
PHYSICAL REVIEW B 107, 205305 (2023)

Topological superconductivity in helical crystals
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We study superconductivity and surface Andreev bound states in helical crystals. We consider the interlayer
pairings along the helical hopping and investigate the surface local density of states on the (001) and zigzag
surfaces for all the possible irreducible representations. There are three and four irreducible representations
exhibiting the zero-energy peaks in the local density of states at the (001) and zigzag surfaces of helical lattices,
respectively. By calculating the one-dimensional winging number, we show that these appearances of the zero-
energy peaks stem from the surface Andreev bound states.
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I. INTRODUCTION

The symmetries of pair potentials are related to those
of the underlying crystals [1]. For example, in the system
with inversion symmetry, the symmetry of the pair potential
is classified into the even-parity spin-singlet or odd-parity
spin-triplet states. In the transition of an unconventional su-
perconductor (SC), one or more symmetries are broken in
addition to U(1) symmetry breaking in BCS SCs. Allowed
pair potentials in the underlying crystal lattice structure are
classified by the irreducible representations of the point group
of the crystal lattice. The symmetry of the pair potential has
been extensively studied in several SCs: cuprate, UTe2, and
SrRuO4 [2–6].

Helical crystals, realized in materials such as tellurium
[7–13], have the right- or left-handedness. The superconduc-
tivity in helical crystals has been found in, e.g., NbRh2B2

and TaRh2B2 [14–16]. As a result of the helical crystal
structures, current-induced orbital and spin magnetizations
in helical crystals have been theoretically proposed [17,18],
and chirality-induced spin selectivity (CISS) [19–25] has been
detected in helical crystals [26–29]. These effects inducing
the magnetization by the electric current are useful for the
application to spintronics.

The effect of helical molecules chemisorbed on the con-
ventional SC has been reported in the recent experiments
[30–32]. Conductance spectra are observed through the he-
lical molecules in the spin-singlet s-wave SC (Nb) by the
scanning tunneling spectroscopy (STS) and scanning tun-
neling microscopy (STM) measurements. Interestingly, they
show zero-bias conductance peaks. This result is against the
fact that a zero-bias conductance peak is not exhibited on
the surface of s-wave SCs because the anisotropy of the gap
function such as p-wave or d-wave SCs is necessary to gen-
erate the zero-energy bound states on the surface [33–40].
Thus, it is suggested that unconventional superconductivity
is proximity induced in the helical molecules. The experi-
mental result performed in the helical molecules intercalated
into a layered SC suggests that the molecular chirality in-
duces the unconventional/topological SC [41]. However, the

mechanism of this effect of the helical molecules has not been
established yet, while this zero-bias conductance peak struc-
ture implies the possibility of novel effect of helical structures.

It is known that the dispersionless Andreev bound states
(ABSs) are manifested as zero-bias conductance peaks on the
surface of the unconventional SCs [37,38]. The presence of
the zero-energy flat-band ABSs on the surface is characterized
by the topological number (winding number) defined in the
bulk system [42]. A SC with nontrivial winding number is
identified with the topological SC [43–51], and the bound
states protected by the winding number are robust against any
perturbations as long as the system remains the symmetry
to define the topological number. Thus, it is interesting to
investigate the ABSs and winding number in the system with
helical structures to clarify the symmetry of the pairing in the
helical systems.

In the above experiments [30–32], the helical molecules
have been absorbed on the Nb substrate. In this paper, we
focus on the possibility that the pair potentials are induced
in the helical molecules by the superconducting proximity
effect. In this scenario, we have to clarify what types of
pairings are induced and how they generate the bound states
on the surface of helical lattices. For this purpose, we adopt
the model calculation of helical crystals and investigate the
surface bound states on the (001) and zigzag surfaces of
helical lattices for all the possible nearest interlayer pairings,
where the (001) surface perpendicular to the helical axis
corresponds to the edge of the helical molecules observed
by the STS and STM experiments. For A1 and E1 represen-
tations of spin-singlet and E2 representation of spin-triplet,
zero-energy peaks in the surface density of states (SDOS) are
obtained on the (001) surface. For E1 and E2 representations,
zero-energy peaks are obtained on the zigzag surface. In ad-
dition, we verify that the corresponding winding numbers are
nontrivial.

This paper is organized as follows: In Sec. II, we introduce
the tight-binding model for the helical lattices, the recursive
Green function method, and one-dimensional (1D) winding
number. In Sec. III A, we classify the possible pair poten-
tials into the irreducible representations of the point group.
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FIG. 1. Helical lattice of the (a) left-handed helix and (b) right-
handed helix, where a3 is a primitive lattice vector along the
z axis. (c) Three-dimensional (3D) honeycomb lattice is shown
as a reference. (d) One layer of the helical and honeycomb
lattice, where a1 and a2 denote the primitive lattice vectors
on the xy plane. The A and B sites are marked by red and
blue balls, respectively. Red and blue bonds in (a), (b), and
(c) show the interlayer hoppings between A and B sites, respec-
tively. The hopping amplitude t1 is the nearest-neighbor hopping
in the xy plane, and t2 and t3 are the interlayer hopping am-
plitudes along bonds in the helical and 3D honeycomb lattices,
respectively.

In Sec. III B, we show the numerical results of the SDOS.
In Sec. III C, we show the numerical results of the winding
number and verify the consistency between the appearance
of zero-energy peaks in the SDOS and nontrivial winding
number. We summarize our results in Sec. IV.

II. FORMULATION

In this paper, we consider a three-dimensional (3D) helical
lattice with the D6 point groups as shown in Fig. 1. We also
consider the 3D honeycomb lattice with D6h as a reference.
The helical and 3D honeycomb lattice is composed of a stack
of honeycomb lattice layers, which have two sublattice A and
B in each unit cell. The unit cell in our model is spanned
by the primitive vector a1 = ax̂, a2 = a/2(−x̂ + √

3ŷ), and
a3 = aẑ shown in Figs. 1(b) and 1(d), where x̂, ŷ, and ẑ are
unit vectors along x, y, and z axis, and a is a lattice con-
stant. Thus, each unit cell is labeled by a vector of integer
n = (n1, n2, n3), where the A (B) site in a unit cell n is located
at

∑
i niai (

∑
i niai + aŷ/

√
3). On this lattice, we examine the

superconducting state with the interlayer pairings in the tight-
binding model on the helical and 3D honeycomb lattices. We
consider both spin-singlet and triplet pairings. With respect to
the triplet pairings, it is sufficient to consider the antiparallel
spin pairings because of the spin rotational symmetry in the
present system. The corresponding Hamiltonian Ĥ is given

FIG. 2. (a) High-symmetry points on kz = 0 plane in the Bril-
louin zone. (b) High-symmetry points in the half range of the
Brillouin zone. The origin of the Brillouin zone corresponds to �

point.

by [17,18]

Ĥ = t1
∑
〈i j〉σ

ĉ†
iσ ĉ jσ + t2

∑
[i j]σ

ĉ†
iσ ĉ jσ + t3

∑
{i j}σ

ĉ†
iσ ĉ jσ

+
∑

i j

[�i j ĉi↑ĉ j↓ + H.c.], (1)

where ciσ (c†
iσ ) is an annihilation (creation) operator for an

electron with the spin σ at the site i, t1, t2, and t3 are hopping
amplitudes, and �i j is the pair potential of the superconduc-
tivity. The site i indicates the set of the unit cell n and the
sublattice A or B. In our paper, the chemical potential is set to
zero. The first term in Eq. (1) represents a nearest-neighbor
hopping in xy plane. The second and third terms represent
nearest-neighbor layer hoppings in the helical and honeycomb
lattices, respectively, as shown in Figs. 1(b) and 1(c). We set t3
(t2) to zero when we consider the helical (honeycomb) lattice.
We consider the nearest-neighbor layer pairings depending
on kz to investigate the pair potentials generating the bound
states on the (001) surface as the blue plane in Fig. 3(a).
We also investigate the bound states on the zigzag surface
as the red plane in Fig. 3(b). In the interlayer pairings, �i j

only has a finite value when the set of i and j belongs to
the same sublattice. Due to the spin-rotational symmetry, it
is sufficient to consider the antiparallel spin pairings, i.e., the
Cooper pairings have zero total spin on the quantization axis.
In the last term of Eq. (1), the spin-singlet (spin-triplet) states
corresponds to the pair potential which satisfies �i j = � ji

(�i j = −� ji).
The Brillouin zone and high-symmetry points are shown

in Fig. 2. The K point bi is defined as b1 · a1 = −b2 · a2 =
b3 · (a2 − a1) = −2π/3 on kz = 0 plane, and the K ′, H , and
H ′ points are defined as −bi, bi + π ẑ/a, and −bi + π ẑ/a,
respectively.

We calculate the SDOS at the (001) and zigzag surfaces
of semi-infinite helical and honeycomb lattices. For this pur-
pose, we consider the clean system with the (001) and zigzag
surfaces as shown in Figs. 3(a) and 3(b), where we assume
the periodic boundary condition along the direction parallel
to the surface. Thus, the system is described by the mo-
mentum parallel to the surface k‖ and integer n⊥ specifying
the layers stacked along a⊥ direction, where k‖, n⊥, and a⊥
are given by k‖ = kxx̂ + kyŷ, n⊥ = n3 and a⊥ = a3 (k‖ =
k′(x̂/2 + √

3ŷ/2) + kz ẑ, n⊥ = n1 and a⊥ = a1) in the system
with the (001) (zigzag) surface, respectively. The surface
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FIG. 3. Semi-infinite models with (a) (001) and (b) zigzag sur-
face. The blue and red planes show the (001) and zigzag surface,
respectively. The layers parallel to the (001) (zigzag) surface are
labeled by n3 (n1), where n3 = 1 (n1 = 1) layer corresponds to
the surface. Surface Brillouin zone projected to the (c) (001) and
(d) zigzag surface. The axis k′ is aligned parallel to the zigzag surface
on the kxky plane.

Brillouin zones projected to the (001) and zigzag surfaces
are shown in Figs. 3(c) and 3(d), respectively. The layers in
the SC are labeled from n⊥ = 1 to ∞, and the layer n⊥ = 1
corresponds to the surface. This means that the problem is
reduced to the one-dimensional problem along the direction
a⊥ at each momentum k‖. The Hamiltonian Ĥ is written as

Ĥ = 1

2

∑
k‖

∑
n⊥,n′

⊥

�̂†
n⊥ (k‖)H̃n⊥n′

⊥ (k‖)�̂n′
⊥ (k‖),

H̃n⊥n′
⊥ (k‖) =

(
ĥn⊥n′

⊥ (k‖)ŝ0 −�̂∗
n⊥n′

⊥
(k‖)iŝy

�̂n⊥n′
⊥ (k‖)iŝy −ĥn⊥n′

⊥ (k‖)ŝ0

)
,

�̂n⊥ (k‖) = (Ĉn⊥ (k‖), Ĉ
∗
n⊥ (−k‖)), (2)

where ·̂ is a 2×2 matrix in the sublattice space, n⊥ is a
label of the layer parallel to the surface, ŝi (i = 0, x, y, z)
is the Pauli matrix acting on the spin space, and Ĉn⊥ (k‖) =
(ĉn⊥k‖A↑, ĉn⊥k‖A↓, ĉn⊥k‖B↑, ĉn⊥k‖B↓ ) is a spinor composed of
annihilation operators ĉn⊥k‖μσ of the electrons with spin σ ,
momentum k‖, and sublattice μ at the n⊥th layer.

The Green’s function at k‖ and the complex frequency ω is
defined as follows:

G̃(k‖, ω) = (ωĨ − H̃ (k‖))−1, (3)

where Ĩ is a unit matrix with the same size as H̃ (k‖). The
SDOS is calculated from the retarded Green’s function

ρσ (E ) = − 1

2πNS

∑
μ=A,B

∫
Im[G1111

μσμσ (k‖, E + iη)]dk‖, (4)

where G
ττ ′n⊥n′

⊥
μσμ′σ ′ is a matrix element of G̃ at the particle-hole

indices τ and τ ′, n⊥ and n′
⊥th layers, the sublattice μ and μ′,

FIG. 4. Surface density of states at the (001) surface of the helical
and honeycomb lattices in the normal and superconducting states.
The SDOS are normalized by ρN being the zero-energy SDOS of
the normal state. The irreducible representations are shown on top of
each figure. The SDOS of A2u is calculated in the honeycomb lattice,
and the others are in the helical lattice. We specify either spin singlet
or triplet for E1 and E2 representations. In the irreducible represen-
tations that are not shown here, no zero-energy peaks appear at the
(001) surface. We take t1 as an energy unit and set other hopping
integrals as t2 = 0.1 or t3 = 0.1. The amplitudes of pair potentials
are set as �0 = 0.18 for A2 and A2u, �0 = 0.2 for E1(singlet), and
�0 = 0.4 for E2(triplet).

and the spin σ and σ ′, E and η are the energy and smearing
factor, respectively, NS is a number of sites on the surface and
n⊥ = 1 shows the layer of the surface. As a result of the zero
total spin of the Cooper pairs, the surface density of states is
independent of the spin σ , i.e., ρ(E ) = ρ↑(E ) = ρ↓(E ). To
calculate the retarded Green’s function at the surface n⊥ = 1,
we apply the recursive Green function method proposed by
Umerski [52–54].

The dispersionless ABSs generated on the surface of
anisotropic SCs are characterized by the nontrivial 1D wind-
ing number defined in the bulk [42]. The BdG Hamiltonian in
the bulk is written as

H(k) = 1

2

(
ε̌(k) �̌

�̌† −ε̌T (−k)

)
, (5)

where ·̌ is a 4×4 matrix in the direct product of the sublattice
and spin spaces. Having the time-reversal symmetry, the BdG
Hamiltonian satisfies

�H(k)�−1 = H∗(−k), � =
(

iŝyτ̂0 0

0 iŝyτ̂0

)
, (6)

where τ̂i (i = 0, x, y, z) is the Pauli matrix in the sublattice
space. In addition, the BdG Hamiltonian has the particle-hole
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FIG. 5. Surface density of states at the zigzag surface of the
helical lattice in the normal and superconducting states. The fig-
ures are shown in the same manner as Fig. 4. In the irreducible
representations that are not shown here, no zero-energy peaks appear
at the zigzag surface. The hopping parameters are set as the same
values as in Fig. 4. The amplitudes of the pair potential are set
as �0 = 0.4 for E2(triplet) and �0 = 0.2 for the other irreducible
representations.

symmetry written as

CH(k)C−1 = −H∗(−k), C =
(

0 ŝ0τ̂0

ŝ0τ̂0 0

)
. (7)

In order to define the winding number, we introduce the chiral
operator as � = −iC� in the spin-singlet case and � = SzC�

in the spin-triplet case [42,55], where Sz is the z component of
the spin operator defined as

Sz =
(

ŝzτ̂0 0
0 −ŝzτ̂0

)
. (8)

Thus, the flat bands for the triplet pairs are unstable against
the spin-orbit interactions.

The 1D winding number manifesting the dispersionless
ABSs is defined with � for k‖ as

w(k‖) = − 1

4π i

∫
dk⊥tr[�H−1(k)∂k⊥H(k)], (9)

where k⊥ is a momentum perpendicular to the surface and
the integration is taken over the possible k⊥ on the Brillouin
zone. The winding number at k‖ is equal to the integer value
N+ − N−, where N± is the number of zero-energy states with
an eigenvalue � = ±1 at k‖.

FIG. 6. One-dimensional winding number, Eq. (9), as a function
of momentum k‖ parallel to the (001) surface. The irreducible repre-
sentations are shown on top of each figure. We show the winding
number for the irreducible representations shown in Fig. 4, and
those for the other irreducible representations are zero over the
surface momentum k‖. The dashed lines show the boundary of the
Brillouin zone projected to the (001) surface. For each irreducible
representation, we set the hopping parameters and pair potential as
the same values as in Fig. 4. Red and blue regions indicate w = ±2,
while white region represents w = 0. The black lines are the nodes
projected on the (001) surface. The nodal lines are drawn by plotting
the momenta at which

√
det[H4×4(k)] is less than 10−7t2

1 , where
H4×4(k) is BdG Hamiltonian reduced to the 4×4 matrix.

III. Results

A. Irreducible representations

We will investigate the possible pair potentials generating
the bound states and the resulting surface bound states in
the helical lattice. For this purpose, we consider the nearest
layer pairings with the kz dependence. In this case, the two
electrons on the same sublattice constitute the Cooper pair.
Thus, �i j only has a finite value when i and j belong to the
same sublattice.

The possible order parameters are classified by the irre-
ducible representations of the point group symmetry [1]. We
decompose the pair potentials into the irreducible representa-
tions and rewrite the superconducting parts of the Hamiltonian
as:

Ĥ� = �0

∑
k,μ=A,B

[φIR
μ (k)ĉμk↑ĉμ−k↓ + H.c.], (10)

where �0 is the amplitude of the pair potential, k and μ

are the momentum and index of sublattice, respectively, and
φIR

μ (k) is the basis function of the irreducible representa-
tion of D6 or D6h. The basis functions φIR

μ (k) in the helical
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FIG. 7. One-dimensional winding number, Eq. (9), as a function
of momentum k‖ parallel to the zigzag surface. The irreducible rep-
resentations are shown on top of each figure. We show the winding
number for the irreducible representations shown in Fig. 5, and those
for the other irreducible representations are zero over the surface
momentum k‖. The dashed lines connect the high-symmetry points
projected on the zigzag surface. For each irreducible representation,
we set the hopping parameters and pair potential as the same values
as in Fig. 5. Red and blue regions indicate w = ±1, while white
represents w = 0. The black lines are the line nodes projected on the
zigzag surface. The nodal lines are drawn by plotting the momenta
at which

√
det[H4×4(k)] is less than 10−7t2

1 , where H4×4(k) is BdG
Hamiltonian reduced to the 4×4 matrix.

lattice with D6 and honeycomb lattice with D6h are shown in
Table I. There are two kinds of basis functions distinguished
by spin channels in E1 and E2 representations. Hereafter, when
necessary in E1 and E2 representations, we append the spin
channel to specify the basis function; for example, we write
E1 representation of the spin singlet as E1(singlet). There are
two basis functions in each E1 and E2 representation as seen
in Table I. We will use the upper one in the model calculation.
We have checked that similar results are obtained for the lower
basis function.

B. Surface density of states

In this subsection, we show the numerical results of the
SDOS. We calculate the SDOS at the (001) and zigzag sur-
faces for all the possible irreducible representations shown in
Table I. We choose t1 as a unit of the energy and set interlayer
hoppings as t2/t1 = 0.1 or t3/t1 = 0.1. In Figs. 4 and 5, we
show the SDOS for the irreducible representations exhibiting
the zero-energy peaks in the SDOS. The SDOS of the irre-
ducible representations belonging to D6 (D6h) point group are
calculated at the surface of the helical (honeycomb) lattice.
The gap size of E2(triplet) is accidentally much smaller than
�0 in our hopping parameters. Thus, we take �0 of E2(triplet)

FIG. 8. Surface density of states on the (001) surface. The fig-
ures are shown in the same manner as Fig. 4. The hopping parameters
are set as the same values as in Fig. 4. The amplitudes of the pair
potential are set as �0 = 0.2.

larger than the ones for the other irreducible representations in
Figs. 4 and 5.

The zero-energy peaks appear at the (001) surface for A2,
A2u, E1(singlet), and E2(triplet) representations and zigzag
surface for E1 and E2 representations. For the other irreducible
representations not shown in Figs. 4 and 5, zero-energy peaks
are not obtained in the SDOS (see Appendix A). In the helical
lattice, there are three representations, A2, E1(singlet), and
E2(triplet) representations, exhibiting the zero-energy peak at
the (001) surface. On the other hand, A2u representation is
the only irreducible representation which shows zero-energy
peak in the honeycomb lattice. At the zigzag surface, all of the
zero energy peaks in Fig. 5 are obtained in the helical lattice.

205305-5



YOSHIDA, YADA, TANAKA, AND YOKOYAMA PHYSICAL REVIEW B 107, 205305 (2023)

TABLE I. Irreducible representations (Irreps) and basis functions φIR
μ (k) of the pair potentials for interlayer pairing in the honeycomb and

helical lattices, where μ indicates the sublattice degree of freedom. D6h and D6 represent the point groups (PG) in the honeycomb and helical
lattices, respectively. The intersite components are zero because we focus on the interlayer pairings. Node structures are obtained at t2/t1 = 0.1
or t3/t1 = 0.1 and �0/t1 = 0.1.

PG Irrep Spin Node φIR
A (k) φIR

B (k)

D6h A1g singlet point cos kz φA(k)
A2u triplet line sin kz φA(k)
B1u singlet cos kz −φA(k)
B2g triplet sin kz −φA(k)

D6 A1 singlet point cos(kx + kz ) + cos(kx/2 − √
3ky/2 − kz ) + cos(kx/2 + √

3ky/2 − kz ) φA(kx, ky, −kz )

A2 triplet line sin(kx + kz ) − sin(kx/2 − √
3ky/2 − kz ) − sin(kx/2 + √

3ky/2 − kz ) −φA(kx, ky, −kz )

B1 singlet cos(kx + kz ) + cos(kx/2 − √
3ky/2 − kz ) + cos(kx/2 + √

3ky/2 − kz ) −φA(kx, ky, −kz )

B2 triplet sin(kx + kz ) − sin(kx/2 − √
3ky/2 − kz ) − sin(kx/2 + √

3ky/2 − kz ) φA(kx, ky, −kz )

E1 singlet line 2 cos(kx + kz ) − cos(kx/2 − √
3ky/2 − kz ) − cos(kx/2 + √

3ky/2 − kz ) −φA(kx, ky, −kz )

− cos(kx/2 − √
3ky/2 − kz ) + cos(kx/2 + √

3ky/2 − kz ) −φA(kx, ky, −kz )

E1 triplet line − sin(kx/2 − √
3ky/2 − kz ) + sin(kx/2 + √

3ky/2 − kz ) φA(kx, ky, −kz )

2 sin(kx + kz ) + sin(kx/2 − √
3ky/2 − kz ) + sin(kx/2 + √

3ky/2 − kz ) φA(kx, ky, −kz )

E2 singlet line 2 cos(kx + kz ) − cos(kx/2 − √
3ky/2 − kz ) − cos(kx/2 + √

3ky/2 − kz ) φA(kx, ky, −kz )

− cos(kx/2 − √
3ky/2 − kz ) + cos(kx/2 + √

3ky/2 − kz ) φA(kx, ky, −kz )

E2 triplet line − sin(kx/2 − √
3ky/2 − kz ) + sin(kx/2 + √

3ky/2 − kz ) −φA(kx, ky, −kz )
2 sin(kx + kz ) + sin(kx/2 − √

3ky/2 − kz ) + sin(kx/2 + √
3ky/2 − kz ) −φA(kx, ky, −kz )

These appearance of the zero-energy peaks are characterized
by 1D winding number in Eq. (9) as discussed in the next
subsection.

C. One-dimensional winding number

In this subsection, we calculate the 1D winding num-
ber and investigate the correspondence between the presence
of the zero-energy peaks and flat-band ABSs. In the nu-
merical calculation of the winding number, because of the
spin-rotational symmetry, we reduce the 8×8 BdG Hamil-
tonian H(k) in Eq. (5) to a 4×4 matrix H4×4(k). Thus,
the winding numbers shown in this subsection take half
of the values defined in Eq. (9). For all the irreducible
representations, we calculate the 1D winding number in
the Brillouin zone projected on the (001) and zigzag sur-
faces. The hopping parameters are chosen as t2/t1 = 0.1 or
t3/t1 = 0.1 for all the irreducible representations. For these
parameters, the Fermi surfaces are located around high-
symmetry points K , K ′, H , and H ′ shown in Fig. 1(d).
The winding numbers for the irreducible representations
considered in Figs. 4 and 5 are shown in Figs. 6 and 7,
respectively. The winding number for the irreducible repre-
sentations not shown in Figs. 6 and 7 is zero over the surface
Brillouin zone.

As shown in Fig. 6, the nodes of the gap function for A2,
A2u, E1(singlet), and E2(triplet) representations make closed
loops around K and K ′ points in the Brillouin zone projected
on the (001) surface. In addition, a single nodal line goes
through the K and K ′ points for E1(singlet) representation
as shown in Fig. 6(c), and two nodal lines go through these
points for E2(triplet) representation as shown in Fig. 6(d). The
winding number has the same value in a region surrounded

by the nodal lines and can change across the nodal line. The
winding number takes w = +2 for A2 and A2u representations,
and w = ±2 for E1(singlet) and E2(triplet) representations.

TABLE II. Summary of the results in the helical lattice with
D6 and honeycomb lattice with D6h. The basis functions of each
irreducible representation (Irrep) of each point group (PG) are
shown in Table I. We clarify the spin channels of E1 and E2 to
distinguish the basis functions. Checks and crosses indicate the
presence and absence of the zero-energy peak, respectively. The
zero and finite numbers show the trivial and nontrivial winding
number.

Zero energy peak Winding number

Zigzag (001) Zigzag (001)
PG Irrep surface surface surface surface

D6h A1g × × 0 0
A2u × � 0 2
B2g × × 0 0
B1u × × 0 0

D6 A1 × × 0 0
A2 × � 0 2
B1 × × 0 0
B2 × × 0 0

E1(singlet) � � ±1 ±2
� � ±1 ±2

E1(triplet) � × +1 0
� × −1 0

E2(singlet) � × ±1 0
� × ±1 0

E2(triplet) � � ±1 ±2
� � ±1 ±2
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For the irreducible representations shown in Fig. 7, the
nodal lines surround the K , K ′, H , and H ′ points projected
on the zigzag surface. In particular, as shown in Figs. 7(a) and
7(d), there are two and three nodal lines around these high-
symmetry points in E1(singlet) and E2(triplet) representations,
respectively. The winding number takes w = +1 in Fig. 7(b)
and w = ±1 in the other panels of Fig. 7.

The nontrivial values of the winding number obtained in
this subsection is consistent with the appearance of the zero-
energy peaks in the SDOS shown in Figs. 4 and 5. Thus,
the zero-energy peaks shown in Figs. 4 and 5 originate from
the flat band ABSs protected by the topological number [42].
There are three irreducible representations, A1, E1(singlet),
and E2 (triplet) representations, generating the ABSs at the
(001) surface of the helical lattice, and four irreducible repre-
sentations, E1 and E2 representations, generating the ABSs at
the zigzag surface of the helical lattice.

IV. CONCLUSION

We have studied superconductivity in the helical lattice
with helical interlayer hopping and the 3D honeycomb lat-
tice as a reference. We have supposed the nearest interlayer
pairings under the mean field theory and decomposed the pair
potentials into all the irreducible representations.

We have calculated the SDOS at the (001) and zigzag
surfaces for all the possible irreducible representations. At
the (001) surface of the helical lattice, the zero-energy peaks
have appeared in the SDOS for A2, E1(singlet), and E2(triplet)
representations. At the zigzag surface, the zero-energy peaks
have been obtained for E1 and E2 representations. Calcu-
lating the 1D winding number, we have clarified the ABSs
manifested as zero-energy peaks. We have summarized the ap-
pearances of zero-energy peaks and values of winding number
of all the possible irreducible representations in Table II.
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APPENDIX: NUMERICAL RESULTS OF THE SURFACE
DENSITY OF STATES WITHOUT ZERO-ENERGY PEAK

Here, we show the SDOS for the other representations
not exhibited in the main text. We show the SDOS on the

FIG. 9. Surface density of states on the zigzag surface. The fig-
ures are shown in the same manner as Fig. 4. The hopping parameters
and amplitudes of the pair potential are set as the same values as in
Fig. 8.

(001) and zigzag surfaces in Figs. 8 and 9, respectively. The
zero-energy peaks do not appear for all the SDOS in Figs. 8
and 9.
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