differs from the convex profile of the heat flux for δ = 10 nm,
due to the coupled evanescent fields coming from the outer-
most slabs.

We next illustrate the variation of the transmission prob-
ability under the application of external magnetic fields.
Figure 5 shows that, as the magnetic field increases, the HMs
gradually dominate energy transfer in the considered system,
and they can benefit, or not benefit, the photon tunneling,
which depends on the intermediate slab thickness. Apparently,
for δ = 10 nm, the appearance of HMs will give rise to the de-
struction of the zero-field cavity mode between slabs 1 and 3.
Besides, as shown in Figs. 5(a)–5(c), these field-induced HMs
have significantly smaller wave-vector cutoffs relative to the
disappeared surface modes, resulting in the reduced height of
spectral peaks under the action of magnetic fields in Fig. 4(c).
Hence, the origin of this field-induced reduction effect is the
same as that found in MO two-body configurations [23,30–
32]. This can be further supported by observations of Fig. 6(a).
First of all, we see that, in fact, the presence of magnetic fields
has strongly suppressed the energy flux by tunneling into slab
2 (corresponding to z/δ = 0), especially for high fields, which
is exactly due to the significant replacement of large wave-
vector surface modes by those field-induced HMs with the
small wave-vector cutoffs. Secondly, for such a sufficiently
small thickness, the evanescent fields are weakly damped in
the intermediate body (as discussed before). These two fac-
tors jointly determine that, within the intermediate slab, the
energy flux at finite fields is always smaller as compared to
the zero-field case [Fig. 6(a)]. Thus, one finally sees that the
magnetic field reduces the transmission probability towards
slab 3 due to the appearance of HMs. However, when δ is
increased to 270 nm, we see in Fig. 6(b) that, in contrast to
the zero field, the finite fields lead to the radiative flux inside
the intermediate slab decreasing at a slower rate, although still
suppressing the flux entering into the slab strongly again due
to the appearance of small wave-vector HMs. This peculiar
magnetic field behavior is exactly related to these HMs which
have a larger penetration depth relative to the disappeared

zero-field surface modes (since l ≈ k−1). Let us recall that
the evanescent fields coming from the surface modes at the
interfaces of slabs 1 and 3 do not couple inside such a thick
intermediate slab to form zero-field cavity modes. We thus
conclude that the role of the magnetic field is now to covert
a low flux tunneling, arising from the strong damping of the
uncoupled surface modes inside the intermediate medium,
into an efficient tunneling mediated by the propagating HMs,
whose capability to propagate increases with the applied field
intensity, as evidenced by the profiles of Fig. 6(b). This makes
those field-induced HMs exhibit broader bands and even
larger wave-vector cutoffs relative to the zero-field surface
modes, as observed in Figs. 5(d)–5(f).

V. INTERMEDIATE MEDIUM PRODUCING THERMAL
CONTRIBUTIONS IN STEADY STATE

In the previous section, we demonstrated that an applied
magnetic field can not only reduce but also enhance the
NFRHT in the simple MO three-slab configuration, associ-
ated with the interplay between the damped evanescent fields
of the surface waves and the propagating hyperbolic modes
induced by external magnetic fields. Notably, this discov-
ery is achieved under the assumption of thermal equilibrium
between slabs 2 and 3. Therefore, it is natural to ask if
this field-induced enhancement, obtained for d = 10 nm and
δ = 270 nm, persists when the intermediate medium starts
providing an additional contribution [i.e., T2 �= T3, so that
T2→3(k, ω) plays a role]. Here, from a practical point of
view, we are going to consider a general steady-state situa-
tion [43,44,47]. Specifically, we assume that the external slabs
1 and 3 are still held at temperatures T1 and T3, respectively,
while the intermediate slab now relaxes into steady state, and
thus has an equilibrium temperature T2. This temperature can
be solved by using the thermal equilibrium condition that the
net energy fluxes to and from slab 2 should be zero, i.e.,

�ϕ = ϕ1→2 − ϕ2→3 = 0. (15)

Here, ϕ1→2 = ∫ ∞
0

dω
2π

∫
dk

(2π )2 [	1(ω, T1) − 	2(ω, T2)]T1→2

(k, ω) represents the net flux from slab 1 to slab 2, while
ϕ2→3 = ∫ ∞

0
dω
2π

∫
dk

(2π )2 [	2(ω, T2) − 	3(ω, T3)]T2→3(k, ω)
represents that from slab 2 to slab 3. Note that, since the
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FIG. 7. (a) Total steady-state heat flux absorbed by slab 3 as a function of the magnetic field and normalized to the zero-field value. (b) Net
heat fluxes ϕ1→3 and ϕ2→3 transferred from slabs 1 and 2 to slab 3, as a function of the magnetic field intensity. The temperatures of slab 1 and
slab 3 are set to T1 = 400 K and T3 = 300 K, respectively. The gap size d is 10 nm, and the intermediate slab has a thickness δ = 270 nm.

system under consideration is symmetric with respect to slab
2, we always have T1→2(k, ω) = T2→3(k, ω), regardless of
the presence of magnetic fields. Based on this, Eq. (15) can
be rewritten as

�ϕ =
∫ ∞

0

dω

2π

∫
dk

(2π )2 [	1(ω, T1)+	3(ω, T3)−2	2(ω, T2)]

× T2→3(k, ω) = 0. (16)

From Eq. (16) it is clear that, once one determines the
energy transmission coefficient T2→3(k, ω) as well as the
temperatures T1 and T3, the equilibrium temperature T2 can
be easily solved. Note that the value of T2→3(k, ω) will be
changed for different strengths of the applied field. In the fol-
lowing we take the temperatures T1 = 400 K and T3 = 300 K,
and assume that the optical properties of the InSb remain
unchanged for 400 K.

Figure 7(a) shows the total steady-state flux received by
slab 3 [given by Eq. (12)] as a function of the magnetic
field intensity and normalized to its zero-field value. It can be
clearly seen that there is a monotonic decrease in the energy
flux with the applied field, until it saturates for fields up to
above 6 T. In particular, this field-induced reduction of near-
field fluxes reaches approximately 70% for B > 6 T, which is
nearly consistent with the result for two InSb infinite slabs
separated by a vacuum gap of 10 nm [23]. One thus might
think that this reduction of the RHT is due entirely to the
full replacement of SPP and SPhP modes by HMs. However,
this is not completely true, as exhibited in Fig. 7(b), where it
can be observed that the net heat fluxes from slabs 1 and 2
to slab 3 exhibit different dependences on the field intensity.
More specifically, the flux ϕ1→3 is increased obviously under
the application of relatively high fields, consistent with the
enhancement effect mediated by the intermediate slab (as
illustrated in the previous section). On the other hand, the flux
ϕ2→3 involves the direct exchange of heat between slabs 2 and
3, for which it is not surprising to observe its rapid decrease
with the applied field, referring to the case of two InSb planar
slabs. Nevertheless, since slabs 2 and 3 are in closer prox-
imity, the flux they transfer overcomes by almost an order
of magnitude the one between slabs 1 and 3. Consequently,
as the field intensity increases, the reduction of ϕ2→3 always

dominates the increase of ϕ1→3, leading to the net decreasing
flux arriving at slab 3.

VI. CONCLUSIONS

In conclusion, we have theoretically investigated the mag-
netic field effect on the near-field heat transfer in a MO
many-body system consisting of three parallel n-doped InSb
slabs. We first generalized a general Green’s function ap-
proach for the calculation of the RHT in many-body planar
configurations made of complex anisotropic materials. Based
on this approach, we showed that, when the intermediate slab
acts as an electromagnetic modulator in thermal equilibrium
with the cold slab, the applied magnetic field is able to ei-
ther reduce or even enhance the NFRHT in the symmetric
MO configuration. By analyzing thermal contributions from
the thermal evanescent modes, it was further found that the
mechanism of this magnetic-field-induced reduction effect
can be fundamentally varied if the intermediate medium thick-
ness yields a substantial variation; for instance, when these
MO slabs are separated by a 10 nm vacuum gap, the field-
induced reduction behavior occurring at small thicknesses
(much smaller than 1 um) is due exclusively to the funda-
mental change of TM modes, i.e., the effective replacement
of zero-field surface modes by field-induced HMs, whereas
the reduction behavior at relatively large thicknesses (pro-
nouncedly larger than 1 um) results from the joint decrease of
TE- and TM-mode thermal contributions. More importantly,
we demonstrated that the field-induced enhancement effect is
closely related to the appearance of HMs, showing that this
peculiar effect occurs when the thickness of the intermediate
slab is large enough to hinder the coupling of the evanescent
fields inside of it, leading to a low photon tunneling, which, in
turn, may be effectively enhanced by the propagating HMs
induced by fields. Finally, we also pointed out that such a
field-induced enhancement of the near-field flux received by
the cold slab will disappear if the whole system reaches steady
state. This is because a net decrease of fluxes arriving at the
cold terminal is achieved due to the additional flux it receives
from the intermediate medium. Our work may inspire one to
further explore the magnetic field effect upon the nanoscale
RHT in more complex macroscopic many-body systems, such
as periodic or aperiodic many-slab configurations.
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