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Transport and noise of hot electrons in GaAs using a semianalytical model
of two-phonon polar optical phonon scattering
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Recent ab initio studies of electron transport in GaAs have reported that electron-phonon (e-ph) interactions
beyond the lowest order play a fundamental role in charge transport and noise phenomena. Inclusion of the
next-leading-order process in which an electron scatters with two phonons was found to yield good agreement
for the high-field drift velocity, but the characteristic nonmonotonic trend of the power spectral density of current
fluctuations (PSD) with electric field was not predicted. The high computational cost of the ab initio approach
necessitated various approximations to the two-phonon scattering term, which were suggested as possible origins
of the discrepancy. Here we report a semianalytical transport model of two-phonon electron scattering via the
Fröhlich mechanism, allowing a number of the approximations in the ab initio treatment to be lifted while
retaining the accuracy to within a few percent. We compare the calculated and experimental transport and
noise properties as well as scattering rates measured by photoluminescence experiments. We find quantitative
agreement within 15% for the drift velocity and 25% for the � valley scattering rates, and agreement with the
�-L intervalley scattering rates within a factor of two. Considering these results and prior studies of current noise
in GaAs, we conclude that the most probable origin of the nonmonotonic PSD trend versus electric field is the
formation of space-charge domains rather than intervalley scattering as has been assumed.
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I. INTRODUCTION

Electron transport in semiconductors is of fundamental
interest and of high relevance for microelectronic devices
[1–3]. The upper limit for the mobility of a semiconductor is
governed by scattering of electrons by phonons. Early studies
of charge transport properties employed a semiempirical de-
scription of the band structure and electron-phonon scattering.
The introduction of the Monte Carlo (MC) method allowed
for the numerical simulation of transport with fewer approxi-
mations [4]. Later, full-band MC tools capable of simulating
realistic device geometries were developed, but the treatment
of the e-ph scattering rates in general required fitting param-
eters [5–7]. The development of the ab initio description of
the electron-phonon interactions based on density-functional
theory (DFT), density-functional perturbation theory (DFPT),
and Wannier interpolation has enabled the parameter-free
computation of low-field charge transport properties such as
mobility [8–10]. These methods have now been applied to
a range of semiconductors, including Si [11,12], GaN [13],
GaAs [14], two-dimensional materials [15–17], and others.
Recent methodology developments, including two-phonon
scattering [18], quadrupole interactions [19,20], and GW cor-
rections [12,21], have facilitated a rigorous comparison of the
accepted level of theory with experiment.

The accuracy of the ab initio calculations has been mainly
based on comparison to low-field mobility values. Recent
works have extended these calculations to beyond low-field
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transport and noise properties [22–25]. In GaAs, it was found
that although the qualitative shape of the drift velocity versus
electric field curve was predicted correctly compared to exper-
iment, the magnitude of the drift velocity was overpredicted
by about 50% [24]. The inclusion of the next-leading-order
term of scattering involving two phonons (2ph) yielded a low-
field mobility and drift velocity with substantially improved
agreement. However, the characteristic nonmonotonic trend
of power spectral density (PSD) with electric field was not
predicted even with the 2ph theory. Owing to the high cost
of the ab initio calculations, the treatment of 2ph processes in
that work required several approximations, such as the neglect
of off-shell 2ph scattering processes. Whether these neglected
processes or other numerical considerations can account for
the PSD discrepancy remains unknown.

Here we introduce a semianalytical model for both 1ph and
2ph e-ph scattering via the Fröhlich mechanism, allowing the
full 2ph scattering term to be treated over the wide range of en-
ergies needed for high-field transport while introducing error
on the order of only a few percent. We find that the transport
and noise properties are qualitatively unchanged compared to
the ab initio calculations. The calculated scattering rates agree
with those obtained from photoluminescence experiments to
within 25% for the � valley rates and a factor of two for
the �-L intervalley rates. Despite this degree of agreement,
the qualitative discrepancy observed previously for the PSD
remains. We consider the remaining approximations in the
semianalytical model and find that they are unlikely to account
for the PSD discrepancy. Therefore, we conclude that the
characteristic peak in the PSD with electric field most likely
arises from the formation of space-charge domains rather than
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intervalley scattering as has been assumed in the literature.
This finding has implications for the use of transport measure-
ments to study intervalley scattering.

II. THEORY

A. Overview of formalism for charge transport
and noise properties

We first review the ab initio treatment of electron transport
and electronic noise using the Boltzmann transport equation
(BTE) [26]. For a spatially homogeneous system with electric
field �E , the electron distribution function fmk is governed by

∂ fmk

∂t
+ e �E

h̄
· ∇k fmk = I[ fmk], (1)

where fmk is the electron occupation in the state with band
index m and wave vector k, e is the fundamental charge, and
I[ fmk] is the collision term, which describes the scattering of
electrons with phonons [8]. In this work, index m is dropped in
all the following derivations for simplicity as only one band is
relevant for electron transport in GaAs in the range of electric
fields considered.

For nondegenerate electrons, the collision term can be lin-
earized as [24]:

I[ fk′] ≈ −
∑

k

�k′,k fk, (2)

where �k′,k is e-ph collision matrix. For consistency with our
prior work [24], the diagonal and off-diagonal elements of this
matrix are positive and negative, respectively. The diagonal
elements �k,k are equal to the total scattering rates as �k,k =
�k = −∑

k′ �=k �k′,k. The relative error of the linearization is
on the order of fk according to Eq. (3) in Ref. [24]. Due to
the nondegenerate carrier concentration (1015 cm−3) used in
this work, we find that fk � 4×10−3, which implies that the
linearization error can be neglected. With this linearization
and a finite-difference representation of the derivative operator
∇k [23], Eq. (1) becomes a linear partial-differential equa-
tion which can be solved by numerical linear algebra. The
equation for the steady distribution function f s

k is given by
Eq. (6) of Ref. [23]. Steady-state mean transport properties
such as drift velocity can be calculated with the appropriate
Brillouin zone sum using this distribution.

The current PSD is used to characterize fluctuations in
occupation about the mean distribution. The PSD is defined as
the Fourier transform of the autocorrelation of the current den-
sity fluctuations (Eq. (12) of Ref. [23]). Following Ref. [23],
the current PSD at frequency ω can be calculated as

S jα jβ (ω) = 2

(
2e

V0

)2

Re

[∑
k

vkαgkβ

]
, (3)

where vkα is the group velocity of the electron at state k along
axis α, V0 is the supercell volume, and gkβ is the effective
distribution function [27]. Note that the effective distribution
function is distinct from the e-ph matrix elements, gν (k, q).

gkβ satisfies the following equation:

∑
k

(
�k′,k + e �E

h̄
· �Dk′,k + iωδk′,k

)
gkα = f s

k′ (vk′,α − Vα ),

(4)

where D is the finite-difference representation of ∇k (see
Eq. (4) in Ref. [23]), f s

k is the steady-state occupation for the
state at wave vector k, and Vα = ∑

k vkα f s
k /

∑
k f s

k is the drift
velocity along axis α.

The e-ph collision matrix is obtained from perturbation
theory in orders of the e-ph interaction strength. The first
two orders in the expansion correspond to scattering with
one phonon (1ph) and two phonons (2ph). The corresponding
Feynman diagrams can be found in Figs. 1 and 2 in Ref. [18].
For 1ph scattering of nondegenerate electrons, the nondiago-
nal scattering matrix elements are given by [24]:

�
(1ph)
k′=k+q,k

= − 2π

h̄

1

N

∑
ν

|gν (k, q)|2[δ(εk − h̄ωνq − εk+q)Nqν

+δ(εk + h̄ωνq − εk+q)(Nqν + 1)
]

(5)

for k �= k′, where gν (k, q) is the e-ph scattering matrix ele-
ment, εk is the energy of the electronic state k, ωνq is the
frequency of phonon with mode ν and wave vector q, N is
the total number of k points in the Brillouin zone, Nqν is the
phonon occupation according to the Bose-Einstein statistics,
and the two delta functions are energy conservation conditions
for the emission and absorption subprocesses, respectively.
We note that here we neglect the dependence of the phonon
distribution on the external electric field. For sufficiently high
electric fields and currents, the dissipated power from Joule
heating can increase the phonon occupation above its thermal
value, which is known as the hot phonon effect [28,29]. In
this work and in relevant experiments used for comparison,
this effect is negligible due to the small nondegenerate carrier
density (1015cm−3).

B. Two-phonon scattering

The collision integral for 2ph scattering was derived in
Ref. [18], and the linearized form is given in Ref. [24].
The 2ph scattering can be divided into the two-emission
(2e), one-emission-one-absorption (1e1a), and two-absorption
(2a) subprocesses. Here, we rewrite the original formalism
in Ref. [18] to facilitate the derivations in the next sec-
tion. Assuming nondegenerate electron statistics in Eq. (4) in
Ref. [18], we rewrite Eq. (12) in Ref. [24] by splitting W (i)

into two parts:

W (i) = |W̃k,q,p,α2 + W̃k,p,q,α1 |2
= [|W̃k,q,p,α2 |2 + Re(W̃k,q,p,α2W̃

∗
k,p,q,α1

)]

+ [|W̃k,p,q,α1 |2 + Re(W̃k,p,q,α1W̃
∗

k,q,p,α2
)], (6)

where

W̃k,q,p,α = gν (k, q)gμ(k + q, p)

εk′ − εk+q + αh̄ωνp + iη − ih̄�k+q/2
, (7)

where η is a positive infinitesimal, �k+q = �
(1ph)
k+q + �

(2ph)
k+q

is the total scattering rate of the intermediate state k + q,
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FIG. 1. (a) 1ph and 2ph � valley scattering rates versus energy at 300 K obtained from ab initio calculations (symbols and shaded regions)
and semianalytical model (lines). Note that intervalley scattering is excluded from these rates. Due to the variations of the ab initio rates, we
apply a Gaussian smearing and plot the shaded region to indicate the region within a standard deviation. (b) Decomposition of semianalytical
2ph rates (black solid line) into four contributing subprocesses (blue, orange, green, and red solid lines). In both (a) and (b), vertical dashed
lines indicating energies of h̄ωLO and 2h̄ωLO are plotted.

and h̄�k+q/2 is the imaginary part of the self-energy. As is
usually assumed for transport calculations, the Debye-Waller
contribution to the self-energy is not included due to its com-
putational difficulty.

For the 2e and 2a subprocesses, the two parts give the
same contribution after the summation. For the 1e1a sub-
process, the two parts in Eq. (6) physically represent the
emission-then-absorption (a-e) and absorption-then-emission
(e-a) subprocesses, respectively. Finally, we exchange the
summation order of q and p in Eq. (9) in Ref. [24] for the
second term of Eq. (6) and arrange the equations to obtain:

�
(2ph)
k′,k = −2π

h̄

1

N2

∑
α1=±1

∑
α2=±1

∑
q+p=k′−k

∑
νμ

�̃
(α1,α2 )
k,qν,pμ (8)

for k �= k′, where α1 and α2 indicate whether the first and
second phonon is emitted (α1,2 = 1) or absorbed (α1,2 = −1),

so that the four combinations of α1,2 = ±1 describe the four
subprocesses.

The term �̃
(α1,α2 )
k,qν,pμ in Eq. (8) is defined as

�̃
(α1,α2 )
k,qν,pμ = (Nqν + δα1,1)(Npμ + δα2,1)[|W̃k,q,p,α2 |2

+ Re(W̃k,q,p,α2W̃
∗

k,p,q,α1
)]

× δ(εk − εk′ − α1ωνq − α2ωμp). (9)

As the 2ph scattering rates depend on the intermediate-
state rates, the 2ph scattering must be calculated iteratively.
In each iteration, the intermediate-state rates of the previous
iteration is used to update the 2ph scattering matrix �

(2ph)
k′,k and

scattering rates �
(2ph)
k .

Compared with 1ph scattering, 2ph scattering is much
more computationally expensive, particularly for high-field

FIG. 2. Drift velocity and normalized PSD versus electric field for the (1 + 2)ph results obtained by ab initio calculation (dashed blue
line) and semianalytical model (solid red line) at a temperature of 300 K. (a) Drift velocity versus electric field. The ab initio calculation
and semianalytical model qualitatively agree with the measurements of Ruch et al. [38] (filled circles) and Ashida et al. [39] (open circles)
(b) Normalized PSD versus electric field. Values calculated using two approaches show consistent discrepancies compared with the results
obtained from noise temperature and differential mobility measurements (filled circles, Ref. [40] and open circles, Ref. [41]), and from time
of flight experiments (triangles, Ref. [42]).
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transport which requires a larger energy window than for
low-field transport. In Ref. [24], several approximations
were made to make the computation feasible, including lim-
iting the number of self-consistent iterations of the 2ph
rates to three, restricting the off-shell extent |εk′ − εk+q +
αh̄ωνp| to 25 meV, and neglecting the interference term
Re(W̃k,q,p,α2W̃

∗
k,p,q,α1

) term in Eq. (9). Additionally, the maxi-
mum grid density that could be used was 200×200×200. The
effect of these approximations on the observable transport and
noise properties was not assessed. In particular, the on-shell
approximation neglects off-shell processes and thus under-
estimates the scattering rates. These approximations were
mentioned as possible reasons for the PSD discrepancy in
Ref. [24].

C. Semianalytical model for 1ph and 2ph �-� scattering

In this section, we introduce a semianalytical model to
treat 1ph and 2ph �-� intravalley scattering by the Fröhlich
interaction that retains the accuracy of the ab initio formalism
to within a few percent while allowing the approximations
described above to be lifted. This model is based on the fact
that over the range of wave vectors considered in this study,
the � valley in GaAs is nearly spherically symmetric, and
�-� scattering can be accurately described by using only
the Fröhlich interaction [30]. The model is valid only for
� intravalley scattering because �-L intervalley scattering
lacks an analytic description of similar accuracy. We also
note that this model is valid only for materials in which the
Fröhlich mechanism makes the dominant contribution to e-ph
scattering.

The semianalytical model uses the following approxima-
tions. First, the band structure is described using the Kane
model [31] for a spherically symmetric, nonparabolic band.
This description is accurately satisfied for the � valley,
with the Kane model bands deviating from the ab initio
band structure by at most 7% over the range of wave vec-
tors considered (∼0.1G, where G is the reciprocal lattice
constant). Second, prior works have shown that �-� e-ph
scattering in GaAs is dominated by longitudinal optical (LO)
phonons via the Fröhlich interaction [32]. We therefore ne-
glect scattering processes involving other phonon branches
and scattering mechanisms. The computed matrix elements
gLO(k, q) for Fröhlich scattering are found to exhibit neg-
ligible anisotropy so that gLO(k, q) = gLO(q), enabling an
analytic form of gfit

LO(q) to be fit to the ab initio values as
described in Sec. III. In the range of wave vectors considered,
this approximation is satisfied to within 3% [30]. A detailed
comparison of ab initio and semianalytical band structure and
e-ph matrix elements can be found in Appendix A. Third,
we take the LO phonon frequency to be a constant ωLO =
35 meV. In the range of phonon wave vectors q ∈ (0, 0.2G)
considered here, this assumption is satisfied to within less
than 0.3%.

We now discuss the treatment of 1ph and 2ph e-ph scat-
tering based on these simplifications. The summation in
Eq. (8) may be rewritten as an integral in the Brillouin zone
over the intermediate wave vector km by letting q → km − k
and p → k′ − km. Additionally, we exploit spherical symme-
try to rewrite all the quantities in spherical coordinates as

�k′,k = �(k, k′, θk,k′ ) and �k = �k . After some simplifica-
tions, we obtain the 1ph and 2ph collision matrices as:

�(1ph)(k, k′, θk,k′ ) = 2π

h̄

1

�BZ
|gfit

LO(|k′ − k|)|2

×
∑
α=±1

Aαδ(εk − αh̄ωLO − εk′ ) (10)

and

�(2ph)(k, k′, θk,k′ ) = 2π

h̄

1

�2
BZ

∑
α1=±1

∑
α2=±1

× Aα1 Aα2δ[εk − εk′ − (α1 + α2)h̄ωLO]

× I (α1,α2 )(k, k′, θk,k′ ), (11)

where �BZ is the Brillouin zone volume. Aα is the phonon
occupation factor defined as

Aα = NLO + δα,+1, (12)

where NLO = [exp(h̄ωLO/kBT ) − 1]−1 is the LO phonon oc-
cupation and I (α1,α2 ) = I (α1,α2 )

1 + I (α1,α2 )
2 is decomposed to the

noninterference part I (α1,α2 )
1 and the interference part I (α1,α2 )

2 :

I (α1,α2 )
1 (k, k′, θk,k′ ) =

∫
|W̃k,km−k,k′−km,α2

|2d3km

=
∫ ∣∣∣∣ gfit

LO(|km − k|)gfit
LO(|k′ − km|)

εk′ − εkm + α2ωLO + iη − ih̄�km/2

∣∣∣∣
2

× d3km, (13)

and

I (α1,α2 )
2 (k, k′, θk,k′ ) =

∫
q+p=k′−k

Re(W̃k,q,p,α2W̃
∗

k,p,q,α1
)d3 pd3q.

(14)

Equation (13) can be further simplified by writing the inte-
gration in spherical coordinates and separating the radius and
angular part:

I (α1,α2 )
1 (k, k′, θk,k′ )

=
∫

Ĩ (α1,α2 )(k, k′, θk,k′ , km)

|εk′ − εkm + α2ωLO + iη − ih̄�km/2|2 k2
mdkm, (15)

where Ĩ (α1,α2 )
1 is the angular part defined as:

Ĩ (α1,α2 )
1 (k, k′, θk,k′ , km) =

∫ ∣∣gfit
LO(|km − k|)gfit

LO(|k′ − km|)∣∣2

× sin θkm dθkm dφkm , (16)

where θkm , φkm are the polar angle and azimuthal angle
defining the intermediate wave vector km, respectively. Since
Ĩ (α1,α2 )
1 is independent of the band structure and the self-

energy, recomputation of this term in each 2ph iteration is
not required. In practice, to significantly reduce the compu-
tational cost, Ĩ (α1,α2 )

1 (k, k′, θk,k′ , km) is precomputed on a grid
of k, k′, θk,k′ and km before the 2ph iteration. We note that
k, k′, and θk,k′ are not independent of each other due to the
energy conservation condition. Once Ĩ (α1,α2 )

1 (k, k′, θk,k′ , km)
is computed on a predefined grid, �(2ph)(k, k′, θk,k′ ) can be
calculated according to Eqs. (11), (15), and (14). We note that

205201-4



TRANSPORT AND NOISE OF HOT ELECTRONS IN GaAs … PHYSICAL REVIEW B 107, 205201 (2023)

TABLE I. Comparison between the ab initio calculation and the semianalytical model for �-� intravalley scattering. The semianalytical
model improves on the ab initio model in all respects except the final-state integration grid density for observables, for which the same grid
is used.

Ab initio calculation Semianalytical model

200×200×200 for observables
Final-state integration 200×200×200

Effectively exact for scattering rates
Intermediate-state integration 200×200×200 Effectively exact
Processes On-shell only All processes included
Two-phonon iterations 3 Iterate until convergence
Interference term Not included Included
Computational time (CPU hours) 50 000 40

such separation of the radius and spherical part is not valid for
Ĩ (α1,α2 )
2 , so an expensive iterative update is required. However,

since Ĩ (α1,α2 )
2 is generally much smaller compared with Ĩ (α1,α2 )

2 ,
we update Ĩ (α1,α2 )

2 every 10 iterations to decrease the cost of
the self-consistent calculations.

To complete the 2ph iteration, the last quantities to be
computed are the total 1ph and 2ph scattering rates:

�
(type)
k =

∫
�(type)(k, k′, θk,k′ )d3k′

=
∫

�(type)(k, k′, θk,k′ )2πk′2dk′ sin θk,k′dθk,k′ , (17)

where type = 1ph, 2ph indicates the type of scattering. We
also perform the radius integration over k′ analytically to
integrate the delta functions in Eqs. (10) and (11). The angular
integrations in Eq. (17) are performed numerically; details are
provided in Sec. III.

The computational flow of the semianalytical model is
as follows. First, we generate a grid of k, θk,k′ , and km and
calculate the corresponding k′ from the energy conserva-
tion conditions for each subprocess. Second, we calculate
�(1ph)(k, k′, θk,k′ ) by Eq. (10) and �

(1ph)
k by Eq. (17). Then we

calculate Ĩ (α1,α2 )
1 (k, k′, θk,k′ , km) by Eq. (16). Finally, we per-

form the self-consistent 2ph iterations using Eqs. (15), (14),
(11), and (17) until convergence, where Eq. (14) is calculated
every 10 iterations.

From the perspective of computational cost, the semiana-
lytical model reduces the number of integration variables in
the 2ph scattering rate calculation from 9 (integration over k,
k′, km) to 5 (k, θk,k′ , km) due to the spherical symmetry and
avoids the recomputation of I (α1,α2 )

1 in the 2ph self-consistent
iterations due to the separation of radius and angular inte-
gration in Eq. (15). This reduction allows for the use of a
denser grid for the intermediate-state integration and thereby
reduces the discretization error. Therefore, the total scattering
rates can be calculated with negligible discretization error
compared with the ab initio calculation. However, since the
semianalytical model is only for �-� scattering, a discretized
scattering matrix (�k′,k) is still needed to compute the drift
velocity and current PSD, which are affected by �-L inter-
valley scattering. As a result, the discretization error in the
final-state integration cannot be avoided for the present calcu-
lations. Nevertheless, the semianalytical model still decreases

the discretization error of the intermediate-state integration
and treats the full 2ph scattering term. The differences be-
tween the ab initio calculation and the semianalytical model
for � intravalley scattering are summarized in Table I.

III. COMPUTATIONAL DETAILS

A. Ab initio calculations

The ab initio calculation parameters are identical to those
in our previous work [24]. In brief, electronic structure and
e-ph matrix elements are computed using density-functional
theory (DFT) and DFPT with QUANTUM ESPRESSO [33,34]
with an 8×8×8 coarse grid, 72 Ry plane-wave energy cutoff, a
relaxed lattice parameter of 5.556 Å, and a nondegenerate car-
rier concentration of 1015 cm−3. Following our previous work
[24], we apply a band structure correction for both the � valley
and the L valley. For the � valley, we use a spherically sym-
metric Kane model band structure [35] with an experimental
effective mass of 0.067me and a nonparabolicity of 0.64 eV−1

[2]. For the L valley, we shift the energy by 50 meV to achieve
the experimental �-L valley separation of 300 meV. Wannier
interpolation in PERTURBO [36] is then applied to interpolate
the e-ph matrix elements to a finer grid of 200×200×200.
After the e-ph matrix elements are obtained, the 1ph and 2ph
scattering matrices are computed according to Eqs. (5) and
(8). The delta functions in Eqs. (5) and (9) are approximated
by a Gaussian function with a standard deviation of 5 meV.

During the computation of scattering matrices, a phonon
frequency cutoff of 2 meV is applied to neglect phonons with
low frequencies. An energy cutoff of 360 meV above the
conduction band minimum is used to reduce the number of
k points in the Brillouin zone integration. The 2ph calculation
applies the on-shell approximation by restricting the off-shell
extent to 25 meV. Following Ref. [23], the linear system of
equations representing the Boltzmann equation is solved by
the generalized minimal residual method.

B. Semianalytical model

The band structure used in the semianalytical model is
the same as that in the ab initio calculation. The LO phonon
energy is taken to be ωLO = 35 meV. The function gfit

LO(q) is
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obtained by a weighted averaged of gLO(ki, pi ):

gfit
LO(q) =

∑
i gLO(ki, pi ) exp

[
− (q−pi )2

2σ 2

]
∑

i exp
[
− (q−pi )2

2σ 2

] , (18)

where the standard deviation σ = 5×10−4 Ry, the summa-
tion is over all the on-shell processes, and the gLO(ki, pi )
are calculated by the Wannier interpolation. The spheri-
cal coordinates integration in Eq. (16) is defined such that
the θkm = 0 direction is orthogonal with both k and k′.
200 grid points are used for each θkm and φkm integration.
The radius integration in Eq. (15) is transformed into the
integration of εkm and performed using an adaptive integra-
tion range with 120 grid points. The integration range is
(εk′ + α2h̄ω0 − 6h̄�km , εk′ + α2h̄ω0 + 6h̄�km ), corresponding
to a width of 12h̄�km around the center of the Lorentzian
function in the denominator of Eq. (15). The relative resid-
ual error from this choice of integration limits is estimated
as 1/122 ≈ 0.7%. In the final-state integration of both 1ph
and 2ph, the angular integrations in Eq. (17) are performed
with 200 grid points. All the above numerical integrations
are performed on uniform grids using the midpoint rule.
The 2ph calculation is performed with 20 iterations, with the
interference term Eq. (14) updated every 10 iterations. The
relative difference between the 10th and 20th iterations is less
than 1%, indicating convergence of the iterative process. The
discretization of �(k, k′, θk,k′ ) to �k′,k is performed by the
regular grid interpolation provided in scipy [37].

IV. RESULTS

A. � valley scattering rates at 300 K

We first present the 1ph and 2ph � valley scattering
rates versus energy obtained by ab initio calculation and the
semiempirical model for GaAs at 300K in Fig. 1(a). For
both 1ph and 2ph rates, the ab initio calculations and the
semianalytical model are in quantitative agreement. Specifi-
cally, we observe a rapid increase of the 1ph and 2ph rates
at h̄ωLO ≈ 35 meV followed by a nearly constant trend. The
degree of agreement between the semianalytical model and
the mean values of the ab initio calculation is notable con-
sidering the semianalytical model includes off-shell processes
and the interference term, both of which are neglected in
the ab initio calculations. The agreement can be attributed
in part to the cancellation of errors between the limitation
on the iteration number and the on-shell approximation in
the ab initio calculation. The third iteration of the 2ph rates
yields values that are overestimated from the converged value
by about 9%, while the on-shell approximation and the non-
interference approximation are found to underestimate the
rates by around 3% and 5%, respectively. These approxima-
tions offset each other to yield good agreement between the
two approaches. Overall, the contribution of off-shell pro-
cesses is found to make only a minor contribution to the
� intravalley 2ph scattering rates even up to energies of
300 meV.

The major difference between the ab initio and the semi-
analytical rates is the variation of the individual rates in
the ab initio calculation in a given energy range, which is

due to the relatively low grid density used in the ab initio
calculation (see Appendix A). As explained in Sec. II C, the
semianalytical model uses a significantly finer grid, leading to
negligible variations in individual scattering rates in the same
energy range. Although anisotropy could in principle lead to
similar variations of the ab initio rates, this contribution is
negligible owing to the high spherical symmetry of the band
structure and e-ph matrix elements (about 3% as mentioned in
Sec. II C).

The high grid density in the semianalytical model enables
features in the scattering rates to be observed that cannot be
discerned in the ab initio calculations, including the previ-
ously mentioned rapid increase of 1ph and 2ph rates at h̄ωLO

and a small but evident kink at 2h̄ωLO (about 70 meV). We
now analyze each of these observations. For the 1ph rates,
the increase at h̄ωLO is because LO phonon emission from an
electron may only occur above an energy of h̄ωLO. For the 2ph
rates, the situation is more complicated due to the existence
of four subprocesses (2e, e-a, a-e, 2a) in 2ph scattering. To
better understand the features in the 2ph scattering rates, the
scattering rates of the four subprocesses are plotted separately
in Fig. 1(b). We observe that the increase of the total 2ph rates
at h̄ωLO can be attributed to the e-a subprocess due to a similar
reason with the emission subprocess in 1ph process, namely
that the e-a subprocess requires the electron to have energy
exceeding h̄ωLO. The kink at 2h̄ωLO comes from the cancel-
lation between the increase of the 2e rates and the decrease of
e-a rates. The increase of the 2e rates is due to the emission of
2 LO phonons at energies higher than 2h̄ωLO. The decrease
of the e-a rates is due to the increase of the intermediate-
state rates in the denominator of Eq. (7) [or Eq. (15)].
Specifically, for an e-a subprocess with εk = 2h̄ωLO, the cor-
responding intermediate state has the band energy εk+q =
h̄ωLO, where an increase of both �(1ph) and �(2ph) occurs
as explained above. In fact, the effect of the intermediate-
state self-energy leads to change at any integer multiple of
h̄ωLO, but the magnitudes are decaying with increasing energy
such that they cannot be observed above a few multiples
of h̄ωLO.

Another observation in Fig. 1(b) is the difference between
the e-a rates and a-e rates asymptotically decreases to zero
with increasing energy. This trend can be understood by analy-
sis of Eq. (11). Specifically, in the process ki → km → k f , the
relative differences between norms of the state vectors ki, km,
and k f become small at high energies (above a few multiples
the LO phonon energy), so that the factor I (α1,α2 )(k, k′, θk,k′ )
becomes insensitive to the subprocess type. Thus, their
magnitudes are fully determined by the phonon occupation
factor Aα1 Aα2 defined in Eq. (12) which satisfy �(2a)/A2

−1 =
�(e−a)/A−1A+1 = �(a−e)/A−1A+1 = �(2e)/A2

+1. From this re-
lationship, we find �(e−a) = �(a−e). Furthermore, a common
ratio �(2a)/�(e−a) = �(e−a)/�(2e) = A−1/A+1 can also be ob-
tained for the subprocess rates at the high-energy region. This
relationship is observed in Fig. 1(b).

B. Drift velocity and current PSD at 300 K

We now examine the transport and noise properties
from each model. For the semianalytical model results, the
�-� block of the scattering matrix is calculated by the
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FIG. 3. Experimental (black symbols, Ref. [43]), ab initio 1ph (orange symbols) and (1 + 2)ph (blue symbols), semianalytical 1ph (green
lines), and (1 + 2)ph results (red lines) of (a) � valley scattering rates and (b) �-L intervalley scattering rates versus energy at helium
temperatures. The (1 + 2)ph calculations agree better with experiment compared to the 1ph calculations in all cases. The (1 + 2)ph scattering
rates agree with experiment to within 25% and a factor of two for � rates and �-L intervalley rates, respectively.

semianalytical model in Eqs. (10) and (11), while the �-
L and L-L blocks are those of the ab initio calculation.
Figures 2(a) and 2(b) display the drift velocity and normalized
current PSD, respectively, from the ab initio calculations and
the semianalytical model. The experimental measurements are
also plotted for comparison. In Fig. 2(a), the ab initio calcula-
tion and the semianalytical model give a similar prediction
of the drift velocity versus electric field up to 5 kV cm−1.
Both give the low-field mobility of around 7000 cm2 V−1 s−1,
which agrees with the experimental value of about 8000
cm2 V−1 s−1 to within around 15%. The similarity between
the ab initio and semianalytical results is expected due to the
agreement of their scattering rates as discussed in Sec. IV A.

In Fig. 2(b), the PSD obtained from different experimental
measurements reveal a nonmonotonic pattern characterized by
an initial decrease followed by a marked rise around the com-
mencement of negative differential mobility, and a subsequent
decrease. The origin of this trend was explained in Ref. [24].
However, both the ab initio calculation and the semianalytical
model predict the PSD to be nearly independent of electric
field and thus fail to predict the characteristic PSD peak at
about 3 kV cm−1.

C. Comparison of cryogenic � and �-L scattering
rates to experiment

The lifetimes of photoexcited hot electrons in GaAs have
been experimentally measured at 10 K from an analysis of
the linewidths of peaks from continuous-wave luminescence
spectroscopy [43]. In this section, we compare the ab initio,
semianalytical and experimental scattering rates at cryogenic
temperatures. In Figs. 3(a) and 3(b), we show the � and
�-L scattering rates obtained by ab initio calculation, the
semianalytical model, and experiment. The calculations were
performed at cryogenic temperatures to enable comparison
with experiment. The experimental scattering rates and error
bars are converted from the corresponding lifetimes and error
bars directly reported in Ref. [43]. Since the semianalytical
model is only valid for �-� scattering, only the experimental
and ab initio results are shown in Fig. 3(b).

Figure 3(a) shows that the experimental and theoretical
values for the � valley scattering all yield a nearly constant
value between 100 and 325 meV. The experimental rates are
about 8 ps−1 in this energy range, while the semianalytical
1ph and (1 + 2)ph calculations give about 3.5 and 6 ps−1,
respectively. This result affirms that the 2ph scattering makes
a non-negligible contribution to electron scattering in GaAs.
Similarly with Sec. IV A, the ab initio calculations give mean
values of the scattering rates that agree quantitatively with the
semianalytical model but with substantial scatter about the
mean. Such observation again suggests that the approxima-
tions in the ab initio calculations do not result in qualitative
deviations.

Figure 3(b) shows the �-L intervalley scattering rates of
the ab initio calculations and the photoluminescence experi-
ments. According to Ref. [43], the experimental �-L rates are
obtained by

��-L = �tot − ��-�, (19)

where ��-� is taken as a constant estimated by fitting the
data in Fig. 3(a). To make a consistent comparison with
experiment, the ab initio �-L intervalley scattering rates in
Fig. 3(b) are also calculated by Eq. (19) instead of being di-
rectly calculated from the scattering matrix. It is found that the
experimental intervalley rates are about 6 ps−1 in the energy
range from 340 and 400 meV, while the ab initio 1ph and
(1 + 2)ph give around 2 and 3 ps−1, respectively. Although
the additional 2ph calculation decreases the deviation from
experiment results, an underestimation of a factor of two is
still observed. This discrepancy could be attributed to the
need for an off-shell extent larger than 25 meV in the 2ph
calculation, owing to the larger intermediate-state scattering
rates [appearing in the denominator of Eq. (7) and Eq. (15)] at
energies above 300 meV. However, at present a larger off-shell
extent is computationally infeasible.

V. DISCUSSION

The semianalytical model treats the full scattering term
for � intravalley 2ph scattering but does not qualitatively
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alter transport and noise properties. In particular, the marked
discrepancy with the experimental PSD remains. We now
examine alternate possible origins for the discrepancy.

A. Underestimated �-L intervalley scattering rates

A comparison of our computed cryogenic rates with those
measured from photoluminescence experiments indicates that
the � rates agree to within 25%, but the �-L intervalley rates
are underestimated by around a factor of two. Despite this
underestimate, prior work suggests that this effect is unlikely
to reconcile the PSD discrepancy. Specifically, Monte Carlo
simulations of electron transport in GaAs with a three-valley
�-L-X model have found that increased intervalley scattering
suppresses the PSD feature (see Fig. 7 of Ref. [44]). There-
fore, although the possibility cannot be definitively excluded
at present, including intervalley scattering processes beyond
those treated already is not expected to yield improved agree-
ment with the PSD.

B. Contribution from simultaneous
electron-two-phonon interaction

According to Ref. [24], another possibility is that the con-
tribution of electron-two-phonon (e-2ph) interaction [45] is
not considered. Here we make a qualitative estimation of
the magnitude of this effect based on the Fröhlich mecha-
nism for electron scattering. According to Ref. [45], the e-ph
Hamiltonian up to the second order can be written as

He-ph =
∑
Rκ

uRκ · ∇V (r − Rκ )

+ 1

2

∑
κ

uRκ · ∇∇V (r − Rκ ) · uRκ , (20)

where κ is the index of atom in a unit cell, R is
the unit cell position, uRκ is the corresponding phonon-
induced displacement, and V is the electron potential. In the
long-wavelength limit, the electric potential for the Fröhlich
interaction can be obtained by assigning a point dipole to each
atom [30]. For acoustic phonons with the same displacements
for atoms in the same unit cell, the net dipole moment will
be zero and no scattering will occur. Similarly, the electric
potential for e-2ph interaction can be obtained by assigning
a point quadrupole to each atom. Following the same logic,
the net quadrupole moment will be zero if the quadrupoles
are induced by two acoustic phonons or two optical phonons,
which means that the simultaneous e-2ph interaction based on
the Fröhlich interaction can only be induced by an acoustic
and optical phonon.

We estimate the order of magnitude of such simultaneous
e-2ph interaction involving an acoustic and optical phonon.
A full derivation can be found in the Appendix B. The final
estimated scattering rates in the � valley is

�(e−2ph)(k) ∼ 8π2

�BZh̄

k3

εk

⎛
⎝ eZ

�ε∞

√
h̄

2MωA

√
h̄

2MωO

⎞
⎠

2

× (NA + 1)(NO + 1), (21)

where ωO and ωA are frequencies of optical and acous-
tic phonons at the edge of Brillouin zone, NO and NA are
the corresponding phonon occupations, �BZ is the Brillouin
zone volume, M is the average atom mass in a unit cell,
ε∞ is the high-frequency permittivity, and Z is the Born
effective charge of a single atom. For a typical k such that
εk = 200 meV, the e-2ph scattering rates at 300 K can be
estimated as 10−2.5 ps−1, which is about 3.5 orders of magni-
tude smaller than the ab initio or semianalytical 2ph scattering
rates obtained in this work. Thus, we conclude that the effect
of the simultaneous e-2ph interaction based on the Fröh-
lich interaction can be neglected. A related effect involving
strong electron-phonon interactions, polaron formation, can
also likely be excluded as this effect has no dependence on
electric field strength.

C. Space-charge domains and experimental nonidealities

Finally, we consider an alternate mechanism for the PSD
peak which does not rely solely on intervalley scattering. The
earliest studies of negative differential resistance in GaAs
arose from the observation of current instabilities at electric
fields approaching a threshold value of around 3 kV cm−1

[46]. These instabilities were attributed to the formation of
space-charge domains associated with the negative differ-
ential resistance. The typical Boltzmann formalism used to
describe charge transport from first principles does not include
the contribution of such effects because it neglects real-space
gradients and space-charge effects which are essential to the
instability.

Space-charge instabilities manifest as current fluctuations,
and therefore the nucleation of space-charge domains could
explain the PSD peak around the threshold field. However,
an inconsistency with this explanation is that the increase in
PSD begins at a field below the threshold value for NDR as in
Fig. 2. This inconsistency can be accounted for by considering
the possibility that the local electric field exceeds the threshold
even though the average field does not. Such a possibility
was investigated theoretically by McCumber and Chynoweth
[47], who found that the dipole layer generation process was
sensitive to inhomogeneities such as doping fluctuations that
would arise from purely random Poisson statistics. The dipole
layer was found to propagate even if the average uniform
field was less than the nominal threshold field based on the
velocity-field characteristics.

These considerations support the explanation of the PSD
peak in terms of instabilities associated with the local electric
field exceeding the threshold field for negative differential
resistance space-charge domain formation. This finding has
implications for the use of transport studies to determine
intervalley scattering strength. In particular, Monte Carlo
methods have been used for decades for this purpose in GaAs
by interpreting transport and noise measurements, and in
those simulations, noise was assumed to arise from solely
intervalley scattering. Our result indicates that this approach
to studying intervalley scattering is not valid because the
physical origin of noise differs from that assumed in the
model. Instead, photoluminescence methods which directly
provide an electronic lifetime as in Ref. [43] should be
employed.
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FIG. 4. (a) � valley band structure in the ab initio DFT calculation and the semianalytical Kane model below 360 meV. For the DFT
band structure the [100], [110], [111] directions are plotted. The DFT band structure exhibits only slight anisotropy. (b) Electronic DOS
versus energy in the ab initio calculation and the semianalytical model. The ab initio DOS has large variations due to the finite grid density.
(c) Absolute values of on-shell e-ph scattering matrix elements |g(k, q)| for LO phonons versus q in the range of q < 0.2G of the �-� scattering
process in the ab initio calculation along with the fitted relation [Eq. (18)] used in the semianalytical model.

VI. CONCLUSIONS

We have introduced a semianalytical model of 1ph and 2ph
� intravalley scattering for electrons in GaAs which allows for
prior approximations in the treatment of the 2ph term for �

scattering to be lifted while incurring errors of a few percent.
We find that the calculated transport and noise properties are
qualitatively unchanged from the ab initio values. The com-
puted drift velocity agrees with experiment to within 15%,
while agreement with measured cryogenic scattering rates are
within 25% for the � valley scattering rates and a factor of
two for �-L intervalley scattering. However, the qualitative
discrepancy for the PSD is not improved with the semiana-
lytical model. Considering the totality of the evidence, our
work suggests that the PSD peak mostly likely arises from
space-charge domain formation rather than partition noise
associated with intervalley scattering, as has been assumed
for many decades. This result implies that care must be taken
when interpreting transport and electrical noise measurements
in terms of intervalley scattering. Our findings highlight the
insights into charge transport that can be obtained from a
first-principles treatment of high-field charge transport and
noise properties.
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APPENDIX A: COMPARISON OF BAND STRUCTURE
AND E-PH MATRIX ELEMENTS

Here we compare the band structure and e-ph matrix el-
ements in � valley for the ab initio calculation and the
semianalytical model. In Fig. 4(a), we show the � valley
band structure below 360 meV obtained in the ab initio DFT
calculation and the Kane model [35] used in the semianalyt-
ical model. The Kane model uses an experimental effective
mass of 0.067me and a nonparabolicity of 0.64 eV−1. The
figure shows that the anisotropy of the DFT band structure
is negligible below 200 meV, and the maximum anisotropy
remains less than 7% below 360 meV. The Kane model uses

an isotropic experimental effective mass and nonparabolicity,
which results in a slightly different band structure, especially
for small k. The difference between DFT and Kane model
band structure at low energy is because the Kane model
uses the experimental effective mass 0.067me instead of the
ab initio effective mass 0.056me.

In Fig. 4(b), we show the density of states (DOS) obtained
from the ab initio calculation and the semianalytical model.
The two DOS agree in overall trend, but the ab initio DOS
has large variations in energy due to the finite sampling of the
Brillouin zone (fine grid density of 200×200×200). Compar-
ing Figs. 4(b) and 1(a), the variations of the DOS in the ab
initio calculation can account for the variations in scattering
rates.

In Fig. 4(c), we plot the absolute values of ab initio
e-ph scattering matrix elements |gLO(k, q)| for LO phonons
involved in the on-shell �-� scattering versus the phonon
wave-vector norm q in the range of q < 0.2G. We see good
agreement for q < 0.05G and slightly larger variations for
large q > 0.05G. In order to quantify the errors, we compute
the relative error by

�err =
∑

(k,q)∈on-shell

∣∣|gLO(k, q)| − ∣∣gfit
LO(q)

∣∣∣∣∑
(k,q)∈on-shell |gLO(k, q)| . (A1)

We finally find �err < 3%.

APPENDIX B: DERIVATION OF SIMULTANEOUS
ELECTRON-TWO-PHONON SCATTERING RATES

We provide a derivation for estimation of the simultaneous
e-2ph scattering rates given in Sec. V B. Consider a crystal
in which each primitive unit cell has atoms with charge Zκ

at position τκ , R is the lattice vector, and G is the reciprocal
lattice constant. The lattice displacement uRκ is decomposed
using normal modes:

uRκ =
∑
qν

uqκνeiq·R, (B1)

where

uqκν =
√

h̄

2NMκωqν

eqκν (b†
qν + b−qν ), (B2)
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N is the number of unit cells in a supercell, Mκ is the mass of
atom κ , ν is the phonon mode, eqκν is the phonon polarization
unit vector, and b†

qν and bqν are creation and annihilation
operators of phonon qν, respectively.

The Coulomb potential energy of an electron generated by
point charge Z at position Rκ = R + τκ is

V (r − R − τκ ) = − Zκe2

4πε∞|r − R − τκ | . (B3)

It will be convenient to rewrite V (r − R − τκ ) in reciprocal
space by Fourier transformation:

V (r − R − τκ ) = − 1

N�
Zκ

∑
q

∑
G

V (q + G)ei(q+G)·(r−R−τκ ),

(B4)
where � is the primitive unit cell volume, and

V (q + G) = e2

ε∞(q + G)2
. (B5)

Following Ref. [45], the electron-two-phonon Hamiltonian is

H (r) = 1

2

∑
Rκ

uRκ · ∇∇V (r − R − τκ ) · uRκ . (B6)

From Eq. (B4), we can obtain

∇∇V (r − R − τκ ) = Zκ (k + G)(k + G)

×
∑

k

∑
G

V (k + G)ei(k+G)·(r−R−τκ ),

(B7)

where the product of the vectors in this and following equa-
tions is defined as the outer product. By using Eq. (B1) and
Eq. (B7), we have

H (r) = 1

2�

∑
Rκ

ZκuRκ · ∇∇V (r − R − τκ ) · uRκ

= 1

N�

∑
Rκ

∑
qν<q′ν ′

Zκ

∑
k

∑
G

uqκν · (k + G)uq′κν ′ · (k + G)V (k + G)ei(q+q′ )·Rei(k+G)·(r−R−τκ )

= 1

N�

∑
Gκ

∑
qν<q′ν ′

Zκuqκν · (q + q′ + G)uq′κν ′ · (q + q′ + G)V (q + q′ + G)ei(q+q′+G)·(r−τκ )

= e2

�ε∞

∑
Gκ

∑
qν<q′ν ′

Zκuqκν · (q + q′ + G)(q + q′ + G)

|(q + q′ + G)|2 · uq′κν ′ei(q+q′+G)·(r−τκ )

∼ e2

�ε∞

∑
Gκ

∑
qν<q′ν ′

Zκuqκνuq′κν ′ei(q+q′+G)·(r−τκ )(b†
qν + b−qν )(b†

q′ν ′ + b−q′ν ′ )

∼ e2

�ε∞

∑
qν<q′ν ′

∑
κ

Zκuqκνuq′κν ′ei(q+q′ )·(r−τκ )(b†
qν + b−qν )(b†

q′ν ′ + b−q′ν ′ ), (B8)

where uqκν = √
h̄/2Mκωq is the amplitude of the phonon dis-

placement, ∑
R

ei(q+q′−k−G)·R = Nδk,q+q′ (B9)

was used in the third line,

(q + q′ + G)(q + q′ + G)

|(q + q′ + G)|2 ∼ 1 (B10)

was used in the fourth line, and the contributions from G �= 0
are neglected from

∑
G in the last line.

We observe that the quadrupole moment
∑

κ Zκuqκνuq′κν ′

appears in the third line of Eq. (B8). For a polar material like
GaAs that each unit cell has two atoms with opposite charge
and similar mass, we can perform a Z2 symmetry analysis for
the quadrupole moment. Since Zκ has odd symmetry for the
two atoms in a unit cell, the phonon modes must be one of odd
symmetry (optical mode) and one of even symmetry (acoustic
mode) to avoid cancellation.

The electron-phonon scattering matrix elements can be
written as

g(2)
νν ′ (q, p) ∼ Zκe2

�ε∞
uqκνupκν ′ , (B11)

where the phase factor is neglected.
Similarly to Eq. (11) and Eq. (13), we can derive the

e-2ph collision matrix element for a specific phonon mode and
subprocess type as

�k′,k ∼ 2π

h̄

1

�2
BZ

δ(εk′ − εk − �E )

×
∫

q+p=k′−k
NqNp|g(2)(q, p)|2d3 p. (B12)

In the following, we assume that phonon q is optical and
phonon p is acoustic. We additionally assume that optical
phonons have no dispersion and acoustic phonons have linear
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dispersion with velocity s such that:

ωq = ωOωp ∼ sp ∼ p

kmax
ωA, (B13)

where ωO and ωA are phonon frequencies at the edge of the
Brillouin zone for optical and acoustic phonons, respectively.
Since the frequencies of transverse and longitudinal phonons
at the edge of the Brillouin zone are of the same magnitude
here we neglect their difference. Using the phonon dispersion
relation assumed above, we then have

Nq ∼ N (ωO)Np ∼ N (ωA)
N (ωp)

N (ωA)
∼ N (ωA)

ωA

ωp
∼ N (ωA)

kmax

p
,

(B14)

where in the second line we assume the temperature is not too
low in the sense of β h̄ω � 1 so that N (ω) = 1

eβ h̄ω−1 ∼ 1
β h̄ω

,
and kmax is the wave vector the edge of the Brillouin zone.

Similarly, we have

g(2)(q, p) ∼ g(2)(kmax, kmax)

√
kmax

p
, (B15)

where

g(2)(kmax, kmax) = eZ

�ε

√
h̄

2MωA

√
h̄

2MωO
. (B16)

We can then calculate �k′,k from Eq. (B12) as

�k′,k ∼ 2π

h̄

1

�2
BZ

|g(2)(kmax, kmax)|2δ(εk′ − εk − �E )Aα1 (ωO)Aα2 (ωA)
∫ (

kmax

p

)2

d3 p

∼ 2π

h̄

1

�2
BZ

|g(2)(kmax, kmax)|2δ(εk′ − εk − �E )Aα1 (ωO)Aα2 (ωA)�BZ

= 2π

h̄

1

�BZ
|g(2)(kmax, kmax)|2δ(εk′ − εk − �E )Aα1 (ωO)Aα2 (ωA), (B17)

where �BZ is the Brillouin zone volume, α1,2 indicates whether a phonon is absorbed or emitted, and

Aα (ω) = N (ω) + δα,+1. (B18)

The scattering rate can be calculated by integrating �k′,k over k′:

�k =
∫

�k′,kd3k′ ∼
∫

2π

h̄

1

�BZ
|g(2)(kmax, kmax)|2δ(εk′ − εk − �E )Aα1 (ωO)Aα2 (ωA)4πk′2 dk′

= 8π2

h̄�BZ
|g(2)(kmax, kmax)|2Aα1 (ωO)Aα2 (ωA)k′2 dk′

dεk′
∼ 8π2

h̄�BZ
|g(2)(kmax, kmax)|2Aα1 (ωO)Aα2 (ωA)

k3

εk

∼ 8π2

h̄

(
k

kmax

)3

|g(2)(kmax, kmax)|2Aα1 (ωO)Aα2 (ωA)
1

εk
, (B19)

where k′ ∼ k is assumed since the phonon energy (� 35 meV)
is low compared with the energy range we are considering
(∼200 meV).

Considering GaAs at temperature ∼300 K and an energy
of about 200 meV (corresponding to k

kmax
∼ 0.05), we have:

Aα1 (ωO) ∼ Aα2 (ωA) ∼ 1(
k

kmax

)3

∼ 0.053 ∼ 10−4

εk ∼ 0.2eV ∼ 10−2 Ry

|g(2)(kmax, kmax)|2 ∼ 10−4 Ry. (B20)

Thus,

�k ∼ 8π2

h̄

(
k

kmax

)3

|g(2)(kmax, kmax)|2Aα1 (ωO)Aα2 (ωA)
1

εk

∼ 10−8Ry ∼ 10−4 ps−1. (B21)

Considering 3×3 phonon polarizations and 2×2 subpro-
cess types, the total scattering rate is about �

(total)
k ∼ 36�k ∼

10−2.5 ps−1, which is about 3.5 magnitudes lower than the 2ph
rates studied in this work.
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