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Exciton-exciton transitions involving strongly bound excitons: An ab initio approach
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In pump-probe spectroscopy, two laser pulses are employed to garner dynamical information from the sample
of interest. The pump initiates the optical process by exciting a portion of the sample from the electronic ground
state to an accessible electronic excited state, an exciton. Thereafter, the probe interacts with the already
excited sample. The change in the absorbance after the pump provides information on transitions between the
excited states and their dynamics. In this work, we study these exciton-exciton transitions by means of an ab initio
real-time propagation scheme based on dynamical Berry phase formulation. The results are then analyzed taking
advantage of a Fermi golden rule approach formulated in the excitonic basis-set and in terms of the symmetries
of the excitonic states. Using bulk LiF and two-dimensional hBN as two prototype materials, we discuss the
selection rules for transitions involving strongly bound Frenkel excitons, for which the hydrogen model cannot
be used.
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I. INTRODUCTION

Excitons are composite particles formed by bound
electron-hole (eh) pairs. Optically bright excitons dominate
the equilibrium absorption spectrum of a wide class of mate-
rials, and they can be easily measured [1]. While in standard
semiconductors their binding energy is of a few meV, in other
systems such as two-dimensional (2D) materials [2], insula-
tors such as LiF and hBN [3–7], semiconductors such as Cu2O
[8] or BiI3 [9,10], or in organic semiconductors [11,12], it can
be as high as hundreds of meV, making excitons stable at room
temperature. As a consequence, optically injected excitons
can be exploited for optoelectronic devices [13]. This calls for
a detailed understanding of the excitonic properties and their
dynamics.

Different phenomena can participate in the exciton dy-
namics. Excitons can scatter with defects, phonons, annihilate
each other (Auger effect), or end up in dark states [14–19], and
the knowledge of these state is crucial to predict the dynamics.
However, while bright excitons can be easily investigated both
experimentally and theoretically, dark excitons are much more
difficult to measure. The validation of numerical modeling can
often be achieved only in a very indirect way, via accurate
comparison between numerical simulations and experimental
measurements. Time-resolved angle-resolved photoemission
(TR-ARPES) measurements can be used to measure both
dark and bright excitons [20,21]. However, TR-ARPES exper-
iments require a complex experimental setup, they often have
limited energy resolution, and they are restrained to the study
of the lowest energy excitons [22,23]. Two possible setups to
directly investigate dark excitons via table-top absorption are
nonlinear optics experiments at equilibrium, and transient ab-
sorption (TR-abs) experiments in the nonequilibrium regime.
In the nonlinear regime, two-photon absorption has been used
to directly excite dark excitons in 2D [24–26] and 1D [27]

materials, and accurate schemes based on ab initio simulations
have been developed to describe these experiments [28]. In
the nonequilibrium regime, dark excitons can be explored via
TR-Abs by combining optical and THz (or infrared) laser
pulses. A first optical pump pulse is used, with frequency
tuned resonant to some excitonic peak, and a second THz
probe pulse is used to measure transitions from the initially
injected bright exciton towards available dark excitons. This
was explored, for example, in GaAs quantum wells [29,30],
in bulk silicon [31,32], and in materials with larger excitonic
binding energy, such as Cu2O [33], 2D layers [34–37], and
hybrid organic-inorganic semiconductors [38]. However, no
ab initio approach has been developed so far to model these
experiments.

Exciton-to-exciton transitions are usually divided into two
groups: (i) interexciton transitions, if the initial and final state
belong to two different excitonic series, or (ii) intraexciton
transitions, if the initial and final state belong to the same
excitonic series. This nomenclature reflects the state of the
art in modeling these experiments, which is largely based on
the hydrogen model for the exciton, which assumes a rota-
tional invariant Hamiltonian, and labels the excitonic states
as 1s, 2s, 2p, i.e., in terms of the principal quantum number
and the angular momentum. The hydrogen model can be
accurate for Wannier excitons, but it needs to be integrated
with approaches that account for the underlying symmetries
and/or topology of the band structure. Moreover, it may fail
in systems with Frenkel-like excitons, where the exciton wave
functions are strongly affected by the lattice symmetry [7],
and they do not follow the standard hydrogen series. It is im-
portant here to underline that strongly bound excitons, which
are stable at room temperature, are usually more Frenkel-like
than Wannier-like, but that often an exact distinction between
these two kinds of excitons cannot be made.
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For these reasons, in this manuscript we propose a fully
ab initio approach to the study of pump and probe (P&P)
spectroscopy, which includes both inter- and intraexciton tran-
sitions on an equal footing and takes fully into account lattice
symmetries. We apply this approach to the case of a strong
pump and a test probe in such a way as to compare the results
with a perturbative approach based on quasiequilibrium re-
sponse theory. However, we expect that real-time propagation
could be used beyond this regime also including pump-probe
interference and dephasing effects, which at present are not
included in our approach.

Since two laser pulses are involved, TR-Abs can be de-
scribed as a nonlinear response of the material under the
action of both the pump and the probe laser pulses, and
an approach similar to the one developed to model two-
photon absorption could be used. The signal reconstructed by
computing a nonlinear response function is, by construction,
perturbative in the effect of the pump pulse. Furthermore,
the approach can only be used to describe the situation in
which the probe detects the state directly generated by the
pump, while it cannot deal with states generated by sub-
sequent relaxation processes. In this situation, the physics
of TR-Abs is very similar to that of equilibrium nonlinear
response experiments. Extending nonlinear response theory
beyond this regime becomes very cumbersome [39]. As an
alternative, one can compute (or guess) the nonequilibrium
state created by the pump pulse and/or by the subsequent
dynamics, and compute the nonequilibrium linear response
with respect to the probe pulse. In this second approach, the
pump pulse can be considered in a nonperturbative way, and
deviations from the ideal excitonic picture can be computed.
More importantly, the approach holds beyond the overlap
regime. This angle clearly shows that TR-Abs experiments
can access much more information if compared to equilibrium
nonlinear optics experiments. Due to the action of relaxation
processes, the initially generated bright excitonic state can be
sent into other dark excitonic states (also including finite mo-
mentum excitons). Thus both exciton-to-exciton transitions
involving finite momentum excitons, and exciton dynamics
can be probed in a TR-abs setup.

In the present manuscript we follow the second approach
outlined above, and we employ a real-time propagation
scheme based on an effective Schrödinger equation where
correlation effects has been derived from Green’s function
theory [40,41]. In the equation of motion (EOM), the coupling
term for the external field is constructed via the nonequilib-
rium Berry phase theory, where both the pump and the probe
laser pulses are included [42]. This analysis does not rely on
any excitonic basis set, and the excitonic state created by the
pump pulse naturally emerges from the inclusion of the many-
body self-energy. Moreover, in order to analyze the results
obtained via the explicit real-time propagation scheme for
the THz/infrared response function, we employ an alternative
Fermi golden rule approach in the excitonic basis set. In this
latter case, instead of computing the nonequilibrium state, we
assume it can be described in terms of a well-defined excitonic
eigenstate obtained from the solution of the Bethe-Salpeter
equation (BSE) [43]. A similar approach has already been
used in the study of the second-harmonic response with very
good results [44]. Moreover, the explicit use of an excitonic

basis set allows us to analyze the symmetries of the excitonic
wave functions and use them to identify the dipole-allowed
exciton-exciton transitions, with an approach that general-
izes the standard hydrogen model. While this approach holds
in the low-intensity limit, it also offers a starting point to
describe the deviation from the ideal excitonic picture, in
terms of renormalization of the excitonic energies and wave
functions.

We investigate two materials: bulk lithium fluoride (LiF)
and monolayer hexagonal boron nitrite (hBN). LiF belongs
to the family of alkali halides, and it has been investigated
in many theoretical and computational papers as a prototype
material hosting tightly bound excitons [4,45–52]. hBN, on
the other hand, is a layered insulator that in recent years has
found many applications as a substrate and as a light emitter
in the ultraviolet [53]. From the theoretical point of view it has
been extensively studied with both tight-binding models and
ab initio calculations [7], also including an accurate compari-
son with the hydrogen model labeling for the excitonic states.

The manuscript is organized as follows: in Sec. II we
describe the theory for the real-time simulation, the Fermi
golden rule approach, and the selection rules that enter in the
pump and probe spectroscopy; in Sec. III we present P&P
response for LiF and hBN and we discuss its interpretation;
finally, in Sec. IV we draw conclusions and discuss perspec-
tives from the theoretical and experimental points of view of
P&P techniques.

II. THEORY

This section is divided into three parts. In Sec. II A we
put forward the formalism to compute the exciton-exciton
transition. It is based on the nonequilibrium Berry phase
theory. The formalism holds at any exciton density, while
the approximation we use for the self-energy, in particular
the equilibrium screening approximation, limits the approach
to a regime where the nonequilibrium screening can be ne-
glected, i.e., below the exciton-Mott transition. Within this
limit, corrections to the spectra due to the increasing exciton
density could be computed. Then in Sec. II B we discuss a
simplified approach, based on the Fermi golden rule in the
excitonic basis set. This latter requires an initial guess for the
many-body state generated by the pump pulse, and it holds
only for low exciton densities. Starting from this, in Sec. II C,
we analyze the dipole-allowed exciton-to-exciton transitions
both in terms of the coefficients of the exciton wave functions
and taking advantage of group theory, starting from the point
group associated with the crystal structure of the material.

A. Real-time propagation

In the real-time simulations, the response of the system is
obtained from the equations of motion for the valence-band
states:

ih̄
d

dt
|vmk(t )〉 = [

HMB
k + iU ext(t )

]|vmk(t )〉, (1)

where |vmk(t )〉 is the periodic part of the occupied (at
equilibrium) Bloch states. In the right-hand side (r.h.s.) of
Eq. (1), HMB

k is the effective Hamiltonian derived from many-
body theory [40]. To catch excitonic effects in the real-time

205203-2



EXCITON-EXCITON TRANSITIONS INVOLVING … PHYSICAL REVIEW B 107, 205203 (2023)

dynamics, we choose a many-body Hamiltonian HMB
k in the

form

HMB
k ≡ HKS

k + �Hk + ��HSEX[ρ(t )]. (2)

The unperturbed (zero-field) Hamiltonian is constructed
starting from the Kohn-Sham term, HKS

k [54], and it in-
cludes the equilibrium quasiparticle corrections �Hk. The
term ��HSEX = �HSEX[ρ(t )] − �HSEX[ρ(0)] depends on the
time-dependent electronic density-matrix ρ(t ), which can
be reconstructed in the equilibrium basis set |vmk(0)〉 from the
time-dependent valence states as

ρnmk(t ) =
∑

n′∈occ

〈vnk(0)|vn′k(t )〉〈vn′k(t )|vmk(0)〉, (3)

where the sum runs over the occupied states only. ��HSEX

describes the update, during the real-time propagation, of the
Hartree (H) term, responsible for the local-field effects, plus
of the Screened-EXchange (SEX) self-energy, that accounts
for the electron-hole interaction and excitonic effect [43].

The real-time propagation with the above Hamiltonian
corresponds to a time-dependent (TD) version of the Bethe-
Salpeter equation, and it is also known in the literature as
TD-HSEX. Indeed, in the limit of small perturbation (i.e., in
the linear regime) these equations reproduce the optical ab-
sorption calculated with the standard G0W0 + BSE approach,
as shown in Ref. [40]. Equation (3) also shows how the EOM
for the valence wave functions, e.g., Eq. (1), relates to the
scheme using the EOM for the density matrix [40]. In fact,
while only valence block states are propagated in Eq. (1),
ρnmk is expanded in a Kohn-Sham basis set, namely in terms
of valence and conduction bands. Therefore, the number of
conduction bands must be converged in both schemes [55].
However, knowing the time-dependent wave function gives
access to more information, and it allows the calculation of
the Berry polarization, as discussed below.

In the linear regime (and for nonferroelectric materials),
a closed EOM can be written by expressing the coupling
with the external field U ext(t ) = E (t ) · P̂(1), via the first-order
polarization operator P̂(1) written in the KS basis set in terms
of the transition dipoles rnmk, e.g., P(1)

nmk = −ernmk. The ex-
pectation value of such an operator gives the macroscopic
polarization:

P(1) = −e
∑̃

nmk
rnmkρnmk, (4)

where the ∼ on the sum means that all terms for which |εnk −
εmk| < εthresh are neglected, since P̂(1)

nmk is not defined for those
terms. Here εnk are the eigenvalues of HKS

k at equilibrium, and
εthresh = 10−5 eV (see also related discussion in Sec. II B).
However, in the present case we need to probe the response
to the system after the action of the pump, and we thus need
to go beyond this first-order approach. This can be achieved
by means of the Berry phase formulation, e.g., by defining the
coupling with the external field as U ext(t ) = E (t ) · ∂̃k, which
holds to all orders. As we imposed Born–von Kármán periodic
boundary conditions, the coupling takes the form of a k-
derivative operator ∂̃k. The tilde indicates that the operator is
“gauge-covariant” and guarantees that the solutions of Eq. (1)
are invariant under unitary rotations among occupied states at
k (see Ref. [42] for more details). This derivative is calculated
using a finite-difference five-point midpoint formula [56].

From the evolution of |vmk〉 in Eq. (1), we calculate the
real-time polarization Pai along the lattice vector ai as

Pai = −e f |ai|
2π�c

Im ln
Nk−1∏

k

detS(k, k + qi ), (5)

where S(k, k + qi ) is the overlap matrix between the valence
states |vnk〉 and |vmk+qi〉, �c is the unit-cell volume, f is
the spin degeneracy, Nk is the number of k points along the
polarization direction, and |qi| = 2π/(Nk|ai|). Equation (5) is
the adiabatic extension to the nonequilibrium regime of the
definition of the polarization in an extended system [42].

Via the solution of Eq. (1), the transient absorption signal
is finally defined as the Fourier transform of

�P(t ) = Ppp(t ) − Pp(t ), (6)

where Pp(t ) is the real-time polarization generated by the
action of the pump pulse alone, while Ppp(t ) is the real-time
polarization generated by the action of both the pump and
the probe laser pulse. No dephasing mechanism is included
in the simulation in order to preserve the coherent excitonic
state generated by the pump laser pulse. While decoherence
is expected to happen in experiments, it is far from trivial
to formulate a proper decoherence term in Eq. (3). On the
contrary, it was shown that dephasing the one-body density
matrix, i.e., sending to zero the off-diagonal elements, leads
to a noncoherent state, which involves nonbound electron-
hole pairs, thus destroying not only coherence but also the
excitonic state [20,21]. Instead, a finite broadening parameter
η is added later, when performing the Fourier transform of the
polarization,

�P(ω, tp) =
∫ +∞

tp

dt �P(t )eiωt−η(t−tp), (7)

where tp is the starting time of the probe field. Finally,
the nonequilibrium response function is obtained [57,58] di-
viding by the probe pulse: χμμ(ω, tp) = �P(ω, tp)/Ep(ω).
The η parameter defines the broadening of the peaks in
the response function. The approach can be used to model
transient-absorption experiments both in the low-energy range
(typically THz of infrared) where exciton-to-exciton transi-
tions are expected, and in the resonant energy range, where
shifts and changes to the equilibrium absorption peaks are
expected. In the present manuscript, we focus on the low-
energy range. Since we have the static HSEX self-energy and
we do not include any additional decoherence (or scattering
term), the system will remain in the state created by the pump
pulse, and the spectra will be independent from tp. One of
the scopes of the present manuscript is to show that exciton-
exciton transition can be captured within TD-HSEX.

B. Nonequilibrium response function

To analyze the results from the real-time propagation
scheme, it is useful to formulate a simplified approach in terms
of the excitonic basis set. We start from the general expression
for a “A operator”-“B operator” linear response function [59],

χAB(ω) = 2

V

∑
J 	=I

AIJBJI

(EJ − EI ) − ω − iη
. (8)
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Here the I, J indexes represent the initial, |I〉, and final, |J〉,
many-body states states with energies EI and EJ , and AIJ and
BIJ are the matrix elements of some operator. The dipole-
dipole response function is obtained for A = μα , B = μβ ,
with the αth and βth Cartesian component of the matrix
element of the many-body dipole operator μIJ = 〈I|μ̂|J〉.
The current-current response function instead is obtained for
A = jα , B = jβ , with the αth and βth Cartesian component
of the matrix element of the many-body velocity operator
jIJ = 〈I| ĵ|J〉. Both χμαμβ

and χ jα jβ can be used to define the
optical absorption of a material. ε(ω) = 1 − 4πχμαμβ

(ω) in
the length gauge, or ε(ω) = 1 − 4πχ jα jβ (ω)/ω2 in the veloc-
ity gauge. In the latter case, we explicitly remove the divergent
1/ω2 and 1/ω terms by expanding χ jα jβ (ω)/ω2 and imposing
sum rules [60].

At equilibrium the initial state |I〉 = |g〉 is the ground state
of the system with EI = E0, and the final state is an exciton
state |J〉 = |λq〉 with EJ = E0 + ωλ(q). Here q is the exci-
tonic momentum index. Assuming that the ground state has
zero momentum (i.e., no charge density wave or spin density
wave ground state), only zero momentum excitons need to
be considered. In this case, the expression of the response
function reduces to

χ
eq
AB(ω) = 2

V

∑
λ

A0λ(0)Bλ0(0)

ωλ(0) − ω − iη
. (9)

Within the Tamm-Dancoff approximation (TDA), the exciton
states can be expressed as a linear combination of valence-
conduction pairs, that is,

|λq〉 =
∑
cvk

Aλq
cvk|ck − q〉 ⊗ |vk〉. (10)

Here the c and v indexes run over conduction and valence
states, respectively, while k is the electronic momentum in-
dex. The response function obtained by inserting Eq. (10) into
Eq. (9) is identical to the one obtained via a formal solution of
the many-body response function via many-body perturbation
theory (MBPT) within the TDA. It can be shown that the
dipole matrix elements μ0λ(q) = 〈λq|μ̂|g〉 reduce to a linear
combination of single-particle terms (see Appendix A),

μ0λ(q) = e δ(q)
∑
cvk

Aλ0
cvk〈ck|r̂|vk〉, (11)

with e the electronic charge and r̂ the one-body position
operator. The assumption that the ground state has zero mo-
mentum reflects in the δ(q) function [61]. The corresponding
expression for the matrix elements of the velocity operator
j0λ(q) = 〈λq|ĵ|g〉 can be defined by dividing and multiplying
by the transition energies [60]. Neglecting this ratio provides
an approximated expression:

j0λ(q) = e δ(q)
∑
cvk

Aλ0
cvk

〈ck|v̂|vk〉
�εcvk

Eλ(0) (12)

≈ e δ(q)
∑
cvk

Aλ0
cvk〈ck|v̂|vk〉, (13)

where �εcvk = εck − εvk. The error induced amounts to a
renormalization of the peak intensity [60] without significant
changes in the equilibrium absorption. Equation (12) cannot
be used when �εnmk < εthresh since the ratio 〈ck|v̂|vk〉/�εcvk

becomes numerically unstable. This is also related to the fact
that intraband matrix elements 〈nk|r̂|nk〉 = 〈nk|v̂|nk〉/�εnnk
are ill-defined since �εnnk = 0. In our code, εthresh = 10−5 eV.
While at equilibrium this never happens in systems with a gap,
transitions with �εnmk < εthresh will be involved in the TR-abs
spectrum [see the later discussion around Eq. (17)].

In the nonequilibrium regime, we assume that an excitonic
state has been created by the pump laser pulse, |I〉 = |λiq〉
with EI = E0 + ωλi (q), where the superscript “i” is used to
highlight that this is the initial excitonic state. The nonequi-
librium dipole-dipole response function in the energy range of
interexciton transitions takes the form (see also Appendix B)

χλiq
μαμβ

(ω) = 2

V

∑
λ

μα
λiλ

(q)μβ

λλi
(q)

ωλ(q) − ωλi (q) − ω − iη
. (14)

Equation (14) holds at low excitonic densities because we are
assuming that the equilibrium excitonic energies and wave
functions can be used, and because no final-state population
effects are considered [62]. The intensity of the transient ab-
sorption signal is weighted by the exciton density injected by
the pump pulse.

We observe that for optically injected excitons, the
condition q = 0 holds, however dissipation and relaxation
mechanisms could scatter the initial state into finite momen-
tum excitonic states leading to a population Nλi (q), and the
overall transition signal can be expressed as

χμαμβ
(ω) =

∑
λiq

Nλi (q)χλiq
μαμβ

(ω). (15)

This is why, in general, even in the presence of an optical
pump and an optical probe, finite momentum excitons need
to be considered to model interexciton transitions. The above
expression assumes that the noncoherent populations do not
give rise to interference patterns in the transient absorption
signal. In the present manuscript, we do not account for relax-
ation and dissipation mechanisms, and we will focus on the
situation in which Nλi (q) = Nexcδλi,λ0δ(q).

C. Selection rules

The crucial step is then to identify the dipole-allowed
λ → λ′ transitions. Starting from the hydrogen model, and di-
viding exciton-exciton transitions into intra- and interexciton
transition [33], selection rules for the intraexciton transitions
can then be established starting from the quantum numbers
of the hydrogen model used to describe the exciton. How-
ever, this approach neglects the symmetries of the crystal in
the excitonic envelope, and it is a good approximation only
for delocalized Wannier excitons. For more localized Frenkel
excitons, a fully ab initio approach, and/or an approach that
accounts for the symmetries of the lattice, offers a better
description.

1. Ab initio dipole matrix elements

In the ab initio formalism, selection rules can be com-
puted explicitly by defining the expression for the dipole
matrix elements μλλi

(q) = 〈λq|μ̂|λiq〉 (see the derivation in
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Appendix A 2):

μλiλ
(q) =

∑
v,cc′,k

(
Aλq

cvk

)∗
Aλiq

c′vkrcc′k

−
∑

c,vv′,k

(
Aλq

cvk

)∗
Aλiq

cv′krv′vk−q

+
∑
v,c,k

(
Aλq

cvk

)∗
Aλiq

cvk

∑
n∈occ

rnnk. (16)

The dipole matrix elements depend both on the excitonic
coefficients Aλq

cvk and on the interband dipoles rnmk over all the
k-points of the BZ. Equation (16) is a generalization of the
simplified analysis of Ref. [34], which holds for delocalized
Wannier excitons, in which the dipole matrix element μλiλ

(q)
depends only on the excitonic wave functions and their quan-
tum numbers in the hydrogenic model.

The first two addends of (16) have a very simple in-
terpretation in terms of transitions from state λi to state λ

mediated by the electronic dipole. Their expression is very
similar to that of the exciton-phonon matrix elements [18],
although it involves only one momentum, since the initial and
final exciton must have the same momentum. However, an
issue appears since Eq. (16) involves the intraband dipoles
rnnk, which are ill-defined in periodic boundary conditions.
This points to the fact that we are looking to a nonlin-
ear response, as discussed in the Introduction. Moving to
the velocity gauge and to the current-current response func-
tion solves this issue, since intraband velocity dipoles are
well-defined,

jλiλ
(q) ≈

∑
v,cc′,k

(
Aλq

cvk

)∗
Aλiq

c′vkvcc′k−q

−
∑

c,vv′,k

(
Aλq

cvk

)∗
Aλiq

cv′kvv′vk

+
∑
v,c,k

(
Aλq

cvk

)∗
Aλiq

cvk

∑
n∈occ

vnnk. (17)

The velocity gauge introduces an overall error in the inten-
sity of the dipoles [similarly to the equilibrium case; see
the previous discussion related to Eq. (12)] [60]. At vari-
ance with the equilibrium case, however, we cannot divide
by the transition energies �εnnk and later multiply by the
excitonic energies, since this operation is numerically unstable
for �εnnk < εthresh and ill-defined for the case �εnnk = 0.
Thus, we use Eq. (17) when computing the spectra in the
velocity gauge, which, in short, introduces an overall er-
ror in the intensities, but accounts for the role of intraband
transitions.

Finally, we underline that in the presence of degenerate
excitonic states, it is crucial to identify a specific state in the
degenerate subspace to describe the exciton generated by the
pump pulse. The polarization of the selected exciton must
be parallel to the field polarization projected into the polariza-
tion space spanned by the degenerate excitons. This allows us
to capture the dependence of the transient absorption spectrum
on the relative orientation of the pump and the probe pulse
polarization. In Appendix C we show how this dependence
can be taken into account.

2. Symmetry considerations

In support of the real-time calculations and the nonequilib-
rium response functions, we provide a symmetry analysis of
the different spectra presented in this work. In particular, we
analyze the matrix elements

μIF = 〈F |μ̂|I〉 (18)

that enter in Eq. (14) using group theory [63] in such way
as to determine which matrix elements are zero by symmetry
and which are not. To do this, we assign each of the three
elements in Eq. (18), 〈F |, μ̂, and |I〉, the irreducible rep-
resentation (irreps) to which it belongs, with respect to the
symmetry group of the crystal. Let us call them OF , Oμ, and
OI . Then the integral is different from zero if and only if
the identity element belongs to the product of the three sym-
metry operations [63]. This result can be achieved using the
product table of the symmetry point group, and furthermore
also polarization effects can be taken into account by consid-
ering the “partner” (here we use the same nomenclature of
Ref. [63]) of each irrep associated with a specific polarization.
This analysis is performed in detail for the point groups of
the two materials considered in Appendix B of the present
manuscript.

III. RESULTS

In this section, we will compute the Tr-Abs properties
of LiF and hBN using the two approaches discussed in the
previous section. We will label “TD-HSEX” results those
obtained from the real-time propagation scheme, and “Exc.
Fermi” results based on the Fermi golden rule in the excitonic
space. In particular, “Exc. Fermi (length)” if the TR-Abs
is constructed via Eq. (16) and “Exc. Fermi (velocity)” via
Eq. (17). It is worth mentioning that, while the TD-HSEX
scheme describes the exciton-exciton transition starting from
a coherent excitonic state, the Exc. Fermi approach describes
the exciton-exciton transition starting from a noncoherent ex-
citonic population. However, as already shown for the case of
ARPES, the two give rise to the same signal, provided that
the average population of the coherent state is equal to the
population of the noncoherent state. Eventual differences due
to the coherent polarization associated with the excitonic state,
such as Franz-Keldysh oscillations in the TR-Abs spectra,
could be observed only in specific conditions [57]. This is
beyond the scope of the present manuscript.

A. Results on LiF

LiF is a wide-gap insulator, with an electronic band gap
of ≈14.5 eV (experimental data give a gap in the range
14.1–14.5 eV, while GW simulation on top of LDA gives
a value close to 14.4 eV [45]). The absorption spectrum is
dominated by an intense excitonic peak (E1) at ≈12.5 eV [see
the panel (a) of Fig. 1]. E1 has often been described as a charge
transfer (CT) exciton, involving transfer of an electron from
the alkaline atom (Li) p to a halogen atom (F) s level [49].
This description emerges from the fact that LiF is an ionic
crystal, in which the lone Li(2s) electron of the isolated Li
atom is transferred to the empty F(2p) level of the F atom.
Accordingly, the valence-band structure is mainly composed

205203-5



SANGALLI, D’ALESSANDRO, AND ATTACCALITE PHYSICAL REVIEW B 107, 205203 (2023)

FIG. 1. (a) Absorption of LiF. All poles ωλ are represented
as vertical black lines. Orange vertical bars are proportional to
|μ0λ(0)|2. (b),(c) Transient absorption of LiF after pumping the
system with a pump resonant with the first excitonic pole ω1. All pos-
sible transitions �ω = ωi − ω1 are represented with vertical black
lines. Green vertical bars are proportional to |jλλi (0)|2/ω2. (b) Con-
figuration with probe parallel to the pump. (c) Configuration with
probe perpendicular to the pump.

by the F(2p) orbitals, while the lowest conduction band is
the Li(2s) states. E1 has been studied in different works and,
while initially proposed as intermediate between Frenkel and
Wannier, it has more recently been identified as a strongly
bound Frenkel exciton [49]. Due to its large binding energy of
≈2 eV, it has often been used to validate theoretical develop-
ment. For example, its wave function [4,5] and dispersion [52]
were analyzed in detail. Other excitons, involving a semicore
hole in the XUV energy range, have been investigated in the
literature by means of ab initio simulations [50], reporting
even larger binding energies.

Instead, less attention has been paid to the excitons, ei-
ther dark or bright, which lie in the energy window between
E1 and the electronic gap, and which characterize the ex-
citonic series of LiF. In the present work, we investigate
these excitons which, after the action of a laser pulse tuned
resonant with E1, dominate the transient absorption spec-
trum of LiF in the energy range from 0 to 2 eV. We label
them E2, E3, E4, . . . .

We employ the standard GW + BSE scheme on top of
LDA. Ground-state LDA calculation are performed with
norm-conserving pseudopotentials, an energy cutoff of 80 Ry
for the wave functions, and a 6 × 6 × 6 k-points grid. RPA
screening is computed with a cutoff of 8 Ry for the response
function χGG′ (q, ω) and using 50 bands in the internal sum
over the conduction states. Finally, the BSE calculation is per-
formed with a scissor or 6.05 eV, bands from 2 to 5, k-points
grid 24 × 24 × 24, an energy cutoff 8 Ry for the screened e−h
interaction WGG′ , and 32 Ry for the e-h exchange interaction
vG. The same parameters are then used for the real-time prop-
agation within the TD-HSEX simulations, with the bands 2
to 5 entering the bands indexes in Eq. (3) and in Eqs. (E2)
and (E3), k-points grid 24 × 24 × 24, 8 Ry for WGG′ , and
32 Ry for vG. Moreover, a time step of 10−2 femtoseconds
(fs) is used to time integrate Eq. (3) with the Crank-Nicolson
integrator for a total time of 100 fs, which is later used to
integrate Eq. (7).

In Fig. 1, absorption and transient absorption of LiF are
shown. The solution of the excitonic matrix shows several
bound poles, many of which are dark. The first six poles
are well-separated from the others. In addition to the well-
characterized lowest energy bright exciton E1, also E4 is
bright, while the other four are dark; see panel (a) of Fig. 1.
The position of the bright exciton E4, around 13.9 eV, seems
to be confirmed by the shape of the experimental absorption,
which bounces back at around 13.7 eV, although with a very
broad signal. All bright poles are threefold-degenerate, due
to the symmetries of the crystal, while dark poles can have
different degeneracy. The poles from E2 to E5 are located
in the energy range between 13.78 and 13.94 eV. E2 and E5

are also threefold-degenerate, while E3 is twofold-degenerate.
Finally, E6 is shifted from the previous group at 14.1 eV and
it is nondegenerate.

Turning our attention from equilibrium absorption to tran-
sient absorption in the interexciton transitions regime, first of
all we observe that the TD-HSEX scheme gives poles exactly
at the energy differences Ei − E1, with i running over the
other excitons. Such a result can be obtained only using the
Berry phase expression for the polarization, Eq. (5). Using
instead TD-HSEX with Eq. (4) gives a zero spectrum in this
energy range, regardless of the εthresh value. Moreover, it is
remarkable that, after pumping the system in resonance with
the lowest-energy excitons, the four dark poles mentioned
above can be detected by considering two different config-
urations: probe parallel to the pump pulse [Fig. 1(b)] and
probe perpendicular to the pump pulse [Fig. 1(c)]. This result
shows that transient absorption is a very powerful technique to
explore dark excitonic poles. In both configurations, we show
the transient absorption spectra computed by a full real-time
propagation scheme at low pump intensity (red continuous
line) and the spectra obtained within the “excitonic Fermi
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FIG. 2. Exciton density for the first five excitons of LiF at fixed hole position. Upper row, view along the 111 direction. Lower row, view
along the 100 direction. The hole position is put near a F atom at the center of the picture. The density is averaged over degenerate excitons.
All excitons are threefold-degenerate, with the exception of the third, which is two fold-degenerate.

golden rule,” either in the length gauge (blue dashed line) or
in the velocity gauge (green continuous line). As discussed
in Sec. II, both gauges have some issues and are not able
to precisely reproduce the results of the full real-time prop-
agation. Indeed, both blue and green lines correctly foresee
which interexciton transitions are expected to be bright, but
somehow they miss the correct relative intensity. The problem
is much more severe in the length gauge, which strongly
underestimates the intensity of the low-energy peaks and over-
estimates the intensity of the higher-energy ones. The velocity
gauge tends to do the opposite, but the agreement with the full
real-time propagation is much better and, overall, the velocity
gauge approach can be used to obtain a good description of
the spectra.

We want now to understand why some transitions are
bright, depending on the relative orientation of the pump and
the probe pulse. A first qualitative explanation can be sought
by pursuing the common approach used in literature, based on
the simple hydrogenic model for the excitonic states. To this
end we perform a direct inspection of the excitonic wave func-
tion and we try to label the excitonic envelope as s or p states.
The overall wave-function symmetry will be the product of
the symmetry of the envelope, Aλ

cvk, and the symmetries of the
underlying Bloch states, ψ∗

ck(re) and ψvk(rh). To this end, we
first notice that for LiF the symmetry group is Oh, which has
48 symmetry operations and 10 irreducible representation (for
the irreps, see Appendix B). Transitions belonging to the T1u

irrep are bright at equilibrium. The F(2p) orbitals of the con-
duction band are associated with the T1u irrep, while the Li(2s)
are associated with the A1g irrep [63]. Since T1u × A1g = T1u,
Li(2s) → F(2p) transitions are dipole-allowed. The first six
poles E1 · · · E6 all involve these orbitals. Accordingly, we
can label the exciton-exciton transition involving E1 · · · E6 as
intraexciton transitions, which are controlled by the envelope
of the excitonic wave function.

We thus turn our attention to the description of the en-
velope. In Fig. 2, the square modulus of the excitonic wave

functions

�λ(re, rh) =
∑
cvk

Aλ
cvkψ

∗
ck(re)ψvk(rh) (19)

is plotted as a function of the electronic coordinate and
by fixing the hole coordinate near one F atom. In all the
considered excitonic states, the wave functions display non-
negligible electronic density only on the F atoms. Even
though this fact was already observed for the lowest en-
ergy exciton [4], and also studied with some details [64],
it goes against the intuition of the LiF excitons described
in terms of CT excitons, due to the nature of the valence-
and conduction-band structure, which remain used in many
model calculations [49,51]. In terms of the hydrogenic model
for the exciton, since Li(2s) → F(2p) already fulfill the se-
lection rules, bright excitons at equilibrium are expected to
have l = 0. Instead in the nonequilibrium spectrum, it is only
the envelope that determines if exciton-exciton transitions are
allowed. Dipole-allowed transitions should respect �l = ±1
and �ml = 0,±1 [33].

Inspecting the plot of the excitonic wave function, the
two bright excitons E1 and E4 are the only ones where the
electronic density sits in the same atom as the hole. The lowest
energy E1 exciton in the literature has been identified as a 1s
exciton [4]. E4 can be identified as the 2s exciton. For the other
dark excitons, the electronic charge is on the nearest-neighbor
F atoms, as can be seen either from the 111 (E2 and E3) or the
110 (E5 exciton) view, since in all cases there is a negligible
electron density in the center of the image. Accordingly, we
can tentatively label as p-like these dark states. This would ex-
plain why these excitons can be seen in the transient spectrum
starting from the 1s exciton. However, within this scheme, we
are not able to explain why some are bright when the pump
and probe are parallel, while others are bright when the pump
and probe are perpendicular.

A satisfactory analysis of the selection rules governing the
transitions among exciton states can be performed only by
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considering the space group representation of crystal lattice
also for the excitonic envelope. Let us start with the bright
excitons. An s envelope in Oh corresponds to A1g symmetry
without any energy lifting [63], and overall the symmetry of
the excitonic wave function for E1 and E4 is

[s-envelope] × [F (2s) → L(2p)] = A1g × T1u = T1u,

which explains why they are bright and threefold-degenerate
as already observed. A 2p envelope in O(h) is associated with
T1u symmetry, again without any energy lifting. The overall
symmetry of the underlying excitons is then

[2p-envelope] × [F (2s) → L(2p)] = T1u × T1u

= A1g + Eg + T1g + T2g.

We now need to assign to each exciton the correct represen-
tation. We can use the exciton multiplicity, and, again, the
knowledge of how a given irrep in Oh can be related to a given
angular momentum. The four resulting irreps can all originate
by the lifting of spherical states with even angular momentum.
However, T2g and Eg can originate from states with l � 2,
while T1g and Ag from states with l � 3 [63]. Thus we expect
that the two lowest-energy excitons should come from T2g and
Eg (i.e., we assume lower angular momentum implies lower
energy), and looking at the exciton multiplicity we can assign
E2[T2g] and E3[Eg]. The ordering is in agreement with the
well-known energy splitting of d orbitals in Oh symmetry, i.e.,
E2[T2g] < E3[Eg]. Since E6 is nondegenerate, E6[A1g], and we
tentatively assign E5[T1g].

We can now use this analysis to predict which exciton-
exciton transitions are allowed. First of all we notice that,
out of the 10 irreps operations, only the states belonging to
the irreps A1g, Eg, T1g, and T2g are bright (see again Ap-
pendix B). These are exactly the four irreps that originate
from the 2p excitons, and it means that all four dark excitons
are expected to be visible in the Tr-Abs spectrum. Moreover,
the relative polarization of the pump and probe pulses can
alternatively select different excitons. More specifically, the
allowed bright representations need to transform as the cor-
responding quadratic function of the coordinates consistently
with the polarization choice of the pump and probe pulses. So,
when the pump and probe are both parallel to the x axis, we
see that A1g and Eg are expected to be detected. Instead, for
perpendicular pump and probe, T2g and T1g are seen. Indeed,
we see from the middle panel of Fig. 1 that E3[Eg] and E6[A1g]
are bright, while E2[T2g] and E5[T1g] are bright in the lower
panel. This confirms our previous analysis. Finally, we ob-
serve that T1u → T1u transitions are dipole-forbidden. Starting
from the excited 1s state injected by the pump laser pulse (i.e.,
the state in the T1u multiplet with polarization parallel to the
pump pulse polarization, which we call T x

1u partner [63]), the
transitions towards the other two degenerate states (T y

1u and
T z

1u) of the multiplet are dipole-forbidden.

1. Strong pumping regime

We conclude the discussion on LiF by showing how the
shape of the TrAbs spectrum changes as a function of the
pump fluence. Results are shown in Fig. 3. The exciton Fermi
golden rule approach is not able to reproduce the evolu-
tion of the spectrum in this regime, and only the real-time

FIG. 3. Transient absorption defined as in Fig. 1 as a func-
tion of the pump fluence. The reported values for the laser
fluence refer to the field inside the sample, i.e., they should
be corrected taking into account the fraction of the laser pulse
which is reflected when comparing with nominal experimental flu-
ences. Compared to Fig. 1, a larger broadening parameter is used
here.

propagation scheme can be used. Increasing the pump fluence,
and accordingly the initial exciton density, the energy required
for the interexciton transition is blueshifted for the first four
dark excitons explored in the manuscript. The intensity of the
transition E1 → E3 is reduced, while that for the transition
E1 → E6 is enhanced (parallel configuration); the intensity
for the transition E1 → E2 is reduced, while that of the tran-
sition E1 → E4 is enhanced (perpendicular configuration).
Inspecting the numerical simulations (and also from the ex-
perimental and theoretical literature on TrAbs in the resonant
probe regime) we know that the energy position of the E1

peak is blueshifted due to many-body effects [65,66]. For the
considered fluences, the injected exciton density is roughly
linear with the pump fluence. With a fluence of 1 μJ/cm3

we obtain an exciton density of 1.7 × 10−4 exc./�, with �

the unit-cell volume. This corresponds to a total density of
≈1019 exc./cm3. Given the very large binding energy and the
very small exciton radius of E1 in LiF (rexc ≈ 5 Å), we expect
the critical exciton Mott transition density (nMott ∼ r−3

exc) to
be well above 1020 exc./cm3 [67]. The overall blueshift of
the E1 → EI transitions implies that the higher-energy peaks
are shifted even more. Moreover, the relative changes in the
intensity of the peaks imply not only that the excitons shift, but
also that there are changes in the excitonic wave functions that
renormalize the expectation value of the intraexciton dipole
matrix elements.
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FIG. 4. Equilibrium absorption (a) of a hBN monolayer [69] and
pump and probe spectra (b),(c) for the monolayer hBN. In the top
panel both the pump and probe are in the x direction, while in the
bottom panel the pump is along x while the probe is along y. We
report in green the excitonic levels at equilibrium and their symmetry
for the first four [7].

B. Monolayer hexagonal BN

The structure of electron-hole excitations in monolayer
hBN (m-hBN) is well known from theory and experiments
[7]. In particular, recent measurements probed for the first
time the lowest excitonic state of single-layer hBN deposited
on a substrate [68]. The electronic excitation of m-hBN can
be classified according to the representations of the D3h point
group (see also Appendix B 2). In panel (a) of Fig. 4 we re-
port the computed optical absorption [69] of monolayer hBN
with in-plane polarization. The exciton classification for the
first five excitonic peaks—E1[E ′], E2[E ′], E3[A′

2], E4[A′
1], and

E5[E ′]—is taken from Ref. [7]. Among the different group
representations, only the two-dimensional irrep E ′ is optically
active for in-plane polarization [63], while excitons belonging
to the A′′

2 irrep are bright for out-of-plane polarization (i.e.,

along the z direction). In the present manuscript, we focus on
the in-plane polarization. In Ref. [7], these excitons are also
mapped into the hydrogen series by comparing ab initio and
tight-binding simulations. A similar analysis is also performed
in Ref. [70]. The lowest exciton E1[E ′] can be identified as
the 1s exciton, and it has a very strong oscillator strength.
The next three excitons, E2[E ′], E3[A′

2], and E4[A′
1], originate

from a 2p-like state, and at variance with the LiF case, they
are not all dark. Finally, the fifth exciton E5[E ′] originates
from a 2s state. The states with A′

1 symmetry have been
measured in two-photon absorption experiments [28], while
other states are usually inaccessible because of their too high
energy.

As in the LiF, here we show how pump and probe spec-
troscopy can be used as an alternative technique to the one-
and two-photon absorption to study excitons in this material.
Pump and probe spectroscopy presents a double advantage,
first the possibility of studying excitons that are dark in linear
optics, and second the possibility of studying high-energy
excitons that usually are inaccessible to standard laboratory
facilities due to the large band gap of hBN [71]. To simulate
pump and probe spectroscopy in a monolayer hBN, we used
a supercell with an in-plane lattice parameter of a = 2.5 Å
and a distance between the periodic replica of c = 30 a.u. We
constructed the dielectric constant that enters in the BSE and
SEX self-energy using 100 bands and 20 Ry cutoff, plus a
terminator to speed up convergence on the conduction bands
[72]. In the optical spectra and real-time dynamics, we in-
clude two valence and two conduction bands, and a scissor of
3.66 eV. The equations of motion in real time were propagated
for 165 fs using the same algorithm and parameters of the
LiF case. We also restrict ourselves to the case in which the
probe polarization is in the plane. In panels (b) and (c) of
Fig. 4 we report the pump and probe spectra for the hBN
monolayer in two different cases. In panel (b) both the pump
and the probe are in the x direction, while in panel (c) the
pump is along x and the probe along the y direction. Simi-
larly to the LiF case, we observe that the TD-HSEX scheme
gives poles exactly at the energy differences Ei − E1, with i
running over the other excitons. In the same panels, we report
also the pump and probe spectra calculated using the Fermi
golden rule approach discussed in Sec. II B within the velocity
gauge. The comparison between the two approaches shows
very good agreement, emphasizing that the approximations
made in Sec. II B introduce only a marginal error in the final
spectra. However, at variance with the case of LiF, we have an
instability in the real-time numerical simulations for the case
of probe parallel to the pump, which gives a small peak at
ω ≈ 0.

By performing a group theory analysis similar to the LiF
case (see Appendix B 2), we find that for the parallel pump
and probe only excitons with E ′ and A′

1 symmetry can be
excited starting from the lowest exciton 1s with E ′ sym-
metry, while for the perpendicular pump and probe field
the excitons with E ′ and A2 symmetry are accessible. This
means that bright states are also visible in the transient
spectra and in both geometries. This is due to the lower
symmetry of the D3h group, and it has another remarkable
consequence. This theoretical prediction is confirmed by our
real-time numerical simulations [73]. Let us remark on the
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consequences of this, and how much hBN is different from
LiF. In the case of LiF, the hydrogen atom selection rules
�l = ±1 are not able to predict which transition will be
activated by fixing the relative polarization of the pump
and the probe. However, they are enough to predict that
only 1s → 2p transitions are dipole-allowed at low energy.
In hBN instead, �l = ±1 is not fulfilled at all, since the
1s → 2s transition, i.e., the E1[E ′] → E5[E ′] transition, is
now dipole-allowed. Moreover the almost degenerate 1s →
1s, i.e., Ex

1 [E ′] → Ey
1 [E ′] energy transitions are now also

dipole-allowed. This is why a low-energy peak appears in
the numerical simulations. The exact energy of this peak
will depend on the injected exciton density, which would be
responsible for slightly lifting the degeneracy between the
two states belonging to E ′. We did not try to converge it
numerically and, moreover, we are not yet able to explain
why it appears only in the parallel pump probe polariza-
tion configuration. Still, it is a remarkable result that such
a transition can be seen in the simulation and a fingerprint
that at very low energy the probe pulse is in principle able
to spatially rotate the polarization induced by the pump
pulse in the xy plane, a mechanism that is not allowed
in LiF.

IV. CONCLUSIONS

In this article, we studied exciton-exciton transitions in
transient absorption experiments by performing accurate ab
initio real-time simulations, which couples the TD-HSEX
scheme with the Berry phase expression for the polarization.
To interpret the results obtained via this real-time scheme,
we also develop a Fermi golden rule approach based on the
assumption that the initial state created by the pump laser
pulse can be well described as a quasiequilibrium state with a
well-defined excitonic population. In this way, the nonequilib-
rium response can be analyzed in terms of transitions between
different excitons. Starting from the excitonic wave functions
computed with the ab initio Bethe Salpeter equation, we de-
fine the dipole elements between the different excitonic states,
and we use them to calculate the nonequilibrium response
function. This is also corroborated by a detailed group theory
analysis of the excitonic states.

The agreement obtained via the formally more rigorous
real-time propagation schemes shows that for laser pulse in-
tensities compatible with many pump and probe experiments,
bound excitons such as those in LiF and hBN behave as
well-defined quasiparticles. Moreover, it offers a validation of
the Fermi golden rule approach, which is numerically much
cheaper, and potentially interesting for future applications.
While the real-time propagation scheme could be employed
to study the effect of increasing exciton density as well as
the relaxation and dissipation mechanism, the exciton Fermi
golden rule approach provides a cheaper approach, where also
the signature of finite momentum excitons into Tr-Abs spectra
can be investigated.

Finally, these results show that absorption spectroscopy in
the exciton-exciton energy range offers new opportunities to
study high-energy excited states not accessible by other spec-
troscopic techniques. The technique is also a very powerful
tool to measure exciton relaxation and exciton dynamics.
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APPENDIX A: DERIVATION OF THE DIPOLE
MATRIX ELEMENTS

In this Appendix, we present the derivation of dipole ma-
trix elements between different excitonic states, both in the
equilibrium and nonequilibrium cases.

1. Equilibrium case: Ground state to exciton transition

First we derive Eq. (11) in the formalism of second quan-
tization. This is a well-known result, and the derivation is
reported here just as a preliminary step toward the derivation
of Eq. (16). We introduce the creation operator â†

nk which
creates an electron in the state |nk〉 acting on the many-body
vacuum state |0〉. The GS and the valence-conduction pair are
written as

|g〉 =
Nv∏
vk

â†
vk|0〉, |cvk〉 = â†

ckâvk|g〉. (A1)

The (many-body) position operator expressed in this formal-
ism reads

μ̂ =
∑
nmk

â†
nkâmkrnmk, where rnmk = 〈nk|r̂|mk〉. (A2)

Using the definition of the excitonic state 〈λq|, the matrix
element (11) is written as

〈λq|μ̂|g〉 =
∑
cvk

Aλq
cvk〈cvk|μ̂|g〉,

〈cvk|μ̂|g〉 =
∑
nmk

〈g|â†
vkâckâ†

nkâmk|g〉rnmk, (A3)

and we have to remember that c is in the conduction sector,
v is in the valence sector, and the sum over n and m in
unrestricted. Looking at the bracket, we see that m has to be
in the valence sector, otherwise âmk|g〉 = 0. The bracket is the
scalar product of two states that is not zero only if m = v and
n = c, so we obtain

〈cvk|μ̂|g〉 = rcvk, (A4)

which is the expected result.
The definition of the position operator used here is ill-

defined in periodic boundary conditions, in particular because
the intraband terms are ill-defined. For systems with a gap
this is not an issue in the derivation of Eq. (11) since only
matrix elements with n in valence and m in conduction are
involved. This problem will appear in the definition of the
dipoles for exciton-to-exciton transitions, which will depend
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on the term with n = m. One possible solution is to move
from the length to the velocity gauge via the definition of the
current operator j. Another involves the formal definition of
r = ∂k. We do not explicitly address this issue in the present
Appendix.

2. Nonequilibrium case: Exciton-to-exciton transitions

We now proceed with the derivation of Eq. (16). In the
case of an initial state containing one exciton, three options
can be considered for the final state for |J〉. (i) |F 〉 = |g〉,
i.e., the probe stimulates the emission of a photon, back to
the ground state. (ii) |F 〉 = |λiqi + λ f q f 〉 with EF = E0 +
ωλi+λ f (qi + q f ), i.e., the probe stimulates the creation of a
second exciton. The energy of the two-exciton (or biexciton)
state can be in general lower than the sum of the two excitonic
energies [ωλi+λ f (qi + q f ) < ωλi (qi ) + ωλ f (q f )], due to the
extra biexciton binding energy [74]. (iii) |F 〉 = |λ f q f 〉 with
EF = E0 + ωλ f (q f ), i.e., the initial exciton is further excited
into a different excitonic state. Due to the optical nature of the
transition, we must have qi = q f . Omitting the momentum in-
dexes and using ωα = ωλi+λ f , the expression for the response
function has the form

χAB(ω) = 2

V

∑
f

Aλ f B j
f λ

E f − Eλ − ω − i�
= 2

V

AλgBgλ

−ωλ − ω − i�

+ 2

V

∑
α

AλαBαλ

ωα − ωλ − ω − i�

+ 2

V

∑
λ′

Aλλ′Bλ′λ

ω′
λ − ωλ − ω − i�

. (A5)

While in the first two cases (i) and (ii) peaks are ex-
pected in the energy range defined by ωλ(q), we fo-
cus here on this latter case (iii), i.e., the last term in
the equation, where peaks are expected at much lower
energies.

We use the same approach of the previous section to
derive a formula for the dipole matrix elements for exciton-to-
exciton transitions. In this case, we have to deal with a matrix
element of the form

〈cvk|μ̂|c′v′k〉, (A6)

where c, c′ are in the conduction sector, while v, v′ are in the
valence one. Plugging the expressions for excitonic states and
position operator provides∑

nmk

〈g|â†
vkâckâ†

nkâmkâ†
c′kâv′k|g〉rnmk. (A7)

We split the sum over n and m in the valence and conduction
sector. We observe that if m is in conduction, we must have
m = c′, while if n is in conduction, we must have n = c.
Accordingly, we have four terms,∑

n,n∈occ,k

〈g|â†
vkâckâ†

nkâmkâ†
c′kâv′k|g〉rnmk

+
∑

m∈occ,k

〈g|â†
vkâmkâ†

c′kâv′k|g〉rcmk

+
∑

n∈occ,k

〈g|â†
vkâckâ†

nkâv′k|g〉rnc′k

+ 〈g|â†
vkâv′k|g〉rcc′k.

Now we observe that the second term can be nonzero only
if m = c′ and the third if n = c, which are both nonallowed
conditions because m and n are in the valence sector. So the
expression reduces to∑

n,m∈occ,k

〈g|â†
vkâckâ†

nkâmkâ†
c′kâv′k|g〉rnmk + δvv′rcc′k.

We analyze the first bracket and we move â†
vk toward the right.

This gives

δvm〈g|âckâ†
nkâ†

c′kâv′k|g〉 + δvv′ 〈g|âckâ†
nkâmkâ†

c′k|g〉.
Now we observe that, in order to be nonzero, the ket and bra
states have to be equal, so we match the indexes in the only
way and we obtain

−δvmδnv′δcc′ + δvv′δnmδcc′ .

Putting everything together, we obtain

〈cvk|μ̂|c′v′k〉 = −δcc′rv′vk + δvv′δcc′
∑

n∈occ

rnnk + δvv′rcc′k.

(A8)

Finally, we can insert this formula in the dipole matrix element
of two excitonic states. This provides

〈λ|μ̂|λ′〉 =
∑
cvk

∑
c′v′k

Aλ∗
cvkAλ′

c′v′k〈cvk|μ̂|c′v′k〉,

and using (A8) we find

〈λ|μ̂|λ′〉 = −
∑
cvv′k

Aλ∗
cvkAλ′

cv′krv′vk +
∑
cvc′k

Aλ∗
cvkAλ′

c′vkrcc′k

+
∑
cvk

Aλ∗
cvkAλ′

cvk

∑
n∈occ

rnnk

=
∑

v,c 	=c′,k

Aλ∗
cvkAλ′

c′vkrcc′k −
∑

c,v 	=v′,k

Aλ∗
cvkAλ′

cv′krv′vk

+
∑
v,c,k

Aλ∗
cvkAλ′

cvk

(
rcck − rvvk +

∑
n∈occ

rnnk

)
. (A9)

A very similar expression was derived in Ref. [75],
Eq. (B8), to model nonlinear optics in the independent-
particles case. A similar expression is also derived in Ref. [76]
(B3), apart from the last term.

APPENDIX B: DIPOLE-ALLOWED TRANSITIONS
BY SYMMETRY ANALYSIS

1. LiF bulk and the O(h) symmetry group

The point symmetry group of LiF is Oh, which has 48 sym-
metry operations and 10 irreducible representation (irreps),
four of dimension 3 (T1u, T2u, T1g, T2g), two of dimension 2
(Eu, Eg), and four of dimension 1 (A1u, A2u, A1g, A2g).

For the case of equilibrium absorption, the initial state cor-
responds to the ground state |�I〉 = |�0〉, which is symmetric,
thus OI = A1g irrep. The dipole operator instead μ̂ belongs to
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the T1u irrep. Then, given the irreducible transformation OF

of the final state |� f 〉, the integral is different from zero if the
product of the symmetries gives A1g, i.e.,

A1g ∈ A1g × T1u × OF . (B1)

To this end we need to look into the product table for the Oh

group [63]. From the table, we see that A1g × T1u = T1u and
the condition T1u × O f = A1g is verified only for

O f = T1u. (B2)

T1u has dimension 3, and � f is threefold-degenerate.
We move to the nonequilibrium case where the pump gen-

erates a bright excitonic state, thus OI = T1u. In this case, we
need to perform the same exercise as before, looking for the
states for which

A1g ∈ T1u × T1u × OF . (B3)

Since T1u × T1u = A1g + Eg + T1g + T2g and A1g ∈ OF × OF ,
we have that any

OF = A1g, Eg, T1g, T2g (B4)

is a possible solution. This already shows that the interexciton
transition spectrum will show excitons that are dark when
measuring absorption from equilibrium. Bright to bright tran-
sitions are not possible. A further push in the identification
of the bright excitations can be achieved by analyzing also
the relative polarization of the pump and probe pulses. In-
deed, if both the pulses are parallel to (say) the z-direction,
the associated irreps have to transform as the corresponding
quadratic form of the coordinates, i.e., as z2 in this specific
case. Then, the character table of Oh unambiguously identifies
the first bright excitation (which is doubly degenerate) as Eg

and the second one as A1g. Instead for transverse polarization
(with the probe parallel to the x axis), the allowed irreps
have to transform as the bilinear product xz. This requirement
is satisfied by both T2g, which transforms as the quadratic
form (xz, yz, xy), and T1g, which transforms as the rotation
(Rx, Ry, Rz ). So in this case, this argument allows us to iden-
tify the two bright states as T1g and T2g excitons.

2. hBN monolayer and the D(3h) symmetry group

For the case of the hBN monolayer, the point group is D3h,
which has six irreps: E ′ and E ′′, of dimension 2, and A′

1, A′
2,

A′′
1, A′′

2, all of dimension 1. The ground state is symmetric and
belongs to the A1 irrep.

The x and y components of the dipole operator, which are
the relevant elements for the study of the in-plane excita-
tion, belong to the E ′ irrep, while the z component belongs
to A′′

2. Following the same reasoning as for LiF, the in-
plane optically active excitons belong to the E ′ irrep and
are twofold-degenerate, while the out-of-plane optically active
excitons belong to A′′

2.
Moving to the nonequilibrium absorption, the initial

configuration belongs to E ′ so the coupling with an in-
plane dipole gives rise to (E ′ × E ′) = (A′

1 + A′
2 + E ′), i.e.,

it spans all the possible irreps in the primed sector of the
point group. So, any exciton in this sector can be reached
measuring absorption from an optical excited state, inde-

pendently of the fact that the exciton is bright or dark at
equilibrium.

Also in this case, the polarization-based analysis allows
us to discriminate the representation to which the bright
states belong. Indeed, for pulses both parallel to (say) the
x-axis, the excited states transform as the x2 quadratic form,
so only E ′ (with a double degeneracy) and A′

1 (nondegen-
erate) are allowed. On the contrary, for transverse in-plane
polarization, the excited state transforms as the bilinear xy,
so only E ′ and A′

2 (that transforms as the Rz rotation) are
allowed.

APPENDIX C: SELECTION OF THE DEGENERATE
EXCITONIC STATE

In the presence of degenerate bright excitons, we select, in
the degenerate excitonic space U i

d , the specific linear combi-
nation of states that gives an excitonic transition dipole along
the direction of the pump laser pulse E0. To this end, we define
a “dipoles matrix” and a “directions matrix”:

Dαλ = μα
0λ(0)

|μ0λ(0)| , (C1)

Eαn = Eα
n

|En| . (C2)

These two matrices are ndeg × ndeg, depending on the size of
the degenerate space. For LiF, ndeg = 3, and the transition
dipoles of the three states span the whole space. For hBN,
ndeg = 2, and the transition dipoles span the xy plane. Here
λ are the indexes of the exciton in U i

d , while n runs from 0
to ndeg − 1. En, with n > 0, are directions orthogonal to E0

that belong to the space spanned by the transition dipoles.
Thanks to these two matrices, we can define the rotation
matrix

Cλn =
∑

α

Dt
λαEαn. (C3)

Cλ0 is used to construct the excitonic states

|λn〉 =
∑

λ

Cλ0|λ〉. (C4)

The states |λn〉 span the same space spanned by the random
vectors |λ〉, but now the initial state |λi〉 = |λ0〉 has polariza-
tion parallel to Eα0.

APPENDIX D: INTRABAND TERM: POSITION VERSUS
VELOCITY DIPOLES

Intraband dipoles rnnk are ill-defined in the length gauge.
They can instead be accounted for within the velocity gauge
and thus shifting to the (one-body) velocity dipole matrix
elements v1b

nmk. In the linear regime starting from a nonequi-
librium state, position and velocity dipoles can be related by
the expression

v1b
nmk = i rnmk�εnmk + δn,m∂kεnk. (D1)

The above equation can be found in many works in the lit-
erature [77] for the case �εnmk > 0, while the expression
for the terms with n = m can be obtained by the expression
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for the energies in the k · v model [78] in the presence of
nondegenerate bands: εnk+q � εnk + q · vnnk.

Notice that such an equation also shows that the physics
of intraband transitions enters differently in the two gauges.
Indeed, while for �εnmk > 0 the two dipoles carry the same
information, for n = m the velocity dipoles carry extra in-
formation which cannot be obtained from the length dipoles
alone. However, while the velocity dipoles capture the physics
of intraband transitions, their use within the velocity gauge
has two main drawbacks: (i) sum rules are easily broken in
numerical implementations, and (ii) beyond the independent-
particles approximation the definition of the velocity operator
depends on the Hamiltonian [60].

APPENDIX E: APPROXIMATED HSEX SELF-ENERGY

The ��HSEX[ρ(t )] appearing in Eq. (2) is calculated in the
YAMBO code as [40]

��HSEX
mm′k (t ) =

∑
n,n′q

Mmm′q
nn′k

· �ρn,n′k−q(t ), (E1)

where the matrix elements of M are defined as the sum of two
terms:

MH
mm′q
nn′k

=
∑

G

ρG
mm′k(0)

[
ρG

nn′k−q(0)
]∗

vG(q), (E2)

MSEX
mm′q
nn′k

=
∑
G,G′

ρG′
mnk(q)

[
ρG

m′n′k(q)
]∗

WG,G′ (q), (E3)

where

ρmnk(q, G) =
∫

ϕ∗
mk(r)ϕnk−q(r)ei(G+q)r. (E4)

v and W are the bare and the screened Coulomb interaction
already introduced in the main text [79]. In this work, we
considered only matrix elements of M involving both m, n
in the valence (conduction) when m′, n′ are both in the con-
duction (valence) band. Instead, we set to zero all elements
where either m, m′ or n, n′ are both in the conduction (valence)
band. This approximation strongly reduces the computational
cost, it is exact for the linear response, and we verified that it
does not introduce any relevant change in the pump and probe
spectra reported in the main text.
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