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Topological electronic structure of twin boundaries and twinning superlattices
in the SnTe material class
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The topological electronic structure of a single twin boundary and coherent twinning superlattices (TSLs)
based on the SnTe class of materials is calculated and discussed within a supercell implementation. The
superlattices consist of two twin planes (TPs) in the supercell arranged in such a way that each of the boundaries
forms a mirror plane for the entire structure. Two types of TP boundary, cationic and anionic, can exist, and so
three types of supercells can be constructed. We study the topological phases of each twinning configuration
using the tight-binding approximation and calculating the topological invariants. We show that they differ by
topological properties and find that all-cationic TSLs are topologically distinct from the anionic case due to
the opposite sign of the Berry curvature around the � point of the TSL’s Brillouin zone. Our findings are
consistent with a complementary analysis of (111)-oriented slabs with a single twin boundary in the presence of
a Zeeman field. They are also consistent with the calculated number of spin-polarized Dirac-like edge states of
both superlattices and slabs. We conclude that each type of TP forms a two-dimensional mirror-plane-protected
topological crystalline insulator.
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I. INTRODUCTION

Topological crystalline insulators (TCIs) are materials in
which crystal symmetry protects the nontrivial topology of
the electronic band structure [1]. In IV-VI TCIs the topology
is protected by {110} mirror symmetries, and a negative bulk
band gap leads to Dirac-like metallic surface states [2–7].
Breaking the crystal symmetry generates a Dirac mass and
gives rise to gapped phases [2,8,9] with potentially novel
functionalities in low-power electronics and spintronics [10].
Such a prospect motivates the design of nanostructures based
on IV-VI TCI semiconductors allowing for control of the num-
ber of carriers and electronic states by tunable gate voltage.
There are many theoretical studies of single atomic layers,
thin films, and heterostructures grown in the (001) and (111)
crystallographic directions, where the nontrivial topology is
manifested by a mirror Chern number and Z2 strong and weak
invariants, respectively [10–17]. Also, some work has been
involved to propose a platform for investigating hinge states
[18] and Majorana bound states [19–21] in [001]-oriented
nanowires.

In addition to clean surfaces of bulk material and edges
of nanostructures, certain lattice defects in topologically non-
trivial materials are also known to bind topological states [22].
In the case of IV-VI TCIs, anomalous helical modes bound to
disclinations were predicted by theory [23]. Furthermore, one-
dimensional (1D) gapless modes bound to atomic step edges
on the (001) surface were discovered in experiment [24]. Their
presence is attributed to emergent nontrivial topology of the
2D surface bands [24–27].
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In this paper we extend the research on the effects of
lattice defects on the electronic structure topology to twin
planes (TPs), that is, planar defects resulting from stacking
faults during growth in a fixed crystallographic direction. In
cubic crystals, most of the faults appear predominantly in
the [111] direction without breaking any bonds. They are
characterized by zero stress and have very low formation
energies. On the atomic scale, these unique features ensure
the maximum degree of symmetry and coherence compared
with other types of grain boundaries. In particular, these are
defects of a different type than grain boundaries formed at the
border of two crystals twisted relative to each other at a small
angle and investigated in the context of nontrivial systems at
the interface between topological insulators [28,29]. TPs are
known to be commonly observed in group IV (e.g., Si) and III-
V (e.g., GaAs and InP) semiconductor nanowires (NWs). In
IV-VI semiconductors, twinning can be observed as interfaces
between crystallites, for example, in the mineral galena, i.e.,
the rocksalt-type PbS [30]. TPs have been observed also in
Pb1−xSnxTe NWs grown along the [011] direction. The wires
have a pentagonal cross section with five {111} twins extended
radially from the center of the wire [31]. Some theoretical
attempts towards electronic properties of twin boundaries in
rocksalt crystals have been reported in Refs. [32,33].

Interestingly, also periodically arranged TPs can be found
among natural minerals. In mineralogy, they are known as
polysynthetic twins and may appear in a number of crys-
tals, notably plagioclase feldspars, such as albite [34]. Such
twinning superlattices (TSLs) have drawn a great deal of
attention in the past several decades and have been explored
as a new class of crystal structure in cubic and zinc-blende
binary compounds in semiconductors and metals [32,35].
Therefore some efforts have been made both theoretically and
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experimentally to understand and control twinning processes
on the nanoscale, making it possible to fabricate nano-
engineered twinning superlattices in crystalline nanowires
[36–39].

In order to study the topological properties of TPs in IV-VI
TCIs we choose cubic SnTe as a model representative of a
whole class of similar materials. In addition to SnTe it in-
cludes, in particular, (Pb, Sn)Se, (Pb, Sn)Te, cubic SnSe, and
SnS. Depending on the pressure, composition, temperature,
and doping, they have rocksalt, rhombohedral (tellurides), or
orthorhombic (selenides) structure [40–44]. SnSe and SnS
can crystallize in a cubic structure, although it is metastable
under normal conditions [45–49]. The energy gap in binary
compounds is inverted. In crystalline solid solutions of SnSe
and SnTe with lead, the gap depends on the composition and
external conditions [50–55].

We start with a theoretical study of hypothetical TSLs
with rocksalt structures grown along the [111] direction. Then
we turn to the study of a single twin boundary present in
the middle of (111)-oriented slabs. The vicinity of a single
(111) TP can be viewed as being composed of two perfect
crystals, which are rotated around [111] by 180◦ with respect
to each other and are joined in this plane. Structurally, it can
be described as the reversal of the atomic stacking sequence
along the [111] direction. Although the interface between the
two [111] crystal orientations is perfectly lattice matched,
the wave functions are highly symmetry mismatched. This
makes the twin stacking fault, in a sense, a junction of two
essentially different materials, even though the material is
of the same composition and lattice type on both sides. To
quantify the effect of TPs on the electronic band structure, we
use tight-binding (TB) calculations. We have found that TPs
significantly affect the electronic properties of SnTe, including
the topology of the band structure. We show that the topolog-
ical features of the studied models are strongly influenced by
the types of TPs present in the structure.

By symmetry, the unit cell of each TSL must contain an
even number of, and at least two, TPs. In contrast, slabs
have single TPs, in addition surfaces with nontrivial electronic
states. The combination of the results obtained for both types
of structures allows us to conclude that each individual TP
can be treated as a two-dimensional topological crystalline
insulator with corresponding nontrivial states along its edges.

II. COMPUTATIONAL METHODOLOGY

The calculations were performed in the framework of
the tight-binding (TB) approximation. We used a simplified
model in which only p orbitals with σ bonds between nearest
and next-nearest neighbors were considered. The Hamiltonian
for such a model was proposed by Hsieh et al. [2], and
appropriate parameters were published in Ref. [56]. In our
calculations we used spin-orbit parameter λ = 0.3 instead of
λ = 0.7 in order to reduce the band gap to 0.33 eV, which
is close to the SnTe gap under ambient conditions. Such a
model captures all essential qualitative aspects of the TCI bulk
spectrum while allowing efficient large-scale calculations.

We first study three-dimensional TSLs in which the su-
percell includes two (111) planar faults (i.e., TPs) and the
structure is grown along the [111] direction. However, the

(111) slab with a TP

side view of TSLs

supercell

(a) (b)

(c)

FIG. 1. (a) [111] primitive supercell with height d = 28 (l = 14)
atoms and (b) (11̄0) side view of a TSL 3D bulk. (c) Sketch of (111)-
oriented slab structure with thickness of nine atomic layers with a
single TP in the middle.

atomic stacking sequence is changed due to the presence of
a TP in such a way that a local (111) reflection symmetry is
created with respect to each TP. Because a defect can appear
on either an anionic or a cationic layer depending on which
type of atoms occupy the twinning plane, we are dealing
with three different types of supercells: those having two
cationic TPs (cat-cat), those having two anionic TPs (an-an),
and those having a cationic TP and an anionic TP (cat-an).
These correspond to structures with all-cationic, all-anionic,
and alternating cationic and anionic TPs, respectively. The
supercell and TSLs as schematically depicted in Figs. 1(a) and
1(b) are built symmetrically with respect to each TP, and the
atomic height of the supercell (d) along [111] can be adjusted
by setting a given atomic distance (l = d/2) between two twin
boundaries. The number of atoms in the supercell d is always
even. For supercells in which l is even, the atomic type of
TPs is the same. Conversely, for odd l the TPs are of different
types. Thus cat-cat and an-an TSLs are identified by the space
group P63/mmc (D4

6h, No. 194), while cat-an TSLs have a
different space group denoted P6̄m2 (D1

3h, No. 187) [57].
We point out that these space groups formally belong to the
hexagonal lattice system; however, following Refs. [15,16],
when referring to crystal planes and directions in this paper,
we use the Miller indices for a cubic lattice, according to the
lattice vectors of an ordinary defect-free SnTe far away from
the TPs.

Of the many symmetries of TSL systems, only a few are
significant in this paper. In addition to the (111) reflection
symmetry mentioned above, we emphasize that there exists
an inversion symmetry in the TSLs with TPs of the same kind,
whereas it is absent in the cat-an TSL structures. Inversion, to-
gether with time-reversal symmetry, leads to at least a twofold
degeneracy of the energy bands for cat-cat and an-an TSLs.
Also, it is worth highlighting that the C3 rotation symmetry
and the {110} mirror symmetry are present for all cases.
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FIG. 2. Three-dimensional simple hexagonal Brillouin zone of a
[111]-oriented TSL (center) with the corresponding surface Brillouin
zones (SBZs; green). The yellow-shaded rectangles denote {110}
mirror symmetry planes, and the light-gray-shaded hexagons indi-
cate (111) mirror planes. At the bottom of the figure, the 2D BZ of
the (111)-oriented slab (gray hexagon) is shown with the 1D BZ of
its [112̄] edge (green line).

The TSL structure has a simple hexagonal Brillouin zone
(BZ), as shown in Fig. 2. The height of the TSL BZ along
the [111] direction is inversely proportional to the height of
the supercell. The yellow-shaded planes inside the BZ denote
{110} mirror planes. Of six such mirror planes in a bulk
defect-free SnTe, only three of them are left in the TSLs.

Furthermore, in order to study lateral surface states, we
consider TSLs truncated along the (11̄0) and (112̄) faces,
which are perpendicular to the (111) TPs. The surface Bril-
louin zones (SBZs) corresponding to these orientations are
depicted in light green in Fig. 2. In the 3D hexagonal BZ
there exist three different L (M) points, where for both surface
orientations two of them are projected into the same point
labeled L (M), respectively. The third high-symmetry point
L (M) is projected together with A (�) onto A (�). In the case
of the (11̄0) SBZ, the points H and K also project onto A and
�, respectively. Note that the (112̄) surface preserves one of
the {110} mirror planes, whereas the (11̄0) surface breaks all
of them. Both surface terminations preserve the (111) mirror
plane.

We recall that surfaces of defect-free SnTe feature nontriv-
ial states in the vicinity of the projections of the Lfcc points
of the bulk BZ onto the SBZ [5] (the use of superscript fcc
is to distinguish the point from the L points in the hexagonal
BZ). In the case of the TSL supercell, since the height d can
be tuned by any even integer number, it turns out that the Lfcc

points reduced to the TSL BZ are not generally unique and
may fall on different points, which are always lying on the
�-A and M-L lines.

Moreover, to calculate the topological properties of a single
TP, we use models of (111) slabs schematically demonstrated
in Fig. 1(c). The TP is situated in the middle of each slab
and forms a (111) mirror plane symmetry. The point group
symmetry of the structure is D3h; however, the 2D space group
is P3m1. The corresponding 2D hexagonal BZ of the slab
(gray) is shown with the 1D BZ of its [112̄] edge in Fig. 2. The

M point, in this particular choice, represents the projection of

FIG. 3. The calculated band structures of 200-monolayer-height
[111]-oriented SnTe TSLs for the k wave vectors along �-M-K-�
high-symmetry lines of the BZ. The TSLs host (a) all-cationic TPs
and (b) all-anionic TPs, and the red (blue) color coding indicates the
localization of the states at TPs (away from the TPs).

M1 and M3, while the � point shows the projection of M2 and
� in its 1D BZ.

III. RESULTS AND DISCUSSION

A. Twinning superlattices

1. Electronic band structure and topological invariants

In this section, we present band structures of TSLs for
various TP configurations.

The electronic band structures are calculated along the
high-symmetry lines demonstrated in Fig. 2. In particular,
in Fig. 3 we show the results for an-an and cat-cat TSLs
along the �-M-K-� path. We inspect the influence of TPs
by coloring the spectral lines according to the localization of
the wave functions with the red color denoting close prox-
imity to the TPs. The results show that the states localized
on the TPs are situated in the bulk band gap region near the
M points. Moreover, the localized states are revealed in the
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TABLE I. The mirror Chern number Cm and Z2 invariants calcu-
lated for 3D TSLs grown along the [111] crystallographic direction
with various heights of supercells. The Chern numbers Cm were eval-
uated at three different high-symmetry planes in the BZ, indicated in
the superscripts.

TSLs Z2
a C (�MK )

m C (ALH )
m C (AL�M )

m

cat-cat (d � 8, l ∈ even) (0; 0, 0, 0) 4 0 2
an-an (d � 8, l ∈ even) (0; 0, 0, 0) 2 0 2
cat-an (d � 10, l ∈ odd) (0; 0, 0, 1) 3 1 2

aZ2 : (ν0; ν1, ν2, ν3).

conduction (valence) band edge around the � point for cat-cat
(an-an) superlattices. We considered a supercell with d = 200
atomic layers (i.e., the distance between two twin planes is
l = 100 monolayers), a height large enough to suppress any
hybridization between the states localized at TPs; that is,
further increase of d has no effect on the localized states.
Since cat-cat and an-an TSLs preserve both time-reversal and
inversion symmetries, all bands must have even degeneracy
by the Kramers theorem. The band edges depicted with the
red lines in Fig. 3 are twofold degenerate in the �MK plane.

For each type of TSL we also calculate topological invari-
ants: mirror Chern numbers Cm and the Z2 strong and weak
indices (ν0; ν1, ν2, ν3). We evaluate Cm with respect to mirror
planes (111) and (11̄0), the former on two different mirror-
reflection-invariant planes �MK and ALH and the latter on
the plane AL�M. Due to C3 symmetry, the result for (11̄0) is
the same as for (011̄) and (1̄01).

For the calculations of Cm and Z2 we used the numerical
schemes of Fukui and co-workers [58,59], except for Z2 in
inversion-symmetric supercells, for which the method of Fu
and co-workers was used [60,61]. We perform the calculations
for supercell heights d � 8 for cat-cat and an-an TSLs and
d � 10 for cat-an TSLs. The evaluated values of Cm and
(ν0; ν1, ν2, ν3) are shown in Table I, for three different TSL
configurations. The weak indices {νi, i = 1, 2, 3} characterize
the topology of appropriate time-reversal-invariant planes in
the BZ. ν3, in particular, describes the ALH plane.

Excluding the smallest possible width d (i.e., cat-cat and
an-an, four-layer height; cat-an, six-layer height), the topolog-
ical indices stay constant and do not change with increasing
width d . Note that the invariants converge to constants at
d = 8 or d = 10 not universally, but only in this particular
simplified TB model. These thresholds will be different for
different models, but the fact that they converge at some d
should be universal. Thus the calculated mirror Chern number
in the �MK plane C(�MK )

m = 4 for cat-cat TPs in the supercell,
while for an-an TSLs C(�MK )

m = 2. In both stated cases the
mirror Chern number for the ALH reciprocal plane attains a
value of zero. In contrast to all-cationic and all-anionic TSLs
that exhibit even mirror Chern numbers, for the cat-an TSL
the mirror Chern number is odd for both �MK (C(�MK )

m = 3)
and ALH (C(ALH )

m = 1) planes. Considering the �MK plane,
we conclude that three TSL configurations belong to distinct
topological classes since their mirror Chern numbers are dif-
ferent.

FIG. 4. Berry curvatures associated with +i mirror subspace
calculated in the �MK plane for (a) cat-cat and (b) an-an TSLs
with a 16-monolayer-height supercell, and for cat-an TSLs with
18-monolayer-height supercells in the (c) �MK and (d) ALH planes.
Dashed lines denote the BZ boundaries.

Additionally, the C(AL�M )
m corresponds to the (11̄0) mirror

plane. Consistent with the defect-free bulk crystal [2], the
Chern number on this plane is equal to C(AL�M )

m = 2 (band
structures on the AL�M plane are provided in Appendix A).

Due to the even parity of Chern numbers in cat-cat and
an-an TSLs, the Z2 topological indices are (0; 0, 0, 0). In
contrast, cat-an TSLs are weak topological insulators with
indices (0; 0, 0, 1).

2. Berry curvature

The mirror Chern numbers Cm discussed in the last sec-
tion were determined by integrating the Berry curvature for
all occupied bands over the appropriate 2D cross sections of
the 2D Brillouin zone, within +i mirror eigenstates. We ob-
serve that the curvature field in the �MK (ALH) plane is
mostly concentrated in the vicinities of the M (L) and � (A)
points (see Fig. 4). In particular, in Fig. 4 we show the Berry
curvatures for cat-cat and an-an (cat-an) TSLs for d = 16
(d = 18). In cat-cat TSLs the Berry curvature extrema can be
clearly discerned near the M and � points [Fig. 4(a)]. These
extrema of curvature are analogously observed in an-an TSLs,
but the sign of curvature turns out to be negative near the
� point [Fig. 4(b)]. For alternating TSLs (cat-an), the Berry
curvature features extrema of opposite signs near the � point,
while uncompensated extrema near the M points are present
[Fig. 4(c)]. In the ALH plane, positive Berry curvature is
concentrated around A, while near each L point there are two
extrema of opposite signs. In all cases, the high intensities
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of the Berry curvature in Fig. 4 are correlated with the band
edges shown in Fig. 3.

To quantify the above statements, we locally integrate the
Berry curvature near high-symmetry points. The calculated
Berry flux is approximately 1 around each of the three M
points for all configurations, while at the � point it is equal to
1, −1, and 0 for cat-cat, an-an, and cat-an TSLs, respectively.
The sums of Berry fluxes near three M points and one � point
give the mirror Chern numbers obtained in Table I.

Interestingly, for the cat-an TSL in the ALH plane, the
Berry flux is compensated near the L points and amounts to 1
around the A point. To explain how the results obtained for the
ALH plane are different from those pertaining to �MK , it is
instructive to consider the mirror plane symmetry properties
of the states on both planes. Let �0 and �π be the Bloch
functions defined on kz = 0 (the �MK plane) and kz = π (the
ALH plane). Let |�0〉 and |�π 〉 be also eigenstates of the (111)
mirror plane operator. Then one can easily check that

〈�0|M̂1|�0〉 = 〈�0|M̂2|�0〉, (1)

〈�π |M̂1|�π 〉 = −〈�π |M̂2|�π 〉, (2)

where M̂1 and M̂2 are mirror plane operators corresponding
to TP1 and TP2. Let us assume that the influence on the
topological properties of the TSL depends mainly on indi-
vidual TPs in the unit cell. Then we can define independent
mirror-resolved Berry curvatures F TPn,±i

12 and Chern num-
bers CTPn,±i determined individually for each TPn, where ±i
denotes the eigenspace of the operator M̂n. The quantities
defined in this way do not depend on the specific location
of TPn in the unit cell. We neglect the possibility that bulk
states in the TSL also contribute to the total Berry curva-
ture. The Chern numbers given in Table I and the curvatures
shown in Fig. 4 are calculated with respect to the M̂2 op-
erator. Thus, from Eqs. (1) and (2), it follows that on the
�MK plane the total Berry curvature is a sum of curvatures
F TP2,±i

12 + F TP1,±i
12 determined by TP2 and TP1 (it is important

to remind the reader that the TPs have different orientations,
i.e., they are rotated by 180◦ with respect to each other, so
even if both are of the same kind, the two terms F TPn,±i

12 are
different). On the ALH plane, the total Berry curvature is
given by a different combination F TP2,±i

12 (�k) + F TP1,∓i
12 (�k) =

F TP2,±i
12 (�k) − F TP1,±i

12 (−�k), where in the last equality we used
the fact that the ±i eigenstates of M̂2 at �k and the ∓i eigen-
states at −�k are related by time reversal. In consequence,
the Chern numbers would also be sums and differences of
individual invariants:

C(�MK )
±i = CTP1,±i + CTP2,±i, (3)

C(ALH )
±i = CTP2,±i − CTP1,±i, (4)

where the subscripts in C(�MK )
±i and C(ALH )

±i denote the
eigenspaces of the M̂2 operator.

This is consistent with the results compiled in Table I if as
individual Chern numbers we take CcTP,m = 2 for a cationic
TP and CaTP,m = 1 for an anionic TP. As already mentioned,
the curvatures shown in Fig. 4 can be understood as the cor-
responding sums and differences of the curvatures determined
by individual TPs. (See also Fig. 11 in Appendix A, where the

Berry curvatures on the ALH plane for cat-cat and an-an TSLs
are presented.) The curvatures are much smaller than those on
the �MK plane and integrate to zero, in line with the above
observations.

We stress that Eqs. (3) and (4) rely on quite strong assump-
tions regarding the wave functions in the TSL. Namely, we
have postulated that the contributions to the band structure
topology from the two TPs are well discerned, and also in-
dependent from each other and from all bulk electronic bands.
Furthermore, we conjectured that the contribution of the latter
is negligible. It is therefore necessary to confirm the appeal-
ing result of Eqs. (3) and (4) in a separate calculation. For
this purpose we will return to study independent topologies
coming from individual TPs in Sec. III B.

3. Surface states in twinning superlattices

Searching for signatures of the topological invariants
shown in Table I, we investigate the lateral surface spectra
of the TSLs. For calculations, we use the recursive Green’s
function method described in Ref. [62] applied to the TB
Hamiltonian of a semi-infinite TSL system terminated by a
surface having one of two orientations, namely, (11̄0) and
(112̄), which are perpendicular to the TSL growth axis. The
projections of the high-symmetry points from the TSL BZ to
the surface BZ for both orientations are shown in Fig. 2. The
supercell height chosen for cat-cat and an-an TPs is d = 16,
while for TSLs with alternating TPs it is d = 18. The Berry
curvatures in Fig. 4 show that topological surface states can be
expected to emerge in the close vicinity of the projections of
�, M, and A points from the 3D BZ, depending on the choice
of TPs. Furthermore, M-�, A-L, and �-A are the symmetry
lines where the gapless surface states are predicted.

Figures 5(a)–5(c) show the calculated spectral functions
of a (11̄0) plane for cat-cat, an-an, and cat-an TSLs, respec-
tively. Plots for all types of TSL share the same feature of
two separated-in-energy Dirac points at M and two secondary
Dirac points in the middle of the gap, which are shifted away
from M towards � (only one is shown in the figure). The
spectrum for the cat-cat TSL [Fig. 5(a)] includes a similar
structure near �, with secondary Dirac points shifted towards
M. In contrast, the spectrum of the an-an TSL [Fig. 5(b)] is
gapped in the vicinity of �. In the cat-an TSL [Fig. 5(c)],
single topologically protected Dirac points appear exactly at
� and at A.

In Figs. 5(d)–5(f) the calculated spectral functions of a
(112̄) surface are presented. The results along the M-� line
are qualitatively equivalent to the results for the (11̄0) surface.
Moreover, along the �-A line, a Dirac crossing of surface
states is also observed. It results from the protection by the
(11̄0) mirror symmetry which is not broken by the surface and
the fact that the �-A line is a projection of the (11̄0) plane (see
Fig. 2). This protection is the same as the protection provided
by preserved {110} symmetries in the defect-free TCI bulk. In
the case of the (11̄0) TSL surface, all {110} mirror symmetries
are broken by the surface or by TPs, and the states along �-A
do not connect the valence band to the conduction band.

The number of surface modes in the spectra is consistent
with the calculated Chern numbers. The existence of topolog-
ical surface states along the (111) mirror-symmetric lines is
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FIG. 5. Surface spectral functions of SnTe TSLs with (11̄0) (top row) and (112̄) (bottom row) surface orientations calculated with the
iterative Green’s function method. The spectra are obtained for d = 16 supercell height for both cationic [(a) and (d)] and anionic [(b) and (e)]
twin planes. (c) and (f) show the spectra for the d = 18 supercell, which hosts one anionic TP and one cationic TP.

determined by the topologies of the electronic structures of
the two kinds of TPs. Moreover, the presence or absence of
Dirac crossings along �-M, for both surface orientations, can
be understood by inspecting the Berry curvatures in Fig. 4.
The � point is in both cases a projection of both � and M. For
an-an TSLs, the Berry fluxes associated with these points have
opposite signs, and their contributions cancel when projected
on the surface, resulting in there being no topological states
near �. In contrast, for cat-cat TSLs, the contributions of
the � and M valleys have matching signs, and each of the
valleys generates a surface Dirac cone at �. In a cat-an TSL
the vicinity of � is topologically trivial, and hence only the
M valley produces a single Dirac cone on the surface. The
M point for both surface orientations is a projection of two
different M points, which by symmetry have matching Berry
curvature profiles. Each of the M points in the TSL generates
a Dirac cone at M on the surface. We briefly note that the
splitting in the energies of the Dirac points at M and, in a
cat-cat TSL, at � is due to valley mixing, i.e., interference
between states coming from the two valleys projecting onto
the same area in the surface BZ.

Similar observations can be made for the spectra along
A-L. One Dirac point exists only in the cat-an case. It is
situated at the A point, which is consistent with nontrivial
curvature around A and weak Z2 and mirror Chern numbers
for the ALH plane.

B. (111) slab with a single twin plane

1. Slab with clean surfaces

To conclusively determine the role of individual TPs, we
turn to the problem of a twinned SnTe crystal with a single
(111) twin boundary. As the lattice is locally mirror symmetric
about the TP, we choose to investigate a finite system with

a global (111) mirror symmetry. We consider the geometry
of a (111)-oriented slab, with either a cationic or an anionic
TP in the middle. The slab thickness of 121 atomic layers
(∼21.8 nm) is chosen so as to be large enough to suppress
any hybridization between states localized on the surfaces and
on the TP. Without loss of generality, we chose that the slab
surfaces would terminate with the same kinds of atoms as the
ones that form the TPs.

Figure 6 shows the spectra of the two kinds of slabs
calculated along the �-M-K-� line. For both cases, four topo-
logically protected surface Dirac cones (one at the � point
and three at the M points) appear in the (111) slab BZ.
For the purpose of better presentation, we added a positive
(negative) on-site potential shift to the outermost layers of
cationic (anionic) slab surfaces to shift the surface Dirac point
to the middle of the spectrum. This change is irrelevant to the
substance of our study.

The spectral functions of the slab edge, calculated with
the iterative Green’s function method, are shown in Fig. 7.
The edge is oriented along the [112̄] direction, and it can be
thought of as the (11̄0) surface of the TSL, symmetrically
truncated along (111) atomic planes (see Figs. 1 and 2). The
spectral function map is color coded to distinguish between
the +i (blue) and −i (red) mirror reflection eigenspaces. We
show that in the case of a slab hosting a cationic TP, we

observe two edge mode crossings [see Fig. 7(a)]: one at �

with a Dirac dispersion and the second at M. The slab with an

anionic TP has only one crossing located at the M point, as
shown in Fig. 7(d). In the cationic case, the spectral density

of the edge states crossing near � in Fig. 7(a) is superimposed
on the spectral density of the � and M2 surface Dirac cones.
However, we have verified that neither the dispersion nor
the energy of these edge bands is affected when we change the
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FIG. 6. The calculated band structures of [111]-oriented twinned
SnTe slabs with thickness of 121 atomic layers (∼21.8 nm), featuring
(a) a cationic (cat.) or (b) an anionic (an.) TP in the middle, with
(a) cationic and (b) anionic terminations. The line color indicates
that most of the weight of the wave function is located as follows:
red, near the TP; gray, near the surfaces; or blue, in the intermediate
space.

surface states’ energy with the added on-site potential on the
outermost atomic layers. It can be seen that the wave functions

that form the topological crossing at the � point are well
confined in the [111] direction to the vicinity of the cationic
TP [Fig. 7(b)], while they are absent in the case of the anionic
TP [Fig. 7(e)]. Conversely, for both types of slabs, the edge

modes near M cross exactly at the (111) surface Dirac point
corresponding to the M1 and M3 points in the slab BZ. This
is accompanied by the change of the localization of edge state
wave functions from tightly localized states at the TP to the

localization close to the surfaces when k approaches the M
point, as shown in Figs. 7(a) and 7(c) and in Figs. 7(d) and
7(f).

2. Band topology of individual TPs

The Dirac cones at the slab surfaces can be gapped by
adding a small [111]-directed Zeeman term HZ = mσz to

the surface layers, where m is the magnitude and σz is the
third Pauli matrix acting in spin subspace. This breaks the
time-reversal symmetry but preserves the (111) mirror plane.
Effectively, it can be interpreted as adding a weak magnetic
field of equal magnitude and direction to the two surfaces. The
Zeeman perturbation can introduce new topological properties
of the surfaces and add new topological edge states. Never-
theless, we will show that this method allows the study of the
Berry curvature and the calculation of the Chern number of
the TP within the slab.

To calculate the mirror Chern number Cm of the slabs,
the full Hamiltonian is first decomposed into ±i subspaces
of the (111) mirror reflection operator, and the associated
Berry curvatures F±i

12 are calculated. Recall the mirror Berry
curvature F m

12 = (F+i
12 − F−i

12 )/2.
Crucially, the surfaces do not contribute to F m

12. By mirror
symmetry, the wave functions on the top surface are related by
a global (i.e., identical for all �k points) unitary transformation
to the wave functions on the bottom surface. Furthermore, in
a sufficiently thick TCI slab, the wave functions at the two
surfaces form two disjoint sets. Due to invariance of the Berry
curvature to a k-independent unitary transformation, the Berry
curvatures of the two surfaces are equal, F top surf.

12 = F bot. surf.
12 .

It follows trivially that the surface contributions to the mirror-
resolved Berry curvatures satisfy F surf,+i

12 = F surf,−i
12 , since the

eigenfunctions of the (111) mirror symmetry operator pertain-
ing to the surfaces have equal weights on both sides of the
slab. It is noted that the Zeeman terms on the surfaces affect
the total Chern number C through the total Berry curvature
F12 = F+i

12 + F−i
12 , while the mirror Berry curvature F m

12 con-
tains information only on the TP and the surrounding twin
lattice. In Fig. 8 the mirror Berry curvature maps of a cationic
and an anionic twin boundary are shown. The mirror Berry
fluxes around M and � points are fractional (± 1

2 ) and even-
tually lead to mirror Chern numbers Cm = 2 and Cm = 1, for
cationic and anionic TP, respectively.

For the purpose of confining our analysis of the band
structure topology to the vicinity of the TP, we introduce the
projected Berry curvature

F (A)
12 (�k) = Tr[F (�k)PA], (5)

where the trace is taken over all bands at k and PA is a
projection operator corresponding to a selected part (labeled
A) of the slab unit cell. A detailed description of the procedure
for determining the projected Berry curvature is available in
Appendix C. Here we present an abridged explanation, ex-
cluding details not essential to our argument.

The Berry curvature of the slab can be split into three
parts, F12 = F TP

12 + F surf
12 + F bulk

12 , where the subsequent ad-
dends arise from the presence of the TP, the surfaces, and the
intermediate lattice, respectively. F bulk

12 permeates the whole
slab, including the surface and TP layers, while F TP

12 and F surf
12

are confined to the neighborhoods of their respective slab
components. Accordingly, if T denotes a range of atomic
layers in the center of the slab, containing the TP, F (T )

12 =
F TP

12 + (VT /V )F bulk
12 , where VT is the volume of T and V is

the volume of the entire slab. F bulk
12 can be calculated by

considering a range of layers B of volume VB lying away from
the TP and the surfaces, for which F (B)

12 = (VB/V )F bulk
12 . Thus
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FIG. 7. Edge states in a 121-monolayer-thick (∼21.8 nm) (111)-oriented SnTe slab along the 1D BZ of its [112̄] edge. Calculated edge
spectral functions for (a) a cation-terminated slab with cationic TP and (d) an anion-terminated slab with anionic TP. (b) and (c) [(e) and (f)]
show the distributions of the spectral weight across the edge for different k values, which are indicated by the vertical orange dashed lines in
(a) and (d), for cationic and anionic TP, respectively. Outlines of the 2D slab bands projected to the edge are given by black dotted lines. The
mirror-separated spectral functions of the subspaces +i and −i are encoded in blue and red, respectively.

the contribution to the Berry curvature from the TP can be
calculated as

F TP
12 = F (T )

12 − VT

VB
F (B)

12 . (6)

A schematic depiction of volumes T and B is shown in
Fig. 9(e).

It is straightforward to show that the above scheme ap-
plies also to the projected curvatures F TP,±i

12 , F (T ),±i
12 , F (B),±i

12
calculated in the ±i subspaces of the mirror reflection oper-
ator. We performed calculations of F TP,±i

12 for the two slabs

FIG. 8. Mirror Berry curvatures of (111)-oriented twinned crys-
tal slabs with (a) a cationic and (b) an anionic TP in the middle. The
dashed lines denote the first BZ boundaries. A Zeeman term is added
to the outermost layers to open the gap in the surface spectrum.

described in Sec. III B 1, with the magnetic term of magni-
tude m = 0.5 eV added on the surfaces. Through examining
F (A)

12 calculated for various parts A of the slab, we establish
that, in our tight-binding model, the appropriate choice of
T is 41 layers in the middle of the slab, while B can be
chosen as any two adjoining atomic layers (one cationic and
one anionic), lying farther than 20 layers away from the TP
and 24 layers away from the surface, along with two atomic
layers being their mirror reflection on the other side of the
TP. The maps of the calculated TP Berry curvatures are pre-
sented in Fig. 9, with Figs. 9(a) and 9(b) corresponding to
the cationic TP, and Figs. 9(c) and 9(d) corresponding to the
anionic TP. Figures 9(a) and 9(c) show the Berry curvatures
in the +i subspace, while Figs. 9(b) and 9(d) show the −i
subspace.

For all calculated cases, the TP Berry curvature is concen-
trated around � and M. In analogy to the analysis of the TSLs
in Sec. III A we calculate the TP Berry flux, by integrating
F TP,±i

12 over the vicinities of the high-symmetry points. We
find that for the cationic TP, it is approximately ± 1

2 in the
±i subspace, near both � and M. For the anionic TP, the TP
Berry flux amounts to approximately ∓ 1

2 near � and ± 1
2 near

M in the ±i subspace.
Although the integral of F TP,±i

12 over the entire BZ is
not quantized, the integer-valued Chern number of the ±i
subspace can still be represented as C±i = cTP,±i + cbulk,±i +
csurf,±i, i.e., the sum of real-valued components, obtained
by integrating F TP,±i

12 , F bulk,±i
12 , and F surf,±i

12 , respectively.
However, by evaluating these integrals numerically, we find
ccTP,±i ≈ ±2 for the cationic TP and caTP,±i ≈ ±1 for the
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FIG. 9. The contribution to the Berry curvature of 121-
monolayer-thick, (111)-oriented twinned crystal slabs coming from
the vicinity of (a) and (b) the cationic and (c) and (d) the anionic
TP, calculated in the (a) and (c) +i and (b) and (d) −i subspace of
the (111) mirror symmetry operator. The dashed lines denote the first
BZ boundaries. (e) Sketch of the slab with a schematic depiction of
subsystems T and B that were used for the projected Berry curvature
calculations.

anionic TP. In both cases, cbulk,±i ≈ 0. This allows us to
associate with the TPs an approximate mirror Chern num-
ber cTP,m = (cTP,+i − cTP,−i )/2, which is ccTP,m ≈ 2 for the
cationic TP and caTP,m ≈ 1 for the anionic TP.

In conclusion, both types of twin boundaries act as 2D
TCIs. Furthermore, as implied by the odd-valued caTP,m, a
single anionic twin boundary is a 2D Z2 topological insula-
tor, provided that no time-reversal-symmetry-breaking terms
affect the vicinity of the TP.

Our findings for individual TPs also have consequences for
TSLs. The +i Berry curvature of, e.g., a cat-an TSL on the
(�MK ) plane, calculated with respect to the mirror plane ly-
ing in the anionic TP, is F TSL,(�MK ),+i

12 ≈ F aTP,+i
12 + F ′cTP,+i

12 +
F bulk,+i

12 , where the prime symbol denotes rotating the map by
π around [111]. The rotation is due to the relative orientation
of TP1 and TP2 in the TSL. On the (ALH ) plane, the analo-
gous formula is F TSL,(ALH ),+i

12 ≈ F aTP,+i
12 + F ′cTP,−i

12 + F bulk,+i
12 .

From time-reversal symmetry, it follows that F ′cTP,−i
12 =

−F cTP,+i
12 , which implies F TSL,(ALH ),+i

12 ≈ F aTP,+i
12 − F cTP,+i

12 +
F bulk,+i

12 . The application of the above reasoning to the −i
subspace and other kinds of TSLs is straightforward. This
analysis explains very well the Berry curvature map features
in Fig. 4 (and Fig. 11 in Appendix A) and shows that TPs in
TSLs can be treated as almost independent systems.

As a final note, we remark that although the Berry flux
around the three M points and the � point is fractional for
a single TP, in Appendix D we show that for any edge orien-
tation these four points project onto the edge BZ in pairs, one
from two M points and the other from � and M points. Thus
Berry fluxes corresponding to the Mi and � points eventually
sum to integers (1, −1, or 0) along the projection line.

IV. CONCLUSIONS

Our theoretical studies of the SnTe class TCI show that a
TP, a 2D defect along the [111] crystallographic direction,
introduces a new two-dimensional topological system pro-
tected by the (111) mirror plane defined by the boundary. All
calculations of topological invariants, numbers and positions
of the Dirac crossings through the energy gaps, and maps of
Berry curvatures presented in this paper are consistent for
TSLs and slabs. We can conclude that a TP defines a 2D
TCI with mirror Chern number Cm = 1 for an anionic TP and
Cm = 2 for a cationic TP. We have also verified that similar
calculations performed for TPs in a trivial insulator (PbTe)
show that TPs are trivial. This means that the bulk topology
due to the inverted gap at the Lfcc points is crucial for the
nontrivial properties of TPs which arise from the introduction
of a new mirror plane in an already topologically nontrivial
bulk.

Calculations of the projected Chern number in thick slabs
demand at least 41 atomic layers around the TP to converge.
This means that the topology is defined not only by the com-
ponents of the valence band wave functions well localized on
the TP but also by the components delocalized in the bulk. On
the other hand, it turned out that in TSLs the Chern numbers
are well defined also for much smaller distances between TPs.
This means that weak coupling between TPs does not destroy
their topological properties and the topology of the TSL band
structure can be determined from the sum of the properties of
individual TPs.
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APPENDIX A: ELECTRONIC STRUCTURES ALONG
HIGH-SYMMETRY LINES IN THE ALH

AND �ALM PLANES

To support the results presented in Sec. III A, we further
study the electronic structures of cat-cat and an-an TSLs along
different paths in the 3D BZ. The calculated spectra carried
out for 200-monolayer supercell height are shown in Fig. 10
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FIG. 10. The calculated band structures of 200-monolayer-
height [111]-oriented SnTe TSLs with the k wave vectors along the
A-L-H -A high-symmetry lines of the BZ. The TSLs constructed for
(a) all-cationic TPs and (b) all-anionic TPs, and the red (blue) color
coding indicates the localization of the wave function on the TPs
(bulklike atoms).

for cat-cat and an-an TSLs along the A-L-H-A high-symmetry
lines. The structures are very similar to those obtained in the
�MK plane for each type of TSL. In particular, the states
localized near the TPs encoded by red in the figure have ex-
pectedly the same dispersion as in the �MK plane. However,
the calculated mirror Chern numbers presented in Table I are
different for the �MK plane and the ALH plane and equal to
zero in the latter plane for the TSLs that comprise a single
TP type. This is due to the fact that upon mirror reflection the
wave functions corresponding to the ALH plane acquire a −1
phase factor difference between the two TPs in the supercell.
The consequences can be seen directly by calculating the
Berry curvatures of the TSLs. Therefore we proceed with
the Berry curvature calculations for the 16-monolayer-height
supercell for a cat-cat (an-an) TSL, as shown in Fig. 11(a)
[Fig. 11(b)]. The curvature peaks for both types of TSL in the
ALH plane are absent or are distributed oppositely around the

FIG. 11. Berry curvatures associated with the mirror subspace +i
in the ALH plane of the 2D BZ. (a) and (b) correspond to cat-cat and
an-an TSLs with 16-monolayer-height supercells, respectively.

A and L points. The Chern number amounts to zero within
both mirror reflection subspaces +i and −i.

Finally, we calculate the electronic structures along the
high-symmetry lines that lie in the (11̄0) plane. In Figs. 12(a)
and 12(b) we show the electronic structures of cat-cat and
an-an TSLs, respectively. The supercells have a height equal
to d = 200 monolayers. The length of the direction parallel to

FIG. 12. The calculated band structures of a [111]-oriented SnTe
TSLs for the k wave vectors along �-A-L-M-� high-symmetry lines
of the BZ. The 200-monolayer-height TSL supercells have (a) all-
cationic and (b) all-anionic TPs. The red (blue) color code indicates
the location of the wave functions on TPs (bulklike atoms).
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FIG. 13. Surface spectral functions of SnTe TSL with (11̄0) sur-
face orientation calculated with the d = 18 supercell, which hosts
one anionic TP and one cationic TP.

the [111] crystallographic axis is much smaller compared with
the in-plane direction because the corresponding reciprocal
lattice vector is inversely proportional to the height of the
supercell.

APPENDIX B: DIRAC CONE AT THE A POINT
OF THE (11̄0) SURFACE OF CAT-AN TSLs

The cat-an TSLs feature nontrivial topology around the A
point as is suggested by their Berry curvature in the ALH
plane [see Fig. 4(d)]. Here, in Fig. 13 we show the spectral
function of the (11̄0) surface of the cat-an TSL along the
L-A-L path with a closer view than the one demonstrated in
Fig. 5(c). The Dirac crossing at A consistently confirms the
nontriviality of cat-an TSLs in the ALH plane with the mirror
Chern number equal to 1.

APPENDIX C: PROJECTED BERRY CURVATURE

In this Appendix we describe more rigorously the defini-
tion of the projected Berry curvature introduced in Sec. III B 2.
The projected Berry curvature was defined as

F (A)
12 (�k) = Tr[F (�k)PA], (C1)

where the trace is taken over all bands at k, PA is a projection
operator corresponding to a selected part (labeled A) of the
slab unit cell, and

F (�k) =
∑

n,n′,m

(−1) fm

2
( fm − fn)( fm − fn′ )

× |n〉
( 〈n | ∂H

∂kx
| m〉〈m | ∂H

∂ky
| n′〉

(Em − En)(Em − En′ )

−
〈n | ∂H

∂ky
| m〉〈m | ∂H

∂kx
| n′〉

(Em − En)(Em − En′ )

)
〈n′| (C2)

is an operator prepared such that Tr[F (�k)] gives the Kubo
formula for the Berry curvature. H denotes the Hamiltonian
of the slab, and En denotes the energy corresponding to the

eigenvector |n〉 defining the nth energy band at �k. fn is the
occupancy, i.e., fn = 1 if the nth band is occupied, and fn = 0
otherwise. F (A)

12 is gauge invariant, and
∑

A F (A)
12 = F12 as long

as
∑

A PA = 1. While (C1) is only one of many nonequivalent
ways of decomposing the Berry curvature into components
corresponding to different subsets of the unit cell, we find it
sufficient for our objective, as F (A)

12 is sensitive to the weight
on A of the wave functions that contribute to the total Berry
curvature.

Since our objective is to classify the TPs by the mirror
Chern number, the TP Berry curvatures have to be calculated
separately for ±i subspaces of the (111) mirror reflection
operator. This is achieved by calculating

F (A),±i
12 (�k) = Tr[P±iF (�k)P±iPA], (C3)

which is effectively confining the sums in (C2) to eigenstates
P±i |n〉 belonging to the appropriate subspace. Note that A
must be chosen such that it is symmetric with respect to the
(111) mirror plane, ensuring [P±i, PA] = 0.

APPENDIX D: PROJECTION RULE OF M POINTS ON AN
ARBITRARY EDGE OF THE 2D HEXAGONAL LATTICE

Here, we demonstrate a general rule to determine whether
the � point and M points are always projected in pairs in
any crystallographic direction. We note that an analogous
argument also works for points A and L. Let us first define 2D
primitive lattice vectors as �t1 = a(0,

√
3) and �t2 = a( 3

2 ,
√

3
2 )

to generate periodically infinite lattices in real space. The
corresponding reciprocal lattice vectors are �b1 = 2π

a (− 1
3 ,

√
3

3 )

and �b2 = 2π
a ( 2

3 , 0), which define a 2D hexagonal BZ. The net
vectors of the Mi (i = 1, 2, 3) and � points are defined as
follows:

� = �G, (D1)

�M1 = 1
2 (�b1 + �b2) + �G, (D2)

�M2 = 1
2
�b2 + �G, (D3)

�M3 = − 1
2
�b1 + �G, (D4)

where �G is the reciprocal net vector n′ �b1 + m′ �b2 and n′ and
m′ are integer numbers. The projection direction is along �d =
−p�t1 + q�t2, which is perpendicular to the �d⊥ = p�b2 + q�b1

direction. We note that (p, q), being the edge indices, are rel-
atively prime. To obtain the projection in pairs, the following
conditions must be satisfied:

( �Mi − �Mj ) · �d⊥ = 0 (pair of M points), (D5)

�Mk · �d⊥ = 0 (pair of � and M points). (D6)

After examination of all possible combinations of M points
and using properties of the relatively prime numbers of the
(p, q) edge, we conclude that the � point and the three M
points are always projected in two separate pairs, namely,
(1) (M2, M3) and (�, M1) when both p and q are odd, (2)
(M1, M2) and (�, M3) when p is even and q is odd, and (3)
(M1, M3) and (�, M2) when p is odd and q is even.
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