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Graphene valley polarization as a function of carrier-envelope phase
in few-cycle laser pulses and its footprints in harmonic signals
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We consider coherent dynamics of graphene charged carriers exposed to an intense few-cycle linearly polar-
ized laser pulse. The results, obtained by solving the generalized semiconductor Bloch equations numerically
in the Hartree-Fock approximation, taking into account many-body Coulomb interaction, demonstrate strong
dependence of the valley polarization on the carrier-envelope phase (CEP), which is interpolated by the simple
sinusoidal law. Then we consider harmonic generation in a multicycle laser field by graphene preliminarily
exposed to an intense few-cycle laser pulse. We show that the second harmonic’s intensity is a robust observable
quantity that provides a gauge of CEP for pulse durations up to two optical cycles, corresponding to 40 fs at the
wavelength of 6.2 µm.
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I. INTRODUCTION

In many semiconductor and semimetal materials, conduc-
tion band electrons occupy states near several discrete energy
minima which have been termed valleys. In general, elec-
trons in these discrete valley states have different properties,
which results in a valley-dependent electromagnetic (EM)
response in these materials. Hence, in addition to electron
spin, we have an additional degree of freedom—valley isospin
or valley polarization. In analogy with the spintronics for
spin-based technology, valleytronics has been proposed [1–3]
that has attracted considerable attention because of its possible
application in quantum information science. Experimentally
the valley polarization of electrons was achieved in several
materials. In AlAs, valley polarization was induced by a
symmetry-breaking strain [4], in bismuth by using a rotating
magnetic field [5], in diamond by electrostatic control of
valley currents [6,7], and in MoS2 by means of circularly po-
larized light due to valley-contrasting Berry curvature [8–11].

The valley polarization is sensitive to thermal lattice
vibrations, and for valleytronics applications materials are
necessary where the valley polarization relaxation time is re-
markably long. From this point of view graphene [12], where
the intervalley scattering is suppressed [13–15], is of interest.
For graphene, there are two inequivalent Dirac points in the
Brillouin zone (BZ), related by time-reversal and inversion
symmetry [12]. Hence, the valley-contrasting Berry curvature
is zero that makes it difficult to use graphene in valleytronics,
especially if one wants to use intense light pulses for ultrafast
manipulation of valley polarization. A number of proposals on
how to break time-reversal or inversion symmetry in graphene
based materials for generation of the valley polarization have
been put forward. Valley polarization in a graphene sheet can
be achieved with zigzag edges [1], at a line defect [16], for
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strained graphene with massive Dirac fermions [17,18], and
with broken inversion symmetry [19,20], through a boundary
between the monolayer and bilayer graphene [21,22]. Valley
polarization in graphene can also be achieved at the break-
ing time-reversal symmetry with AC mechanical vibrations
[23]. Regarding the light-wave manipulation of valleys, it
was shown that valley currents can be induced by asymmet-
ric monocycle EM pulses [24] or by specifically polarized
light [25]. Recently, for gapped graphenelike systems, such as
hexagonal boron nitride and molybdenum disulfide, several
schemes for light-wave manipulation of valleys have been
proposed which do not rely on valley-contrasting Berry curva-
ture: one with two-color counter-rotating circularly polarized
laser pulses [26] and the other by exploiting the carrier-
envelope phase (CEP) of an ultrashort linearly polarized pulse
[27], or circularly polarized pulse [28]. Successful attempts
have been made to apply these schemes to intrinsic graphene
[29–32], where for the linear polarization of the driving wave
the main emphases have been made to subcycle laser pulses
[31].

The problem of coherent interaction of graphene with an
intense few-cycle linearly polarized laser pulse can be applied
to solve two important issues regarding the valleytronics and
light-wave electronics [33]. For valleytronics, it can be an
efficient method to reach valley polarization which depends
on the carrier-envelope phase, and vice versa, to measure
CEP via the valley polarization which is important for short
pulse manipulation. As is well known, the second harmonic is
sensitive to valley polarization [34–36], which opens a door
for solving the mentioned issues. In the present paper, we
address these problems considering the coherent dynamics
of graphene charged carriers exposed to an intense few-cycle
linearly polarized laser pulse. We numerically solve the gen-
eralized semiconductor Bloch equations in the Hartree-Fock
approximation [37–39] taking into account the many-body
Coulomb interaction and demonstrate the strong dependence
of the valley polarization on the CEP, which is interpolated
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by the simple harmonic law. Then we consider the harmonic
generation in a multicycle laser pulse field by graphene pre-
liminarily exposed to an intense few-cycle laser pulse and
consider the ways to gauge the CEP.

The paper is organized as follows. In Sec. II, the model and
the basic equations are formulated. In Sec. III, we present the
main results. Finally, conclusions are given in Sec. IV.

II. THE MODEL AND THEORETICAL METHODS

We begin by describing the model and theoretical ap-
proach. Two-dimensional (2D) hexagonal nanostructure is
assumed to interact with a few-cycle midinfrared laser pulse
that excites coherent electron dynamics which is subsequently
probed by an intense near-infrared or visible light pulse gen-
erating high harmonics. It is assumed that the polarization
planes of both laser fields coincide with the nanostructure
plane (XY ). For numerical convenience and to avoid residual
momentum transfer, the electric field E(t ) is calculated from
the expression of the vector potential given by

A(t ) = f0(t )A0ê0 sin(ω0t + φCEP)

+ f1(t )A1ê1 sin(ω1t + φCEP1), (1)

where A0 and A1 are the amplitudes of the vector potentials
which are connected to the amplitudes of the applied electric
fields E0 = ω0A0 and E1 = ω1A1 of the laser pulses, ω0 and
ω1 are the fundamental frequencies, ê0 and ê1 are the unit
polarization vectors, and φCEP and φCEP1 are carrier-envelope
phases. The envelopes of the two waves are described by the
sin-squared functions

f0,1(t + t0,1) =
{

sin2 (πt/τ0,1), 0 � t � τ0,1,

0, t < 0, t > τ0,1,
(2)

where τ0 and τ1 characterize the pulses’ duration, and t1 and
t2 define the starts of the pulses. For a probe wave we will
assume τ1 � 2π/ω1. In this case the detailed behavior of the
electric field dependence on the carrier-envelope phase is not
important. Hence we take φCEP1 = 0. For a few-cycle pump
pulse the exact position of nodes and peaks of the electric
field is of great importance, since it determines the momentum
distribution of the excited electrons, which in turn defines
the harmonics spectrum during the interaction with the probe
pulse. For a pump wave pulse the envelope f0(t ) is chosen
such that the maximal electric field strength is reached at t = 0
and φCEP = 0.

Monolayer graphene interaction with the EM field is de-
scribed using generalized semiconductor Bloch equations in
the Hartree-Fock approximation. Technical details can be
found in Refs. [37–39], while for self-consistency the
main equations are outlined below. Thus, the Bloch equa-
tions within the Houston basis read

∂tN (k0, t ) = − 2Im{[E(t )Dtr (k0 + A)

+ �c(k0 + A, t ;P,N )]P∗(k0, t )}, (3)

∂tP (k0, t ) = − i[Eeh(k0 + A) − i�]P (k0, t )

+ i[E(t )Dtr (k0 + A) + �c(k0 + A, t ;P,N )]

× [1 − 2N (k0, t )], (4)

where P (k, t ) = P ′(k, t ) + iP ′′(k, t ) is the interband polar-
ization and N (k, t ) is the electron distribution function for
the conduction band. The electron-hole energy

Eeh(k) = 2E (k) − 	c(k, t ;P,N ) (5)

is defined via the band energy

E (k) = γ0| f (k)|, (6)

and many-body Coulomb interaction energy

	c(k, t ;P,N ) = 2

(2π )2

∫
BZ

dk′V2D(k − k′)

× { fc(k, k′)N (k′) + fs(k, k′)P ′′(k′, t )}.
(7)

In Eqs. (6) γ0 is the transfer energy of the nearest-neighbor
hopping and the structure function is

f (k) = ei
aky√

3 + 2e−i
aky
2
√

3 cos

(
akx

2

)
, (8)

where a is the lattice spacing. In Eq. (7)

fc
(
k, k′) = cos[arg f (k′) − arg f (k)],

fs
(
k, k′) = sin[arg f (k′) − arg f (k)].

The electron-electron interaction potential is modeled by
screened Coulomb potential [37]:

V2D(q) = 2π

εεq|q| , (9)

which accounts for the substrate-induced screening in the 2D
nanostructure (ε) and the screening stemming from charged
carriers (εq). We take ε � 4 which is close to the value of
a graphene layer sandwiched by a SiO2. For the details of
the screening effects, see the Appendix. In Eq. (4) � is the
damping rate. In Eqs. (3) and (4) the interband transitions are
defined via the transition dipole moment

Dtr (k) = − a

2| f (k)|2 sin

(√
3

2
aky

)
sin

(
akx

2

)̂
x

+ a

2
√

3| f (k)|2
[

cos (akx ) − cos

(√
3

2
aky

)

× cos

(
akx

2

)]̂
y, (10)

and the light-matter coupling via the internal dipole field of
all generated electron-hole excitations:

�c(k, t ;P,N ) = 1

(2π )2

∫
BZ

dk′V2D(k − k′)

× {P ′(k′, t ) + i fc(k, k′)P ′′(k′)

− i fs(k, k′)N (k′, t )}. (11)

For compactness of equations atomic units are used
throughout the paper unless otherwise indicated. The ini-
tial conditions P (k, 0) = 0 and N (k, 0) = 0 are assumed,
neglecting thermal occupations. We will solve these equa-
tions numerically. It is more convenient to make integration of
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FIG. 1. The hexagonal first BZ of the reciprocal lattice (red solid
line). The rhombus (blue dashed lines) formed by the reciprocal
lattice vectors is a reduction of the second BZ and contains the same
vectors of the first BZ. The green (solid) line, that goes through the
M point, divides the rhombus into the left and right triangles, which
contain two valleys described by the D3h group.

these equations in the reduced BZ which contains equivalent
k points of the first BZ (see Fig. 1).

To quantify valley polarization we introduce the valley-
asymmetry parameter

η = 2
N+ − N−
N+ + N−

, (12)

where N− and N+ are electron populations around respective
valleys and are obtained by integrating over left (BZL) and
right triangles (BZR) in Fig. 1:

N−(t ) = 1

(2π )2

∫
BZL

dkN (k, t ), (13)

N+(t ) = 1

(2π )2

∫
BZR

dkN (k, t ). (14)

It is clear that the denominator in Eq. (12) is the total electron
population in the conduction band N (t ):

N (t ) = N−(t ) + N+(t ) = 1

(2π )2

∫
BZ

dkN (k, t ). (15)

III. RESULTS

Having outlined the setup, we first consider coherent
dynamics of graphene charged carriers exposed to an in-
tense few-cycle linearly polarized laser pulse. Our results are
obtained by solving the corresponding generalized semicon-
ductor Bloch equations (3) and (4) analytically in the free
carrier approximation and numerically in the Hartree-Fock

approximation taking into account many-body Coulomb in-
teraction.

A. Valley polarization dependence on CEP in graphene

As is evident from Eqs. (3) and (4) the excitation pattern
of the BZ is defined by the vector potential of the pump pulse
and to have overall valley polarization one should break the
symmetry of free standing graphene. Although the crystal
lattice of graphene is centrosymmetric, the valleys K and K ′
are described by the wave vector group D3h lacking the space
inversion. These valleys are in the left and right triangles of
the rhombus in Fig. 1 and are connected with each other by the
space inversion I . Thus, the overall symmetry of free standing
graphene D6h = D3h × I is centrosymmetric.

In Fig. 2 we plot the electric field E (t ) and vector potential
A(t ) of one- and two-cycle pulses for a cosine pulse φCEP = 0
and for the sine pulse φCEP = π/2 . As is seen from Fig. 2,
under time reversal t → −t the electric field of a cosine pulse
remains invariant, while the field of a sine pulse changes sign.
For the vector potential A(t ) that defines the excitation pattern
of the BZ the situation is opposite. The sine pulse has a
preferred orientation of the vector potential—the orientation
of the maximal field peak. The violation of symmetry has
a striking manifestation in the valley polarization. To have
maximal valley polarization the amplitude of the vector po-
tential should be along the �-K direction and close to the
magnitude of the wave vector separation of two Dirac points
K (kb/

√
3, 0) and K ′(2kb/

√
3, 0), where kb = 4π/

√
3a. The

wave-particle interaction will be characterized by the dimen-
sionless parameter χ0,1 = eE0,1a/h̄ω0,1 which represents the
work of the wave electric field E0,1 on a lattice spacing in the
units of photon energy h̄ω0,1. The parameter is written here in
general units for clarity. The total intensity of the laser beam
expressed by χ0,1, can be estimated as

Iχ0,1 = χ2
0,1 × [h̄ω0,1/eV]2 × [Å/a]2 × 1.33 × 1013 W cm−2.

(16)

The condition A0 ∼ |K-K ′| is equivalent to χ0 ≈ 4π/3. For
both waves we will restrict interaction parameters to keep
the intensities below the damage threshold [40] Iχ0,1 < Idam �

2 TW/cm2 of graphene. The experiments [41,42] on graphene
with the Ti:sapphire laser showed that the carriers in graphene
are well thermalized among themselves during the period
of light emission via the very rapid electron-electron scat-
tering. This rapid relaxation is compatible with theoretical
studies [43,44], which predict scattering times of tens of

FIG. 2. The electric field and vector potential normalized to maximal values vs time for one- and two-cycle pulses for a cosine pulse and
for a sine pulse.
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FIG. 3. Particle distribution function N (k0, t ) (in arbitrary units) at various time instances during the interaction with the two-cycle (upper
two rows) and single-cycle (third and fourth rows) laser pulse for graphene, as a function of scaled dimensionless momentum components
(kx/kb, ky/kb). The fundamental frequency is ω0 = 0.2 eV/h̄ and the wave-particle interaction parameter is taken to be χ0 = 3.5 (intensity
1 TW/cm2).

femtoseconds. Hence, during the interaction with a few-cycle
midinfrared laser pulse that excites coherent electron dy-
namics the relaxation time is taken to be equal to the wave
period �−1 = 2π/ω0. When excited graphene is subsequently
probed by an intense near-infrared or visible light pulse the
relaxation time is assumed to be �−1 = 2π/ω1.

A typical coherent dynamics of graphene-charged carriers
exposed to an intense few-cycle linearly polarized laser pulse
is shown in Fig. 3. The laser field is polarized along the �-K
direction (x axis). In this figure particle distribution function
N (k, t ) at various time instances during the interaction with
the two- and single-cycle laser pulse is shown in the reduced
BZ. As indicated in this figure one can trace the correlation
between excitation patterns and time dependence of the vector
potential (Fig. 2). In particular, for sine pulses (see first and
third rows), thanks to the preferred direction of the vector po-
tential (see Fig. 2), one of the valleys is eventually populated.
For cosine pulses (see second and fourth rows), despite the
valley polarization during the first half of the laser pulse, the

balance is recovered in the second half of the laser pulse. Note
that this picture of valley polarization works only when the
polarization of the laser is along the �-K direction and it is
of a threshold nature: the electrons created near the one valley
should pass to the opposite valley. To have a quantitatively
more satisfactory explanation we need to solve analytically
Eqs. (3) and (4). To this end, we omit the Coulomb and relax-
ation terms in Bloch equations (3) and (4), which is justified
for a few-cycle laser pulse.

Thus, the formal solution of Eq. (4) for the interband po-
larization can be written as

P (k0, t ) = i
∫ t

−τ0/2
dt ′e−iS(k0,t ′,t )E (t ′)Dtr[k0 + A(t ′)]

× [1 − 2N (k0, t ′)], (17)

where

S(k0, t ′, t ) =
∫ t

t ′
{Eeh[k0 + A(t ′′)]}dt ′′ (18)
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FIG. 4. Particle distribution function N (k0, t ) at the interaction with a single-cycle sine pulse (φCEP = π/2) vs time for particular crystal
momentum k0=(kx/kb, ky/kb): (a) k0=(0.9, −0.033) and (b) k=(0.96, 0.025). In these figures, the x component of kinetic momentum k(t ) =
k0 + A along with Dirac point momentum (kD/kb = 1/

√
3) are also plotted. All plotted quantities are dimensionless. In (c) and (d) the roots

of Eqs. (23) and (25) are plotted for cosine and sine pulses, respectively. The fundamental frequency is ω0 = 0.2 eV/h̄ and the wave-particle
interaction parameter is taken to be χ0 = 4 (intensity 1.4 TW/cm2).

is the classical action. As is seen, the electron-hole cre-
ation amplitude is defined by the singularity of the transition
dipole moment Dtr (k0) near the Dirac points. In this case
due to the vanishing gap, electron-hole creation is initiated
by the nonadiabatic crossing of the valence band electrons
through the Dirac points [45]. In Figs. 4(a) and 4(b), we
plot N (k0, t ) for two particular values of crystal momen-
tum k0 along with time-dependent kinetic momentum k(t ) =
k0 + A(t ). The horizontal line is the Dirac moment 1/

√
3 in

the units of kb. As is clearly seen from Figs. 4(a) and 4(b),
the excitation takes place almost instantly when the kinetic
momentum approaches the Dirac point: k(t ) = kD. Thus, we
can argue that to excite electrons at any point of the BZ
it is necessary, but as we will see is not sufficient, to pass
through the Dirac point. The nonadiabatic dynamics suggests
to simplify Eq. (17) considerably. As in Ref. [45], we model
singularity of the transition dipole moment defining Dtr (k0) as
a Dirac delta function in both valleys: Dtr (k0) = D0[δ(k0 −
kD) − δ(k0 + kD)]. With this replacement in Eq. (17)
we get

P (k0, t ) ∝ i
∑
td+

e−iS(k0,td+ ,t )E (td+ )

− i
∑
td−

e−iS(k0,td− ,t )E (td− ), (19)

where, for a given k0, td+ and td− are the solutions of equations

k0 = kD − A(td+ ), (20)

k0 = −kD − A(td− ). (21)

These equations may have several solutions. In Figs. 4(a)
and 4(b) we have two solutions td1+ and td2+ . Depending
on the phase difference δS = S(k0, td1+ , td2+ ) we will have
constructive or destructive interference. Thus, we can argue
that to excite electrons at any point of the BZ it is nec-
essary and sufficient to pass through the Dirac point with
constructive interference of multiple passages. This finding
explains interference patterns in Fig. 3. Now let us calcu-
late the electron populations around respective valleys with
the same ansatz. With the help of Eq. (17), from Eq. (3)

we have

N+(τ0/2) ∝
∫ τ0/2

−τ0/2
dt ′E2(t ′) − Re

∑
t2

∫ τ0/2

−τ0/2
dt1E (t1)

× E (t2)eiS(kD−A(t1 ),t2,t1 ) (22)

where the given t1 and t2 are defined from

A(t2) − A(t1) = −2kD. (23)

Analogously we have

N−(τ0/2) ∝
∫ τ0/2

−τ0/2
dt ′E2(t ′) − Re

∑
t2

∫ τ0/2

−τ0/2
dt1E (t1)

× E (t2)eiS(−kD−A(t1 ),t2,t1 ) (24)

with

A(t2) − A(t1) = 2kD. (25)

As is seen from Eqs. (22) and (24) for both valleys there
is a term which is defined by the intensity area of the pulse.
Then we have terms which are nonzero when electrons cre-
ated near the one Dirac point reach the other Dirac point
in the momentum space. This explain the threshold nature
of the valley polarizations. The solutions of Eqs. (23) and
(25) are deployed in Figs. 4(c) and 4(d) for the cosine and
sine pulses, respectively. As is seen for the cosine pulse, if
the (t1, t2) pair is the solution, then we have time-reversal
solutions (−t1,−t2) and from Eeh(k0) = Eeh(−k0) follows
S(kD − A(t1), t2, t1) = −S(−kD − A(−t1),−t2,−t1) and we
get N+(τ0/2) = N−(τ0/2). That is, valley polarization is zero.
The same arguments can be made for infinite pulses as well.
For the sine pulse the solutions for the two valleys Fig. 4(d)
are not symmetric and N+(τ0/2) 
= N−(τ0/2).

Having established the excitation dynamics of the BZ with
the singular transition dipole moment that works primarily
along the �-K direction, we next turn to the examination of
excitation dynamics in the perpendicular direction. To this
end, we consider the excitation of the BZ with a single-cycle
sine pulse (φCEP = π/2) of the same interaction parameter χ0

but at different frequencies. In Fig. 5, the particle distribution
function N (k, τ0/2) at the end of the interaction is shown
in the reduced BZ for various frequencies. As indicated in
this figure, one can trace the correlation between the laser
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FIG. 5. Particle distribution function N (k0, τ0/2) (in arbitrary units) at the end of the interaction with a single-cycle sine pulse (φCEP =
π/2) for graphene, as a function of scaled dimensionless momentum components (kx/kb, ky/kb). The wave-particle interaction parameter is
taken to be χ0 = 3.5: (a) for ω0 = 0.1 eV/h̄, (b) for ω0 = 0.2 eV/h̄, (c) for ω0 = 0.3 eV/h̄, (d) for ω0 = 0.5 eV/h̄, and (e) for ω0 = 1.0 eV/h̄.

frequency and the excitation patterns, which for all cases
have interference fringes. In particular, as the wave frequency
decreases, the fringes become denser and thinner in the y
direction. The density of fringes is defined by the phase differ-
ence δS = S(k0, td1+ , td2+ ) of Eq. (19) considered above. For
the given χ0 the phase difference δS is inversely proportional
to ω0, which explains the dependence of the number of fringes
on the frequency. As is also clear, the excitation width in the
perpendicular to laser polarization direction strongly depends
on the frequency of the laser pulse. This can be understood
from the x component of the transition dipole moment (10),
which for small ky near the Dirac point is D(x)

tr ∝ 1/|ky|.
Thus, the wave-particle interaction term in Eqs. (3) and (4)
is E (t )Dtr ∝ χ0ω0/|ky|. Since electron-hole energy Eeh ∝ |ky|,
the excitation width can be estimated from the condition Eeh �
E (t )Dtr which gives |ky| ∝ √

χ0ω0. As has been shown above,
the considered setup of valley polarization works only when
the polarization of the laser is along the �-K direction and
to have a higher degree of control one must confine the BZ
excitation tighter to the �-K direction. Hence, the resulting
scaling |ky| ∝ √

χ0ω0 indicates that low frequencies and mod-
erate intensities are preferable for valley polarization (when
the threshold condition χ0 ≈ 4π/3 is met).

In Fig. 6 we present the results of our calculations for
valley polarization in a single-cycle linearly polarized pulse as
a function of carrier-envelope phase for a range of the wave-
particle interaction parameter and fundamental frequency. As
is seen, in single-cycle pulses we have a strong dependence
of the valley polarization on CEP and we get a rather large
valley polarization. For relatively smaller wave-particle inter-
action parameter χ0 � 2.5, the slope dη/dφCEP of the valley

polarization η with respect to the carrier-envelope phase φCEP

vanishes when φCEP/π approaches to an integer. This is the
direct manifestation of the threshold nature of the considered
valley polarization scheme: For a relatively smaller wave-
particle interaction parameter the electrons created near the
one valley do not reach the opposite valley for the range
of carrier-envelope phase close to the cosine pulse. Also in
Figs. 6(a), 6(b) and 6(c) we see the result of the negative factor
of excitation across the �-K direction (see Fig. 5). The scal-
ing |ky| ∝ √

ω0 indicates that the maximal amplitude of the
valley polarization decreases as the fundamental frequency
ω0 increases. Interestingly, for the wave-particle interaction
parameter χ0 ranging from 3 to 4, the valley polarization η de-
pendence on φCEP tends to harmonic law. Indeed, in Fig. 6(d)
we compare the sinusoidal dependence with the numerically
exact result and obtain fairly good interpolation. Note that
these calculations have been made including relaxation and
many-body Coulomb interaction. With the increase of the
pulse duration in Fig. 7, the asymmetric parts in Eqs. (22)
and (24) become smaller and valley polarization diminished
compared with a single-cycle pulse. However, the harmonic
law of valley polarization versus CEP [Fig. (d)] still works.
With the increase of the pulse duration in Figs. 7(a), 7(b)
and especially 7(c), where the frequency is larger, we see
the negative factor of excitation across the �-K direction
because of scaling |ky| ∝ √

χ0ω0 which implies that moderate
intensities are preferable for valley polarization. We also see
that along with the harmonic law of the valley polarization,
there is a high-frequency amplitude modulation of the val-
ley polarization, which becomes more pronounced near its
extrema.

FIG. 6. Valley polarization for a single-cycle linearly polarized pulse as a function of carrier-envelope phase for a range of the wave-particle
interaction parameter: (a) for ω0 = 0.1 eV/h̄, (b) for ω0 = 0.2 eV/h̄, and (c) for ω0 = 0.3 eV/h̄. The color box shows the strength of the
wave-particle interaction parameter. The relaxation time is �−1 = 2π/ω0. (d) Interpolation of the valley polarization by the simple harmonic
law for ω0 = 0.1 eV/h̄ and χ0 = 4.

205403-6



GRAPHENE VALLEY POLARIZATION AS A FUNCTION OF … PHYSICAL REVIEW B 107, 205403 (2023)

FIG. 7. The same as in Fig. 6, but for a two-cycle linearly polarized pulse.

B. Harmonic imaging of valley polarization and CEP of
few-cycle laser pulses in graphene

Having considered the coherent dynamics of graphene
charge carriers subjected to intense, linearly polarized, few-
cycle laser pulses, we then consider the harmonic mapping
of valley polarization and CEP for such pulses. Although
graphene is centrosymmetric, and as a result there are no
even-order harmonics for equilibrium initial states, it turns out
that spatial dispersion or valley polarization initiates a rather
large second-order nonlinear response [34–36,46], compara-
ble to the 2D noncentrosymmetric case. The sensitivity of the
second harmonic to valley polarization opens a door for solv-
ing two important issues regarding the valleytronics and light
wave electronics: measuring of valley polarization and CEP
which is important for manipulations with short laser pulses.
Hence, in this subsection we consider harmonic generation
in a multicycle laser field of relatively moderate intensity by
graphene preliminarily exposed to an intense few-cycle laser
pulse.

The EM response in 2D hexagonal nanostructure is deter-
mined by the total current density:

j(t ) = − 4

(2π )2

∫
B̃Z

dk0{vc(k0 + A)N (k0, t )

+ Re[v∗
tr (k0 + A)P (k0, t )]}, (26)

where the band velocity vc(k) = ∂E (k)/∂k defines intra-
band contribution, while transition matrix element vtr (k) =
2iE (k)Dtr (k) of the velocity defines interband contribution.
The Brillouin zone is also shifted to B̃Z = BZ − A. Note that
for the initially doped system one should take into account
the next-nearest-neighbor hopping term (γ ′) which breaks the
electron-hole symmetry [47] and can be crucial for the second
harmonic generation in the presence of asymmetric Fermi

energies of valleys [35]. Since we consider an undoped sys-
tem in equilibrium neglecting thermal occupations, and γ ′
does not change the energy difference between the bands,
the contribution from γ ′ to the total current density van-
ishes [47] when the difference is computed in Eq. (26). For
a sufficiently large 2D sample, the generated electric field
far from the hexagonal layer is proportional to the surface
current: E(g)(t ) = −2π j(t )/c [38]. The high-harmonic gen-
eration spectral intensity is calculated from the fast Fourier
transform of the generated field E(g)(ω). Now we solve Bloch
equations (3) and (4) with the initial conditions P (k, 0) =
P (k, τ0/2) and N (k, 0) = N (k, τ0/2), where P (k, τ0/2) and
N (k, τ0/2) are the interband polarization and particle distri-
bution function at the end of the preexcitation pulse. Since
in this stage the process starts from highly excited states,
we recalculate also the screening function εq stemming from
charged carriers (see the Appendix).

In Fig. 8, the nonlinear response of the graphene in a
multicycle laser field τ1 = 40π/ω1 of wavelength 800 nm
(ω1 = 1.55 eV/h̄) near the second harmonic via the normal-
ized intensity versus carrier-envelope phase of a single-cycle
linearly polarized preexcitation pulse is displayed for several
fundamental frequencies. The wave-particle interaction pa-
rameter for a multicycle laser field is taken to be smaller by
one order compared to the preexcitation pulse. We specifically
consider spectral intensity near the second harmonic to show
that the second harmonic intensity is a robust observable that
provides a gauge of CEP. As is seen from these figures, the
second harmonic signal vanishes for a cosine pulse φCEP = 0
and for the sine pulse φCEP = π/2 reaches maximum values,
and between these values it is a monotonic function. In con-
trast to the second harmonic, the third harmonic is almost
independent of CEP (see Fig. 9). That is, for diagnostic tools
the second harmonic is unique. Moreover, as follows from

FIG. 8. The nonlinear response of the graphene in a multicycle laser field of wavelength 800 nm (ω1 = 1.55 eV/h̄) near the second
harmonic via the normalized intensity vs carrier-envelope phase of a single-cycle linearly polarized preexcitation pulse: (a) for ω0 = 0.1 eV/h̄,
(b) for ω0 = 0.2 eV/h̄, and (c) for ω0 = 0.3 eV/h̄. The wave-particle interaction parameter for a preexcitation pulse is taken to be χ0 = 3.5,
while for a multicycle laser field we take χ1 = 0.1χ0. The black (solid) lines over the surface plots are the second harmonic intensities
calculated as I2 ∼ η2(φCEP ).

205403-7



H. K. AVETISSIAN et al. PHYSICAL REVIEW B 107, 205403 (2023)

FIG. 9. The same as in Fig. 8, but for a third harmonic.

perturbation theory [34], when valley polarization is modeled
via different Fermi energies in the K and K ′ valleys, the in-
tensity of the second harmonic is proportional to the square of
valley polarization. In Fig. 8, we see that the second harmonic
intensities calculated as I2 ∼ η2(φCEP) ∼ sin2(φCEP), where
η(φCEP) is from Fig. 6, fairly well coincide with the exact
numerical results. Thus, for a single-cycle laser pulse we can
reach controllable valley polarization, which harmonically
depends on the carrier-envelope phase, and vice versa, via
valley polarization we can measure CEP which is essential
for short pulse manipulations and light-wave electronics. This
finding is also valid for a two-cycle laser pulse [Fig. 10(a)].
However, for a three-cycle laser pulse [Fig. 10(b)] the second
harmonic intensity is not a monotonic function in the range
φCEP ⊂ [0, π/2] and a simple dependence I2 ∼ η2 does not

FIG. 10. The nonlinear response of the graphene in a multicycle
laser field of wavelength 800 nm (ω2 = 1.55 eV/h̄) near the second
harmonic via the normalized intensity vs carrier-envelope phase of
a (a) two-cycle and (b) three-cycle linearly polarized preexcitation
pulse. The wave-particle interaction parameters are χ0 = 3.5 and
χ1 = 0.1χ0, while the fundamental frequency is ω0 = 0.2 eV/h̄.

hold. This is connected with the above-mentioned fact of
amplitude modulation of valley polarization: With the further
increase of the pulse duration valley polarization diminished
and becomes comparable to the depth of the amplitude modu-
lation caused by excitation of the BZ across the �-K direction.
Note that harmonic dependence essentially simplifies the pos-
sibility of measurement of valley polarization and CEP but
is not mandatory for their measurement. For harmonic law
one needs one triple of quantities I2, η → φCEP, otherwise one
needs several sets of triples for calibration.

IV. CONCLUSION

We have investigated the coherent dynamics of graphene-
charged carriers exposed to an intense few-cycle linearly
polarized laser pulse. Solving the corresponding gener-
alized semiconductor Bloch equations numerically in the
Hartree-Fock approximation taking into account many-body
Coulomb interaction, we demonstrated that valley polariza-
tion is strongly dependent on the CEP, which for a range of
intensities can be interpolated by the simple harmonic law.
The obtained numerical results are supported by approximate
and transparent analytical results. Then, we have considered
harmonic generation in a multicycle laser field by graphene
preexcited by an intense few-cycle laser pulse. The obtained
results show that valley polarization and CEP have their
unique footprints in the second harmonic signal, which will
allow us to measure both physical quantities for pulse dura-
tions up to two optical cycles, which are vital for valleytronics
and light-wave electronics.
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APPENDIX: SCREENING FOR COULOMB POTENTIAL

In this section, we present in some detail the accounting of
screening for Coulomb potential introduced in the main pa-
per. The screening induced by graphene’s charged carriers is
calculated within the Lindhard approximation of the dielectric
function εq, which in the static limit reads

εq = 1 − Vc(q)
2

(2π )2

∑
λ,λ′

∫
BZ

dk�λ,λ′ (k, q)

× Nλ′ (k − q) − Nλ(k)

Eλ′ (k − q) − Eλ(k)
(A1)
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where

�λλ′ (k, q) = 1
2 [1 + λ′λ fc(k, k − q)] (A2)

is the band overlap function, Vc(q) = 2π/(ε|q|) is the bare
Coulomb potential, and Nλ(k) are the particle distribution
functions for conduction λ = 1 and for valence λ = −1
bands. In the Dirac cone approximation and in the zero-
temperature limit the analytical integration in Eq. (A1) is
possible [48]. In particular, for neutral graphene, Eq. (A1)
simplifies to

εq = 1 + π

2

e2

εh̄vF
, (A3)

 0
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FIG. 11. The effective dielectric function εeff = εεq, with εq as
defined in Eq. (A1), is plotted as a function of the adimensional
variable qx/kb in the direction � → K of the Brillouin zone. The
calculations were performed for intrinsic graphene (solid line) and
excited graphene (dashed line) with the distribution function corre-
sponding to the last subfigure of Fig. 3.

where vF = √
3aγ0/2h̄ is the Fermi velocity. Thus, the

screening stemming from valence electrons is rather large and
the effective dielectric constant becomes εeff = εεq � 7.45.
The large q behavior of graphene dielectric screening is in-
dependent of the electron density [48] and tends to Eq. (A3).
Since we consider excitation out of the Dirac cones, we cal-
culate the screening function integrating Eq. (A1) over the
hole BZ. In this case εq is not a constant nor is it isotropic.
However, the variations in the results for the different direc-
tions were small enough to assume the screening properties
of graphene isotropic [49]. In Fig. 11, the effective dielectric
constant for neutral graphene is presented for a wave vector
q in the direction � → K . As is seen from this figure, it is
close to the effective dielectric constant (A3) in the Dirac cone
approximation.

In general, since we have strong excitation of graphene’s
charged carriers, one should consider the problem of dynamic
screening. However, since the intrinsic graphene possesses
strong screening properties, we proceeded as follows. In the
main paper, our problem has been divided into two stages. In
the first stage, graphene is exposed to an intense few-cycle
laser pulse. In this case, due to ultrashort time scales the
Coulomb effects are negligible. In the second stage, we have
considered harmonic generation in a multicycle laser field
starting from highly excited states. Since Eq. (A1) is also
valid for nonequilibrium stationary distribution functions, we
made calculations with dielectric function εq calculated for
excited states. In Fig. 11, we compare the εq calculated for
the distribution function corresponding to the last subfigure
of Fig. 3 to that of a neutral graphene. The two results are
relatively close overall. We have a similar picture for other
distribution functions of Fig. 3. On average, there is a small
discrepancy (≈10% ) which has a negligible influence on the
intensity of the harmonic signal.
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