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Over the last two decades, the hierarchical equations of motion (HEOM) of Tanimura and Kubo have become
the equation of motion-based tool for numerically exact calculations of system-bath problems. The HEOM is
today generalized to many cases of dissipation and transfer processes through an external bath. In spatially
extended photonic systems, the propagation of photons through the bath leads to retardation/delays in the
coupling of quantum emitters. Here, the idea behind the HEOM derivation is generalized to the case of photon
retardation and applied to the simple example of two dielectric slabs. The derived equations provide a simple
reliable framework for describing retardation and may provide an alternative to path-integral treatments.
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I. INTRODUCTION

After the hierarchical equations of motion (HEOM) were
initially invented by Tanimura and Kubo [1,2] to exactly
numerically solve the open quantum system problem with a
Debye spectral density, the HEOM did not immediately gain
broad usage since the limited numeric capabilities did not
allow for a versatile implementation at the time. However, the
idea of using the time constant derivative of the Debye spectral
density time correlation function persisted. Recently, various
implementations [2–7] of HEOM followed after sufficient
computing power became available. Soon after its invention,
many generalizations using arbitrary spectral densities by de-
composition into summed Debye form spectral densities were
also developed. For most system-bath approaches, it provides
a well-established path to a numerically exact solution.

A different type of system-bath problem is the propaga-
tion of quantum states, e.g., through a bath of photons or
phonons [8–17]. A typical problem is describing quantum
interconnects for quantum computing and cryptography appli-
cations. Recently, various applications of these systems with
a delay caused by the propagation through the bath were
investigated [8–17], including the development of different
methods. However, the number of propagating photons is still
limited, as it was for the open quantum systems approaches
until HEOM implementations became widespread, along with
other methods such as tensor networks [14,15,18–33]. In this
paper, an analysis of the HEOM derivation in the context of
delay is carried out and HEOM analog equations for systems
with delay are derived. We demonstrate that the approach
leads to a systematic set of equations ordered by the number
of photons propagating through the bath. In the future, com-
binations with, e.g., tensor networks or automatic derivation
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may lead to an additional route to solve problems involving
delays.

The paper starts with a derivation of the HEOM analog for
open quantum systems with delay and illustrates its potential
with a simple photon propagation example.

II. DERIVATION OF HIERARCHICAL EQUATIONS
OF MOTION (HEOM)

An HEOM analog with delay is derived for an open
quantum system with H = Hs + Hb + Hsb. Here, Hs is the
Hamiltonian of the system, which consists of quantum emit-
ters in different spatially separated cavities. Hb is the bath
Hamiltonian containing the propagating photon modes. Fi-
nally, Hsb is the system-bath coupling Hamiltonian. In open
quantum systems, only the observables of the system are of
interest, which can be calculated from the relevant density
matrix ρs(t ) = trB[ρ(t )]. Its calculation is the main objective
of HEOM, where we transfer the steps by Tanimura and Kubo
[1] to systems with delay. We assume a factorized initial state
ρ(t0) = ρs(t0) ⊗ ρB, where ρB is a harmonic bath state. The
system dynamics obey

ρs(t ) = trB

{
T←U (t, t0)exp

[
− i

h̄

∫ t

t0

dτU (t0, τ )

× Hsb,−(τ )U (τ, t0)

]
ρs(t0) ⊗ ρB

}
, (1)

where ALρ = Aρ, ARρ = ρA, and A− = AL − AR define
the Liouville space operators acting on Liouville operator
ρ for any Hilbert space operator A [34] and U (t, t0) =
T←exp{− i

h̄

∫ t
t0

dτ [Hs,−(τ ) + Hb,−(τ )]} with time ordering op-
erator T←. Hs,−(τ ) may also contain Lindblad operators for
describing external processes acting on the joint system-
bath state. Following the HEOM derivation [1] and the
path-integral derivation from [17], we convert Eq. (1) to
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path-integral form,

ρs(t ) = trB

{
T←

M∏
i=0

Ui,i−1exp

[ ∫ t0+εi

t0+ε(i−1)
dτU †

i−1(τ )

× Hsb,−(τ )Ui−1(τ )

]
ρs(t0) ⊗ ρB

}
, (2)

with ε = (t − t0)/M and M → ∞ (in the following equations,
the limit is always assumed). Furthermore, Ui, j = U (t0 +
εi, t0 + ε j) and Ui(τ ) = U [τ, t0 + ε(i)]. For small ε, the ap-
proximation Ui,i−1 exp[

∫ t0+εi
t0+ε(i−1) dτU †

i−1(τ )Hsb(τ )Ui−1(τ )] ≈
Ui,i−1 + εUi,i−1/2Hsb[t0 + ε(i − 1/2)]Ui−1/2,i−1 =: Ui,i−1 +
εU (1)

sb (i) holds, yielding

ρs(t ) = trB

{
T←

M∏
i=0

[
Ui,i−1 + εU (1)

sb (i)
]
ρs(t0) ⊗ ρB

}
.

We assume linear system-bath coupling: Hsb =∑
i jμ Ci jμAi jBµ, with system Ai j and linear bath operator

Bµ. For a system A and bath B Liouville operator, the relation

(AB)− = A+B− + A−B+ holds, so U (1)
sb (i) can be written

as a sum over products of the system and bath operators
U (1)

sb (i) =∑l A(1)
l (i)B(1)

l (i), and we define A(0)
l = U s

i,i−1δl,0

and B(0)
l = U b

i,i−1δl,0 with the system and bath parts of Ui,i−1.
With these relations, we write ρS in terms of a system part S
and an influence functional (similar form as in [17]),

ρs(t ) =
1∑

k1...kM=0

∑
l1...lM

(
M∏

i=1

εki

)
S(k1l1, . . . , kMlM )

× I (k1l1, . . . , kMlM ). (3)

The system part is still an operator S(k1l1, . . . , kMlM ) =
T←
∏M

i=1 A(ki )
li

(i)ρs(t0), while the influence functional

I (k1l1, . . . , kMlM ) = trB[T←
∏M

i=1 B(ki )
li

(i)ρB] is just a number.
Since ρB is assumed to be a harmonic bath equilibrium
state, Wick’s theorem allows us to factorize the influence
functional I into expectation values of two bath operators
B(1)

l (·). Furthermore, for small ε, the system propagator is
roughly U s

i,i−1 ≈ Ids − i
h̄εHs,−[t0 + ε(i − 1/2)]. Using the

approximations of the time propagators and using Wick’s
theorem, we obtain

ρs(t + ε) ≈ ρs(t ) − ε
i

h̄
Hs,−[t0 + ε(M + 1/2)]ρs(t ) +

∑
lM+1

T←εA(1)
lM+1

∑
k1...kM

∑
l1...lM

(
M∏

i=1

εki

)
Aki

li
(i)ρs(t0)

×
M∑

m=1

trB
[
B(1)

lM+1
(M + 1)U B

M,m+1B(1)
lm

(m)ρB
]
δkm,1I (k1l1, . . . , km−1lm−1, 00, km+1lm+1 . . . , kMlM ),

including only the terms, at most, linear in ε. Collecting the
terms linear in ε yields the derivative of ρs [1],

∂tρs(t ) = − i

h̄
Hs,−(t )ρs(t ) +

∑
l l̃

A(1)
l (t )

×
∫ t

t0

dt1
〈
B(1)

l (t )B(1)
l̃

(t1)
〉
Bρ

(1)
sl̃

(t, t1), (4)

where 〈A〉B = trB(AρB) and the bath correlation function is
in the interaction picture, and the first-order auxiliary density
matrix (ADM) ρ (1) reads

ρ
(1)
sl (t, t̃ )

= δkm1δlml

〈
T←

M∏
i=1.i 	=m

B(ki )
li

(i)

〉
B

×
∑

k1...kM

∑
l1...lM

T←A(1)
l (m)

⎛
⎝ M∏

i=1,i 	=m

εki A(ki )
li

(i)

⎞
⎠ρs(t0),

with t̃ = mε + t0. Here, the derivation deviates from the
original recipe of Kubo and Tanimura since the assumption
of a spectral density in Debye form (simple exponential e−γ t

in time) is not compatible with systems including delay.
Generalizations of HEOM usually rely on a decomposition
of the spectral density into a sum of exponential functions
to recover the Debye form. However, an expansion of the
correlation function for the delay case using e−γ |t−tdelay| does

not yield the advantages of Kubo’s and Tanimura’s approach
since the original relies on a time constant derivative of the
Debye spectral density time correlation function. Instead,
a delayed correlation of the above form introduces a sign
change at t = tdelay, so that a dependence of ρ (n) on earlier
integration times is unavoidable in the case with delay. Thus
the integration over t1 is not included in the definition of ρ (1),
in contrast to the original HEOM [1]. Keeping the general
form of the bath correlation function is more flexible than
using a special form, which would simplify the equations of
motion in the following. ρ (1)

sl (·, t1) describes bath disturbances
to the system density matrix, which are initially caused by an
interaction with A(1)

l at time t1 (similar to the auxiliary dimen-
sions in extended time-convolutionless (TCL) theory [35]). Of
course, the additional time argument prevents direct numerical
implementations for increasing n. But specific bath correlation
functions together with analytic calculation or tensor
network methods [14,15,29–33,36–40] will allow solutions
nevertheless. Using the same technique as for ∂tρs(t ) yields

∂tρ
(1)
sl1

(t, t1) = − i

h̄
Hs,−(t )ρ (1)

sl1
(t, t1) +

∑
l2 l̃2

A(1)
l2

(t )

×
∫ t

t0

dt2
〈
B(1)

l2
(t )B(1)

l̃2
(t2)
〉
Bρ

(2)
sl1 l̃2

(t, t2, t1)

+ δ(t − t1)A(1)
l1

(t1)ρs(t1 − 0+), (5)
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where we use the interaction picture for the bath correlation
function. Instead of an initial condition ρ

(1)
sl1

(t1, t1) =
Al1 (t1)ρs(t1 − 0+), the δ term at the time of the initial
condition is included, i.e., ρ

(1)
sl1

(·, t1) is equal to zero (in the δ

case) or not defined (in the initial condition case) before time

t1. Note that t1, t2 of the second-order ADM ρ (2)(t, t2, t1) are
not time ordered since different delay/retardation times can
occur in open quantum systems.

The form of ρ (2) points to a general definition of the
nth − order ADM ρ (n) starting with ρ (0)(t ) = ρs(t ),

ρ
(n)
sl̃1...l̃n

(t, t̃n, . . . , t̃1) =
∑

k1...kM

∑
l1...lM

T←

⎡
⎣ n∏

j=1

A(1)
l̃ j

(mj )δl̃ j ,lm j
δk̃m j 1

⎤
⎦
⎡
⎣ M∏

j=1,∧n
i=1 j 	=mi

εk j A
(k j )
l j

( j)

⎤
⎦ρs(t0)

〈
T←

M∏
j=1,∧n

i=1 j 	=mi

B
(k j )
l j

( j)

〉
B

, (6)

with t̃i = miε + t0. Analogous to ρ (1), this yields

∂tρ
(n)
sl1...ln

(t, t1, . . . , tn) = − i

h̄
Hs,−(t )ρ (n)

sl1...ln
(t, t1, . . . , tn) +

∑
ln+1 l̃n+1

A(1)
ln+1

(t )
∫ t

t0

dtn+1
〈
B(1)

ln+1
(t )B(1)

l̃n+1
(tn+1)

〉
Bρ

(n+1)
sl1...ln l̃n+1

(t, t1, . . . , tn+1)

+
n∑

p=1

δ(t − tp)A(1)
lp

(tp)ρ (n−1)
sl1...lp−1lp+1...ln

(tp − 0+, t1, . . . , tp−1, tp+1, . . . tn+1). (7)

The last term is again a replacement to an initial con-
dition: ρ

(n)
sl1...ln

(tp, t1, . . . , tn) = Alp (tp)ρ (n−1)
sl1...lp−1lp+1ln

(tp − 0+,

t1, . . . , tp−1, tp+1, . . . , tn) with tp = maxi(ti ), and it is clear
that ρ

(n)
sl1...ln

(t, t1, . . . , tn) = 0 for t < tp. So for the last term,
only p with the largest time tp contributes. Furthermore, the
ADM ρ (n) is invariant under permutations of t1, . . . , tn includ-
ing their corresponding l1, . . . , ln.

The HEOM analog scales exponentially with n in both
the number of indices li, which contain the possible states
involved in the initial interaction at time ti, as well as in
the number of additional time arguments ti. The number of
possible initial states per li and the number of necessary time
steps per ti enter into the base of this exponential scaling.
For specific applications (e.g., the δ-like correlation functions
used in the example below), the number of necessary time
steps can be significantly reduced to include only a short time
frame (e.g., the delay time).

The physics behind Eq. (7) is very accessible: Under the
rotating wave approximation and for a bath with negligible
initial photon number, n corresponds to the maximum num-
ber of photons propagating between two systems through the
bath at a given time t , so an exact truncation of the equa-
tions based on the traveling photons is possible. For cases
where these assumptions do not hold, such an intuitive phys-
ical interpretation of the ADMs is not possible. Note that the
photons on the left- and right-side states of the density matrix
are counted accumulatively, so a transfer of a single-photon
density requires two traveling photons (left and right side
of density matrix), as opposed to one traveling photon for
a single-photon coherence. For other open quantum system
equations of motion techniques, such as Nakajima-Zwanzig
[41] or TCL equations [41], the generators K in the equa-
tions of motion contain the system-bath coupling in any order.
A calculation of higher-order contributions from K is gen-
erally cumbersome involving higher products of system-bath
correlation functions as well as a truncation at a given pho-
ton number. For the HEOM analog, only one system-bath
correlation function appears in the second term of Eq. (7)

cleanly separating on photon number. The first term of Eq. (7)
describes the system dynamics. The second term represents
the absorption of a bath photon, which entered the bath at time
tn+1. The last term describes photon emission into the bath.

III. APPLICATION TO PHOTON PROPAGATION

As a benchmark for this approach, we consider two spa-
tially separated quasinormal mode (QNM) cavities, coupled
to a common photonic bath [Fig. 1(a)]. The QNMs f̃ µ are
an open system analog to normal modes, which solve the
Helmholtz equation under an outgoing radiation condition
[42–48]. QNMs have complex eigenfrequencies ω̃μ = ωμ −
iγ µ with photon decay rate γμ > 0. Here, two dielectric slabs
serve as QNM cavities as in Fig. 1(b). We assume an effective
one-dimensional (1D) problem with homogenous continua-
tion in the y, z direction. The model allows the analytical
calculation of the modes (assuming a constant real permittiv-

FIG. 1. (a) Model of two open QNM cavities with dissipation
rates γ µ and effective intercavity coupling strength Vμη. (b) 1D
model with two slabs with constant permittivity εR = π 2 serving
as QNM cavities, sitting against a background εB = 1. (c) Scheme
of the HEOM depicting a process including intercavity transfer and
dissipation.
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ity εR) and coupling elements (cf. Appendix A). We include
only the lowest-energy QNM, assuming that all other modes
are off-resonance. Since the slabs are identical, both have the
same frequency ω̃A = ω̃B = ω̃1. However, we keep the indices
for generality. The slabs are separated by the distance R,
which is large enough for a separate quantization of the modes
without direct intercavity coupling. Instead, the QNMs couple
to a common surrounding bath. This interaction is described
by the Hamiltonian

HSB = h̄
∑

μ=A,B

∫
dx
∫ ∞

0
dωgμ(x, ω)ĉ(x, ω)â†

μ + H.a., (8)

where âµ are the QNM operators for slab μ. The bath oper-
ators ĉ(x, ω) are assumed to be bosonic. The derivation of
the Hamiltonian and coupling elements gμ(x, ω) are shown
in Appendix A.

A. Equations of motion for two traveling photons

As a first step, we limit the dynamics to cases with, at most,
two propagating photons (one on each side or two on one side
of the density matrix). Therefore, the hierarchy truncates at
the second-order ADM, i.e., ρ (n) = 0, n > 2, and

ρ
(2)
s,l1,l2

(t, t1, t2) = �(t1 − t2)U s(t, t1)A(1)
l1

(t1)ρ (1)
s,l2

(t1 − 0+, t2) + �(t2 − t1)U s(t, t2)A(1)
l2

(t2)ρ (1)
s,l1

(t2 − 0+, t1), (9)

using the initial conditions for ρ (2). Inserting Eq. (9) into Eq. (5), we obtain

∂tρ
(1)
sl1

(t, t1) = − i

h̄
Hs,−(t )ρ (1)

sl1
(t, t1) +

∑
l2 l̃2

A(1)
l̃2

(t )
∫ t1

t0

dt2
〈
B(1)

l̃2
(t )B(1)

l2
(t2)
〉
BU s(t, t1)A(1)

l1
(t1)ρ (1)

sl2
(t1 − 0+, t2)

+
∑
l2 l̃2

A(1)
l̃2

(t )
∫ t

t1

dt2
〈
B(1)

l̃2
(t )B(1)

l2
(t2)
〉
BU s(t, t2)A(1)

l2
(t2)ρ (1)

sl1
(t2 − 0+, t1) + δ(t − t1)A(1)

l1
(t1)ρs(t1 − 0+). (10)

Equations (10) and (4) form a closed set of equations of
motion for the system density matrix that are exactly solv-
able (cf. Appendix B) for, at most, two traveling photons.
Figure 1(c) illustrates connections between the equations with
one photon traveling from time t1 = t − τ until t through the
bath, requiring the calculation of ρ (1). Intermittently, a second
photon is emitted into the bath at t2.

The dynamics of a specific system are determined by the
system-bath correlation function 〈B(1)

l̃2
(t )B(1)

l2
(t1)〉B, which de-

scribes the emission of a photon into the bath at time t1 and
reabsorption at time t . For applications, the abstract operators
B(1)

l have to be replaced with operators adapted to the problem.
Comparing the system-bath Hamiltonian from Eq. (8) to the
abstract form suggests the replacements

Al (t ) → Âα
ν1ν2

(t ),

Bl (t ) →
∑

μ=A,B

〈ν1|âμ|ν2〉
∫

dx
∫ ∞

0
dωg∗

μ(x, ω)ĉ†α (x, ω)

+ H.a., (11)

where Âν1ν2 = |ν1〉〈ν2| with system states |νi〉, and α = L, R
for left/right Liouville space operators. The resulting correla-
tion function thus reads〈

B(1)
l̃2

(t )B(1)
l2

(t1)
〉
B → Cα

ν1ν2ν3ν4
(t, t1),

with CL
ν1ν2ν3ν4

(t, t1) =∑μη〈ν1|â†
μ|ν2〉〈ν3|âη|ν4〉Cμη(t − t1)

and CR
ν1ν2ν3ν4

(t, t1) = [CL
ν1ν2ν3ν4

(t, t1)]∗. The index α refers to
the interaction at time t1. The QNM correlation function Cμη

for the two coupled dielectric slabs from Fig. 1(b) reads (cf.
Appendix A)

Cμη(t − t ′) ≈ 2Vμη h̄2[�(t − t ′)δ(t − t ′ − τ )

+ �(t ′ − t )δ(t − t ′ + τ )]. (12)

The coupling strength is given by Vμη = (1 + δμη )γ1/2 with
the cavity decay rate γ1. Due to the topology of the
system, the intercavity coupling is exactly half the dissipa-
tion rate. For the 1D case, a photon emitted away from the
other cavity will not return, while a photon emitted towards
the other cavity can be transferred into that cavity. In higher
dimensions, the intercavity coupling will generally be much
smaller than the dissipation rate. The delay time τ in Eq. (12)
depends implicitly on the involved cavities, with τ = (1 −
δμη )R/c.

B. Exact intercavity dynamics using HEOM

For one initial excitation (one photon on each side of
the density matrix), three system states |A〉 = |10〉, |B〉 =
|01〉, |0〉 = |00〉 contribute, with the excitation in slab A or B,
or both slabs in the ground state, respectively. For this setup,
the truncation of the HEOM is exact since the maximal number
of propagating photons at any time is set by the initial condi-
tions. Inserting Eq. (12) into Eq. (4) yields the equations of
motion. As an example, the occupation in slab A 〈A|ρs(t )|A〉
evolves as (cf. Appendix B)

∂t 〈A|ρs(t )|A〉 = − 2γA〈A|ρs(t )|A〉
− 2V ∗

BAeiωBτ 〈0|ρ (1)L
s,0B (t, t − τ )|A〉 + c.c.

(13)

For the auxiliary density matrix ρ (1), starting from Eq. (10)
and switching to a rotating frame (cf. Appendix B) results in

∂t 〈0|ρ (1)L
s,0B (t, t1)|A〉 = δ(t − t1)〈B|ρs(t1)|A〉

− γA〈0|ρ (1)L
s,0B (t, t1)|A〉

− 2VBAe−iωBτ 〈B|ρ (1)R
s,B0 (t1, t − τ )|0〉

− 2VBAe−iωAτ 〈0|ρ (1)L
s,0B (t − τ, t1)|A〉.

(14)
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FIG. 2. Dynamics of photon exchange between two dielectric
slabs. (a) Single-photon occupations in the slabs for an initial state
with one photon in slab A. The dotted lines show the full wave func-
tion solution. (b) Two-photon coherences. (c) Approximate dynamics
of the occupations with initially two excitations in slab A. In all
cases, the QNM frequencies of the slabs are identical, ω̃1 = (0.06 −
0.0124i) eV, with coupling strength VBA = VAB = 0.0062 eV and de-
lay time τ ≈ 44 ps.

The remaining equations for the occupation in B, the co-
herences, and matrix elements for ρ (1) are of a similar
form (cf. Appendix B). Time-local processes such as cav-
ity photon dissipation are included in the zeroth step of the
hierarchy. For time-nonlocal interactions, the system density
matrix in Eq. (13) only couples to the first auxiliary density
matrix ρ (1).

Figure 2(a) shows the time dynamics of the single-photon
occupations in slabs A and B. The model system allows a
calculation using the wave function (cf. Appendix C) as a
benchmark. The HEOM (solid lines) and exact wave func-
tion (dotted lines) results agree perfectly. Over time, the
single excitation in slab A will dissipate into the bath. How-
ever, some photons are transferred to the QNM of slab B
with delay τ ≈ 44 ps. For the used parameters, the oc-
cupation in B is even larger than the occupation in A
after some time. Eventually, the system arrives at a trapped
state [14,49–54] due to interference from the intercavity
transfer.

Note that the HEOM, in principle, allows the inclusion
of Lindblad terms (e.g., for pumping), which the wave func-
tion does not. Also, an extension to two-photon processes is
feasible for the HEOM. Figure 2(b) shows the two-photon
coherences (two photons on one side of the density matrix,
none on the other) for the two slabs from Fig. 1(b), which
includes, at most, two traveling photons, resulting in a calcu-
lation analogous to Fig. 2(a) (cf. Appendix B). The amplitudes
of the intracavity coherences 〈20|ρs|00〉/〈02|ρs|00〉 resemble
the dynamics of the densities in Fig. 2(a) since, in principle,
the same independent processes are involved. The intercavity
coherence 〈11|ρs|00〉 requires the transfer of just one pho-
ton and thus shows a rapid increase after t = τ . In the final
equilibrium state, the probability (coherence squared) of the

intercavity contribution matches the sum of the two intracav-
ity probabilities.

C. Approximate truncation of multiphoton processes

A feasible calculation of the exact solution as shown here
is limited to a small number of photons by the exponential
scaling of the numerical complexity with the number of exci-
tations. For systems requiring a higher number of traveling
photons, a calculation of the higher steps in the hierarchy
via matrix product states or other tensor networks [14,15,29–
33,36–40] may be possible as well as analytic calculations in
special setups.

The HEOM also allows a perturbative truncation of the
hierarchy for systems with a small system-bath coupling.
Thus, at least an approximate solution is possible for higher
excitation numbers. Such an approximative solution is shown
in Fig. 2(c) for the case of the two slabs with an initial popu-
lation of two excitations in slab A. In principle, this setup can
show up to four propagating photons (two on each side of the
density matrix). For small intercavity couplings Vμη, however,
the timescale on which photons are exchanged between the
cavities is longer than the propagation time τ of the photons.
Therefore, assuming, at most, two photons traveling through
the bath at any time, a truncation of the hierarchy at the
second step, i.e., ρ (n) = 0 for n > 2, may give good results.
Under this assumption, the equations of motion reduce to the
closed set of equations from Sec. III A, and the dynamics are
calculated in the same way as for the one-photon densities
(cf. Appendix B). Here, the two-photon population in slab A
〈20|ρs|20〉 decays exponentially while emitting photons into
the bath. Because of this instant emission, the occupation
〈10|ρs|10〉 with one photon in slab A and the ground state
〈00|ρs|00〉 with no photons in the cavities increase immedi-
ately. In contrast, the states 〈11|ρs|11〉 with one photon in each
slab and 〈01|ρs|01〉 with one photon in slab B only increase
after t = τ since the photons need to travel R = cτ between
the slabs. However, the density 〈02|ρs|02〉 only increases after
t = 2τ . This is an artifact of the two-photon truncation of
the HEOM since the transfer from 〈20|ρs|20〉 to 〈02|ρs|02〉
requires four propagating photons (two on each side). In con-
trast, the transfer of the two-photon coherence from Fig. 2(b)
requires only two photons on one side, so that the coherence
〈02|ρs|00〉 already increases after t = τ , even though the den-
sity 〈02|ρs|02〉 takes twice as long to increase. If the photon
transfer rate and delay time are small enough, this error is
expected to be small if few enough photons are transferred
at once during the time τ . However, a small, qualitative differ-
ence to the exact solution is unavoidable. For larger coupling
strengths or delay times, the approximate solution will deviate
increasingly from the real solution and additional steps in the
hierarchy must be included.

IV. CONCLUSION

In conclusion, we analyzed the derivation of hierarchical
equations of motion and transferred the idea to open quantum
systems with delay. The resulting equations allow a natural,
easy truncation on the number of excitations in the bath,
which is otherwise cumbersome for Nakajima-Zwanzig or
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time-convolutionless equations. The first implementation for
single- and multiphoton transfer between two cavities demon-
strated the feasibility of the approach. We expect that in
the future, more demanding implementations including ten-
sor network approaches may allow the simulation of several
photons traveling through complex quantum networks.

APPENDIX A: ANALYTIC COUPLING ELEMENTS

We use analytic expressions of the mode frequencies, de-
cay constants, and coupling elements for numeric evaluation.
For linearly polarized waves and assuming a homogeneous
continuation in the y, z direction, the problem reduces to the
1D model from Fig. 1(b). The QNM within each slab is given
by [48,55]

f̃μ(x)||x|<L/2 = einRkμx + e−inRkμx+iμπ , (A1)

where nR = √
εR is the refractive index of the slab and kμ =

ω̃μ/c is the QNM wave number. The QNM frequency ω̃µ is
[48,55]

ω̃μL/c = 2πμ + iln[(nR − nB)2/(nr + nB)2]

2nR
. (A2)

Thus, the frequency of the first QNM f̃1(x) is ω̃1 = ω1 −
iγ1 = (1 − i0.21)L/c. The second QNM f̃2(x) has a res-
onance frequency that is twice as large. Hence, as a
first approximation, we take only the first QNM in our
calculations.

Outside of the cavity (|x| > L/2), we replace
the QNMs with regularized modes [56] F̃μ(x, ω) =∫ L/2
−L/2 dx′GB(x, x′, ω)�ε(x′) f̃μ(x′) = (x/|x|)Mμ(ω)eiω|x|/c,

where �ε(x) = εR − εB, |x| < L/2, and 0 otherwise, and

Mμ(ω) = i

2
L(π2 − 1)

[
si

(
(ω + πω̃μ)L

2c

)

− si

(
(ω − πω̃μ)L

2c

)]
(A3)

is an analytical factor that vanishes for ω → ∞. si(x) =
sin(x)/x is the unnormalized sinc function. GB(x, x′, ω) =
ie−iω|x−x′|/c/2 is the vacuum Green’s function for the case of
linearly polarized waves, solving the Helmholtz equation(

∂2
x + ω2

c2

)
GB(x, x′, ω) = ω2

c2
δ(x − x′). (A4)

We locate the slab A at x = 0 and slab B at x = R [cf.
Fig. 1(b)], so that f̃1(x) = f̃A(x) and f̃B(x) = f̃A(x − R).

We quantize the QNMs following the procedure laid out
in [47], with minor adjustments due to the 1D nature of
the problem, e.g., taking the 1D analog of the electric field
quantization and QNM Green’s function instead of the 3D ex-
pressions that were used in [47]. Since the QNM quantization
relies on a complex permittivity, we add a constant imagi-
nary part to the permittivities of the slabs and background
medium: εα = εR/B + iακ (cf. [57]) so that the original values
are retained in the limit α → 0. Taking the 1D analog of
the quantization in dissipative media from [58], we find the
electric field operator to be

Eα (x) =
∫ ∞

0
dω

∫
dx′ i

ωε0
Gα (x, x′, ω) ĵα (x′, ω) + H.a.,

(A5)

where G(x, x′, ω) is the Greens function of the dissipative
medium and ĵα (x, ω) = ω

√
(h̄ε0/π )εα

I (x, ω)b̂(x, ω) is the
noise-current density operator, with b̂(x, ω) a bosonic photon
annihilation operator. εI is the imaginary part of the permit-
tivity, which is frequency independent in the model from
Fig. 1(b), but we keep the frequency dependence for gen-
erality. We use the Green’s function expansion in terms of
QNMs [43,55,56] G(x, x′, ω) =∑μ=A,B Aμ(ω) f̃μ(x) f̃μ(x′),
where Aμ(ω) = ω/[2(ω̃μ − ω)], and the QNM functions f̃ µ

are replaced with regularized modes F̃ µ outside their respec-
tive cavity volumes. Inserting the QNM Green’s function into
Eq. (A5), we find QNM operators analogous to [47]

ãA =
√

2

πωA

∫ ∞

0
dωAA(ω)

[∫ L/2

−L/2
dx
√

εα
I (x, ω) f̃ α

A (x)b̂(x, ω) + lim
λ→∞

∫ λ

L/2
dx
√

εα
I (x, ω)F̃α

A (x, ω)b̂(x, ω)

+ lim
λ→∞

∫ −L/2

−λ

dx
√

εα
I (x, ω)F̃α

A (x, ω)b̂(x, ω)

]
, (A6)

which depend implicitly on α → 0. In the first integral, the limit α → 0 can be carried out immediately, so that this contribution
vanishes because limα→0 εα

I = 0. In the other two integrals, the order of the limits cannot be exchanged, as pointed out in [57],
so the limit λ → ∞ has to be taken first. The operators for the QNMs of cavity B are defined analogously, just spatially shifted
by R.

The QNM operators defined in Eq. (A6) are nonbosonic, with [ãA, ã†
A] = SAA, and

SAA = 2

πωA

∫ ∞

0
dωAA(ω)A∗

A(ω)

[
lim

λ→∞

∫ λ

L/2
dxεα

I (x, ω)F̃α
A (x, ω)F̃ ∗,α

A (x, ω) + lim
λ→∞

∫ −L/2

−λ

dxεα
I (x, ω)F̃α

A (x, ω)F̃ ∗,α
A (x, ω)

]
. (A7)

Analogous to [57], we employ the Helmholtz equation of the background Green’s function [Eq. (A4)] to reduce the integral over
x to the value of the modes at the limits of the integration volume. Taking the limit λ → ∞ first and then α → 0, we find

SAA = 2c

γ1
|M1(ω̃1)|2, (A8)

where we used ω̃A = ω̃1.
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The overlap integral [ãA, ã†
B] = SAB is calculated accord-

ingly. We make use of the fact that the two slabs are identical
except for their spatial separation, and hence ω̃A = ω̃B = ω̃1,
to obtain

SAB = 2c

γ1
|M1(ω̃1)|2Re

{
ω̃1

2ω1
e−iω1R/c

}
e−γ1R/c. (A9)

Since |Re{ω̃1e−iω1R/c/(2ω1)}| < 1, it follows that |SAB/SAA| <

e−γ1R/c, due to the retarded interaction between the slabs. The
QNMs penetrate through the boundary of the slab so that there
is a nonzero overlap even without time delay. However, the
mode is concentrated at the cavity so that the overlap is small
if the slabs are well enough separated. Below, the correlation
functions are discussed for the case with finite time delay. The
QNM wavelength is λ1 = 2L, so a separation of a few dozen
wavelengths, as used in the main text, leads to negligible
contributions of the overlap.

Thus, the QNM operators are symmetrized independently
within their respective cavities similar to the single-cavity
case in [47],

âμ =
∫

dx
∫ ∞

0
dωLμ(x, ω)b̂(x, ω), (A10)

with

Lμ(x, ω) = S−1/2
μμ

√
2εI (x, ω)

πωμ

Aμ(ω) f̃μ(x), (A11)

and the mode function f̃ µ is replaced by the regularized mode
F̃ µ outside the slab volume. The imaginary part of the permit-
tivity and the bounds of the spatial integral include implicit
limits, as discussed above.

We now define continuum operators ĉ(x, ω) = b̂(x, ω) −∑
μ=A,B L∗

μ(x, ω)âµ [59], which commute with the sym-
metrized bosonic QNM operators and serve as the bath.
While they are generally nonbosonic, as a first ap-
proximation, we neglect the nonbosonic contributions.
This allows us to decompose the full Hamiltonian H =
h̄
∫

dx
∫∞

0 dωωb̂†(x, ω)b̂(x, ω) into system and bath parts
[59],

HS = h̄
∑

μ=A,B

ωμâ†
μâμ,

HB = h̄
∫

dx
∫ ∞

0
dωωĉ†(x, ω)ĉ(x, ω),

HSB = h̄
∑

μ=A,B

∫
dx
∫ ∞

0
dωgμ(x, ω)ĉ(x, ω)â†

μ + H.a.

(A12)

The coupling elements, gμ(x, ω) = −S−1/2
μμ ×√

εI (x, ω)/(2πωμ)ω f̃μ(x), are derived from the projectors
Lμ(x, ω), with the pole at ω = ω̃µ removed during the
derivation, as shown in [59].

To derive the coupling strength of the interaction between
the slabs mediated via the bath, we calculate the correlation
function [34,60] that characterizes the system-bath interaction

in the HEOM formalism,

Cμη(t − t ′) = h̄2
∫ ∞

0
dω

∫ ∞

0
dω′

∫
dx
∫

dx′e−iω(t−t ′ )

× gμ(x, ω)g∗
η(x′, ω′)〈ĉ(x, ω)ĉ†(x′, ω′)〉B.

(A13)

For ρB = |0〉〈0| (no initial photons), the expectation value
results in a δ function, so only an integral over the coupling
elements remains. This is calculated similarly to [59], i.e.,
by assuming that the coupling is sharply peaked at the QNM
frequency, so that∫

dxgμ(x, ω)g∗
η(x, ω) ≈ S−1

11

2c

γ1
|M1(ω̃1)|2 γ1

2π

× (eiωRμη/c + e−iωRμη/c), (A14)

where |Rμη| is R if μ 	= η, and 0 otherwise. Using S11 =
2c|M1(ω̃1)|2/γ1 and defining the retardation time τ = Rμη/c
as an implicit function of μ and η, the correlation function
becomes

Cμη(t − t ′) = γ1h̄2

2π

∫ ∞

0
dω(eiωτ + e−iωτ )e−iω(t−t ′ ). (A15)

As a final approximation, we extend the lower limit to −∞
[59] to obtain the correlation function in Eq. (12).

APPENDIX B: CALCULATION OF
THE EQUATIONS OF MOTION

For equations of motion of the density matrix elements, we
use the replacements from Eq. (11) to convert Eq. (4) to a
more explicit form,

∂tρs(t ) = − i

h̄
Hs,−(t )ρs(t ) +

∑
α,β=L,R

∑
ν1...ν4

(−1)α+β Âα
ν1ν2

(t )

×
∫ t

t0

dt1C
β
ν1ν2ν3ν4

(t, t1)ρ (1)β
s,ν3ν4

(t, t1), (B1)

where the sign is negative if α 	= β. For brevity, we use
|A〉, |B〉, |0〉 as defined in the main text, above Eq. (13). To
derive Eq. (13), we take the expectation value with respect to
state |A〉 on (B1) to obtain

∂t 〈A|ρs(t )|A〉 = − i

h̄
〈A|Hs,−ρs(t )|A〉 +

∑
α,β=L,R

∑
ν1...ν4

(−1)α+β

×
∫ t

t0

dt1C
β
ν1ν2ν3ν4

(t, t1)

× 〈A|Âα
ν1ν2

(t )ρ (1)β
s,ν3ν4

(t, t1)|A〉. (B2)

Since the |νi〉 are orthogonal, only certain combinations of
states and α, β survive. The integral and the sums are elim-
inated using the definition of the QNM correlation function
[Eq. (12)] and the initial conditions for ρ (1). To avoid fast-
rotating terms, we move to a rotating frame, where we use a
rotating-frame representation of ρ (1) with respect to its time
arguments, e.g.,

〈0|ρ (1),L
s,0B (t, t1)|A〉 → eiω1(t−t1 )〈0|ρ (1),L

s,0B (t, t1)|A〉, (B3)
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where we have used ωA = ωB = ω1. This results in the first-
order equation of motion given in Eq. (13). Similarly, we
obtain an equation for the coherence 〈A|ρs(t )|B〉,

∂t 〈A|ρs(t )|B〉 = − (γA + γB)〈A|ρs(t )|B〉 − 2V ∗
BAeiωBτ

× 〈0|ρ (1)L
s,0B (t, t − τ )|B〉 + c.c.(A ↔ B).

(B4)

The equations for the occupation in slab B and the second
coherence term are obtained from Eq. (13) and Eq. (B4),
respectively, by exchanging A ↔ B.

For Eq. (14), we insert Eq. (11) into Eq. (10) and
again use the rotating frame. Within the rotating frame,
〈0|ρ (1),L

s,0B (t, t1)|A〉 evolves according to Eq. (14). In the same
manner, we derive

∂t 〈A|ρ (1)R
s,A0 (t, t1)|0〉

= δ(t − t1)〈A|ρs(t1)|A〉 − γA〈A|ρ (1)R
s,A0 (t, t1)|0〉

− 2V ∗
BAeiωBτ 〈0|ρ (1)L

s,0B (t1, t − τ )|A〉
− 2V ∗

BAeiωBτ 〈B|ρ (1)R
s,A0 (t − τ, t1)|0〉. (B5)

The last six matrix elements of ρ (1) are derived from Eq. (14)
and (B5) by complex conjugation or exchanging the indices A
and B. Note that ρ (1)(t, t1) vanishes for t < t1 or t1 < 0. Fur-

thermore, only ρ (1)(t, t − τ ) appears in Eq. (13) and Eq. (B4).
Therefore, the last terms in Eq. (14) and Eq. (B5), respectively,
do not contribute to the dynamics of ρs.

For the two-photon coherences, we obtain (following a
similar derivation as for the single-photon occupation)

∂t 〈20|ρs(t )|00〉 = − 2γA〈20|ρs(t )|00〉 −
√

8V ∗
BAeiωAτ

× 〈10|ρ (1)L
s,0B1B

(t, t − τ )|00〉, (B6)

where we use 0B and 1B to indicate that the initial system-bath
interaction involves the transition of cavity B from the one-
photon state to the ground state. Analogously, 〈02|ρs(t )|00〉 =
(〈20|ρs(t )|00〉)(A ↔ B) and

∂t 〈11|ρs(t )|00〉 = − (γA + γB)〈11|ρs(t )|00〉
−

√
8V ∗

BAeiωAτ 〈01|ρ (1)L
s,1B2B

(t, t − τ )|00〉
−

√
8V ∗

ABeiωBτ 〈10|ρ (1)L
s,1A2A

(t, t − τ )|00〉
− 2V ∗

BAeiωAτ 〈01|ρ (1)L
s,0B1B

(t, t − τ )|00〉
− 2V ∗

ABeiωBτ 〈10|ρ (1)L
s,0A1A

(t, t − τ )|00〉.
(B7)

The equations for the matrix elements of ρ (1) in the rotating
frame read (keeping only those terms that contribute to ρs)

∂t 〈10|ρ (1)L
s,0B1B

(t, t1)|00〉 = δ(t − t1)〈11|ρs(t1)|00〉 − γA〈10|ρ (1)L
s,0B1B

(t, t1)|00〉
−

√
8V ∗

BAeiωAτ 〈01|ρ (1)L
s,1B2B

(t1, t − τ )|00〉 − 2V ∗
BAeiωAτ 〈01|ρ (1)L

s,0B1B
(t1, t − τ )|00〉 (B8)

and

∂t 〈10|ρ (1)L
s,0A1A

(t, t1)|00〉 = −γA〈10|ρ (1)L
s,0A1A

(t, t1)|00〉 − 2V ∗
BAeiωAτ 〈10|ρ (1)L

s,0B1B
(t1, t − τ )|00〉,

∂t 〈10|ρ (1)L
s,1A2A

(t, t1)|00〉 = δ(t − t1)〈20|ρs(t1)|00〉 − γA〈10|ρ (1)L
s,1A2A

(t, t1)|00〉. (B9)

The remaining three matrix elements are again obtained by exchanging A ↔ B. The general equation for arbitrary states reads,
in the interaction picture,

∂t 〈ν1|ρs(t )|ν2〉
= −

∑
μ,ν3

γμ[〈ν1|â†
μ|ν3〉〈ν3|âμ|ν1〉 + 〈ν2|â†

μ|ν3〉〈ν3|âμ|ν2〉]〈ν1|ρs(t )|ν2〉 + 2
∑

μ,ν3ν4

γμ〈ν1|âμ|ν3〉〈ν3|ρs(t )|ν4〉〈ν4|â†
μ|ν2〉

− 2
∑

μη,ν3ν4ν5

(1 − δμη )V ∗
ημeiω1τ 〈ν4|âη|ν5〉

[〈ν1|â†
μ|ν3〉〈ν3|ρ (1),L

ν4ν5
(t, t − τ )|ν2〉 − 〈ν1|ρ (1),L

ν4ν5
(t, t − τ )|ν3〉〈ν3|â†

μ|ν2〉
]

− 2
∑

μη,ν3ν4ν5

(1 − δμη )Vημe−iω1τ 〈ν4|â†
η|ν5〉

[〈ν1|ρ (1),R
ν4ν5

(t, t − τ )|ν3〉〈ν3|âμ|ν2〉−〈ν1|âμ|ν3〉〈ν3|ρ (1),R
ν4ν5

(t, t −τ )|ν2〉
]
. (B10)

Here, â(†)
μ are the QNM creation and annihilation operators from Eq. (A10). μ, η are system indices and νi is an arbitrary system

state. The general equation for ρ (1) is obtained in the same manner and reads, in the rotating frame and keeping only terms that
contribute to ρs,

∂t 〈ν1|ρ (1),L
ν3ν4

(t, t1)|ν2〉 = δ(t − t1)δν1ν3〈ν4|ρs(t1)|ν2〉 −
∑
μ,ν5

γμ

[〈ν1|â†
μ|ν5〉〈ν5|âμ|ν1〉 + 〈ν2|â†

μ|ν5〉〈ν5|âμ|ν2〉
]〈ν1|ρ (1),L

ν3ν4
(t, t1)|ν2〉

+ 2
∑

μ,ν5ν6

γμ〈ν1|âμ|ν5〉〈ν5|ρ (1),L
ν3ν4

(t, t1)|ν6〉〈ν6|â†
μ|ν2〉 − 2

∑
μη,ν5ν6ν7

(1 − δμη )V ∗
ημeiω1τ 〈ν6|âη|ν7〉

× [δν3ν5〈ν1|â†
μ|ν3〉〈ν4|ρ (1),L

ν6ν7
(t1, t − τ )|ν2〉 − δν1ν3〈ν4|ρ (1),L

ν6ν7
(t1, t − τ )|ν5〉〈ν5|â†

μ|ν2〉
]

− 2
∑

μη,ν5ν6ν7

(1 − δμη )Vημe−iω1τ 〈ν6|â†
η|ν7〉

[
δν1ν3〈ν4|ρ (1),R

ν6ν7
(t1, t − τ )|ν3〉〈ν3|âμ|ν2〉

− δν3ν5〈ν1|âμ|ν3〉〈ν4|ρ (1),R
ν6ν7

(t1, t − τ )|ν2〉
]
. (B11)
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APPENDIX C: WAVE-FUNCTION APPROACH

For initially one excitation in slab A from Fig. 1(b), the
general wave function has the form

|ψ〉 = NA|A〉|0〉 + NB|B〉|0〉

+
∫

dx
∫ ∞

0
dωNx,ω|0〉|x, ω〉. (C1)

The first state in the product state refers to the system, and
the second is the bath with continuous spatial and frequency
indices x, ω. N is the time-dependent amplitude of a par-
ticular state, with the initial conditions NA(0) = 1, NB(0) =
Nx,ω(0) = 0. In the interaction picture, the dynamics of
the states are governed by the Schrödinger equation with the
system-bath interaction Hamiltonian from Eq. (A12). The
QNM and bath operators carry the free evolution of the system
and bath: âμ(t ) = e−iωμt âµ and ĉ(x, ω, t ) = e−iωt ĉ(x, ω).

Multiplying the Schrödinger equation for (C1) with 〈0|〈A|
from the left yields an equation for NA,

ih̄∂t NA(t ) = h̄
∫

dx
∫ ∞

0
dωNx,ωgA(x, ω)e−iωt eiωAt . (C2)

Similarly, we obtain the equation for Nx,ω,

ih̄∂t Nx,ω(t ) = h̄[NAg∗
A(x, ω)e−iωAt + NBg∗

B(x, ω)e−iωBt ]eiωt ,

which we integrate formally and insert the result back into
Eq. (C2) to find

∂t NA(t ) = − 1

h̄2

∫ t

0
dt ′[CAA(t − t ′)NA(t ′)

+ eiωAt−iωBt ′
CAB(t − t ′)NB(t ′)], (C3)

where we have inserted the definition of the QNM correlation
function from Eq. (A13). Using Eq. (12) and ωA = ωB, we
arrive at

∂t NA(t ) = −γANA(t ) − 2V ∗
BAeiωBτ NB(t − τ )�(t − τ ). (C4)

An analogous derivation for NB yields a similar equation, with
the indices switched (A ↔ B). The density matrix elements
are calculated by multiplying the amplitudes with their com-
plex conjugates, e.g., 〈A|ρs|A〉 = |NA|2.
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