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The study of entanglement in the symmetry sectors of a theory has recently attracted a lot of atten-
tion since it provides better understanding of some aspects of quantum many-body systems. In this paper,
we extend this analysis to the case of non-Hermitian models, in which the reduced density matrix ρA may
be nonpositive definite and the entanglement entropy negative or even complex. Here we examine in detail the
symmetry-resolved entanglement in the ground state of the non-Hermitian Su-Schrieffer-Heeger chain at the
critical point, a model that preserves particle number and whose scaling limit is a bc-ghost nonunitary conformal
field theory (CFT). By combining bosonization techniques in the field theory and exact lattice numerical
calculations, we analytically derive the charged moments of ρA and |ρA|. From them, we can understand the
origin of the nonpositiveness of ρA and naturally define a positive-definite reduced density matrix in each charge
sector, which gives a well-defined symmetry-resolved entanglement entropy. As a by-product, we also obtain the
analytical distribution of the critical entanglement spectrum.
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I. INTRODUCTION

The past few years have witnessed a growing inter-
est in non-Hermitian quantum mechanics. This has been
particularly motivated by the appearance of non-Hermitian
Hamiltonians in the effective description of a wide variety
of phenomena [1,2], as, for example, in the analysis of the
PT symmetry [3–5], in the study of optical effects [6,7], or in
the investigation of the nonequilibrium properties of open and
dissipative systems [8–10] as well as measurement-induced
transitions [11–15], to cite some of them.

A crucial feature of quantum systems is entanglement,
not only because it is the essential ingredient for perform-
ing classically impossible tasks but also because it has been
found to be a key to understand many physical phenomena
in the quantum realm [16–19]. The main quantity to analyze
entanglement in extended quantum systems is entanglement
entropy, which quantifies the amount of entanglement in bi-
partite settings. One of its most important properties is its
behavior with the size of the subsystem considered [20], as
it can be used as an order parameter to detect quantum phase
transitions and extract valuable information about the critical
point. In fact, in one-dimensional Hermitian systems with
zero mass gap, the ground-state entanglement entropy is pro-
portional to the central charge of the unitary conformal field
theory (CFT) that describes the low-energy physics [21–23].

However, entanglement has been much less studied in non-
Hermitian systems. The majority of the works focus on the
analysis of the ground-state entanglement in critical systems
described by nonunitary CFTs [24–31]. The main difficulty
when studying entanglement in non-Hermitian models is the
lack of a proper entanglement measure: The reduced density
matrix can be nonpositive definite and, consequently, the en-
tanglement entropy can actually be negative or even complex.
For this reason, several non-Hermitian extensions of it have
been proposed in the literature, which include both changing

explicitly the definition of the entanglement entropy as in
Ref. [31], or implicitly by introducing a modified version of
the partial trace as in Ref. [28]. A common feature of all these
approaches is that they are sensitive to criticality and provide
information about the nonunitary CFT under study.

Recent experiments with cold atoms and ion traps have
shown that some properties of many-body quantum sys-
tems can be understood by analyzing the entanglement in
the symmetry sectors of the theory [32–36]. The basic tool
to investigate how entanglement distributes among symme-
try sectors is the symmetry-resolved entanglement entropy
[37–39], which provides a finer measure of the entanglement
content in extended systems that is not accessible from the
total entanglement entropy. This fact has currently triggered
an intense research activity on the interplay between sym-
metries and entanglement in very different systems, including
spin chains [38–55], integrable [56–64], and conformal field
theories [38,39,65–80], and involving diverse contexts such as
disorder [81–84], nonequilibrium dynamics [85–94], topolog-
ical phases [33,95–99], or holography [100–103].

In this paper, we extend the notion of symmetry resolu-
tion of entanglement to the non-Hermitian case and explore
if it sheds light on how to better grasp entanglement in
this kind of systems. To this end, we examine in detail the
symmetry resolution of entanglement in the ground state of
the non-Hermitian version of the Su-Schrieffer-Heeger (SSH)
model at criticality. This is the simplest one-dimensional
quadratic fermionic chain that breaks Hermiticity with a
global U (1) symmetry associated to particle number conser-
vation and presents nontrivial features, such as topological
phases [104–108]. The critical point is described by the bc-
ghost CFT with central charge c = −2 [30]. Some properties
of the critical ground-state entanglement of this model have
been already examined in Refs. [27,30,31]; in particular, it has
been found that both the usual entanglement entropy and the
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FIG. 1. Schematic representation of the non-Hermitian SSH
model described by the Hamiltonian of Eq. (1). We denote by v and
w the hopping amplitudes between the rows A and B of the ladder.
The chemical potential is imaginary, iu for the sites in row A and −iu
for those in row B, breaking the Hermiticity of the model. We also
consider a subsystem A of length �.

generalized version introduced in Ref. [31] are proportional
to the central charge at leading order in the subsystem size
and therefore they are negative. Away from criticality, the
focus of attention has been the analysis of the entanglement
spectrum [30,109], that is, the spectrum of the reduced density
matrix, since it offers useful insights on the topology of the
model [110].

In Hermitian systems, the entropy of each symmetry sector
is usually calculated via the charged moments of the reduced
density matrix [38]. Inspired by the generalized entanglement
entropy defined in Ref. [31], we consider here the charged
moments of the absolute value of the reduced density matrix,
which we call absolute charged moments. We compute them
in the ground state of the bc-ghost theory. The analysis of the
resulting expression allows us to trace back the origin of the
negativeness of the reduced density matrix and, consequently,
of the (generalized) Rényi entanglement entropies in the mod-
els described by this CFT: The sign of the reduced density
matrix eigenvalues depends on the parity of the charge sector
to which they belong. With this observation, we can define
a positive semidefinite density matrix for each charge sector
and, from it, a positive symmetry-resolved Rényi entangle-
ment entropy.

Another remarkable consequence of the charge-dependent
signature of the entanglement spectrum in the bc-ghost theory
is that the expression of the standard Rényi entanglement
entropies depends on the parity of the Rényi index n. As a by-
product of this result, we analytically obtain the distribution
of the entanglement spectrum in this CFT, which differs from
the unitary case [111], and we check it against the exact nu-
merical entanglement spectrum of the critical non-Hermitian
SSH model.

The paper is organized as follows. In Sec. II, we in-
troduce the non-Hermitian SSH chain and we diagonalize
it. In Sec. III, we review the necessary quantities to gen-
eralize the concept of symmetry-resolved entanglement to
non-Hermitian systems. In Sec. IV, we consider the bc-ghost
CFT and we obtain the absolute charged moments of the
ground-state reduced density matrix. With them, in Sec. V,
we calculate the symmetry-resolved entanglement entropy
in this system. In Sec. VI we apply the results of the pre-
vious section to compute the standard Rényi entanglement
entropies, from which, in Sec. VII, we determine the distri-
bution of the entanglement spectrum. We end in Sec. VIII
with the conclusions. We also include an Appendix with

the details of the derivation of the entanglement spectrum
distribution.

II. PT SYMMETRIC NON-HERMITIAN SSH MODEL

The non-Hermitian SSH model with PT symmetry is a
one-dimensional free fermionic chain with dimerized nearest-
neighbor couplings, which can be represented as the ladder
of Fig. 1. We label as A and B the upper and lower rows,
respectively; therefore, the sites of the ladder form a lat-
tice � = {A, B}×{1, . . . , L}. We denote by c†

σ j and cσ j the
creation and annihilation fermionic operators on the site
(σ, j) ∈ � and by nσ j = c†

σ jcσ j the number operator on that
site. Then the Hamiltonian of the non-Hermitian SSH model
reads [104,105]

H =
L∑

j=1

(−wc†
A jcB j − vc†

A jcB j+1 + H.c.)

+ iu
L∑

j=1

(nA j − nB j ), (1)

where w and v are positive real hopping parameters, while iu,
with u > 0, is a purely imaginary chemical potential, which
introduces the non-Hermiticity in the model. We assume peri-
odic boundary conditions cσL+1 ≡ cσ1.

Observe that the parity transformation acts on the Hamil-
tonian as j �→ L + 1 − j and exchanging the rows of the
ladder, A ↔ B. Time inversion is implemented as the complex
conjugation of the parameters. The model has therefore PT
symmetry. Moreover, this Hamiltonian preserves the particle
number,

Q =
L∑

j=1

(nA j + nB j ), (2)

i.e., [H, Q] = 0. This will be the conserved charge with re-
spect to which we resolve the entanglement in the ground state
of the model.

As mentioned in the Introduction, one of the most rel-
evant applications of non-Hermitian quantum Hamiltonians
nowadays is to measurement-induced phenomena. It has been
shown that the unitary time evolution of a quantum state that
is subject to a protocol of repeated measurements can be
effectively described by a non-Hermitian Hamiltonian in the
low-rate regime of measurements. In particular, in Ref. [112],
the unitary evolution is generated by the Hermitian SSH
model (u = 0 in Eq. (1)) while the effective dynamics that
takes into account the effect of the measurements is given
by Eq. (1) with u �= 0; in this case, the measurement pro-
tocol yields the staggered imaginary chemical potential of
Eq. (1) that breaks Hermiticity. An experimental realization
of a protocol of repeated measurements has been recently
reported in Ref. [113] using a superconducting quantum
processor.

The Hamiltonian (1) can be diagonalized as follows. After
a discrete Fourier transform,

c̃σk = 1√
L

L∑
j=1

eik jcσ j, k = 2πm

L
, (3)
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with m = 0, . . . , L − 1, the Hamiltonian (1) can be cast in the
form

H =
∑

k

c̃†
kHk c̃k, (4)

where c̃†
k = (c̃†

Ak, c̃†
Bk ) and

Hk =
(

iu ηk

η∗
k −iu

)
, ηk = −w − ve−ik . (5)

If u �= 0, then Hk is not Hermitian but it is still diagonalizable
for almost every k, with an exception that will be discussed
later. In fact, there exists an invertible matrix M(k),

M(k) =
(

ηk

|ηk | cos(ξk ) − ηk

|ηk | sin(ξk )

sin(ξk ) cos(ξk )

)
, (6)

where 2ξk = tan−1[|ηk|/(iu)], such that

Hk = M(k)E (k)M(k)−1, (7)

with E (k) = diag(ε+,k, ε−,k ) and eigenvalues

ε±,k = ±
√

|ηk|2 − u2. (8)

Therefore, introducing the new creation and annihilation op-
erators f†

k = ( f †
+,k, f †

−,k ) and dk = (d+,k, d−,k )t ,

f†
k = c̃†

kM(k) dk = M(k)−1c̃k, (9)

the Hamiltonian (1) is diagonal in terms of them,

H =
∑

k

f†
k E (k)dk . (10)

The model presents three different phases [106]. If w − v

> u, then the system is in a PT -unbroken phase, with real
spectrum and trivial topological properties. If −u < w − v <

u, then the system is in a PT -broken phase, with purely
imaginary spectrum. If w − v < −u, then the system is in a
PT -unbroken phase, with real spectrum and nontrivial topo-
logical properties. These phases are separated by two critical
lines defined by w − v = ±u. Along these lines, the spec-
trum is ε±,k = ±√

2vw(1 + cos k). In this case, the two bands
approach 0 as k → π , and the eigenspaces tend to become
collinear so that Hπ is not diagonalizable: k = π is commonly
referred to as an exceptional point.

The eigenstates of the Hamiltonian (1) can be constructed
in the following way. Let us introduce the set of labels of
the single-particle eigenstates of H , 
 = {+,−}×{k}. The
vacuum state |0〉 is defined as the one annihilated by dp for
every p ∈ 
 and, therefore, H |0〉 = 0. The right eigenstates
of H are then obtained by applying sequences of f †

p operators
to the vacuum. More precisely, let B be a subset of 
, and
then |BR〉 = ∏

p∈B f †
p |0〉 is a right eigenstate of H with eigen-

value
∑

p∈B εp. Analogously, left eigenstates are constructed
by applying sequences of dp operators to 〈0| on the right, thus
〈BL| = 〈0| ∏p∈B dp is a left eigenstate of H with eigenvalue∑

p∈B εp.
If the spectrum of H is real, then the eigenvalues can be

ordered and the notion of ground state is well defined: It is the
many-body state in which all the single-particle states with
negative energy are occupied. We call |ψR〉 the right ground

state and 〈ψL| the left ground state, which are explicitly

〈ψL| = 〈0|
∏

k

dk,− |ψR〉 =
∏

k

f †
k,− |0〉 . (11)

In a non-Hermitian setting, the natural way to define the ex-
pectation value of an observable O in the ground state of H is
〈ψL|O |ψR〉, see Ref. [114]. It follows then that the ground-
state density matrix is ρ = |ψR〉 〈ψL|. Observe that if the
system is at temperature 1/β, then its state may be described
by the Gibbs ensemble ρβ = e−βH/Tr(e−βH ), which in the
zero-temperature limit leads to ρ = |ψR〉 〈ψL|. As shown in
detail in Refs. [24,29], this fact facilitates the study in field
theories of the entanglement entropies of ρ since it allows,
within the path integral formalism, to straightforwardly iden-
tify the moments of the reduced density matrix with partition
functions on a replicated Riemann surface or, alternatively,
with correlators of twist fields.

One may consider other density matrices, such as
|ψR〉 〈ψR|, which is Hermitian, and yields a positive def-
inite reduced density matrix and entanglement entropies.
Some entanglement properties of this density matrix in the
gapped regions of the Hamiltonian (1) have been examined
in Ref. [109]. However, as observed in Ref. [29], the Rényi
entanglement entropies are harder to compute in field theory
since the connection with partition functions on a replicated
surface is not as direct as in the case |ψR〉 〈ψL|; it involves a
time-reversal operation that is in general a difficult problem.
Since we are interested in study the universal properties of the
symmetry-resolved ground-state entanglement of the critical
non-Hermitian SSH chain and the corresponding CFT, in the
rest of the paper we take as ground state the density matrix
ρ = |ψR〉 〈ψL|. We refer the reader to Ref. [29] for a thorough
discussion on the possible choices of the total density matrix
in non-Hermitian systems.

A key object in our analysis of the entanglement properties
of the ground state is the two-point correlation matrix C with
entries

Cj, j′ = 〈ψL| c†
j c j′ |ψR〉 , (12)

where here c j = (cA j, cB j ). Using Eqs. (3) and (9) to express
the operators c†

j and c j in terms of f†
k and dk , one finds

Cj j′ = 1

L

∑
k

e−ik( j− j′ )G(k), (13)

where

G(k) = 1

2

⎛
⎝ 1 − cos(2ξk ) −

√
η∗

k
ηk

sin(2ξk )

−
√

ηk

η∗
k

sin(2ξk ) 1 + cos(2ξk )

⎞
⎠. (14)

Note that, due to the dimerization of the hopping amplitudes
v and w, the correlation matrix C presents a 2×2 block
structure. In the thermodynamic limit L → ∞, C is a block
Toeplitz matrix generated by the symbol G.

At the critical points w − v = ±u, G(k) has a singularity
at the mode k = π and all its entries diverge as 1/|k − π |.
Hence, the correlation matrix C is not well defined. Following
Refs. [30,31], a way to deal with this divergence is to perform
in Eq. (13) a small shift in the moments k �→ k + κ/L, with

205153-3



FOSSATI, ARES, AND CALABRESE PHYSICAL REVIEW B 107, 205153 (2023)

κ � 1. The numerical data presented in this work has been
obtained taking κ = 10−7.

As we have pointed out in the Introduction, in this paper
we are interested in studying the symmetry resolution of the
ground-state entanglement with respect to the U (1) symmetry
associated with particle number conservation at criticality.
Therefore, in the following, we will restrict our analysis to
the critical line u = w − v, which separates the PT -unbroken
and topologically trivial phase from the PT -broken phase.

III. SYMMETRY-RESOLVED ENTANGLEMENT

In this section, we introduce all the quantities that we
will use to investigate the symmetry-resolved entanglement
in the ground state of the critical non-Hermitian SSH model
previously discussed.

We consider a spatial bipartition of the system A ∪ Ā with
A a subset of contiguous sites of length � as the one depicted in
Fig. 1. Then the total Hilbert space factorizes into HA ⊗ HĀ.
As we have seen in the previous section, the ground-state den-
sity matrix is ρ = |ψR〉 〈ψL|. The reduced density matrix that
describes the state of subsystem A is obtained by taking the
partial trace to the complementary subsystem Ā, ρA = TrĀ(ρ).

In a non-Hermitian system, we have to take into account
that ρ is positive semidefinite, ρ � 0, but is generally not
Hermitian, ρ† �= ρ [114]. This fact implies that ρA may not
be positive semidefinite. Thus the eigenvalues of ρA can be
negative or even complex. In any case, Tr(ρ) = Tr(ρA) = 1.

The entanglement entropy of the bipartition A ∪ Ā is
defined as

S(ρA) = − Tr(ρA log ρA). (15)

For Hermitian systems, S(ρA) measures the degree of entan-
glement between subsystems A and Ā. In particular, if the
low-energy physics of the model is described by a (unitary)
CFT, then the entanglement entropy behaves in the thermody-
namic limit as

S(ρA) = c

3
log � + O(�0), (16)

where c is the central charge of the corresponding CFT
[21–23].

A related family of quantities are the Rényi entanglement
entropies

Sn(ρA) = 1

1 − n
log Tr

(
ρn

A

)
, (17)

from which is possible to recover the entanglement entropy
of Eq. (15) through the limit S = limn→1 Sn. The scaling be-
havior of the Rényi entanglement entropies for critical infinite
Hermitian systems is

Sn(ρA) = c

6

n + 1

n
log � + O(�0). (18)

On the other hand, in non-Hermitian systems, since ρA is
not positive semidefinite, the entanglement entropy (15) can
be complex and ambiguous, depending on which branch of
the logarithm we take. In the recent Ref. [31] a new quantity
dubbed generalized entanglement entropy is introduced,

Sg(ρA) = − Tr(ρA log |ρA|). (19)

Observe that the only difference with the usual entropy (15)
is that it takes the logarithm of |ρA| instead of ρA: If ρA is
diagonalized by the matrix R such that ρA = R−1diag(λ j )R,
then |ρA| := R−1diag(|λ j |)R. This guarantees that Sg is real
when the eigenvalues of ρA are either negative or complex in
conjugate pairs. Note that when ρA � 0, it reduces to the stan-
dard entanglement entropy, Sg(ρA) = S(ρA). Although Sg(ρA)
can be negative, and its interpretation as an entanglement
measure is not clear, it satisfies that Sg(ρA) �= 0 only if the
subsystems A and Ā are entangled. Moreover, analogously to
the standard entanglement entropy, it may be useful to extract
information about the (nonunitary) CFTs that describe critical
non-Hermitian systems. In fact, in Ref. [31], it has been ver-
ified for a set of critical non-Hermitian models, including the
non-Hermitian SSH, that Sg(ρA) scales as the right-hand side
of Eq. (16), even when the central charge of the associated
CFT is negative. In Ref. [115], the generalized entanglement
entropy (19) has been employed to study the entanglement
of typical eigenstates of non-Hermitian systems and get a
non-Hermitian analog of the Page curve.

Together with the generalized entanglement entropy, one
can introduce the generalized Renyi entropies,

Sg
n(ρA) = 1

1 − n
log Tr(ρA|ρA|n−1), (20)

that satisfy Sg = limn→1 Sg
n.

Using the generalized entanglement entropy (19), we
can extend the notion of symmetry-resolved entanglement
[37–39] to non-Hermitian systems. Let us assume that the
system has an internal U (1) symmetry generated by a charge
operator Q, which in our case will be the particle number
operator of Eq. (2). This operator can be decomposed as the
sum of the charge in A and Ā, Q = QA + QĀ. If the left and
the right ground states |ψR〉 and 〈ψL| are eigenstates of Q, as
occurs in the non-Hermitian SSH model, then ρ = |ψR〉 〈ψL|
commutes with Q. This implies that ρA acts separately on each
eigenspace of QA. Let us denote by �q the projector onto the
eigenspace of QA with eigenvalue q ∈ Z, also called charge
sector. We then can construct a density matrix ρA,q for each
charge sector,

ρA,q = �qρA�q

p(q)
, (21)

where p(q) = Tr(�qρA) normalizes it to Tr(ρA,q ) = 1, such
that

ρA =
⊕

q

p(q)ρA,q. (22)

In Hermitian systems, p(q) is interpreted as the probability of
finding the subsystem A in the sector with charge q. However,
now ρA is not positive definite, so p(q) may be negative, as
well as larger than 1. Hence the interpretation of p(q) as a
probability is lost in the non-Hermitian case.

Applying Eq. (22), the generalized entanglement entropy
(19) admits the following decomposition in the charge sectors
of QA:

Sg(ρA) = −
∑

q

p(q) log |p(q)| +
∑

q

p(q)Sg(ρA,q). (23)
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In the Hermitian case, the first term on the right-hand side is
commonly referred to as the number entropy while the second
is called configurational entropy [32,45,46].

The symmetry-resolved Rényi entanglement entropies
Sg(ρA,q) can be calculated using the Fourier representation
of the projector �q. In fact, introducing the absolute charged
moments of ρA,

Zg
n (α) = Tr(ρA|ρA|n−1eiαQA ), (24)

and their Fourier transform,

Zg
n (q) := Tr(�qρA|ρA|n−1) =

∫ π

−π

dα

2π
e−iαqZg

n (α), (25)

it is possible to express all the ingredients of Eq. (23) in the
form p(q) = Zg

1 (q) and

Sg
n(ρA,q) = 1

1 − n
log

Zg
n (q)

Zg
1 (q)|Zg

1 (q)|n−1
. (26)

When ρA is positive definite, Zg
n (α) is equal to the usual

charged moments of ρA,

Zn(α) = Tr
(
ρn

AeiαQA
)
. (27)

In quadratic fermionic chains, the moments Zn(α), Zg
n (α)

as well the whole reduced density matrix ρA are accessible
through the two-point correlation matrix of Eq. (12) restricted
to the subsystem A. This result was initially derived for Her-
mitian systems [116] but it also holds in the non-Hermitian
case [109]. Since the Hamiltonian is quadratic, the ground-
state reduced density matrix satisfies the Wick theorem and
therefore it is in general a Gaussian operator of the form
ρA = e−HE

/N , with HE = ∑
i j c†

i HE
i jc j . The relation with the

two-point correlation matrix is set by

HE = log
[(

I − Ct
A

)/
Ct

A

]
(28)

and N−1 = det(I − CA), where CA is the restriction of C to
subsystem A and the superscript t indicates transposition.
Denoting by ν j the eigenvalues of CA, it follows that

log Zg
n (α) =

2�∑
j=1

log[ν j |ν j |n−1eiα + (1 − ν j )|1 − ν j |n−1]

(29)

and

Sg(ρA) = −
2�∑
j=1

[ν j log |ν j | + (1 − ν j ) log |1 − ν j |]. (30)

The standard quantities Zn(α) and S(ρA) follow analogue for-
mulas without the absolute values. In particular,

log Zn(α) =
2�∑
j=1

log
[
νn

j eiα + (1 − ν j )
n
]
. (31)

IV. ABSOLUTE CHARGED MOMENTS:
THE bc-GHOST CFT

In this section, we obtain the absolute charged moments
Zg

n (α), defined in Eq. (24), in the ground state of the non-
Hermitian SSH model along the critical line u = w − v. To

this end, we study them both numerically using Eq. (29) and
analytically by considering the nonunitary CFT that describes
the model at criticality.

On the critical line u = w − v, the low-energy physics of
the non-Hermitian SSH model of Eq. (1) is captured by the
bc-ghost CFT with central charge c = −2, see Ref. [30]. The
action of this theory reads [117,118]

Sbc =
∫

d2z(ψb∂̄ψc + ψ̄b∂ψ̄c), (32)

where ψb(z) and ψc(z) are anticommuting holomorphic pri-
mary fields with conformal weights hb = 1 and hc = 0,
respectively, while ψ̄b(z̄) and ψ̄c(z̄) denote their antiholomor-
phic counterparts.

The bc-ghost CFT has a global U (1) symmetry associated
to ghost number conservation, which on the lattice corre-
sponds to the particle number of Eq. (2). The holomorphic
Noether current is

j(z) = − : ψb(z)ψc(z) : . (33)

To determine the universal terms of the different moments
of ρA introduced in Sec. III, we consider the orbifold theory
CFT⊗n/Zn, obtained by taking n copies on the complex plane
of the CFT under study and then quotient the resulting tensor
product by the Zn symmetry related to the the cyclic permu-
tation of the replicas.

Before proceeding, it is important to remark that we are
assuming that the CFT is defined in the complex plane, which
corresponds to taking an infinite system, i.e., L → ∞, while
the numerical calculations are done for a finite chain with
periodic boundary conditions. In CFT, a finite periodic system
is obtained by conformally mapping the complex plane to a
cylinder. Since the moments of ρA are given by correlators of
primary fields, the effect of this map in the expression for the
moments of ρA is simply to replace the subsystem length � by
the chord length

�e = 2L

π
sin

(
π�

L

)
. (34)

The factor 2 is due to the number of sites that in the full SSH
chain and in the subsystem A is 2L and 2�, respectively.

In unitary CFTs, the ground-state neutral moments Zn(0) =
Tr(ρn

A) are given by the two-point correlation function of the
orbifold [22,23,119]

Zn(0) = 〈0| τn(0)τ̃n(�) |0〉 . (35)

Here |0〉 denotes the conformal vacuum, i.e., the state of the
CFT invariant under global conformal transformations, and
the fields τn, τ̃n are called twist and antitwist fields [120,121].
The winding around the point where τn (τ̃n) is inserted takes
a field Ok living in the copy k of the orbifold into the copy
k + 1 (k − 1), for example,

Ok (e2π iz)τn(0) = τn(0)Ok+1(z). (36)

The twist and antitwist fields are spinless primaries with con-
formal dimension

hτ
n = c

24

(
n − 1

n

)
(37)
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and therefore Eq. (35) directly gives Eq. (18) for the ground-
state Rényi entanglement entropy of Hermitian systems at the
critical point.

In nonunitary CFTs, the previous discussion is more subtle
because the physical ground state is not the conformal vacuum
|0〉. In general, the physical ground state corresponds to the
lowest eigenstate of the Virasoro operator L0. In unitary CFTs,
such an eigenstate is the conformal vacuum since all the non-
trivial primary fields have positive conformal dimension. On
the contrary, in nonunitary CFTs, we can find primary fields
with negative dimension. This implies that the ground state is
the state |φ〉 = φ(0) |0〉 associated to the primary φ with the
lowest dimension hφ � 0. In Refs. [24,25], it was proposed
that in such a case the ground-state neutral moments are given
by the orbifold two-point correlations,

Zn(0) = 〈0| τφ
n (0)τ̃ φ

n (�) |0〉
〈0| φ(0)φ(�) |0〉n , (38)

involving the composite field τφ
n ≡ τn · φ, which is a spinless

primary field of the orbifold with dimension

hτφ

n = hτ
n + hφ

n
. (39)

Therefore, Eq. (38) implies the following behavior for Zn(0)
in terms of the subsystem size �,

Zn(0) ∼ �− ceff
6 (n− 1

n ), (40)

where ceff = c − 24hφ . In the case of the bc-ghost theory, the
lowest dimension field φ is ψc, which has dimension hc = 0,
and then one may conclude that, in this case, ceff = c = −2.

However, the numerical analysis of the moments Zn(0) in
the ground state of the non-Hermitian SSH model reveals that
they do not behave as expected from Eq. (40) for any integer
n but as

log Zn(0) =
⎧⎨
⎩

1
3

(
n − 1

n

)
log � + O(�0) n odd,

(
n
3 + 1

6n

)
log � + O(�0) n even.

(41)

In fact, in the upper panel of Fig. 2, we numerically study
log Zn(0) as a function of the subsystem length, taking � =
L/2 and varying the total system size for several values of
n. The points are the exact numerical value of log Zn(0) for
the non-Hermitian SSH model obtained by diagonalizing the
correlation matrix (12) and applying Eq. (31). The continuous
lines correspond to Eq. (41).

On the other hand, as the lower panel of Fig. 2 shows,
we find that the absolute moments Zg

n (0) = Tr(ρA|ρA|n−1) do
follow the behavior of Eq. (40) for any n,

log Zg
n (0) = 1

3

(
n − 1

n

)
log � + O(�0), (42)

as also has been numerically checked in Ref. [31]. In Fig. 2,
the points are the exact numerical value of log Zg

n (0) taking as
subsystem length � = L/2 and varying L for several Rényi
indices n. They have been calculated using the two-point
correlation matrix Eq. (12) through Eq. (29). The continuous
lines correspond to Eq. (42).

FIG. 2. Standard moments Zn(0) (upper panel) and absolute mo-
ments Zg

n (0) (lower panel) of ρA as a function of the subsystem size �

and different values of the exponent n. We plot the ratio with the cor-
responding value for � = 1500, taken as an arbitrary reference point.
The symbols are their exact numerical value for the non-Hermitian
SSH chain of length L = �/2 and parameters w = 3/2, v = 1, and
u = 1/2, computed through the two-point correlation matrix (13)
using Eq. (31) for Zn(0) and Eq. (29) for Zg

n (0). The solid lines
correspond to the analytic expressions (41) in the upper panel and
(42) in the lower one, on replacing � by the chord length �e.

The previous analysis leads to conclude that, in the case of
the bc-ghost theory, the ground-state absolute moments of ρA

are given by the orbifold correlation function,

Zg
n (0) = 〈0| τn(0)τ̃n(�) |0〉 . (43)

In Sec. VI, we will see that the alternating behavior in n of the
standard moments in Eq. (41) originates from the property that
the eigenvalues of ρA have constant sign in each charge sector
and this sign depends on the parity of the charge. Combining
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this property and Eq. (43), we will determine the twist field
correlation function that gives the correct result for n even in
Eq. (41).

The absolute charged moments Zg
n (α) of Eq. (24) can also

be calculated using the orbifold CFT⊗n/Zn. In the orbifold,
the operator eiαQA has the effect of adding a phase eiα when
a charged particle moves along a closed path that crossed
all the copies. This phase shift can be incorporated in the
correlators by inserting a local U (1) operator Vα (z) that gives
rise to a term eiα when going around it. Similarly to unitary
CFTs with a U (1) symmetry, see Ref. [38], we can construct
the composite twist field τn,α ≡ τn · Vα such that, when wind-
ing around the point where it is inserted, a field Ok living
in the copy k is mapped to the copy k + 1 with an extra
phase eiα/n,

Ok (e2π iz)τn,α (0) = eiα/nτn,α (0)Ok+1(z). (44)

If Vα is a spinless primary field with conformal dimension hV
α ,

then the composite twist field τn,α is also a spinless primary of
dimension [38],

hn,α = hτ
n + hV

α

n
. (45)

Thus we propose that, in the bc-ghost theory, the absolute
charged moments are given by the orbifold two-point corre-
lation function,

Zg
n (α) = 〈0| τn,α (0)τ̃n,−α (�) |0〉 . (46)

Observe that this expression simplifies to Eq. (43) when
α = 0.

The field Vα can be determined by applying the fact
that the bc-ghost model is equivalent via bosonization to a
Gaussian theory coupled to a background charge [117]. The
bosonization prescription works as follows. Let us consider
a free bosonic field theory and we introduce a background
charge Q,

SQ = 1

2π

∫
d2z

(
∂ϕ∂̄ϕ + iQ

4
ϕ

)
. (47)

The scalar field ϕ(z) is compactified on a circle of radius
one, i.e., ϕ ∼ ϕ + 2πm with m ∈ Z. The inclusion of a
background charge in the action (47) modifies the central
charge of the theory to c = 1 − 3Q2 as well as the con-
formal dimension of the vertex operators Vα (z) = ei

√
2αϕ(z),

which is now hV
α = α2 − αQ/

√
2. On the other hand, in

presence of a background charge, ∂ϕ is not a primary. If
we take Q = 1, then this theory has central charge c = −2,
and the fields ψb and ψc are identified with the vertex
operators

ψb(z) ∼ V− 1√
2
(z), ψc(z) ∼ V 1√

2
(z), (48)

and the U (1) current

j(z) = −∂ϕ(z) (49)

is equivalent to the ghost current of Eq. (33).
Therefore, using these bosonization relations, the charge

operator in the interval A is

QA = − 1

2π

∫
A

dx∂xϕ = 1

2π
[ϕ(0) − ϕ(�)], (50)

and the local U (1) operator Vα can be identified as the vertex
operator,

Vα (z) = ei α
2π

ϕ(z), (51)

with conformal dimension

hV
α = |α|

4π

( |α|
2π

− 1

)
. (52)

Notice that such dimension is different from the standard one
in the Hermitian CFT which is proportional to α2.

Finally, applying Eq. (52) in Eq. (46), we conclude that
the ground-state absolute charged moments of the non-
Hermitian SSH model along the critical line are of the
form

Zg
n (α) = cn,αeiα〈QA〉�

1
3 (n− 1

n )− |α|
πn ( |α|

2π
−1). (53)

Observe that in this expression we have included a phase
eiα〈QA〉, which depends on the average charge 〈QA〉 in the
subsystem A. This term is not captured by the previous CFT
calculations since it depends on the particular microscopi-
cal model under consideration. In the critical non-Hermitian
SSH chain, the ground state is half-filled, see Eq. (11), and
〈QA〉 = �.

We check numerically the result (53) in the following way.
Let us define

�g := log
Zg

n (α)

Zg
n (0)

− iα〈QA〉. (54)

According to Eq. (71), we expect

�g ∼ bg
n,α log � (55)

for large �, with

bg
n,α = −|α|

πn

( |α|
2π

− 1

)
. (56)

The quantity �g can be exactly computed numerically for
the ground state of the critical non-Hermitian SSH model
using Eq. (29). Hence to verify that the coefficient bg

n,α has
the form of Eq. (56), we fit the curve bg

n,α log �e to a set of
numerical values of �g corresponding to different subsystem
sizes � = L/2 with α and n fixed. In Fig. 3, we plot the values
obtained in the fit for the coefficient bg

n,α in terms of α and
compare it with the CFT prediction (56). To perform the fits,
we consider three different sets of subsystem lengths, � ∈
[100, 500], � ∈ [600, 1000], and � ∈ [1100, 1500] in steps of
100. For α large enough, there is an excellent agreement
between the CFT prediction and the result of the fit. This
agreement is worse as α decreases, while at α = 0 there is
again a very good matching. Repeating the fitting procedure
with each set of points, we find that the larger � the better the
agreement with the analytic result. This behavior suggests that
the convergence to Eq. (53) for large � is not uniform in α.

Unfortunately, the nonuniversal factor cn,α cannot be deter-
mined from the CFT or applying the usual lattice techniques
employed in the case of the Hermitian SSH model, i.e., corner
transfer matrix, block Toeplitz determinants. Nevertheless, the
numerical analysis of cn,α reveals that the dominant term is
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FIG. 3. Numerical check of the CFT prediction (53) for the ab-
solute charged moments Zg

n (α) when n = 1 (upper panel) and n = 2
(lower panel). As explained in the main text, the points are the value
of the coefficient bg

n,α in Eq. (55) obtained by computing numerically
�g in the non-Hermitian SSH model for several lengths � with
L = 2� at fixed α and then fit Eq. (55) to them. The different symbols
correspond to the three sets of subsystem lengths taken to perform the
fits: � ∈ [100, 500], � ∈ [600, 1000], and � ∈ [1100, 1500], in steps
of 100. The parameters of the Hamiltonian are w = 3/2, v = 1, and
u = 1/2. The solid line is the CFT prediction (56) for bg

n,α .

due to the momentum shift κ , which has a simple form

cn,α ∼
{
κ1−n α = 0
κ−n α �= 0

. (57)

V. SYMMETRY-RESOLVED ENTANGLEMENT ENTROPY
OF THE bc-GHOST CFT

In this section, we use the results obtained in Eq. (53)
for the absolute charged moments Zg

n (α) to calculate the
symmetry-resolved entanglement entropy Sg

n(ρA,q).
To this end, according to Eq. (26), we need to determine the

Fourier transform of Zg
n (α). If we insert the CFT prediction

of Eq. (53) for the absolute charged moments in Eq. (25),
dropping the unknown nonuniversal term cn,α , then we obtain

Zg
n (q) = (−1)�qZn(0)

√
nπ�

1
n

2 log �
e− nπ2�q2

2 log �

× Re Erf

(
log � + iπn�q√

2n log �

)
, (58)

with Zn(0) = �1/3(n−1/n) and �q = q − 〈QA〉.
For large log �, the error function has the asymptotic form

Erf(x) ∼ 1 − e−x2
/(

√
πx) and therefore Eq. (58) can be ex-

panded as

Zg
n (q) ∼ Zn(0)

⎡
⎣(−1)�q

√
nπ�

1
n

2 log �
e− nπ2�q2

2 log �

− n log �

(log �)2 + (nπ�q)2

⎤
⎦. (59)

Observe the leading term in � is a Gaussian with an alternating
sign (−1)�q, while the subleading one has Lorentzian form. It
is important to not neglect this term, because it is a correc-
tion only for fixed |�q| � log �, while it becomes leading in
the regime |�q| � log �. To understand this crossover, let us
focus on the case n = 1 which gives the normalization term
p(q) = Zg

1 (q) in the charge sector decomposition (22) of ρA,

p(q) ∼ (−1)�q

√
π�

2 log(�)
e− π2�q2

2 log � − log �

(log �)2 + (πq)2
. (60)

Since p(q) = Tr(�qρA), this quantity must satisfy∑
q p(q) = 1. To get this, we have actually to take into

account the two terms of Eq. (60). One can check that

∑
q∈Z

p(q) =
√

π�

2 log �
ϑ4(e−π2/(2 log �) ) − �2 + 1

�2 − 1
, (61)

where the first term comes from the Gaussian in Eq. (60) and
the second one from the Lorentzian. Expanding for large �,
which is the only regime where the above equation makes
sense (using ϑ4(e−x ) ∼ 2

√
πe−π2/(4x)/

√
x for x ∼ 0), we find

that Eq. (61) tends to one in the large � limit, but the Gaussian
alone would provide 2 and −1 comes from the Lorentzian. It is
then clear that both terms should be always taken into account.

Another interesting property of Eq. (59) is that, for large
�, the sign of Zg

n (q) is (−1)�q. In particular, in the case
n = 1, this means that the sum of the eigenvalues of ρA in
each charge sector of the bc-ghost theory has sign (−1)�q (as
long as |�q| � log �). The presence of this alternating sign
can be understood by the relation

ρA = (−1)QA−〈QA〉|ρA|. (62)

This identity can be derived in the lattice for any subsystem
of arbitrary length �. In fact, along the critical line u = w −
v, half of the eigenvalues ν j of two-point correlation matrix
CA of Eq. (12) are ν j < 0 and the other half ν j > 1. Given
the relation (28) between the two-point correlation matrix and
single-particle entanglement Hamiltonian HE , the eigenvalues

205153-8



SYMMETRY-RESOLVED ENTANGLEMENT IN CRITICAL … PHYSICAL REVIEW B 107, 205153 (2023)

ε j of the latter are complex

ε j = log

∣∣∣∣1 − ν j

ν j

∣∣∣∣ + iπ. (63)

We can construct the eigenvalues of ρA from those of HE .
If we label them with the occupation numbers relative to the
single particle entanglement Hamiltonian, then

λ{n j} = N−1e− ∑
j ε j n j . (64)

Since N = ∏2�
j=1(1 − ν j ) and half of the eigenvalues ν j are

ν j < 0 and the other half ν j > 1, then N = (−1)�|N |. Com-
bining this with Eq. (63) and identifying

∑
j n j = q and

〈QA〉 = �, we obtain

λ{n j} = (−1)q−〈QA〉|λ{n j}|. (65)

from which Eq. (62) follows.
This result indicates that the nonpositiveness of ρA is due

to the global sign (−1)q−〈QA〉 on each charge sector q. Observe
that in the decomposition of Eq. (22), this factor is absorbed
in the normalization p(q) and therefore the density matrices
ρA,q are positive definite. This implies that the generalized
entanglement entropy and the standard entanglement entropy
of ρA,q are equal, Sg

n(ρA,q) = Sn(ρA,q ).
Plugging Eq. (59) into (26), we obtain that the symmetry-

resolved Rényi entanglement entropy in each charge sector
behaves when log � � 1 as

Sg
n(ρA,q ) = n + 1

6n
log � − 1

2
log log � + O(�0), (66)

and, in the limit n → 1,

Sg(ρA,q ) = 1
3 log � − 1

2 log log � + O(�0). (67)

Note that, contrary to the generalized entanglement entropy
of the full reduced density matrix ρA, the symmetry-resolved
entanglement entropies are positive. Moreover, the expansions
of Eqs. (66) and (67) coincide with the symmetry-resolved en-
tanglement entropies of the 1 + 1 free massless Dirac fermion
[38,56]. An important property of Eqs. (66) and (67) is that
they do not depend on the charge q: At leading order in �,
the symmetry-resolved entropy is equally distributed among
all the charge sectors. This feature is known as entanglement
equipartition [39]. As usually happens in Hermitian systems,
one should further analyze the subleading O(�0) terms of
Eq. (66) in order to find corrections that explicitly depend on
q. Unfortunately, we lack the proper tools to determine the
first term that breaks the equipartition.

An interesting consistency test consists in recovering the
total generalized entanglement entropy plugging in the de-
composition (23) in charge sectors the result of Eq. (59)
for Zg

n (q). Unfortunately, performing the sum analytically is
complicated due to the the alternating sign (−1)�q and to the
interplay of the Gaussian and Lorentzian terms. In any case,
we have checked numerically that the sum (23) behaves as

Sg(ρA) ∼ − 2
3 log �, (68)

which is the correct result for the generalized entanglement
entropy (obtained also by plugging Zg

n (0) of Eq. (42) in
Eq. (20) and taking the limit n → 1+).

VI. CHARGED MOMENTS AND STANDARD
RÉNYI ENTROPIES

In the previous section, we obtained that along the criti-
cal line u = w − v, the matrices ρA and |ρA| are related by
Eq. (62). Here we apply this identity to understand the depen-
dence Eq. (41) on the parity of n ∈ Z of the standard moments
of ρA that we numerically observed in Fig. 2.

We proceed as follows. First, in the definition (27) of the
standard charged moments Zn(α), we split ρn

A = ρAρn−1
A . Then

we use Eq. (62) in the ρn−1
A factor to relate Zn(α) to the

absolute charged moments Zg
n (α) [cf. Eq. (24)], obtaining

Zn(α) = e−iπ (n−1)〈QA〉Zg
n (α + π (n − 1)). (69)

This equality implies that

Zn(α) =
{

Zg
n (α) n odd,

(−1)〈QA〉Zg
n (α + π ) n even.

(70)

Employing the analytic expression obtained in Eq. (53) for
Zg

n (α), we find that, for large subsystem lengths �,

Zn(α) =
{

cn,αeiα〈QA〉�
1
3 (n− 1

n )− |α|
πn ( |α|

2π
−1) n odd,

cn,α+π eiα〈QA〉�
n
3 + 1

6n − α2

2nπ2 n even.
(71)

Note that, for α = 0, this result leads to the expressions con-
jectured in Eq. (41) for the neutral moments of ρA. In Eq. (46),
we write the absolute charged moments of ρA in the bc-ghost
CFT as a correlation function of the composite twist fields
τn,α and τ̃n,−α . In the light of Eq. (71), the standard charged
moments are also given for n odd by the same correlator, while
for n even we have to perform a shift in the phase α �→ α + π ,

Zn(α) =
{

〈0| τn,α (0)τ̃n,−α (�) |0〉 n odd,

〈0| τn,α+π (0)τ̃n,−α−π (�) |0〉 n even.
(72)

It is interesting to comment that the sensitivity of Zn(α)
to the parity of the exponent n resembles the result for the
entanglement negativity in Hermitian systems. The negativ-
ity is an entanglement measure for mixed states that can
be obtained from the moments of the partial transpose of a
given reduced density matrix [122]. As for our density matrix
ρA, the partial transpose in Hermitian systems is in general
nonpositive definite and, in unitary CFTs, its moments also
display a dependence on the parity of n, similarly to Eq. (71),
although with a different power law in � [122,123].

The results of Eq. (71) for the standard charged moments
can be checked with exact numerical calculations in the criti-
cal non-Hermitian SSH model by following the same strategy
as for the absolute charged moments presented in Sec. IV. In
fact, we consider the quantity

� := log
Zn(α)

Zn(0)
− iα〈QA〉, (73)

which according to Eq. (71), should behave as

� ∼ bn,α log � (74)

with

bn,α =
{−|α|

πn

( |α|
2π

− 1
)

n odd,

− α2

2πn2 n even.
(75)

205153-9



FOSSATI, ARES, AND CALABRESE PHYSICAL REVIEW B 107, 205153 (2023)

FIG. 4. Numerical check of the analytic expression of Eq. (71)
for the standard charged moments Zn(α), with n = 1 (upper panel)
and n = 2 (lower panel). As explained in the main text, the symbols
are the results obtained for the coefficient bn,α in a fit of Eq. (73)
to a set of values of � computed numerically in the non-Hermitian
SSH model and corresponding to different subsystem lengths
(� ∈ [100, 500], � ∈ [600, 1000], and � ∈ [1100, 1500] in steps of
100) for a given α. The parameters of the Hamiltonian are w = 3/2,
v = 1, u = 1/2. The solid curves are the analytic prediction of
Eq. (75) for bn,α and large subsystem size.

We can exactly calculate � in the non-Hermitian SSH model
using Eq. (31). We therefore obtain numerically its value
for several subsystem lengths, with α and n fixed, and we
fit the function bn,α log �e to them. In Fig. 4, we show the
outcome for the coefficient bn,α in the fit as a function of α

and two particular values of n, n = 1 (upper panel) and n = 2
(lower panel). The different symbols in the plot correspond
to different sets of subsystem lengths chosen to perform the
fit. The continuous black curves are the analytic prediction
of Eq. (75) for large �. Observe that, as we have found in
Eq. (69), there is relative phase shift α ↔ α + π between n
even and odd, consequence of the form (62) of the reduced
density matrix. Similarly to the absolute charged moments, cf.

Fig. 3, the figure shows that the convergence to the asymptotic
expression is not uniform in α and worsens when approaching
the cusp.

The oscillation in n of the moments of ρA implies that
the standard Rényi entanglement entropies also present such
behavior. From Eq. (71), we straightforwardly get

Sn(ρA) =
{− 1

3

(
1 + 1

n

)
log � + O(�0) n odd,

1
1−n

(
n
3 + 1

6n

)
log � + O(�0) n even.

(76)

Finally, note that if we apply in the definition (15) of the
standard von Neumann entanglement entropy the relation (62)
between ρA and |ρA|, and we take into account that 〈QA〉 =
Tr(ρAQA), then we find that it coincides in this case with the
generalized one,

S(ρA) = Sg(ρA) ∼ −2

3
log �. (77)

This asymptotic behavior can be also extracted by taking the
limit n → 1+ in the expression Eq. (76) of the standard Rényi
entropies for n odd. This result agrees with the one obtained
in Refs. [27,30] for this quantity. However, to our knowledge,
the alternating behavior in n given by Eq. (76) of the standard
Rényi entropies has not been reported in previous works.

VII. ENTANGLEMENT SPECTRUM

Using the results obtained in the previous section for the
moments of the reduced density matrix ρA, we can investigate
the distribution P(λ) of the its eigenvalues, that is, of the
entanglement spectrum. This is defined as

P(λ) =
∑

j

δ(λ − λ j ), (78)

where λ j are the eigenvalues of ρA. In Ref. [111], the dis-
tribution P(λ) was determined for unitary CFTs from the
knowledge of the moments Zn(0). That approach was ex-
tended to analyze the negativity spectrum, i.e., the eigenvalues
of the partial transpose of a density matrix, in unitary CFTs
[124] and free fermions [125]. As we already pointed out,
the moments of ρA in our non-Hermitian system present the
same qualitative dependence on the parity of the exponent n
as the moments of the partial transpose in unitary CFTs. We
can therefore easily apply here the techniques of Ref. [124]
to obtain P(λ) in the ground state of the non-Hermitian SSH
model at criticality, which is the entanglement spectrum of the
bc-ghost CFT.

The main idea of Ref. [111], and also Ref. [124], is that the
distribution P(λ) is univocally determined by its moments

Zn(0) =
∑

j

λn
j =

∫
dλP(λ)λn. (79)

In fact, the Stieltjes transform f (s) of λP(λ),

f (s) = 1

π

∞∑
n=1

Zn(0)s−n = 1

π

∫
dλ

λP(λ)

s − λ
, (80)

is an analytic function in the complex plane except along
the support of λP(λ) on the real line, where it has a branch
cut. The discontinuity of λP(λ) at the branch cut gives P(λ)
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through the formula [126]

P(λ) = 1

λ
lim

ε→0+
f (λ − iε). (81)

This result implies that there is a one-to-one correspondence
between the Stieltjes transform f (s) and the distribution P(λ).
Therefore, given that we know the form of the moments
Zn(α), the strategy is to compute the function f (s) as the Lau-
rent series of Eq. (80) and then determine P(λ) by applying
Eq. (81).

Before proceeding, it is important two emphasize two
points. When checking numerically the analytic expressions
that we obtain in the following, it is crucial to take into
account the shift κ in the momenta that we have to perform to
regularize the two-point correlation matrix (13) of the lattice
system. We recall that this shift enters in the expression (71)
of the moments Zn(0) through the nonuniversal constant cn,α ,
whose dependence on κ was determined in Eq. (57). The
second relevant aspect is to multiply the expressions (71)
of the moments Zn(0) by a global factor g1−n, both for n
even and odd, that accounts for a possible global degener-
acy of the entanglement spectrum in the non-Hermitian SSH
model, as it is explained in detailed in Ref. [127] for unitary
CFTs.

Including those two extra ingredients, in the Appendix, we
show in detail the calculation of the Stieljes transform f (s),
whose final expression reads

f (s) = gκ

2π

∞∑
k=0

(− log �)k

3kk!

[
Lik

(
λM

s

)
− Lik

(
−λM

s

)]

+ g

π

∞∑
k=0

1

k!

(
log �

12

)k

Lik

(
λ2

M

s2

)
, (82)

where Lik (z) stands for the polylogarithm function and

λM = �
1
3

gκ
(83)

is the largest eigenvalue of ρA for large subsystem size �. In
fact, the limit n → ∞ of the standard moments Zn(0) gives
the largest eigenvalue λM of ρA such that limn→∞ Zn(0)1/n

= λM . If we take n → ∞ in Eq. (71), then we obtain that in
our case λM is precisely (83). Note that this limit does not
depend on the parity on n of the Rényi entanglement entropy
in Eq. (71) and, therefore, it is well defined.

If we plug now Eq. (82) in the inversion formula (81),
then we can obtain the distribution P(λ). This requires us
to apply some properties of the polylogarithm Lik (z). The
reader can find a thorough description of this calculation in
the Appendix. The final expression for P(λ) is

P(λ) = g
1 + κ

2
δ(λ − λM ) + g

1 − κ

2
δ(λ + λM )

+ g
�(λM − |λ|)

2λ
√

log(λM/|λ|)

{
−κ

√
log �

3
J1(2ξ�(λ))

+ sgn(λ)

√
log �

6
I1(

√
2ξ�(λ))

}
, (84)

where Jν (z) and Iν (z) are the Bessel and modified Bessel
functions of the first kind and

ξ�(λ) =
√

log(�) log(λM/|λ|)
3

. (85)

The entanglement spectrum distribution (84) presents some
remarkable properties. It is reminiscent of the negativity
spectrum of two intervals [124] rather than the one-interval
entanglement spectrum [111] of unitary CFTs. Its support is
the interval [−λM, λM]. The delta peaks at λ = ±λM indicate
that there is a finite contribution from these two eigenvalues to
the (generalized) entanglement entropies. As the momentum
shift κ → 0, the contribution of the function J1 vanishes and
P(λ) becomes an even function in λ. Observe that the constant
g is still undetermined, we will fix it by comparing with the
numerical data of the lattice model.

A nontrivial numerical check of the correctness of Eq. (84)
is to study the tail or number distribution function n�(λ), that
is, the mean number of eigenvalues larger than a given λ,

n�(λ) =
∫ λM

λ

dλ′P(λ′). (86)

Inserting Eq. (84) in this expression, we find for λ > 0

n�(λ) = gκ

2
J0(2ξ�(λ)) + g

2
I0(

√
2ξ�(λ)). (87)

The main feature of this result is that the number distribution
admits a particular form in which the joint dependence on λ

and � is combined through the scaling variable ξ�(λ) such that

n�(λ) = n(ξ�(λ)), (88)

with n(x) a universal function that does not depend on the sub-
system size. A similar property is found in the entanglement
and negativity spectrum of unitary CFTs [111,124].

The structure of Eq. (88) is particularly useful when we
want to make a comparison with the numerical data of the
non-Hermitian SSH model. We can compute numerically the
spectrum of ρA for the non-Hermitian SSH model for a given
subsystem length � and plot, as we do in Fig. 5, the number
of eigenvalues λ j that lie in the interval [λ,∞) in terms of
the scaling variable ξ�(λ) of Eq. (85), taking as λM the highest
eigenvalue of the numerical spectrum and replacing � by the
chord length �e.

If we repeat this procedure for different subsystem lengths,
then the numerical points should converge to the CFT predic-
tion for the number distribution of Eq. (87). In that expression,
the only free term is the global factor g, which is still un-
determined. We numerically find that the spectrum of ρA

for the non-Hermitian SSH model presents a global two-fold
degeneracy. This forces, in particular, that the prefactor of the
delta peaks in λ = ±λM of the distribution Eq. (84) must be
2 when κ → 0. Thus we have to take g = 4. In Fig. 5, the
solid line corresponds to Eq. (87) choosing this value for g. We
obtain a very good agreement up to a certain value of ξ�(λ).
In fact, for ξ� → ∞ (λ → 0), the CFT prediction for n�(λ)
in Eq. (87) diverges since the number of eigenvalues in the
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FIG. 5. Number distribution of the entanglement spectrum n� as
a function of the scaling variable ξ� of Eq. (85). The points have been
obtained numerically as explained in the main text for the critical
non-Hermitian SSH model and correspond to plot parametrically
the number of eigenvalues of ρA in the interval [λ,∞) in terms
of ξ�(λ). In the upper panel, we consider different subsystem sizes
�, truncating the spectrum of the correlation matrix to the t = 20
largest eigenvalues. In the lower panel, we fix the subsystem size to
� = 1500 sites and we change the truncation to analyze its effect on
the numerical results. In both panels, the solid line represents the
CFT prediction for n(ξ ) obtained in Eqs. (87) and (88) with g = 4.
The parameters of the Hamiltonian are w = 3/2, v = 1, u = 1/2.

continuum is infinite. The deviation of the numerical data for
large ξ� is due to the finiteness of the entanglement spectrum
on the lattice and the truncation method used to obtain it
numerically.

The spectrum of ρA for the non-Hermitian SSH model can
be determined numerically by means of the eigenvalues ν j of
the two-point correlation matrix, which is a 2�×2� matrix.
Using Eqs. (28) and (63), the 2� eigenvalues λ j of the reduced
density matrix are given by

λ{n j} =
2l∏

j=1

ν
n j

j (1 − ν j )
1−n j , (89)

where they are labeled by a set {n j} of occupation numbers,
cf. Eq. (65). Since for large � the storage of the 2� eigenvalues
λ{n j} exhausts the memory capabilities, we restricted ourselves

to the eigenvalues with largest absolute value and compute
them with the following approximation. We truncate the spec-
trum of the correlation matrix to the first t eigenvalues ν j that
maximize the distance with respect to 0 and 1 and we compute
λ{n j} according to Eq. (89), with j = 1, . . . , t . The eigenvalues
ν j around 0 or 1 would produce a multiplicative factor that is
near to either 0 or to 1. As long as we focus on the largest
eigenvalues of ρA, like in Fig. 5, the multiplicative factor we
are missing should be close to 1 [111]. In the upper panel of
Fig. 5, we take a fixed truncation t = 20 and consider different
subsystem sizes. In the lower panel, we study the effect of
the truncation for a given subsystem size; as clear from the
plot, the distribution of the largest eigenvalues (ξ� → 0) is not
affected when t is increased.

VIII. CONCLUSIONS

In this work, we have initiated the study of the sym-
metry resolution of entanglement in non-Hermitian systems.
In particular, we have considered the generalization of the
Rényi entanglement entropy based on the modulus |ρA| of the
reduced density matrix ρA recently introduced in Ref. [31],
which circumvents the problems that arise in the standard
entanglement entropy due to the nonpositiviness of ρA. Fol-
lowing an approach analogous to the Hermitian case [38],
we have seen that the symmetry-resolved entanglement en-
tropy can be accessed through the Fourier transform of the
moments of |ρA|, which we have called absolute charged
moments.

We have then focused on the ground state of the bc-ghost
theory with central charge c = −2. This nonunitary CFT is the
scaling limit of the non-Hermitian SSH model at criticality
and has a global U (1) symmetry. From a technical side, the
main advantage of the non-Hermitian SSH model is that it is
a quadratic fermionic chain, a fact that allows us to perform
exact numerical calculations for large subsystem sizes thanks
to Wick theorem. By applying bosonization techniques in the
field theory, and with the support of exact lattice numerical
calculations, we have derived the analytic expression of the
absolute charged moments in the bc-ghost theory. They boil
down to a two-point correlator of composite twist fields that
properly includes the phase shift associated to the inserted
charge.

From the result obtained for the absolute charged moments,
we have found that the sign of the eigenvalues of ρA in the
bc-ghost CFT is determined by the charge sector to which
they belong. This property is also true in the lattice system
for any subsystem size. Hence, since the eigenvalues of each
charge sector have equal sign, we can define a positive-definite
reduced density matrix in each sector and from it a posi-
tive symmetry-resolved entanglement entropy. Interestingly,
we have obtained that the symmetry-resolved entanglement
entropy of the bc-ghost is the same as the one of the massless
Dirac fermion.

We have also analytically determined the standard charged
moments of ρA. They present different expressions when the
Rényi index n is either odd or even, a behavior that stems from
the dependence of the sign of the entanglement spectrum on
the charge sector. This property is inherited by the standard
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Rényi entanglement entropies and resembles the case of the
negativity in unitary CFTs [122]. To our knowledge, this fea-
ture has not been reported in the literature, but it is expected
to occur if the signs of the spectrum of ρA have the same
charge-resolved structure as in our case. We have seen that
the standard charged moments of the bc-ghost theory are also
given by a correlator of composite twist fields with a different
phase shift for n even or odd.

Finally, using the results for the standard moments of ρA,
we have analytically derived the distribution of the entangle-
ment spectrum in the bc-ghost theory, which is different from
that of unitary CFTs [111], although its number distribution
turns out to be also a function of a scaling variable with no
free parameters.

Our work leaves many open questions for future research.
Here we have restricted ourselves to a particular nonuni-
tary CFT. It would be interesting to study how our results
extend to other theories or non-Hermitian systems and, in
particular, to see how universal are the expressions for the
symmetry-resolved entanglement entropy and the entangle-
ment spectrum distribution that we obtain for the bc-ghost
theory with central charge −2. In this respect, it would be
needed a careful analysis using a path integral approach of
the twist field correlators that give the (absolute) charged
moments of ρA. Another relevant line would be to explore
theories in which the spectrum of ρA has other forms, e.g.,
it is complex, and wonder if the symmetry-resolved entropy is
positive-definite as well. Moreover, here we have considered
as ground-state density matrix |ψR〉 〈ψL|, but this is not the
only possible choice; for example |ψR〉 〈ψR|, whose reduced
density matrix is positive definite, is another reasonable al-
ternative. It would be nice to study the symmetry-resolved
entanglement entropies in such state and compare with our
results. Of course, the entanglement entropy is not the only en-
tanglement measure that can be resolved in symmetry sectors,
for example the negativity, which can be employed to study
entanglement in disjoint subsystems [67,74], or the operator
entanglement [36]. One can also consider to carry out a similar
analysis for them.
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APPENDIX: DETAILS OF THE COMPUTATION OF P(λ)

In this Appendix, we discuss in detail how to obtain the en-
tanglement spectrum distribution P(λ) of ρA from its moments
Zn(0) through the Stieljes transform f (s).

In order to lighten the notation, let us rewrite the moments
(71) of ρA in the form

Zn(0) =
{

gκe−bn+b′/n, n odd,

ge−bn+b′/(2n), n even,
(A1)

where

e−b = �1/3

gκ
, eb′ = �1/3. (A2)

As explained in the main text, we have assumed in Eq. (A1)
that the nonuniversal term cn,α is of the form of Eq. (57) and
we have multiplied the expressions both for n even and odd
by a global factor gn−1 to take into account a possible global
degeneracy of the entanglement spectrum.

According to Eq. (80), the moments of ρA are the coef-
ficients of the Laurent series expansion of f (s). Taking int
account the dependence of Zn(0) on the parity of n, we split
the series in the form

f (s) = 1

π

[ ∞∑
n=0

Z2n+1(0)s−(2n+1) +
∞∑

n=1

Z2n(0)s−2n

]
. (A3)

Inserting Eq. (A1) in this expression, and taking the Tay-
lor series of eb′/n and eb′/(2n) in the odd and even terms,
respectively,

f (s) = g

π

[
κ

∞∑
n=0

e−b(2n+1)− b′
2n+1 s−(2n+1) +

∞∑
n=1

e−b2n+ b′
4n s−2n

]
,

(A4)

= g

π

[
κe−b

s

∞∑
k=0

(−b′)k

k!

∞∑
n=0

(e−2b/s2)n

(2n + 1)k

+
∞∑

k=0

1

k!

(
b′

4

)k ∞∑
n=1

(e−2b/s2)n

nk

]
, (A5)

we can then identify the Lerch trascendent φ(z, ν, α) =∑∞
n=0

zn

(n+α)ν in the odd term and the polylogarithm function

Liν (z) = ∑∞
k=1 zk/kν in the even term,

f (s) = g

π

[
κe−b

s

∞∑
k=0

(−b′)k

2kk!
φ(e−2b/s2, k, 1/2)

+
∞∑

k=0

1

k!

(
b′

4

)k

Lik

(
e−2b

s2

)]
. (A6)

Finally, making use of the identity

2−kzφ(z2, k, 1/2) = 1
2 [Lik (z) − Lik (−z)], (A7)

we arrive at Eq. (82)

f (s) = gκ

2π

∞∑
k=0

(−b′)k

k!

[
Lik

(
e−b

s

)
− Lik

(
−e−b

s

)]

+ g

π

∞∑
k=0

1

k!

(
b′

4

)k

Lik

(
e−2b

s2

)
. (A8)

Once the Stieljes transform f (s) is determined, we can
obtain the distribution P(λ) using the inversion formula (81).
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The technical crucial point when applying Eq. (81) is that
the polylogarith function Lik (z) for k � 1 is a multivalued
function with a branch point at z = 1. If we take as branch
cut the real interval [1,∞), then the discontinuity across the
cut is

lim
ε→0+

Im Lik (y ± iε) =
{±π (log y)k−1/
(k) y � 1

0 y < 1
. (A9)

Using this property, we can easily obtain P(λ) with Eqs. (81)
and (A8). To this end, let us consider separately the two terms
of Eq. (A8). We define the function

f >
odd(s) = gκ

2π

∞∑
k=1

(−b′)k

k!
[Lik (e−b/s) − Lik (−e−b/s)],

(A10)

which corresponds to the first term of Eq. (A8) but removing
the mode k = 0. If we apply Eq. (A9), then we find

lim
ε→0+

Im f >
odd(λ − iε)

= gκ�(e−b − λ)

2 log(e−b/|λ|)
∞∑

k=1

1

k!
(k)

(
−b′ log

e−b

|λ|
)k

= −gκ�(e−b − λ)

2 log(e−b/|λ|)

√
b′ log

e−b

|λ| J1

⎛
⎝2

√
b′ log

e−b

|λ|

⎞
⎠,

(A11)

where � is the Heaviside step function and J1 is the Bessel
function of the first kind. Note that for the last equality we
have used that b′ > 0

Analogously, we define

f >
even(s) = g

π

∞∑
k=1

1

k!

(
a

2

)k

Lik

(
e−2b

s2

)
, (A12)

which is the second term of f (s) in Eq. (A8) without the
mode k = 0. If we again apply here Eq. (A9), then we have
to take into account that for small ε, the argument of the
polylogarithm in Eq. (A12) behaves as

e−2b

(λ − iε)2
= e−2b

λ2
+ iε2

e−2b

λ3
+ o(ε2) (A13)

and therefore it approaches the branch cut from above or from
below depending on the sign of λ. It then follows that

lim
ε→0+

Im f >
even(λ − iε)

= sgn(λ)
g�(e−b − |λ|)
2 log(e−b/|λ|)

∞∑
k=1

1

k!
(k)

(
b′

2
log

e−b

|λ|
)k

= g�(e−b−|λ|) sgn(λ)

2 log e−b

|λ|

√
b′

2
log

e−b

|λ| I1

⎛
⎝2

√
b′

2
log

e−b

|λ|

⎞
⎠,

(A14)

where I1 is the modified Bessel function of the first kind and
in the last equality we have used b′ > 0.

We still have to study the modes k = 0 of f (s) in Eq. (A8),

f0(s) = g

π
Im

[
κ

2
Li0

(
e−b

s

)
− κ

2
Li0

(−e−b

s

)

+ Li0

(
e−2b

s2

)]
. (A15)

Taking into account that Li0(z) = z/(1 − z), they can be
rewritten as

f0(s) = g

π

[
κ

2

1

s/e−b − 1
+ κ

2

1

s/e−b + 1
+ 1

s2/e−2b − 1

]
.

(A16)

Applying the Sokhotski-Plemelj formula

lim
ε→0+

1

x ± iε
= ∓iπδ(x) + PV

(
1

x

)
, (A17)

where PV stands for the Cauchy principal value, we get

lim
ε→0+

Im f0(λ − iε) = gλ
1 + κ

2
δ(λ − e−b)

+ gλ
1 − κ

2
δ(λ + e−b). (A18)

Finally, putting Eqs. (A11), (A14), and (A18) together in the
inversion formula (81), we get Eq. (84)

P(λ) = g
1 + κ

2
δ(λ − λM ) + g

1 − κ

2
δ(λ + λM )

+ g
�(λM − |λ|)

2λ
√

log(λM/|λ|) {−κ
√

b′J1(2
√

b′ log(λM/|λ|))

+ sgn(λ)
√

b′/2I1(2
√

b′/2 log(λM/|λ|))} (A19)

where we have used that e−b = λM .
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