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Bose-Einstein condensation in honeycomb dimer magnets and Yb2Si2O7
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An asymmetric Bose-Einstein condensation (BEC) dome was observed in a recent experiment on the quantum
dimer magnet Yb2Si2O7e [G. Hester et al., Phys. Rev. Lett. 123, 027201 (2019)], which is modeled by a
“breathing” honeycomb lattice Heisenberg model with possible anisotropies. We report a remarkable agreement
between key experimental features and predictions from numerical simulations of the magnetic model. Both
critical fields, as well as critical temperatures of the BEC dome, can be accurately captured, as well as the
occurrence of two regimes inside the BEC phase. Furthermore, we investigate the role of anisotropies in
the exchange coupling and the g tensor. While we confirm a previous proposal that anisotropy can induce a
zero-temperature phase transition at magnetic fields smaller than the fully polarizing field strength, we find that
this effect becomes negligible at temperatures above the anisotropy scale. Instead, the two regimes inside the
BEC dome are found to be due to a nonlinear magnetization behavior of the isotropic breathing honeycomb
Heisenberg antiferromagnet. Our analysis is performed by combining the density matrix renormalization group
(DMRG) method with the finite-temperature techniques of minimally entangled typical thermal states (METTS)
and quantum Monte Carlo (QMC).

DOI: 10.1103/PhysRevB.107.205150

I. INTRODUCTION

Quantum magnets exhibit many phenomena, which cur-
rently elude our understanding [1–3]. The combination of
quantum and thermal fluctuations of local magnetic moments
combined with possible geometric frustration can lead to the
emergence of entirely new states of matter. As computational
methods for quantum many body systems have significantly
advanced in recent years [4–6], the bridge between ex-
perimental observations and explanations using theoretical
models can increasingly be built not only on a qualitative, but
also quantitative level.

A particularly interesting phenomenon in quantum mag-
netism is the Bose-Einstein condensation of triplons in
quantum dimer magnets [2,7]. A broad variety of compounds
have to date been found to exhibit this magnetic analogue of
superfluidity in 4He, including BaCuSi2O6 [8–10], TlCuCl3

[11–13], and Ba3Cr2O8 [14–16]. Here the magnetic field acts
as the chemical potential condensing the bosonic triplons,
which are the elementary excitations of the local spin-singlet
dimers. This condensation at a critical value of the magnetic
field Hc1 causes the system to order antiferromagnetically at
low temperatures, before reaching a fully spin-polarized state
beyond a larger critical magnetic field Hc2 . The intervening
antiferromagnetic or BEC phase forms a dome in the tem-
perature vs field phase diagram, the maximum temperature of
this dome ranging from a few hundred milli-Kelvin to around
10 Kelvin depending on the compound. Typical values of Hc1

and Hc2 range from 1 to 100 Tesla.
Conventionally, the BEC dome constitutes a single phase

of matter. But surprisingly, recent experimental results on
the material Yb2Si2O7 [17] discovered two distinct regimes

separated by another field value Hm between the Hc1 and
Hc2 fields inside the BEC dome of this compound. The crit-
ical magnetic fields Hc1 ≈ 0.4T and Hc2 ≈ 1.4T have been
found to be low compared to similar quantum dimer mag-
nets [17]. The two regimes are distinguished by a change
in the field dependence of the magnetization and the related
ultrasound velocity. Moreover, the regime at smaller mag-
netic fields features a sharp anomaly in the specific heat,
which is absent in the larger field regime. The magnetic prop-
erties of this compound can be modeled by a “breathing”
honeycomb antiferromagnet. To explain the peculiar features
observed in experiment, a recent paper has highlighted the
role of anisotropies in both the spin exchange as well as the
g tensor [18]. Here, we extend this analysis to study the full
finite-temperature phase diagram of the model proposed in
Ref. [18]. We establish critical fields and temperatures of the
BEC phase as well as the existence of two regimes inside
the BEC dome signalled by a change in the behavior of the
magnetization process. A particular focus will be on the role
of possible anisotropies at finite temperature.

II. MODEL AND METHODOLOGY

We study a “breathing” Heisenberg antiferromagnetic
with additional anisotropies model previously proposed in
Refs. [17,18], given by

H =
∑

〈i,j〉,α
Jα

ij Sα
i Sα

j − H
∑

i,α

gzαSα
i , (1)

where i, j are lattice sites, 〈i, j〉 denotes the nearest neigh-
bors on a honeycomb lattice and α = x, y, z indicates the
spin directions. A breathing honeycomb lattice is shown
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(a)

(b)

FIG. 1. (a) Phase diagram: Critical temperature Tc (Kelvin) vs
magnetic field H (Tesla). The blue circles are the peak positions of
heat capacity C vs temperature T from the experiment [17], while
red squares are obtained by locating the largest slope points in Sy

AFM

vs T for a Z4_12 system with N = 96 sites. Green upper triangles
(the vertical dashed line inside the dome) indicate the slope changes
in dSz

FM/dH on a Z4_16 honeycomb lattice with N = 128 sites,
related to an analogous shift in the ferromagnetic Bragg peak and the
ultrasound velocity in experiment. The green down triangles are the
peak position of dSz

FM/dH vs H at different temperatures. The red
dashed curve is only a guide to the eye. A finite-size scaling analysis
is also conducted to obtain the crossings, which are revealed by red
stars (for the ground state using DMRG data) and cyan diamonds (for
finite temperatures using METTS data). (b) Geometry of a ZW_L
simulation cylinder with W = 4 and L = 8. W refers to the width (y-
direction size) of the cylinder and L to the length (x-direction size).
The total number of sites of a “ZW_L” system is N = 2 × W × L.
We use periodic boundary condition (PBC) for y direction and open
boundary condition (OBC) for x direction.

in Fig. 1(a). The couplings J1 on blue horizontal bonds
are stronger than couplings J2 on the remaining nearest-
neighbor bonds, J1 > J2. In the limit J2 = 0, the ground
state is a product of local singlets on the dimers. In experi-
ments [17], the coupling constants have been estimated to be
J1 = 0.217(3) meV and J2 = 0.089(1) meV, corresponding
to a ratio of J2/J1 = 0.41003221. Similar to Ref. [18], we
consider a spin anisotropy by setting Jy

i j = (1 + λ)Jx
i j , Jz

i j =
Jx

i j = J1, resp.J2, and λ = 0.03. Such a small λ guarantees
the physics can be mainly characterized by the Heisenberg
model. This spin anisotropy breaks the spin SU(2) rotations
symmetry down to a remaining U(1) symmetry with the Y axis
as a principal axis of rotation. A further anisotropy is intro-
duced by a nonisotropic g tensor. We consider gzy = 0, and a

staggered coupling in X direction is used |gzx| = gzz/500,
gA

zx = −gB
zx for sublattice A and B. This additional anisotropy

further breaks down the U(1) symmetry to a remaining Z2

symmetry for H �= 0. To emphasize how closely the exper-
iments on Yb2Si2O7 are captured by our results, all results
in this paper are reported in experimental units, set by J1 =
0.217(3) meV, J2 = 0.089(1) meV, and gzz = 4.8.

To study the system with Hamiltonian Eq. (1) we use three
numerical methods. For zero-temperature properties we use
the DMRG algorithm [19,20]. For properties at a finite tem-
perature T , we use the minimally entangled typical thermal
states (METTS) approach [6,21–24]. Both these methods are
implemented using the ITensor software (C++ version) [25].

The METTS algorithm samples a set of quantum states
whose average yields controlled finite-temperature results.
Unlike quantum Monte Carlo methods, METTS does not en-
counter sign or complex phase problems that would occur in
our model Eq. (1) from the magnetic field term coupling to
multiple spin components. The METTS algorithm is moti-
vated as follows: The expectation value of an observable O
can be expressed as

〈O〉β = 1

Z Tr[e−βHO]

= 1

Z
∑

i

〈i|e−βH/2Oe−βH/2|i〉 (2)

= 1

Z
∑

i

P(i) 〈φ(i)|O|φ(i)〉, (3)

where

|φ(i)〉 = P(i)−1/2 e−βH/2|i〉 (4)

P(i) = 〈i|e−βH |i〉. (5)

Here Z is the partition function and |i〉 is an orthonormal
basis of classical product states. The states |φ(i)〉 are known
as METTS. To calculate |φ(i)〉, we use matrix product states
(MPS) to evolve the states |i〉 in imaginary time, using a com-
bination of Trotter gates and the TDVP algorithm to perform
the time evolution [23,26]. We also take advantage of the
METTS pure state algorithm in our simulations, constructing
the next METTS from a product state obtained by collapsing
the previous METTS, which guarantees quantum states are
sampled efficiently with the desired distribution. The maxi-
mum bond dimension required to use a MPS to represent the
state increases exponentially in the width of two-dimensional
lattices hence we restrict the width of the honeycomb lattice to
be four in this paper. The typical maximum bond dimension
we set is 500 and the truncation error cutoff is 10−6, which
sets the actual bond dimension used in this paper. Finally, for
studying the isotropic case where λ = 0 and gzx = gxz = 0 we
employ quantum Monte Carlo simulations in the form of the
worm algorithm [27,28].

III. PHASE DIAGRAM

The main result of this paper is a temperature Tc [K] vs
magnetic field H [T] phase diagram shown in Fig. 1. We will
use Hc1 , Hcm , Hc2 to represent the critical magnetic fields in

205150-2



BOSE-EINSTEIN CONDENSATION IN HONEYCOMB DIMER … PHYSICAL REVIEW B 107, 205150 (2023)

the ground state and H1, Hm, H2 at finite temperatures. We
determine the phase boundaries several different ways: (1) We
conduct a finite-size scaling analysis for the antiferromagnetic
(AFM) structure factor Sy

AFM for spin y in the ground state
given by DMRG (red stars, Hc1 and Hcm ) and at finite temper-
atures obtained by METTS (cyan diamonds, H1 and H2). We
use the crossings of rescaled Sy

AFM for different system sizes
to locate the transitions. (2) For different magnetic fields H ,
we locate the temperature T ∗ (red squares) at which Sy

AFM vs
T curves have the largest slope. (3) We compute the derivative
of the ferromagnetic structure factor for the spin z component
with respect to magnetic field, dSz

FM/dH , which is the deriva-
tive of the magnetic Bragg peak intensity (proportional to the
square of net magnetization) with respect to magnetic field in
the experiment, which behaves analogously to the ultrasound
velocity [17]. Magnetic field values Hm where the slope of
the curves changes significantly are shown as green triangles
along the vertical dashed line in Fig. 1. The peak positions H2

in dSz
FM/dH vs H are denoted by green down triangles along

the right boundary of the dome.
The phase diagram given by the heat capacity in the exper-

iment is also shown as blue circles in Fig. 1 as a comparison
to our simulations. All these approaches of obtaining the tran-
sition points will be discussed in more detail in the following
sections.

IV. GROUND-STATE PROPERTIES

We perform DMRG calculations to study the ground-state
physics of the system and verified the results presented in [18].
We investigate the magnetic structure factor,

Sα (q) = 1

N

∑

i,j

〈
Sα

i Sα
j

〉
eiq·(i−j), (6)

where N is the total number of sites and q denotes the
momentum. Results on various system sizes are shown in
Fig. 2. We investigate both the ferromagnetic (FM) and anti-
ferromagnetic (AFM) structure factors, Sα

FM = Sα (q = (0, 0))
and Sα

AFM = Sα (q = M ). When the external magnetic field
is relatively small, H � Hc1 ∼ 0.43 T, the ground state is in
the singlet quantum dimer phase, adiabatically connected to
a product state of singlet dimers. Thus, Sα

FM vanishes but
Sα

AFM retains a finite value. In the middle of the dome, Sy
AFM

increases to its maximum at around H ∼ 0.8 T and then
decreases. In the ordered AFM phase, Sy

AFM is roughly pro-
portional to the lattice size N , indicating a long-range order
has developed. When H � 1.5 T, the ground state is the spin
polarized phase. Sα

AFM vanishes and Sz
FM retains a finite value.

In order to locate the transition magnetic field Hc1 and
Hcm more accurately, we conduct a finite-size scaling analy-
sis. Since a nonzero gzx = 1/500 introduces a tiny staggered
magnetic field in spin x direction, the AFM pattern in the
x spin component is a consequence of the field rather than
a spontaneous symmetry breaking. Therefore to investigate
spontaneous symmetry breaking and phase transitions we fo-
cus only on AFM order in the spin y direction.

When Hc1 < h < Hcm the ground state breaks a Z2 sym-
metry. Thus, we may expect that the magnetic transition
exhibits universal finite-size scaling of Sy

AFM described by the

Z4_8

(a)

(b)

Z4_12
Z4_16
Z4_24

FIG. 2. Ferromagnetic and antiferromagnetic structure factors
SFM, SAFMvs magnetic field H for different spin σ = x, y, z com-
ponents. Different line types represent the results for different
lattice sizes.

2D Ising critical exponents β = 1/8 and ν = 1. The rescaled
AFM structure factor Sy

AFM/L1−2β/ν is plotted as a function
of magnetic field H in Fig. 3. The two crossing points ap-
pearing in the plot indicate Hc1 ∼ 0.43 T and Hcm ∼ 1.07 T,
which is in agreement with [18]. When Hc1 � H � Hcm , AFM
order appears in both spin x and y, while a long range AFM
order in spin y vanishes and the order in x dominates when
Hcm � H � Hc2 .

V. FINITE TEMPERATURE PROPERTIES

After verifying the ground state phase diagram, we move
to finite temperature properties, which are the main focus of

Z4_8
Z4_12
Z4_16
Z4_24

FIG. 3. Finite-size scaling analysis for antiferromagnetic struc-
ture factor (spin y component) Sy

AFM. β = 1/8, ν = 1 are 2D Ising
critical exponents. The two crossing points in the plot indicate Hc1 ∼
0.43 T and Hcm ∼ 1.07 T.
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FIG. 4. Heat capacity C as a function of temperature T for sev-
eral different magnetic field H on the Z4_12. At H = 0 T, the system
is in the quantum dimer phase and heat capacity displays a broad
Schottky peak at T ∼ 1 K. The system transits to AFM phase when
0.5 T � H � 1.0 T, and a sharp peak is observed. In this region, the
transition temperature Tc increases as magnetic field goes up. When
magnetic field further increases, H ∼ 1.2 − 1.3 T, Tc descends with
H increasing, tracking the right-hand side of the BEC dome. When
H ∼ 1.6 T or higher, the broad peak shifts to higher temperatures in
the polarized phase as expected.

this paper. The heat capacity C = dE/dT [J/K/(mol − Yb)]
vs temperature T [K] for several different magnetic fields is
shown in Fig. 4. The simulation results (solid black curve)
match with the experiment data (blue dots) reasonably well,
especially considering the limited system sizes used in the
METTS calculations. In the absence of magnetic field, spe-
cific heat exhibits a broad maximum at ∼1 K. When 0.5 T �
H � 1.0T a sharp anomaly is observed in the experiment
indicating a transition to a long range AF order existing in
the system, which will be further verified by investigating
magnetic structure factors. The transition temperature Tc goes
up as the magnetic field H increases from 0.5 T to 1.0 T. This
maps out the left boundary of the BEC dome in the H vs T
phase diagram. Although the peaks in heat capacity curves
given by simulations are not as sharp as those in experiments,
possibly due to the finite lattice size effect or other type of
interactions in real materials, which cannot be fully charac-
terised by the Hamiltonian, the positions of the peaks and the
main feature of the curves can still be reflected by simulations.

When H further grows up to 0.8 T, a broad feature is
noticed in the curve and dominates above Hcm . The location of
the heat capacity peak moves to lower temperatures when the
magnetic field further increases. This corresponds to the phase
boundary H2 of the high magnetic field region of the dome.
It describes a transition from AF order to a fully polarized
paramagnetic phase. As expected, in the paramagnetic phase,
H � Hc2 ∼ 1.4 T the broad peak shifts to higher temperatures
as magnetic field increases.

Similar to our previous ground-state study, we explore
the FM and AFM structure factors for finite temperatures as
well. The spin y antiferromagnetic structure factor Sy

AFM is
examined as a function of the magnetic field H in Fig. 5(a).
In the quantum dimer or singlet phase, H � H1 ∼ 0.43 T,
Sy

AFM has a finite value. When H1 � H � H2, a dome appears

(a)

(b)

FIG. 5. (a) Antiferromagnetic structure factor for spin Y, Sy
AFM as

a function of magnetic field H (Tesla). (b) The derivative of ferro-
magnetic structure factor for spin Z Sz

FM as a function of magnetic
field H (Tesla) for “Z4_12” system. The inverse of the ultrasound
velocity −�v/v and the derivative of the Bragg peak intensity
dI/dH at T = 50 mK, obtained in experiment [17] are shown in
orange and purple lines respectively as comparisons. The peak value
of these experiment data are rescaled to match the maximum of our
simulation results.

in Sy
AFM vs H, indicating the AFM order in spin Y develops.

The magnitude of the structure factor goes up as tempera-
ture decreases as expected. When the magnetic field becomes
relatively large, spins tend to be in the same direction as
the magnetic field. The FM order in the spin Z component
is observed and Sy

AFM almost vanishes as H � H2. We take
the derivative of Sy

AFM with respect to H to locate the largest
slope position H∗ and mark them by red squares in the phase
diagram Fig. 1. Although this cannot be viewed as an accurate
method to determine the phase transition points, it can give us
a rough estimate of the phase boundary of the BEC dome,
inside which AFM order develops.

In addition, the derivative of ferromagnetic structure factor
in spin Z with respect to magnetic field dSz

FM/dH , is plotted
as a function of H in Fig. 5(b). It is the derivative of Bragg
peak intensity, which behaves similar to the ultrasound ve-
locity in the experiment [17]. dSz

FM/dH is almost 0 when
H � Hc1 ∼ 0.43 T. A significant slope change occurs at Hm ∼
1.07 T at low temperatures and we denote these points by
green triangles in Fig. 1. This change in slope was highlighted
in experiment as a main indication of the occurrence of two
regimes. The positions of the peak correspond to H2 ∼ 1.4 T,
denoted by green down triangles in Fig. 1. When H � 1.6 T,
Sz

FM saturates and hence dSz
FM/dH goes down to and stays at

a value close to 0 at low temperatures.
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Z4_6
Z4_8
Z4_10
Z4_12

(a) (b)

(c) (d)

FIG. 6. Finite-size scaling analysis: Rescaled antiferromagnetic
structure factor Sy

AFM/L1−2β/ν vs magnetic field H [T] for several
different temperatures. 2D Ising critical exponents β = 1/8, ν = 1
are used. The two crossings in each plot at different temperatures T ,
H1(left) and H2(right) are denoted by cyan diamonds in Fig. 1.

In order to give a more accurate value for the transition
out of the ordered phase at larger fields, we apply finite-size
scaling analysis to the system at several temperatures, T =
0.05, 0.1, 0.15, 0.2 K in Fig. 6. Since the order breaks a Z2

symmetry, we fit to a scaling form using the 2D Ising critical
exponents β = 1/8, ν = 1 [29–32]. Two crossing points H1

and H2 are observed as expected. We present these data points
by cyan diamonds in Fig. 1. These points basically follow
the boundary of the BEC dome instead of locating at the
green dashed line around Hcm ∼ 1.07 T. This suggests the
“intermediate” order in the ground state found in [18]—which
was attributed to a nonzero value of gzx—is in fact quickly
washed out as temperature T increases such that the transition
point likely moves rapidly from Hcm ∼ 1.07 T at T = 0 K (red
star) to H2 ∼ 1.4 T at T = 0.05 K (cyan diamond). Although
this “intermediate phase” therefore disappears at finite T ,
the slope changes in dSz

FM/dH discussed above can still be
observed, implying the similar phenomena observed in ultra-
sound velocity in the experiment at Hcm is more likely due
to a crossover rather than a phase transition. More evidence
to support this argument will be shown in the texts and plots
below, where we will see that it is a very general feature and
rather insensitive to details such as the value of gzx.

VI. THE ISOTROPIC MODEL

As is discussed in Sec. V, the critical magnetic field indi-
cated by the second crossing point in the finite-size scaling
analysis moves quickly from Hcm ∼ 1.07 T in the ground state
to H2 ∼ 1.4 T at a small temperature T = 0.05 K, implying
the tiny staggered magnetic field in the spin x direction (small
gzx value) might not be the correct explanation of the feature at
Hcm shown as a vertical green dashed line in Fig. 1. Hence, we
employ simulations for gzx = 0 in this section and compare
them with results in Secs. V, IV with gzx = 1/500 to explore
the true effects of gzx.

Z4_8
Z4_12
Z4_16

(a)

(b)

(c)

FIG. 7. (a) Similar to Fig. 3, but for the system without a tiny
field in spin X direction, i.e., gzx = 0. Two crossings occur at Hc1 ∼
0.4 T and H ∼ 1.4 T. (b) Similar to Fig. 5(b) for “Z4_12” system,
but for the model with gzx = 0. The slope changes manifested in
dSz

FM/dH vs H suggest that a tiny gzx is not necessary to explain
the similar feature in ultrasound velocity in the experiment [17].
(c) QMC simulation results for a 16 × 16 honeycomb lattice with
512 sites without any anisotropy, i.e., λ = 0 and gzx = 0.

First we do a ground-state (T = 0) finite-size scaling anal-
ysis for the same model without a staggered field in spin x, i.e.,
gzx = 0 in Fig. 7(a). As expected, the crossing point occurs at
H ∼ 1.5 T (close to Hc2 ) instead of happening at Hcm ∼ 1.07 T
in the original model with gzx = 1/500. Thus it coincides
with the bottom-right edge of the dome computed from our
finite-temperature calculations.

Next we examine dSz
FM/dH for gzx = 0 in Fig. 7(b). The

slope changes observed in Fig. 5 appear quite similar to the
gzx = 0 case, and are again analogous to the slope changes in
the ultrasound velocity signaling the vertical phase boundary
in the experiment [17]. All the evidence above implies that
the model with a tiny staggered magnetic field in spin X
direction (nonzero gzx) can give rise to an intermediate phase
only at T = 0 and very small values of T . Such a model is
therefore not able to explain the vertical Hm line observed in
the experiment within the interpretation of this line being a
true phase transition. The vertical phase boundary suggested
by the ultrasound velocity in the experiment (or the derivative
of FM structure factor) is more likely to be a crossover instead.

Finally, we investigated the fully isotropic model, where
both gzx = 0 and λ = 0 in Fig. 7(c). In this case, QMC can be
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applied without encountering a sign problem [28]. dSz
FM/dH

is shown for the fully isotropic case on a 16 × 16 × 2 lattice
in Fig. 5(c). Inside the BEC dome we indeed also observe
two different regimes. For 0.5T � H � 1.0T, dSz

FM/dH is
only weakly dependent on temperature, while for 1.0T � H �
1.5T we observe that the peak close to the saturation field only
develops at lower temperatures. This behavior is exactly what
is observed in experiments by measuring the Bragg peaks and
ultrasound velocity. Thus, the occurrence of two regimes in
the magnetization process is intrinsic to the isotropic breath-
ing honeycomb antiferromagnet and not necessarily related
to an anisotropy in either the spin-spin interactions or the
coupling to an external field.

VII. DISCUSSION AND CONCLUSIONS

We have investigated the finite-temperature phase diagram
and thermodynamics of the “breathing” honeycomb lattice
quantum dimer magnet in the parameter regime relevant to
recent experiments on Yb2Si2O7. We considered the effects of
a small anisotropy in both the exchange coupling as well as the
g tensor, proposed as an explanation for the occurrence for two
regimes inside antiferromagnetic regime in the Bose-Einstein
condensation dome of Yb2Si2O7 [18].

Our simulations employing the METTS technique yield
close agreement with the experimentally observed data. By
detecting maxima in the specific heat and performing finite-
size scaling analysis of antiferromagnetic structure factors, we
have mapped out the extent of the Bose-Einstein condensation
dome, which is found to closely track the experimentally
observed data. Within the dome, two regimes have been dis-
tinguished in experiments by a change in the field dependence
of the magnetization and the related ultrasound velocity mea-
surements. This behavior is also found to be captured by the
breathing honeycomb dimer model for which we observe a
change of slope in the derivative of the ferromagnetic struc-
ture factor. Also we find close agreement when relating this
quantity to the observed Bragg peak intensity and the related
ultrasonic velocity measurements.

Our simulation data for specific heat Fig. 4 fits the ex-
perimental data well for the full range of the magnetic field.
The occurrence of a peak in the specific heat indicating a
phase transition was pointed out in the experiment. However,
this peak was only present in the lower-field regime of the
BEC dome but absent in the higher-field regime, which was
interpreted as another indication of two regimes. With the
system sizes attainable using METTS we are at present un-
able to resolve sharp peaks, which would require simulating
large fully two-dimensional geometries. Hence, the question
whether or not a sharp peak in the specific heat is absent or
present needs to be investigated further in future studies.

Moreover, we investigated to which extent anisotropies in
the model are relevant to our findings. We confirm previous
results that a small anisotropy in the g tensor, gxz = gzz/500,
leads to a phase transition at magnetic fields smaller than
the saturation field at T = 0 using DMRG. At temperatures
above the anisotropy scale, however, this effect becomes neg-
ligible and we find that the actual phase transition is once
again approximately concomitant with the saturation field. We
conclude that the critical line in this model does not extend
across the full temperature range of the Bose-Einstein con-
densation dome. The change in slope of the magnetization an
the magnetic structure factor at finite temperatures within the
BEC dome is found to be a generic property occurring even in
the fully isotropic case and is not related to a phase transition
induced by the anisotropy.
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