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Quantized responses are important tools for understanding and characterizing the universal features of
topological phases of matter. In this work, we show that three-dimensional (3D) insulators with Cn rotation
symmetry along a fixed axis can possess a mixed geometry-charge response, in which disclination lines of
the 3D lattice carry electric polarization. These disclinations bind a fractional charge at the gapped surfaces
of the insulator because of the surface-charge-polarization theorem. This response is accompanied by a dual
response that binds fractional angular momentum to magnetic monopoles in the bulk (analogously to the
Witten effect) and to magnetic fluxes on gapped surfaces. We show that these responses are described by a
3D topological response term that couples the lattice curvature to the electromagnetic field strength. Additional
mirror or particle-hole symmetry quantizes the mixed geometry-charge responses and defines a new class of
rotation-invariant topological crystalline insulators (rTCIs). Notably, the surface charge bound to disclinations
of the rTCIs is half the minimal amount that can occur in purely two-dimensional insulators. We construct
lattice models of these rTCIs and numerically verify that they exhibit mixed geometry-charge responses. We
also demonstrate that the particle-hole symmetric rTCI supports anomalous surface topological order and that
the mirror symmetric rTCI can be smoothly deformed into a higher order octopole insulator with quantized
corner charges. Additionally, we construct symmetry indicators for diagnosing the mirror symmetric rTCIs.
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I. INTRODUCTION

In modern condensed matter physics, it has been well
established that for a given symmetry class, there can be mul-
tiple insulating phases of matter that are topologically distinct
from one another [1,2]. These topologically inequivalent insu-
lators are denoted as symmetry protected topological phases
(SPTs) [3–8] and they have been a central area of condensed
matter research for more than a decade. Concretely, SPTs
are defined as symmetric insulators that cannot be smoothly
deformed into a trivial insulator without either breaking the
symmetry or closing the energy gap. SPTs also display a
bulk-boundary correspondence, where the topologically non-
trivial bulk is accompanied by gapless degrees of freedom on
symmetry preserving surfaces [9,10].

One reason that topological phases of matter have at-
tracted so much attention is that they can exhibit quantized
responses in the presence of external gauge fields. These
responses arise from the underlying topology of the SPT
and are robust to symmetry preserving disorder and pertur-
bations. In experimental contexts, these quantized responses
serve as smoking-gun characteristics of topological insulators
[11–15]. The first observed, and most famous, topologi-
cal response is the quantized Hall conductance of 2D (two
spatial dimensions) insulators [16–19]. Similarly, 1D insu-
lators with particle hole symmetry (PHS) have a quantized
polarization [20–23], and 3D insulators with time-reversal
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symmetry (TRS) display quantized axion electrodynamics
[24–27]. All of these effects have a topological field the-
ory description that captures the quantized responses: the
integer Hall conductance corresponds to a Chern-Simons
term [18], electric polarization corresponds to a 1 + 1D �

term/Goldstone-Wilczek response term [28], and axion elec-
trodynamics corresponds to a 3 + 1D � term [25].

More recently, the topological responses of topologi-
cal crystalline insulators (TCIs)–SPTs that are protected
by crystalline symmetries–and higher order topological
insulators–SPTs where gapless modes are bound to corner
or hinges–have also gained attention [29–36]. Notably, it has
been shown that certain TCIs can host mixed geometry-charge
responses, where charge fluctuations are driven by lattice ef-
fects, e.g., shears, strains, or defects [37–52]. A well known
example of such a mixed geometry-charge response occurs
in 2D, where charge is bound to disclination defects in TCIs
with Cn lattice rotation symmetry [51,53–57]. This effect also
has an associated field theory description, i.e., the Wen-Zee
term. This term couples the electromagnetic gauge field to the
spin-connection gauge field, the latter of which represents the
geometric distortions [58–61].

In this work, we consider the mixed geometry-charge re-
sponses of 3D systems with Cn lattice rotation symmetry
around a fixed axis. We show that such a system can display
a novel mixed geometric-charge response, where line-like
disclination defects have an electric polarization. There is also
an accompanying dual response, where magnetic monopoles
bind angular momentum. These responses is described by a
topological field theory term that directly couples the lattice
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curvature (R) to electromagnetic field strength (F ). We denote
this topological response term as the R ∧ F term. The coeffi-
cient of the R ∧ F term is quantized for systems with either
particle-hole symmetry (PHS) or mirror symmetry along the
z direction. This quantized response defines a new class of
rotation-invariant topological crystalline insulators (rTCIs).

In the main body of this paper, we provide microscopic
lattice models that realize three important classes of rTCIs.
First, a spinless rTCI with PHS and additional TRS as an
illustrative example. Second, a spin-1/2 rTCI with mirror
symmetry and additional TRS, which is closer to a more
realistic lattice model. Third, a spinless rTCI with mirror
symmetry and broken TRS. We relegate similar analysis of the
spinless rTCI with TRS and mirror symmetry and the spin-1/2
rTCI with TRS and PHS to Appendixes F and E, respectively.

We analyze these rTCIs using the R ∧ F -field theory de-
scription, microscopic lattice models, continuum theories and
numerics, and show that they display a number of remark-
able topological features. For example, when the surface
of a rTCI with a nontrivial R ∧ F term is gapped (without
electron-electron interactions), the resulting gapped surface
theory contains a Wen-Zee response term. This response term
indicates that disclinations on the rTCI surface bind charge
(equivalently, intersections of bulk disclination lines and the
rTCI surface bind charge), and threading magnetic fluxes
through the surface increases the angular momentum of the
system. The coefficient of the surface Wen-Zee term is half
the value that is allowed for a 2D system with the same sym-
metries (i.e., surface disclinations of the rTCI bind half the
minimal amount of charge that can be bound to disclinations
of a 2D system with the same symmetries).

Let us also briefly mention some key features of the bulk-
boundary correspondence for rTCIs with various symmetries.
For noninteracting rTCIs with PHS and TRS, the surfaces host
an even number of Dirac fermions, which cannot be gapped
without breaking PHS. However, if interactions are included,
the rTCI with PHS can also host a symmetric gapped surface
with symmetry-enriched topological order. This symmetry-
enriched surface topological order is anomalous and cannot
be realized in a purely 2D system with PHS. For rTCIs with
mirror symmetry and TRS, the surfaces also contain an even
number of Dirac fermions. However, in this case, the surface
Dirac fermions can be gapped without breaking symmetries
or adding additional interactions. Such symmetrically gapped
surfaces host quantized corner charges, indicating that rTCI
with mirror symmetry constitutes a third-order topological in-
sulator with an octopole configuration of charges [34,62]. For
the spinless rTCI with mirror symmetry that break TRS, the
surface hosts a single Dirac fermion. This two-dimensional
Dirac fermions can be fully gapped up to a single one-
dimensional chiral mode that circulates in the mirror invariant
plane. Additionally, following the approach of Ref. [30], we
show that a rTCI with PHS or mirror symmetry can be di-
mensionally reduced to a 1D insulator that is in the same
topological class as the Su-Schrieffer-Heeger (SSH) chain
[20] with PHS or mirror symmetry, respectively.

The remainder of this paper is organized as follows. In
Sec. II, we present the R ∧ F -response term, discuss its phys-
ical properties, and show that it defines a class of rTCIs. In
Sec. III, we analyze a lattice model for a spinless rTCI with

TRS and PHS. We show that the effective response theory of
this rTCI contains a quantized R ∧ F term. In Sec. IV, we
present a lattice model for a spin-1/2 rTCI with TRS and mir-
ror symmetry, and similarly show that its effective response
theory contains a quantized R ∧ F term. In Sec. V, we present
a symmetry indicator form of the topological invariant for
rTCIs that have mirror and inversion symmetry and relate this
invariant to the coefficient of the R ∧ F term. In Sec. VI, we
consider the R ∧ F response of insulators with broken TRS.
We conclude in Sec. VII and discuss possible extensions. We
also provide several appendices that contain technical details
and analyses of related models.

II. RESPONSE THEORY

In this section, we consider the effective field theory
description of a 3D fermionic insulator with U(1) charge
conservation and Cn lattice rotation symmetry along a fixed
axis—which we take to be the z axis. Here and throughout
we set the electron charge e = 1 as well as h̄ = 1. Our main
interest is in the following mixed geometry-charge response
term:

LRF = �

4π2
εμνρκ∂μων∂ρAκ , (1)

where Aμ is the electromagnetic gauge field and ωμ is the Cn

symmetry gauge field, both of which should be regarded as
background probe fields. Physically, fluxes of ωμ correspond
to lattice disclinations with Frank-vector parallel to the z axis
[63]. Since the rotation symmetry is discrete, the fluxes of ωμ

are quantized in units of 2π/n (the same quantization of Frank
angles in a Cn symmetric lattice system). Physically, the flux
quantization arises because the crystal lattice spontaneously
breaks the rotation symmetry of free space. Fluxes ωμ can also
describe disclinations of a nematic order parameter [64–66],
but in this work we consider only fluxes corresponding to
disclinations of a crystalline lattice.

As we show in the following sections, the response term
in Eq. (1) describes a coupling between the lattice curvature
(R) and the electromagnetic field strength (F ), leading us to
refer to it as the “R ∧ F term.” The R ∧ F term is a total
derivative, but nevertheless leads to a number of nontrivial
responses. Furthermore, we show that the coefficient � is
quantized for insulators with particle hole symmetry (PHS)
or mirror symmetry along the z direction (which we simply
refer to as “mirror symmetry” unless otherwise noted).

A. Lattice geometry in the continuum limit

The R ∧ F term in Eq. (1) is defined in continuous space-
time. Because of this, it is worthwhile to discuss how lattice
effects, which are inherently discrete, can be described in the
continuum limit. Here, for simplicity, we consider the case
of a cubic lattice, although this analysis applies to general
lattices.

To begin, take a cubic lattice embedded in a 3D spatial
manifold of a 3 + 1D space-time. In the continuum limit the
lattice constant is taken to zero and the lattice points become
a dense set of points on the manifold. The spatial metric of
the manifold, gi j (i = x, y, z), should be consistent with the
underlying lattice in the continuum limit. To this end, we
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introduce the frame fields (AKA vielbeins or tetrads) [67]
eA

i (A = x, y, z) such that gi j = eA
i eB

j δAB, where δAB is the
Kronecker delta, and the inverse frame fields Ei

A, satisfying
Ei

AeA
j = δi

j . The frame fields and inverses are not constants,
and in general can be functions of space and time. In order for
the metric of the manifold to be consistent with the lattice, the
inverse frame fields Ei

A should be identified with the primitive
lattice vector in the A direction, in units of the lattice constant
[68].1 For a perfect lattice that is free of defects, we can take
Ei

A = δi
A. In principle, we can also introduce a fourth time-like

frame-field (and corresponding inverse frame-field), but since
the temporal direction is fixed for lattice systems this will not
be necessary here.

In this work, we are primarily interested in the continuum
interpretation of lattice disclinations with Frank-vector paral-
lel to the z axis. In 3D, these defects are line-like fluxes of the
Cn lattice rotation symmetry around the z axis (n = 4 for the
cubic lattice). With this in mind, consider a lattice where the
only defects are disclinations with Frank-vector parallel to the
z axis (which we shall refer to simply as disclinations from
now on). Since the disclinations only rotate the lattice vectors
that span the xy plane, the inverse frame fields for a generic
lattice with disclinations can be defined as

Ei
z = δi

z,

Ei
x = cos(ϕ)δi

x + sin(ϕ)δi
y,

Ei
y = cos(ϕ)δi

x − sin(ϕ)δi
x,

(2)

for some spatially varying angle ϕ. For these inverse frame
fields, the metric gi j is flat everywhere, which is a conse-
quence of us only considering rotation symmetry fluxes. It
should be noted that if nontrivial disclinations are present,
a global definition of Ex and Ey is not possible, and it is
necessary to work in coordinate patches where Ex and Ey can
be consistently defined.

For the inverse frame fields defined in Eq. (2), the only
nonvanishing components of the spin connection [67] are

ωμ ≡ ωx
yμ = −ωy

xμ = ex
i ∂μEi

y = −ey
i ∂μEi

x. (3)

For brevity, we refer to ωμ simply as the spin connection.
Physically, ωμ measures how much the lattice vectors that
span the xy plane rotate as we move along the μ direction. The
spin connection has a Cn gauge ambiguity, which corresponds
to a local redefinition of the primitive lattice vectors that span
the xy plane. Under this Cn gauge symmetry, the frame fields
Ex and Ey transform as

Ei
x → cos(θ )Ei

x + sin(θ )Ei
y,

Ei
y → cos(θ )Ei

y − sin(θ )Ei
x, (4)

where θ is a function that takes on values in
{0, 2π

n , 4π
n , . . . . (n−1)2π

n }. It is straightforward to show that
Cn gauge transformations do not change the metric. Using

1Compared to the definition of the frame fields in Ref. [68], we
have included a factor of the lattice constant in our definition of the
frame fields so they are dimensionless.

Eq. (3), the Cn gauge transformation acts on the spin
connection as

ωμ → ωμ − ∂μθ. (5)

For the theories we consider in the following sections, this
Cn gauge symmetry is actually part of a larger SO(2)=U(1)
gauge symmetry that emerges within the continuum limit of
the lattice model. The U(1) gauge symmetry transforms the
frame fields and spin connections as in Eqs. (4) and (5) but
with θ taking continuous values in [0, 2π ).

Based on the gauge transformation defined in Eq. (5),
we define the gauge invariant lattice curvature tensor Rμν =
∂μων − ∂νωμ. This curvature is related to the full curvature
tensor of the 3D space-time as Rμν ≡ Rx

μνy [67]. The R ∧ F
term in Eq. (1) therefore describes a coupling between the
effective lattice curvature Rμν and the dual electromagnetic
field strength F ∗

μν = 1
2εμνρκFρκ . We note that, in principle, it is

also possible to define torsion for the lattice system. However,
for the frame fields in Eq. (2) the torsion vanishes. At the
level of the lattice, the absence of torsion is the result of the
assumption that the lattice only has disclinations and is free of
dislocations [69].

Disclinations of the underlying lattice correspond to fluxes
of ωμ and are singular points of the curvature R. For example,
consider a disclination line on the z axis located at x = y = 0
with Frank angle �F . Away from the disclination core, the
lattice vectors that span the xy-plane are rotated by �F upon
encircling the disclination. Using our previous identification
of the inverse frame fields with the lattice vectors, we find
that such a disclination corresponds to the inverse frame
fields defined in Eq. (2), where ϕ winds by �F on any loop
that encircles x = y = 0. To be explicit, we choose ϕ(x, y) =
�F
2π

tan−1(x/y). Then, using Eq. (3) we find ωμ = ∂μϕ, and∮
ω = −�F , where the loop integral is defined on a loop that

encircles the disclination line. This confirms that fluxes of the
spin connection correspond to lattice disclinations. For lattice
systems with Cn symmetry, the Frank angles are necessarily
multiples of 2π/n, and the physical fluxes of ωμ are quantized
in multiples of 2π/n.

B. Physical implications of the response theory

1. Review of the � term

To set the stage for a discussion of the physical implica-
tions of the R ∧ F term in Eq. (1), it is useful to first discuss a
related response term, the (axion) � term [70–72],

L� = �

8π2
εμνρκ∂μAν∂ρAκ , (6)

that describes time-reversal invariant fermionic topological in-
sulators when � = π [25], and bosonic topological insulators
when � = 2π [73–76]. We show below that many features of
the � term have direct analogs in the R ∧ F term. For a more
detailed discussion of the � term in the context of fermionic
and bosonic topological phases of matter, see Refs. [25,73].

The first feature of note is that nonvanishing values of �

indicate that magnetic monopoles carry charge −�/2π . This
is known as the Witten effect [77]. Second, the � term imparts
magnetic flux tubes with nontrivial braiding statistics, e.g.,
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linking a pair of 2π ( h
e ) electromagnetic vortices produces a

phase of ei� relative to the unlinked configuration. Third, at
domain walls where the value of � changes by ��, there is a
2D Chern-Simons term of the form

LCS-DW = ��

8π2
εμνρAμ∂νAρ. (7)

It is also important to note that � is periodic. For fermionic
systems, the period of � is 2π . This is easily demonstrated by
considering a domain wall where � changes by ��. Accord-
ing to Eq. (7) this leads to a 2D domain wall Chern-Simons
term with coefficient ��/8π2. For a purely 2D fermionic
system without topological order, the Chern-Simons coeffi-
cient must be an integer multiple of 1/4π [78]. So, when ��

is an integer multiple of 2π , the domain wall physics can be
trivialized by adding a purely 2D system, indicating that the
value of � in Eq. (6) is only meaningfully defined modulo 2π

in fermionic systems. The periodicity of � in bosonic systems
can be found using the same logic: for 2D bosonic systems
without topological order, the Chern-Simons coefficient must
be an integer multiple of 1/2π [79]. Because of this, � is
defined modulo 4π in bosonic systems.

2. The R ∧ F term

Having discussed the essential features of the � term
in Eq. (6), we will now describe the analogous features of
the R ∧ F term in Eq. (1). We assume that the R ∧ F term
describes an insulator and that the disclination defects we
discuss do not close the bulk gap (these assumptions will be
satisfied in the models we consider below). Since the R ∧ F
term couples the electromagnetic gauge field Aμ and the spin
connection ωμ, it gives rise to mixed geometric-charge effects.
As is well known, the U(1) charge conservation symmetry
implies a conserved electromagnetic charge 4-current jμ =
δS/δAμ, where S is the minimally coupled action. The total
angular momentum is given by l = ∫

d3x δS
δωμ

, and is defined
modulo n. Since the rotation symmetry is discrete, there is no
local angular momentum 4-current.

We first note that the R ∧ F term describes a mixed Witten
effect where magnetic monopoles carry angular momentum
−�/2π . We can also define a 2π/n “disclination monopole”
where a 2π/n disclination line terminates in the bulk of
the insulator. Such a disclination monopole will likely have
a high energy cost in an actual crystalline solid, but they
are still useful to consider as a theoretical tool. The mixed
Witten effect indicates that a 2π/n disclination monopole
carries electromagnetic charge �/2πn. Since the disclination
monopoles can be viewed as the ends of a 1D disclination
line, the surface charge theorem for electric polarization indi-
cates that the R ∧ F term binds polarization �/2πn to 2π/n
disclination lines. This can also be seen from the fact that
inserting a configuration of ω harboring a 2π/n disclination
line into Eq. (1) generates a 1D Goldstone-Wilczek response
term [25,28] with coefficient �/2πn.

The R ∧ F term also indicates that electromagnetic flux
lines and disclination lines have nontrivial braiding statis-
tics. Linking a 2π electromagnetic flux line with a 2π/n
disclination line produces a phase of ei�/n compared to the

FIG. 1. (a) A schematic of a surface where the coefficient of
Eq. (1) changes by ��. This surface hosts a Wen-Zee term with dis-
crete shift S = ��/2π . (b) A 2π/n disinclination, shown here for
n = 4, and the surface charge bound to the disclination, QDisclination =
��/2πn, depicted in red.

unlinked configuration. The R ∧ F term does not affect the
self-statistics of the flux or disclination lines.

Finally, we can consider domain walls where the value
of � changes by ��. For a domain wall that preserves Cn

symmetry, i.e., a domain wall normal to the z axis, there is a
2D Wen-Zee term of the form [58]

LWZ-DW = ��

4π2
εμνρωμ∂νAρ, (8)

where μ, ν, and ρ run over t, x, and y for the 2D surface.
The coefficient of this surface Wen-Zee term, known as the
“discrete shift,” is S = ��/2π (the full numeric prefactor
of the Wen-Zee term is S/2π ) is not quantized without ad-
ditional symmetry. At this domain wall, the electromagnetic
3-current is

jμ = −��

4π2
εμνρ∂νωρ, (9)

indicating that a 2π/n disclination at the domain wall binds
charge −��/2πn. This effect is shown schematically in
Fig. 1. Similarly, the contribution to the angular momentum
from a domain wall is

l =
∫

d2x
��

4π2
[∂xAy − ∂yAx]. (10)
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TABLE I. Summary of the properties and quantized responses of the systems in this paper. The first column lists the system and symmetries.
The second column lists the coefficient of the R ∧ F term (Eq. (1)) that describes the system. The third column lists the charge that is bound to
2π/n disclinations of surfaces that preserve Cn symmetry (i.e., surfaces normal to the ±z direction). The fourth column lists the properties of
symmetry-preserving states on surfaces normal to the ±z direction.

System and symmetries Value of � Surface Disclination Charge Symmetry Preserving Surfaces

Spinless rTCI with Cn symmetry,
TRS, and PHS � = π 1/2n mod(1/n) Gapless or gapped with anomalous topological order

Spin-1/2 rTCI with Cn symmetry,
TRS, and PHS � = 2π 1/n mod(2/n) Gapless or gapped with anomalous topological order

Spinless rTCI with Cn symmetry,
TRS, and mirror symmetry � = π 1/2n mod(1/n) Gapped with a filling anomaly
Spin-1/2 rTCI with Cn symmetry,
TRS, and mirror symmetry � = 2π 1/n mod(2/n) Gapped with a filling anomaly
Spinless rTCI with Cn symmetry
and mirror symmetry � = π/2 1/4n mod(1/2n) Gapped up to a single one-dimensional chiral surface mode

A 2π magnetic flux on the surface therefore carries angular
momentum ��/2π . Recall that only the total angular mo-
mentum of the full system is well a defined quantity. Here,
the total angular momentum will be the sum of all domain
wall contributions, as well as any angular momentum bound
to magnetic monopoles.

The R ∧ F term also indicates that surfaces parallel to the z
direction host response terms of the same form as Eq. (8). The
charge response on these surfaces [the analog of Eq. (9)] can
be understood as follows: charge is bound to the point where
a disclination-line with Frank-vector parallel to the z direction
intersects a surface parallel to the z direction. Such a config-
uration is difficult to realize in crystalline lattices and so we
will omit further discussion of this side-surface response, but
we note that this response may be relevant to systems where
fluxes of ω are disclinations of a nematic order parameter. The
angular momentum response on the side surfaces [the analog
of Eq. (10)] has the same interpretation as before; threading
flux through surfaces parallel to the z direction increases the
total angular momentum.

The value of the � coefficient of the R ∧ F term is also
periodic. However, the period depends on the presence of
time-reversal symmetry (TRS), and on the spin of the par-
ticles. Here and throughout, we are primarily interested in
systems with time-reversal symmetry, as it simplifies our dis-
cussions and makes it more applicable to realistic materials.
We provide a discussion of the periodicity of � in systems
without time-reversal symmetry in Sec. VI.

Similar to our discussion above for �, the period of �

can be determined by finding the value of �� such that
the domain-wall Wen-Zee term in Eq. (8) can be realized in
a purely 2D system without topological order. For spinless
fermions with time-reversal symmetry (T̂ 2 = +1), the mini-
mal disclination charge is 1/n [51]. This response corresponds
to a Wen-Zee term with discrete shift, S = 1. This indicates
that � has period 2π . For spin-1/2 fermions where T̂ 2 = −1,
the minimal disclination charge is 2/n due to Kramers’ de-
generacy [51]. This response corresponds to a Wen-Zee term
with discrete shift, S = 2. Therefore, for spin-1/2 fermions
with TRS, � has period 4π .

Here, and in the coming sections, we assume that all de-
fects carry trivial quantum numbers in a � = 0 insulator.
However, this is not always true, as the quantum numbers
of a 1D defect can be locally changed by embedding a 1D
insulator with nontrivial quantum numbers at the defect core.
This embedding does not change the 3D bulk of the insulator.
The polarization of defects in an insulator with nonvanishing
� should therefore be implicitly understood as the difference
in polarization compared to that of the same defect in an
insulator with � = 0 (see Appendix A for further discussion).

C. Symmetry quantization of the R ∧ F term

In this section, we discuss how the coefficient of the
R ∧ F term, �, is quantized by time-reversal symmetry
(TRS), particle-hole symmetry (PHS), and mirror symmetry
along the z direction. For these symmetries, a nonzero quan-
tized value of � describes a rotation-invariant topological
crystalline insulator (rTCI). The essential features of the rTCIs
in different symmetry classes are summarized in Table I.

1. Quantization for insulators with particle-hole
and time-reversal symmetry

It is well known that the coefficient of the � term in
Eq. (6) is quantized by TRS [25]. This can be seen by not-
ing that Eq. (6) is odd under TRS, such that � = −� for
a time-reversal invariant insulator. Recalling the periodicity
of �, we find that � = −� has solutions 0 and π (2π ) for
fermions (bosons). In both cases, the former corresponds to a
trivial insulator, while the latter corresponds to a time-reversal
invariant topological insulator.

Similarly, the � coefficient of the R ∧ F term is quantized
by particle-hole-symmetry (PHS). Here, we will restrict our
attention to systems with additional time-reversal symmetry.
Since the R ∧ F term is odd under PHS, (C : Aμ → −Aμ,
and ωμ → ωμ), the R ∧ F term of a particle-hole symmetric
insulator satisfies � = −� (we take angular momentum to be
even under PHS). As noted previously, � is 2π periodic for
spinless insulators with TRS, indicating that � = 0 or π in
spinless insulators with PHS and TRS. For spin-1/2 insulators
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FIG. 2. The value of � near a PHS-breaking domain wall located
at z = zDW. The domain wall separates a spinless rTCI with � = π

(z < zDW) and a trivial insulator with � = 0 (z > zDW).

with TRS, � is 4π periodic and the R ∧ F term has � = 0 or
2π . A nonzero value of � indicates that the insulator is an
rTCI protected by TRS and PHS. Since � can take only one
of two quantized values, both the spinless and spin-1/2 rTCIs
have a Z2 classification.

As discussed in the previous section, 2π/n disclinations
of the rTCI carry polarization 1/2n. For the spinless rTCIs
(with PHS and TRS), a domain wall where the value of �

changes from � = π (rTCI) to � = 0 (trivial) corresponds
to a surface where PHS is explicitly broken. Such a domain
wall is shown in Fig. 2. Based on Eq. (8), this PHS breaking
surface hosts a Wen-Zee term with discrete shift S = 1/2 + m
(m ∈ Z), where the value of m is determined from purely
2D surface effects. The coefficient of this Wen-Zee term is
exactly half of what is allowed for a purely 2D system of
spinless fermions with TRS and without topological order.
The surface disclination charge modulo 1/n is therefore a
quantized signature of the bulk topology of the spinless rTCI.

Similarly for the spin-1/2 rTCIs, 2π/n disclinations carry
charge 1/n and domain walls where the value of � changes
from � = 2π (rTCI) to � = 0 (trivial) correspond to PHS
broken surfaces and host Wen-Zee terms with discrete shift
1 + 2m. A 2π/n surface disclination on this type of surface
binds charge 1/n + 2m/n. So for spin-1/2 rTCIs, the surface
disclination bound charge modulo 2/n is a quantized signature
of the bulk topology. As before, the coefficient of the surface
Wen-Zee term is half of what is allowed in a purely 2D system
of spin-1/2 fermions with TRS and without topological order.

2. Quantization for insulators with mirror
and time-reversal symmetry

In addition to PHS, the R ∧ F term is also quantized
by mirror symmetry along the z direction. As before, this
arises from the fact that the R ∧ F term is odd under mirror
symmetry (Mz : (A0, Ax, Ay, Az ) → (A0, Ax, Ay,−Az ), and
(ω0, ωx, ωy, ωz ) → (ω0, ωx, ωy,−ωz )). Hence, for spinless
insulators with TRS and mirror symmetry, � = 0 or π , and,
for spin-1/2 insulators with TRS and mirror symmetry, � = 0
or 2π . Again, the nontrivial values of � correspond to a
nontrivial rTCI with mirror symmetry, and the rTCIs with
mirror symmetry have a Z2 classification. These insulators
have both Cn symmetry and mirror symmetry, leading to the
total spatial symmetry group of Cnh. However, since we only
gauge the Cn symmetry, we will refer to the mirror and rotation
symmetries separately throughout this work.

FIG. 3. The value of � near a pair of (a) mirror symmetry
preserving and (b) mirror symmetry breaking domain walls located
at z = ±zDW. The domain walls separate the spinless rTCI with
� = π (−zDW < z < zdwDW) from two trivial insulators with � =
0 mod(2π ) (z < −zDW and z > zDW).

The bulk physics is much the same for rTCIs with PHS and
rTCIs with mirror symmetry. However, these two classes of
rTCIs have different surface physics, since PHS is an on-site
symmetry, while mirror symmetry is a spatial symmetry that
exchanges surfaces. In particular, a nontrivial R ∧ F term does
not necessarily lead to symmetry protected surface modes for
mirror symmetric insulators. To see this, we note that if � is
a function of the z coordinate, mirror symmetry requires that
�(z) = −�(−z), while PHS requires that �(z) = −�(z).

With this in mind, consider a spinless insulator with mirror
symmetry, TRS, and a � = π R ∧ F term that is separated
from two trivial insulators (� = 0 mod(2π )) by two domain
walls. These domain walls can be gapped while preserving
mirror symmetry and TRS if � winds by π + 2πq (q ∈ Z)
at both domain walls. A pair of mirror symmetry preserving
domain walls is shown in Fig. 3(a). Similarly, for a spin-1/2
insulator with a � = 2π R ∧ F term, mirror symmetry is
preserved when � winds by 2π + 4πq at both domain walls.
For both the spinless and spin-1/2 insulators, domain wall
configurations that do not satisfy �(z) = −�(−z) correspond
to mirror symmetry breaking surfaces, as shown in Fig. 3(b).

For the mirror symmetry preserving surfaces, each surface
theory consists of a Wen-Zee term with the same coefficient,
and a disclination binds the same amount of charge on both
mirror related surfaces. A 2π/n disclination line that connects
two mirror symmetry preserving surfaces therefore carries a
net charge 1/n + 2q/n for spinless fermions (2/n + 4q/n for
spin-1/2 fermions), with half the charge localized on each end
of the disclination line.

For mirror symmetry breaking surfaces, each surface con-
sists of a Wen-Zee term with opposite coefficients (modulo
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local surface terms). Disclinations of the two mirror symmetry
breaking surfaces will bind opposite amounts of charge, up to
local contributions.

The above analysis also indicates the coefficient of the R ∧
F term is quantized by inversion symmetry. However, since
inversion symmetry is the product of mirror symmetry and a
C2 rotation, we primarily focus on mirror symmetry here.

3. Quantization for insulators with broken time-reversal symmetry

For insulators with broken TRS, the coefficient of the
R ∧ F term, �, can still take on symmetry-quantized values.
However, these quantized values are, in general, different
from those found in insulators with TRS. Here we briefly go
over the quantization of � in systems with broken TRS. More
details are provided in Sec. VI.

For spin-1/2 insulators with broken TRS, � has period
2π (see Sec. VI B). Therefore � = 0 or π for insulators with
either PHS or mirror symmetry. As noted previously, spinless
insulators with TRS and either PHS or mirror symmetry also
have � = 0 or π . This indicates that spin-1/2 insulators with
either mirror symmetry or PHS can, at most, realize the same
geometry-charge responses as spinless insulators with addi-
tional TRS.

For spinless insulators with broken TRS, � does not have
a well-defined periodicity. Rather, � and the coefficient of the
� term have a shared periodicity, where (see Sec. VI B)

(�,�) ≡ (� + π,� + 2π ) ≡ (� + π,� − 2π ). (11)

Since � and � have a shared periodicity, a quantized � must
be accompanied by a quantized � (we shall discuss this in
more detail in Sec. VI). As a result, only mirror symmetry,
not PHS, can quantize � (and �) in spinless insulators with
TRS.

Under mirror symmetry, (�,�) → (−�,−�), and a mir-
ror symmetric spinless insulator can therefore have (�,�) =
(0, 0), (π/2,±π ), (π, 0) or (0, 2π ). The (�,�) = (0, 0) in-
sulator is clearly a trivial insulator. The (�,�) = (π/2,±π )
insulators are a new class of rTCI that has both a nontrivial
R ∧ F term and s nontrivial � term (the � = +π and −π

insulators are related by time-reversal and do not need to
be considered separately). The (�,�) = (π, 0) and (0, 2π )
insulators are simply the sum and difference of (�,�) =
(π/2,±π ) insulators, respectively. Based on our previous
discussion, insulators with TRS cannot realize a � = π/2 R ∧
F term. Breaking TRS in mirror symmetric insulators can
therefore lead to new geometry-charge responses that are not
observed in insulators with TRS.

III. ROTATION-INVARIANT TOPOLOGICAL
CRYSTALLINE INSULATORS WITH PARTICLE-HOLE

SYMMETRY

In this section, we will analyze time-reversal invariant rT-
CIs that have an R ∧ F term that is quantized by PHS. We
restrict our attention to spinless fermions here, for which the
rTCIs is described by R ∧ F terms with � = π . We extend
this analysis to spin-1/2 fermions in Appendix E.

It is worth noting that PHS does not occur as an exact
symmetry in realistic electronic insulators.2 Nevertheless, it
is useful to discuss rTCIs with PHS as theoretical construc-
tions to better understand the physical consequences of the
R ∧ F term. The rTCIs with PHS also serve as a primer for
our discussion of rTCIs with mirror symmetry in Sec. IV.
Since mirror symmetry is common in electronic insulators, the
mirror symmetric rTCIs are more likely to be realized in real
materials. However, the mirror symmetric rTCIs have a more
complex theoretical structure, since mirror symmetry is also a
spatial symmetry. For these reasons, we consider rTCIs with
PHS first to gain intuition about the mixed geometry-charge
responses that are described by the R ∧ F term. Furthermore,
there exist materials for which PHS is approximately obeyed
near the Fermi level, as well as large classes of engineered
metamaterials, e.g., photonic or acoustic crystals, that can
have approximate PHS symmetry.

A. Lattice model with spinless fermions

In this section, we present a lattice model for the spinless
rTCI with TRS and PHS. To be concrete, we construct a model
with C4 rotation symmetry. The minimal model for the rTCI
is an eight-band model with Bloch Hamiltonian

H(k) = sin(kx )�xσ 0 + sin(ky)�yσ 0 + sin(kz )�zσ 0

+ sin(kx ) sin(kz )�0σ x + sin(ky) sin(kz )�0σ y

+ (M + cos(kx ) + cos(ky) + cos(kz ))�0σ z, (12)

where σ x,y,z,0 are the Pauli matrices and the 2 × 2 identity, and
the 4 × 4 � matrices are defined as

�x = σ xσ 0, �y = σ yσ 0, �z = σ zσ z,

�0 = σ zσ x, �5 = σ zσ y. (13)

Here and throughout, the Kronecker products are implicit in
our definitions.

The model in Eq. (12) has U(1) charge conservation and
is invariant under TRS, PHS, and C4 rotation symmetry. The
on-site TRS and PHS operators are

T̂ = �yσ yK = σ yσ 0σ yK,

Ĉ = �5yσ yK = σ xσ yσ yK, (14)

where �ab ≡ −i�a�b (a, b = 0, x, y, z, 5) and K is complex
conjugation. Since the fermions are spinless, T̂ 2 = +1. The
model also possesses chiral symmetry, defined as �̂ = T̂ Ĉ.
The C4 symmetry operation is

Û4 = exp

(
i
π

4
[�yxσ 0 + Iσ z]

)
, (15)

and the Hamiltonian satisfies the relation Û −1
4 H(k)Û4 =

H(Rz
4k), where Rz

4 rotates the lattice momentum by π/2
around the z axis. Since we are considering spinless fermions,
(Û4)4 = +1. Without C4 symmetry this model is in symmetry
class BDI, which is trivial in 3D [1,2].

2PHS does occur in superconductors, but here we are interested in
insulators with unbroken U(1) symmetry.
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FIG. 4. The band structure of the Hamiltonian in Eq. (12) along
high-symmetry lines with M = 2.

The bulk spectrum of Eq. (12) has fourfold degeneracy
with energy bands

E±(k) = ± [sin2(kx ) + sin2(ky) + sin2(kz )

+ sin2(kx ) sin2(kz ) + sin2(ky) sin2(kz )

+ (M + cos(kx ) + cos(ky) + cos(kz ))2]1/2. (16)

The bulk spectrum for M = 2 is plotted in Fig. 4. The spec-
trum has a bulk gap unless |M| = 1, 3. For |M| > 3, the lattice
model is a trivial insulator, and is adiabatically connected
to the atomic limit (M → ±∞). In the following section,
we show that the lattice model is an rTCI that exhibits an
R ∧ F term where � = π for 1 < |M| < 3, and the R ∧ F
term vanishes again for |M| < 1.

B. Response theory

Here we calculate the R ∧ F term [Eq. (1)] in the response
theory of the lattice model [Eq. (12)] for different values of the
parameter M. To determine the coefficient of the R ∧ F term,
�, our strategy is to first determine the change induced in �

by the band crossings that occur at |M| = 1 and 3. Combining
this information with the fact that � is quantized for gapped
insulators with PHS and TRS, and that � = 0 for a trivial
insulator, we determine the value of � as a function of M.

With this in mind, we consider Eq. (12) close to the
band crossing at M = −3 where two four-component Dirac
fermions form at k = (0, 0, 0). To proceed, we need to
consider only the low-energy physics of the lattice model.
Expanding to leading order around k = (0, 0, 0) we arrive at
the continuum Dirac Hamiltonian

Ĥ = �†H�,

H = �xσ 0i∂x + �yσ 0i∂y + �zσ 0i∂z + m�0σ z, (17)

where m ∼ M + 3, and � is an eight-component spinor.
Eq. (17) describes the lattice model when M ∼ −3. The mass
term m controls the transition between the trivial phase of the
lattice model with M < −3, and the regime where −3 < M
< −1. As we show below, this transition generates an R ∧ F
term with � = π in the effective response theory, indicating
that the lattice model is an rTCI when −3 < M < −1.

To determine the response theory of Eq. (17), we gauge
the U(1) and C4 symmetries and introduce the electromag-
netic gauge field Aμ and spin connection ωμ, respectively.

As shown in Appendix B, the spin connection minimally
couples to the Dirac fermions in the continuum limit via a
term proportional to the angular momentum in the covariant
derivative:

Dμ = ∂μ − iAμ − i 1
2ωμ[�yxσ 0 + Iσ z]. (18)

The Lagrangian for the minimally coupled Dirac fermions in
curved space is given by [80]

L = �̄
[
i�̄0σ zD0 + iE i

A�̄Aσ zDi − mIσ 0
]
�, (19)

where Ei
A are the inverse frame fields introduced in Sec. II A,

�̄ = �†�̄0σ z, and the 4 × 4 �̄ matrices are �̄x = σ yσ x, �̄y =
σ xσ x, �̄z = σ 0σ y, �̄0 = σ zσ x, �̄5 = σ 0σ z. Under a C4 gauge
transformation, the inverse frame fields, spin connection, and
continuum fermions transform as

Ei
x → cos(θ )Ei

x + sin(θ )Ei
y,

Ei
y → cos(θ )Ei

y − sin(θ )Ei
x,

ωμ → ωμ − ∂μθ,

� → eiθ 1
2 [�xyσ 0+Iσ z]�,

(20)

where θ is a function of xμ that takes values in
{0, π/2, π, 3π/2}. Here, the C4 gauge symmetry is actually
part of a larger SO(2)=U(1) gauge symmetry that contin-
uously rotates the Dirac fermions. The U(1) rotation gauge
symmetry is defined as in Eq. (20), but with θ taking continu-
ous values in [0, 2π ). The original lattice model does not have
this U(1) rotation gauge symmetry. Rather, it is a feature that
emerges in the continuum limit.

In addition to the gauge fields, we include an additional
PHS breaking perturbation to Eq. (19),

L′ = �̄m′�̄5σ 0�, (21)

and set m = −m̄ cos(φ) and m′ = −m̄ sin(φ), where φ is a
background field. We keep m̄ > 0 fixed, and treat φ as a
new parameter for the theory, such that φ = 0 corresponds to
m < 0 phase and φ = π corresponds to the m > 0 phase [25].
Physically, nonconstant values of φ encode either domain
walls or adiabatic evolutions of the Hamiltonian. For example,
φ = π

2 [1 − tanh(z/ξ )] corresponds to a PHS breaking domain
wall between the m < 0 and m > 0 phases that is located near
z = 0 and has width ξ . Similarly, φ = πt/T corresponds to
a PHS breaking adiabatic evolution from the m < 0 phase at
t = 0 to the m > 0 phase at t = T .

Now we are ready to obtain the effective topological re-
sponse theory in terms of Aμ, ωμ, and φ by integrating out
the massive fermions via a diagrammatic expansion. For our
purposes, we are only interested in the topological contribu-
tions from the triangle diagrams in Fig. 5.3 These diagrams
evaluate to

Leff = φ

4π2
εμνρκ∂μων∂ρAκ . (22)

3There are additional diagrams that contribute Maxwell-like terms
in the effective response theory, but these terms are not topological
and will not be considered here.
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FIG. 5. The relevant Feynman diagrams for calculating the
response theory in Eq. (22). The solid lines indicate fermion
propagators.

For m < 0 (i.e., φ = 0) the effective response vanishes, in
agreement with the fact that the lattice model is trivial for
M < −3. For m > 0 (i.e., φ = π ) the effective response is

Leff = 1

4π
εμνρκ∂μων∂ρAκ , (23)

which is the R ∧ F term from Eq. (1) with � = π . We
only considered the low-energy Lagrangian and leading or-
der diagrams here. However, corrections to the continuum
Lagrangian and higher-order diagrams will not change these
results since the value of � is quantized by PHS and TRS.

Strictly speaking, we have only confirmed in this sec-
tion that � changes by π at the M = −3 (m = 0) band
crossing. This ambiguity is related to the fact that the R ∧ F
term is a total derivative. However, because the M < −3 phase
corresponds to a trivial insulator where � must vanish, we
conclude that the −3 < M < −1 phase is an rTCI with a
� = π R ∧ F term. Similar calculations show that � vanishes
for |M| < 1 and |M| > 3, and that � = π for 1 < |M| < 3 as
well.

As a final point, we also note that increasing φ from 0
to 2π , in Eq. (19) is a periodic process that takes the trivial
insulator back to itself. Based on the diagrammatic calculation
in Eq. (22), an R ∧ F term with � = 2π is generated during
this process. This agrees with our earlier conclusion that � is
2π periodic for spinless fermions with TRS.

C. Surface theory

In this section, we analyze the surface theory of the rTCI.
This is accomplished by considering a domain wall where
−3 < M < −1 for z < 0, and M < −3 for z > 0, i.e., a
domain wall between the rTCI and a trivial insulator. This
mass configuration generates a pair of gapless two-component
Dirac fermions that are localized at the 2D domain wall [81].

FIG. 6. The relevant Feynman diagram for calculating the sur-
face Wen-Zee term. The solid lines indicate fermion propagators.

The Hamiltonian for the surface Dirac fermions is

Ĥsurf = ψ†Hsurfψ,

Hsurf = [σ xi∂x − σ yi∂y]σ 0, (24)

where ψ is a four-component spinor. The TRS, PHS, and C4

symmetry act on the surface Hamiltonian as

T̂surf = σ yσ yK,

Ĉsurf = σ xσ xK,

Û4−surf = exp

(
i
π

4
[−σ zσ 0 + σ 0σ z]

)
.

(25)

Consistent with the bulk theory, T̂ 2
surf = (Û4−surf )4 = +1. To

show that the surface Dirac cones are symmetry protected, we
note that a mass term for Eq. (24) must be proportional to
σ zσ 0,x,y,z. All of these terms break one of the symmetries in
Eq. (25). Specifically, the σ zσ 0 term breaks TRS, the σ zσ z

term breaks PHS, and the σ zσ x,y terms break C4 symmetry.
As such, all three symmetries are required to protect the pair
of gapless Dirac cones.

Based on our discussion of the effective field theory in
Sec. II C 1, we now gap the surface by adding a PHS break-
ing mass term msσ

zσ z. The response theory for the massive
symmetry broken surface is found by coupling the fermions
to the gauge field Aμ and spin connection ωμ via the covariant
derivative,

Dμ = ∂μ − iAμ − i
1

2
ωμ[−σ zσ 0 + σ 0σ z], (26)

and integrating out the massive fermions via a diagrammatic
expansion. The resulting response theory contains a Wen-Zee
term,

Lsurf = sgn(ms)

4π
εμνρωμ∂νAρ, (27)

that corresponds to the one-loop diagram in Fig. 6. This is
exactly the anomalous surface term from Eq. (8) with �� =
±π . Local surface effects can change the discrete shift of the
surface Wen-Zee term by an integer, and, in general, a π/2
surface disclination binds charge 1

8 + n
4 with n ∈ Z.

D. Numerics

In this section, we numerically verify our previous analy-
sis. For a lattice with open boundaries along the z direction, we
find mid-gap states with a Dirac-like dispersion [see Fig. 7(a)].
The midgap states correspond to the gapless surface states of
the rTCI and can be gapped out by adding an on-site PHS
breaking term of the form

Hs = ms

∑
r∈surface

c†(r)�5σ 0c(r), (28)

205149-9



MAY-MANN, HIRSBRUNNER, CAO, AND HUGHES PHYSICAL REVIEW B 107, 205149 (2023)

(a)

(b)

FIG. 7. (a) The spectral function along high-symmetry lines of
the lattice model in Eq. (12) with M = −2, sixteen sites and open
boundary conditions in the z direction, and symmetry preserving
surfaces hosting midgap states. (b) The same spectral function with a
PHS breaking mass term Eq. (28) with ms = 0.5 that gaps the surface
states.

where the sum is taken over the sites on the open surfaces of
the lattice and c†(r) is the eight-component fermion creation
operator at site r. The density of states of the system with
the PHS breaking surface perturbation shows no midgap states
[see Fig. 7(b)].

We now calculate the charge distribution of the rTCI when
PHS symmetry is broken at the surface by Eq. (28). We in-
clude negative background charges at each lattice site such
that the system is charge neutral at half-filling. Physically,
these negative charges correspond to the ions that form a
crystalline solid. The charge distribution is uniform when the
lattice is free of disclinations, as shown in Fig. 8. To probe
the mixed geometry-charge response of the rTCI with PHS
breaking surfaces, we add a π/2 disclination-line to the lattice
(detail of the disclianted lattice are given in Appendix C).
As shown in Fig. 8, excess charge is localized on the top
and bottom surfaces of the rTCI when there is a disclination.
This excess surface charge is localized around the core of
the disclination (see Fig. 9). Figure 10 shows the net charge
that is localized on the top surface of the disclinated lattice
model for various values of M. The disclination charge was
calculated using a 3D generalization of the method presented
in Ref. [57]. It should be noted that here we have included
background ionic charge on each site, while such background
charges were not included in Ref. [57]. When 1 < |M| < 3 the

FIG. 8. The charge per layer, Q(z), for the Hamiltonian in
Eq. (12) on a 13 × 13 × 13 lattice with M = −2, a PHS breaking
mass term Eq. (28) with ms = 0.25, and either no disclination (top)
or a π/2 site-centered disclination (bottom). The background charge
of −4 per site is added to obtain charge neutrality at half-filling.

disclinated surface has surface charge 1
8 (mod 1

4 ) (up to finite
size corrections), indicating that the lattice model is an rTCI
with a nontrivial R ∧ F term is these regimes. When |M| > 3
and |M| < 1 the surface charge is 0 (mod 1

4 ), indicating that
the R ∧ F term is trivial in these regimes. These results are in
full agreement with our previous analysis.

FIG. 9. The charge density summed over the top half of the z
layers for the Hamiltonian in Eq. (12) on a 13 × 13 × 13 lattice with
M = −2, a PHS breaking mass term Eq. (28) with ms = 1, and a π/2
disclination. The background charge of −4 per site is added to obtain
charge neutrality at half-filling. The cross (+) marks the disclination
core.
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FIG. 10. The surface charge Q0 bound to a π/2 site-centered
disclination as a function of the parameter M. The charge is cal-
culated using Eqs. (12) and (28) on a 15 × 15 × 15 lattice with
open boundaries and a PHS breaking mass ms. Here, ms = min
(|M − 1|, |M − 3|), such that the surface gap is equal to the bulk
gap. We attribute the deviation of the charge from its quantized value
near |M| = 1 and 3 (vertical dashed lines) to finite size effects and
the closing of the bulk gap.

The R ∧ F term also predicts that angular momentum is
bound to magnetic fluxes on gapped surfaces. Since the lattice
has discrete rotation symmetry, there is no local notion of
conserved angular momentum and we have to consider the
total angular momentum, i.e., the angular momentum bound
to all surfaces. To this end, we consider a lattice with periodic
boundaries in the x and y directions, and open boundaries in
the z direction. To gap the surfaces, we add the following
PHS-breaking mass terms:

Hs = ms

∑
r∈+z-surface

c†(r)�5σ 0c(r)

− ms

∑
r∈-z-surface

c†(r)�5σ 0c(r), (29)

where the first sum is over lattice sites on the top surface, and
the second sum is over lattice sites on the bottom surface.
Since the mass terms on the top and bottom surfaces have
opposite signs, the system is mirror symmetric along the z
axis (M̂z = �5zσ 0). The top and bottom surface therefore
contribute equally to any angular momentum responses.4

When a magnetic field is applied along the z direction
such that nflux units of magnetic flux pierce the top and
bottom surfaces, the angular momentum increases by nflux

mod (gcd(2nflux, 4)), when the R ∧ F term is nontrivial and
0 mod (gcd(2nflux, 4)) when the R ∧ F term is trivial. The
mod (gcd(2nflux, 4)) ambiguity comes from the fact that the
total angular momentum is defined mod (4) since we are
considering fourfold rotations, and mod (2nflux) since it is
possible to add a pair of 2D insulators (each with integer
discrete shift) to the top and bottom surfaces while preserving
mirror symmetry.

In Fig. 11 we plot the total angular momentum for the ge-
ometry described above with lattice dimensions 11 × 11 × 11
and nflux = 11 as a function of M. This calculation was done

4If the mass terms on the top and bottom surfaces have the same
sign, the angular momentum responses of the two surfaces are
opposite and cancel.

FIG. 11. Total angular momentum AM of a system pierced by
11 unit of magnetic flux that are uniformly threaded along the z
direction as a function of the parameter M. The angular momentum
is calculated using Eq. (12) and 29 on an 11 × 11 × 11 lattice with
open boundaries in the z direction and periodic boundaries in the x
and y directions. Here, ms = min(|M − 1|, |M − 3|), such that the
surface gap is equal to the bulk gap.

using the method outlined in Ref. [57]. When no magnetic
flux is applied, or when the system has periodic boundaries
in the z direction, the total angular momentum is 0 mod (4)
for all M. Therefore the angular momentum in Fig. 11 must
arise from the surface responses. Additionally, because of
mirror symmetry, both the top and bottom surfaces must con-
tribute equally to the total response. For a system pierced by
nflux = 11 units of magnetic flux, we find that the angular
momentum is 1 mod (2) (0 mod (2)) when the R ∧ F term
is nontrivial (trivial), as predicted by the above theory. We
attribute the vanishing of the angular momentum in the small
region 2.7 � |M| < 3 to finite size effects and the closing of
the bulk gap at |M| = 3 (c.f. the finite size deviations near gap
closings in Fig. 10).

We also confirm through numerical calculations that angu-
lar momentum is bound to magnetic fluxes that pass through
boundaries normal to the x and y directions, not just bound-
aries normal to the z direction. Naively, one might attempt to
verify this by considering a geometry with periodic bound-
aries in the z direction, and open boundaries in the x and y
directions. However, if one threads flux through the bound-
aries of such a system while preserving C4 symmetry, it is
necessary to introduce bulk magnetic monopoles. The angular
momentum bound to the monopoles by the mixed Witten
effect will be equal and opposite the angular momentum
bound to the boundaries, and the total angular momentum will
therefore not change (modulo purely surface effects).

However, it is possible to verify that angular momentum
is bound to fluxes on boundaries normal to the x or y di-
rections utilizing a geometry with both open and periodic
boundary conditions in the x and y directions on different
layers. Specifically, this geometry is composed of Lz layers
in the z direction, such that the top L′

z and bottom L′
z layers

have open boundaries in the x and y directions and the middle
Lz − 2L′

z layers have periodic boundaries in the x and y di-
rections. A schematic cross-section of this geometry, which
we refer to as the “mixed” geometry, is shown in Fig. 12.
The top and bottom surfaces of the mixed geometry contain
regions that are normal to the z direction as well as regions that
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FIG. 12. An xz cross-section of the “mixed” geometry, where the
top two and bottom two layers have open boundaries in the x and y
directions, while the middle layers have periodic boundaries in the
x and y directions (black arrows). The top and bottom surfaces (red)
have sections that are normal to the z direction, and sections that
are normal to the x or y directions. This allows for magnetic fluxes
(indicated schematically in orange) to pierce surfaces normal to
either the x, y, or z directions.

are normal to the x and y directions. This makes it possible
to thread flux through surfaces normal to the x, y, and z
directions simultaneously. Similar to before, the surfaces can
be made massive while preserving mirror symmetry, such that
the top and bottom surfaces contribute equally to any angular
momentum responses.

We repeat our previous angular momentum calculation us-
ing a L′

z = 2 mixed geometry with dimensions 11 × 11 × 11
and a total of nflux = 11 units of magnetic flux piercing the top
and bottom surfaces. Here the surface mass terms in Eq. (29)
are extended to cover all open boundaries of the top and
bottom surfaces, not just those normal to the z direction. When
the magnetic field pierces the regions of the surfaces that
are only normal the z direction, the total angular momentum
is the same as in Fig. 11. Additionally, if we configure the
magnetic field such that an arbitrary portion of the magnetic
field pierces the regions of the surface that are normal the x
and y directions, the angular momentum is again the same as
in Fig. 11. We therefore conclude that angular momentum is
bound to magnetic fluxes on all surfaces, as predicted by the
R ∧ F term.

E. Dimensional reduction to a 1+1D SPT

In Ref. [30], Song et al. showed that a TCI protected by
a crystalline symmetry is adiabatically connected to a lower-
dimensional SPT and that the crystalline symmetry of the
higher-dimensional TCI becomes an on-site symmetry of the
lower-dimensional SPT. In this section we use this logic to
dimensionally reduce the 3D rTCI to a 1D SPT with an on-site
U(1) symmetry, PHS, TRS, and Z4 symmetry, the latter of
which is inherited from the C4 rotation symmetry of the rTCI.
This 1D SPT is equivalent to the topological phase of the
well known Su-Schrieffer-Heeger (SSH) [20] chain with an
additional trivial Z4 symmetry.

This connection is established as follows. Using the rTCI
surface theory from Sec. III C, we show that there exists a
symmetry preserving deformation that trivializes the entire
rTCI surface, except for the C4 rotation center of the surface.
Since the rotation center of the surface is single point, this
deformation reduces the effective dimension of the surface
from 2D to 0D. Treated as a 0D system, the rotation center of
the deformed surface has a zero-energy mode that is protected
by PHS, and has a net half-integer of charge. These are exactly
the same topological features that are found at the 0D edge
of a 1D SSH chain. The equivalence of the deformed rTCI
and the SSH chain therefore follows from the bulk-boundary
correspondence.

To this end, we consider the surface theory for a single
domain wall oriented normal to the z direction in Eq. (24).
We add the following generic mass deformation term to the
surface Hamiltonian,

Hsurf-mass = mxσ
zσ x + myσ

zσ y + mzσ
zσ z. (30)

Here we set mz = 0 and mx + imy = ms(r) exp(iθ ), where
(r, θ ) are polar coordinates on the surface and ms(r) � 0 is
a function of the radial coordinate that vanishes at r = 0
and goes to a nonzero constant m̄s as r → ∞. Due to the
dependence on the radial angle θ , this term is invariant under
C4 rotations as well as PHS and TRS. The single particle
spectrum of the surface theory can be explicitly solved. In
Appendix D, we show that the deformed surface has a single
zero-energy mode ψ0 that is localized at the rotation center,
r = 0. This mode is protected by PHS, and transforms trivially
under C4 rotations.

Additionally, a net half-integer of charge is localized at
r = 0. To show this, we take the zero-energy mode to be
empty, and integrate out the remaining massive fermions. The
effective theory for the massive fermions can be written in
terms of the fluctuations of the mass terms mx,y,z [82,83],

Lsurf-mass = εμνρ

8π
n · (∂μn × ∂νn)Aρ + nz

4π
εμνρωμ∂νAρ,

n = m
|m| , m = (mx, my, mz ). (31)

The first term Lsurf-mass arises from fluctuations of the mass
terms, while the second term is the half-quantized Wen-Zee
term that occurs on PHS breaking surfaces. Note that for
the constant PHS breaking mass term mx = my = 0, mz 
= 0,
Eq. (31) reduces to Eq. (27), while for PHS preserving sur-
faces mass terms with mz = 0 the Wen-Zee term vanishes.

Using Eq. (31), we find that charge Q = − 1
2 is local-

ized at r = 0 for the mass configuration mz = 0, mx + imy =
ms(r) exp(iθ ) [84]. Due to the aforementioned zero-energy
mode, this charge is only meaningfully defined modulo 1.

In total, we find that the surface of the rTCI can be sym-
metrically gapped except for a single zero-energy mode that
is localized at the rotation center and protected by PHS. The
rotation center also binds charge 1

2 mod (1). Treated as a 0D
system, the topological features of the rotation center match
those of the 0D surface of a 1D SSH chain with additional
trivial Z4 symmetry. Since the surface physics of the de-
formed rTCI and SSH chain are equivalent, the bulks of the
two systems are also equivalent due to the bulk-boundary
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correspondence. We can also understand the disclination
bound charge from this picture. For example, a π/2 disclina-
tion will remove one quarter of the 1/2 charge, i.e., it removes
1
4 × 1

2 = 1
8 charge at the rotation center leaving 3/8. However,

this would paradoxically imply the existence of a 1D insulator
with PHS and a charge polarization 3/8. The resolution to this
is that the disclination itself must also bind an additional 1/8
charge. The total charge therefore remains as 1/2, as expected
for a 1D insulator with PHS.

F. Surface topological order

If interactions are not present, the spinless rTCI does not
support a fully gapped symmetric surface. Here we show
that if interactions are included, the rTCI can support a fully
gapped symmetric surface with topological order. This is sim-
ilar to the topological orders that can be found on the surfaces
of time-reversal invariant topological insulators [73,85–87].

We show here that the rTCI surface topological order is
Abelian with anyon content {1, e, e2, e3, m, m2, m3, eamb} ×
{1, f } for a, b = 1, 2, 3. The f particle is a fermion and the e
and m anyons are self-bosons with π/2 mutual statistics. The
surface topological order is enriched by C4 rotation symmetry
[88] such that the anyons carry both charge and angular mo-
mentum. Specifically, the e anyon has charge 1/2 and angular
momentum 0 and the m anyon has charge 0 and angular
momentum 1/4. This topological order is anomalous for 2D
systems with PHS but can be realized on the surface of the 3D
rTCI with PHS.

We use a vortex proliferation argument to construct this
topologically ordered surface state [85]. The first step of
this argument is to gap out the surface fermions by adding
superconducting terms that break U(1) charge conservation,
C4, rotation symmetry, TRS, PHS, and chiral symmetry. To
accomplish this it is useful to rewrite the four-component
surface spinor ψ from Eq. (24) as ψ = (ψ1, ψ2), where ψ1,2

are two-component Dirac spinors. In terms of these spinors,
the superconducting terms are

ĤSC = i�1ψ1σ
yψ1 + i�2ψ2σ

yψ2 + H.c. (32)

Under the U(1) and C4 symmetries, �1,2 transform as

U(1) : (�1,�2) → (�1ei2θ ,�2ei2θ ),

C4 : (�1,�2) → (�1eiπ/2,�2e−iπ/2).
(33)

The surface superconductivity therefore consists of a conden-
sate of Cooper pairs with charge 2 and angular momentum
±1. TRS and PHS act as T : �1,2 → �∗

2,1, and C : �1,2 →
−�∗

2,1.
To restore the surface symmetries, we follow the proce-

dure of vortex proliferation and disorder the superconducting
terms, (〈�i〉 = 0). There are two types of vortices that we
must consider. First are vortices where �1 and �2 both wind
by 2πn (n ∈ Z). Preempting our later identification of these
vortices with the m anyons of the theory, we refer to them
as 2πn m-vortices. Second, are vortices where �1 winds by
−2πn and �2 winds by 2πn, which we refer to as 2πn e-
vortices. To understand why we must consider both m- and
e-vortices, we note that if we proliferate only m-vortices the
composite operator �1�

∗
2 is not disordered [see Eq. (33)].

This composite operator breaks C4 symmetry, so the resulting
surface would have U(1) symmetry but not C4 symmetry. A
similar argument shows that only proliferating the e-vortices
results in a surface state with unbroken C4 symmetry and
broken U(1) charge conservation.

With this in mind, we now ask what vortices can be con-
densed to restore the surface symmetry. Following the usual
logic, the condensable vortices must be commuting bosons
with vanishing quantum numbers. Additionally, in order for
the resulting surface to be gapped, the condensed vortices
must not have any protected zero modes. To determine the
quantum numbers and statistics of the e and m-vortices, we
first note that due to the symmetry transformations in Eq. (33),
a 2π m-vortex is created by a π U(1) flux,5 and a 2π e-vortex
is generated by a −2π disclination. Let us now imagine tun-
neling an electromagnetic monopole into the bulk of the rTCI.
This process leaves behind a 2π U(1) flux on the surface,
equivalent to a 4π m-vortex. Based on our discussion of the
RF term in Sec. II B a magnetic monopole in the bulk of the
spinless rTCI carries angular momentum −1/2. From con-
servation of angular momentum, the 4π m-vortex must have
angular momentum 1/2, and the 2π m-vortex must have angu-
lar momentum 1/4. Similarly, a −2π disclination monopole
in the bulk carries charge 1/2, and so a 2π e-vortex has charge
1/2. Additionally, from the bulk braiding statistics of the flux
and disclination lines, we conclude that both types of vortices
are self-bosons and that a 2π e-vortex and a 2π m-vortex have
π/2 mutual statistics.

We will now determine the fate of the zero modes of the
vortices. The 2π e and the 2π m-vortices both host a single
complex fermion zero mode. This comes from the fact that a
2π m-vortex is a combination of a 2π vortex of �1 and a 2π

vortex of �2, each of which host a single Majorana zero mode
[89]. This complex zero mode is protected from acquiring a
gap by PHS. The same logic indicates that a 2π e-vortex also
has a complex zero-mode that is protected by PHS.

Based on these observations, the surface symmetry can
be restored by simultaneously condensing the following two
combinations of vortices: first, the combination of an −8π e-
vortex, an −8π m-vortex, and a Cooper pair with charge 2
and angular momentum 1, and second, the combination of an
−8π e-vortex, a 8π m-vortex, and a Cooper pair with charge 2
and angular momentum −1. Both of these combinations have
vanishing charge, vanishing angular momentum, and trivial
mutual statistics. Additionally, both vortex combinations have
a total of eight complex fermions, and these fermions can be
gapped out while preserving PHS. Under the first combination
of vortices, �1 winds by 16π , while �2 winds by 0, and under
the second combination �1 winds by 0, while �2 winds by
16π . Condensing both combinations of vortices therefore dis-
orders �1, �2, and any composite operator descendants. The
resulting surface state is therefore both gapped and symmetry-
preserving.

The resulting surface has several nontrivial deconfined ex-
citations (anyons). First, there are the fermionic excitations
that are the remnant of the gapped complex fermion zero
modes. We label these excitations as f . The rest of the anyons

5This is a hc
2e vortex in dimensionful units.
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correspond to vortices that have trivial statistics with the
condensed vortex combinations. Here, both 2πn e-vortices
and 2πn m-vortices (as well as the fusions of the two) are
deconfined. We label the 2π e-vortex with an unoccupied
complex zero-mode as the e anyon (the 2π e-vortex with an
occupied complex zero-mode as e × f ). Similarly, we label
the 2π m-vortex with an unoccupied zero-mode as the m
anyon. Based on our earlier observations, the e and m anyons
are self-bosons with π/2 mutual statistics. The e particle has
charge 1/2 and angular momentum 0, while the m particle has
charge 0 and angular momentum 1/4. Since the e4 and m4

anyons have trivial statistics with all other anyons and have
nonfractionalized quantum numbers, they should be regarded
as local particles and do not enter into the anyonic data of the
theory.

Having established the existence of the surface topological
order, we will now show that this surface topological order is
anomalous with respect to PHS. First, consider a purely 2D
theory with the same anyon content as the surface topological
order we constructed. The bosonic part of the topological
order can be represented in the K-matrix formalism as [58,90]

L2D-top = KIJ
εμνρ

4π
aI

μ∂νaJ
ρ + εμνρ

4π
qI a

I
μ∂νAρ

+ εμνρ

4π
sI a

I
μ∂νωρ, (34)

where K = 4σ x, qI = (2, 0), and sI = (0, 1). This 2D theory
is not consistent with PHS, as can be seen from the fact that
integrating out the dynamic gauge fields aI

μ produces a Wen-
Zee term

L2D-top = εμνρ

4π
ωμ∂νAρ, (35)

which breaks PHS.
For an alternative perspective, let us assume that there is a

purely 2D lattice system with the same topological order as
the gapped rTCI surface. For such a system, we can consider
the instanton process where a 2π U(1) flux is adiabatically
inserted in a local region [87]. This instanton event is a local
process for lattice systems. However, the e anyons have charge
1/2 and hence pick up an Aharonov-Bohm phase of −1 upon
encircling the flux. The resolution to this seeming paradox is
that the instanton event must bind an anyon that has π mutual
statistics with the e anyon. This anyon must be the m2 anyon.
However, the m2 anyon has angular momentum 1/2. If angular
momentum is conserved, the instanton event must therefore
be accompanied by a flow of angular momentum current. The
fact that inserting an electromagnetic flux drives an angular
momentum current indicates that the 2D lattice system must
necessarily break PHS (e.g., this is exactly what the Wen-Zee
term would generate).

Now, consider the same instanton event when the topolog-
ical order is defined on the surface of the rTCI. Here, the
flux insertion on the surface is accompanied by a monopole
tunneling event in the bulk of the rTCI. As before, the flux
insertion on the surface binds the m2 anyon, which has angular
momentum 1/2. Additionally, due to the mixed Witten effect
in the bulk of the rTCI, the monopole has angular momentum
−1/2. So, the angular momentum of the full 3D system is
conserved during the instanton event and there is no need for

an accompanying angular momentum current on the surface.
The topological order is therefore consistent with PHS when
placed on the surface of the rTCI.

IV. ROTATION-INVARIANT TOPOLOGICAL
CRYSTALLINE INSULATORS WITH MIRROR SYMMETRY

In this section, we discuss time-reversal invariant rTCIs
where the R ∧ F term is quantized by mirror symmetry in-
stead of PHS. Much of the bulk physics of the rTCIs with
mirror symmetry is the same as that of the rTCIs with particle-
hole symmetry, which we discussed in detail in Sec. III.
However, as noted in Sec. II C 2, unlike the rTCI with PHS,
the surfaces of the rTCI with mirror symmetry can be gapped
while preserving mirror symmetry, and without introducing
surface topological order. However, these symmetric gapped
surfaces still carry an anomaly, as a 2π/n surface disclination
binds charge 1/2n in spinless systems, and charge 1/n in
spin-1/2 systems (half the amount that is allowed in purely
2D systems). In this section, we will only consider spin-1/2
insulators, since they are more relevant to real materials. We
include the analysis for spinless fermions with mirror symme-
try in Appendix F.

Before we begin, we note that rTCIs with mirror symmetry
along the z axis and C2 rotation symmetry along the z axis
also have inversion symmetry. However, the models we study
are trivial in terms of the classification of inversion symmet-
ric topological insulators [12] and higher order topological
insulators with hinge modes [33,34,91]. This is because the
topological properties of these systems are due to the rotation
and mirror symmetries separately, not inversion symmetry. In
addition to the analysis of a specific model, in Sec. V, we
construct appropriate topological invariants for more generic
mirror symmetric rTCIs.

A. Lattice model with spin-1/2 fermions

In this section, we present a lattice model for the spin-1/2
rTCI with TRS and mirror symmetry C4 rotation symmetry.
The spin-1/2 rTCI is realized by the following a 16-band
model (eight bands per spin):

H(k) = [sin(kx )�xσ 0 + sin(ky)�yσ 0 + sin(kz )�zσ 0

+ sin(kx ) sin(kz )�0σ x + sin(ky) sin(kz )�0σ y

+ (M + cos(kx ) + cos(ky) + cos(kz ))�0σ z]σ 0.

(36)

The spin of the fermions is given by Sz = 1
2 Iσ 0σ z. Eq. (36)

conserves charge and is invariant under TRS, mirror symme-
try and C4 rotation symmetry. The TRS operator is given by

T̂ = i�yσ yσ yK, (37)

mirror reflection is defined as

M̂z = i�5zσ 0σ z, (38)
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where M̂−1
z H(kx, ky, kz )M̂z = H(kx, ky,−kz ), and C4

rotation is defined as

Û4 = exp

(
i
π

4
[�yxσ 0σ 0 + Iσ zσ 0 + Iσ 0σ z]

)
. (39)

Here, T̂ 2 = (M̂z )2 = (Û4)4 = −1, since the fermions have
spin 1/2.

The lattice model in Eq. (36) also has PHS given by

Ĉ = �5yσ yσ yK. (40)

However, this PHS is not relevant to our discussion and should
be regarded as an “accidental” symmetry of the lattice model.

The spectrum of the spin-1/2 lattice model is eightfold
degenerate but otherwise the same as in Eq. (16), and hence
is gapped for |M| 
= 1 and 3. Below we show that this lattice
model realizes a spin-1/2 rTCI with a � = 2π R ∧ F term for
1 < |M| < 3.

B. Response theory

To derive the response theory for the spin-1/2 model, we
follow the methodology used in Sec. III B and consider the
system close to the band crossing at M = −3. Near this point
in the phase diagram the low-energy degrees of freedom have
a Dirac-like form:

H = [�xσ 0i∂x + �yσ 0i∂y + �zσ 0i∂z + m�0σ z]σ 0, (41)

where m ∼ M + 3 controls the transition between the M <

−3 trivial phase, and the −3 < M < −1 phase of the lattice
model. To determine the effective response theory, we gauge
the U(1)-charge and C4-rotation symmetries and couple the
fermions to the gauge field Aμ and spin connection ωμ via the
covariant derivative (see Appendix B):

Dμ = ∂μ − iAμ − i 1
2ωμ[�xyσ 0σ 0 + Iσ zσ 0 + Iσ 0σ z]. (42)

Similar to before, the C4 rotation symmetry of Eq. (41) is ac-
tually part of an enlarged U(1) rotation symmetry. In addition
to the gauge fields, we also include a perturbation

H′ = m′�5σ 0σ 0, (43)

and set m = −m̄ cos(φ), and m′ = −m̄ sin(φ), with m̄ > 0,
such that m < 0 when φ = 0, and m > 0 when φ = π . If φ is
promoted to be a function of z, mirror symmetry is preserved
only if φ(z) = −φ(−z) mod(2π ). If φ is constant (as it should
be in the interior of an insulator) mirror symmetry requires
that φ = 0, or π .

The effective response theory is obtained by a diagram-
matic expansion in terms of Aμ, ωμ, and φ, and we are again
primarily interested in the triangle diagrams depicted in Fig. 5.
The contribution from the triangle diagrams is

Leff = φ

2π2
εμνρκ∂μων∂ρAκ , (44)

which differs by a factor of 2 from the effective response of
the spinless lattice model, Eq. (22). For φ = π (constant), the
effective response is,

Leff = 1

2π
εμνρκ∂μων∂ρAκ , (45)

which is exactly the R ∧ F term in Eq. (1) with � = 2π .
Following the same logic from Sec. II, the R ∧ F term van-
ishes for M < −3 and the coefficient of the R ∧ F term is
� = 2π , for −3 < M < −1. Repeating this procedure for the
band crossing at M = ±1, 3 we conclude that � = 2π for
1 < |M| < 3 and vanishes otherwise.

As noted before, when the coefficient of the R ∧ F
term is nonconstant, mirror symmetry requires that �(z) =
−�(−z) mod(4π ). Because of this, it is possible to have
mirror symmetry preserving domain walls between the rTCI
and a trivial insulator, as we show in the next section. We also
note that for Eqs. (41) and (43), increasing φ from 0 to 2π is
a periodic process. During this process a � = 4π R ∧ F term
is generated, which agrees with our earlier conclusion that for
spin-1/2 systems with TRS, � is 4π periodic.

C. Surface theory

To analyze the surface theory of the rTCI with mirror
symmetry, we will use a pair of domain walls that are related
to one another by mirror symmetry. Specifically, consider a
geometry where −3 < M < 1 for |z| < zdw and M < −3 for
|z| > zdw, which corresponds to a pair of symmetry related
domain walls at z = ±zdw (zdw is taken to be large compared
to the correlation length of the insulators). The Hamiltonian
for the two surfaces is

Ht = [σ xi∂x − σ yi∂y]σ 0σ 0,

Hb = [σ xi∂x − σ yi∂y]σ 0σ 0,
(46)

or, equivalently,

Ht-b = [σ xi∂x − σ yi∂y]σ 0σ 0σ 0, (47)

where the two domain walls are indexed by σ 0σ 0σ 0σ z. The
mirror symmetry acts on Eq. (47) as

M̂z−surf = σ 0σ 0σ zσ x, (48)

while TRS and C4 symmetry act on Eq. (47) as

T̂surf = σ yσ yσ yσ 0K,

Û4−surf = exp
[
i
π

4
(−σ zσ 0σ 0 + σ 0σ zσ 0 + σ 0σ 0σ z )

]
σ 0.

(49)

Equation (47) has two surface mass terms of note: (i) a
mass term proportional to σ zσ zσ 0σ z that preserves TRS and
breaks mirror symmetry and (ii) a mass term proportional to
σ zσ zσ 0σ 0 that preserves TRS and mirror symmetry. Hence,
in agreement with our discussion from Sec. II C 2, we find
that the surface Dirac fermions are not protected by mirror
symmetry since they can be gapped with the second mass term
while preserving mirror.

The response theory of the gapped surfaces is found by
coupling the surface Dirac fermions to the U(1) gauge field
Aμ and spin connection ωμ, and then integrating out the mas-
sive fermions using a diagrammatic expansion. The expansion
contains a topological Wen-Zee term, which corresponds to
the one-loop diagram in Fig. 6. For the mirror symmetry
breaking surface mass, one surface hosts a Wen-Zee term
with discrete shift S = 1 and the other hosts a Wen-Zee term
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having coefficient S = −1. A π/2 disclination of the rTCI
with mirror symmetry therefore binds charge 1/4 on one
surface, and charge −1/4 on the other surface (modulo local
contributions).

For the mirror symmetry preserving surface mass, both
surfaces host a Wen-Zee term with the same discrete shift
S = ±1, and a π/2 disclination binds charge ± 1

4 on both sur-
faces. Mirror symmetry preserving surface effects can change
the discrete shift of both surface Wen-Zee term by the same
integer. Fractional charges are therefore bound to disclinations
of the massive surfaces of the rTCI regardless of whether the
surfaces break or preserve mirror symmetry, and the charge
bound to the surface disclination is half the amount that is
allowed in purely 2D systems. Hence, the fractional charge
bound to surface disclinations is a robust indicator of the
topology of the rTCI with TRS and mirror symmetry, even
in the absence of symmetry protected surface states.

It should be noted that since the rTCI with mirror symmetry
hosts symmetric, noninteracting gapped surfaces, it is not nec-
essary to include additional interactions to generate gapped
topologically ordered surfaces, as we did in Sec. III F.

D. Numerics

In this section, we numerically analyze the lattice model
of the spin-1/2 rTCI with mirror symmetry. As noted previ-
ously, the mirror symmetric rTCI admits a mirror symmetry
preserving gapped surface. For a lattice model with periodic
boundaries along the x and y directions and open boundaries
along the z direction, the mirror symmetric mass terms are

Hs =
∑

r∈+z surface

msc
†(r)�5σ 0σ 0c(r)

−
∑

r∈-z surface

msc
†(r)�5σ 0σ 0c(r). (50)

Here, c†(r) is the eight-component fermion creation operator
at site r, and the first (second) sum is over sites on the top
(bottom) surface of the lattice. The density of states of the sys-
tem with the mirror symmetric surface perturbation shows no
midgap states, and is the same as the density of states in shown
Fig. 7(b), up to a factor of 2 because of the spin of fermions.
As we discuss in Sec. IV F, when the lattice has open bound-
aries in all directions, the mirror symmetric gapped surface
has corner-vertex charges and a filling anomaly [92,93].

It is also possible to have gapped surfaces without a filling
anomaly if we instead use a mirror symmetry breaking surface
mass term of the form

Hs = ms

∑
r∈surface

c†(r)�5σ 0σ 0c(r), (51)

where ms is constant, and the sum is taken over all boundaries
of the system. This surface mass term produces a system with
an identical spectrum to that of Eq. (50).

We now turn our attention to the charge that is bound
to the gapped surfaces of the spin-1/2 rTCI with a discli-
nation. As discussed, the spin-1/2 rTCI admits both mirror
symmetry preserving and mirror symmetry breaking gapped
surfaces. However, the mirror symmetry preserving gapped
surfaces lead to a filling anomaly [92] such that the insulator is

FIG. 13. The surface charge Q0 bound to a π/2 site-centered
disclination as a function of the mass M. The charge is calculated
using the Hamiltonian in Eq. (36) and 51 on a 15 × 15 × 15 lat-
tice with open boundaries and a mirror symmetry breaking mass
ms = min(|M − 1|, |M − 3|). As in the spinless case, the deviations
of the charge from the quantized values around the gap closing points
|M| = 1 and 3 arise from finite size effects.

not charge neutral (including the negative ionic contribution)
when the chemical potential is in the gap. In contrast, when
mirror symmetry is broken at the surface, the insulator can
be charge neutral and free from the filling anomaly when the
chemical potential is in the gap. Since we are only interested
in charges that arise from disclinations, it is convenient to use
mirror symmetry breaking surface mass terms here.

The surface charge of the spin-1/2 lattice model with a
π/2 disclination and mirror symmetry breaking surface mass
term [Eq. (51)] is shown in Fig. 13. When 1 < |M| < 3, the
disclinated surface has an extra 1/4 mod (1/2) surface charge
(up to finite size corrections), indicating that the lattice model
is a spin-1/2 rTCI with a nontrivial R ∧ F term in this regime.
When |M| > 3 and |M| < 1, the surface charge is 0 (mod
1/2), indicating that the R ∧ F term is trivial in these regimes.

We can also consider the angular momentum bound
to magnetic flux using the same procedure discussed in
Sec. IV D. For mirror preserving mass terms in Eq. (50),
threading nflux magnetic fluxes along the z direction increases
the total angular momentum by 2nflux mod (4) if the R ∧ F
term is nontrivial, and by 0 mod (4) if the R ∧ F term is
trivial. Since the spin-1/2 model is equivalent to two copies of
the spinless model from Sec. III (one for Sz = +1/2, one for
Sz = −1/2), the angular momentum bound to an odd number
of magnetic fluxes is simply twice that found in Fig. 11.
Similarly, the results of Sec. III indicate that magnetic fluxes
threaded through boundaries normal to the x and y directions
also bind angular momentum in this system. These results are
in full agreement with our previous analysis.

E. Dimensional reduction to 1D SPT

The spin-1/2 rTCI with mirror symmetry can be dimen-
sionally reduced to a 1D spin-1/2 SSH chain protected by
mirror symmetry and an on-site Z4 spin rotation symmetry.
The boundaries of the spin-1/2 SSH chain host a Kramers pair
of zero energy modes, and have charge −1 (+1) when both of
the zero modes are empty (filled) [94]. Filling only one of the
zero modes results in a boundary with spin ±1/2 and charge
0. For a pair of mirror symmetry related boundaries, it is
possible to have TRS and mirror symmetry preserving gapped
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boundaries where the zero energy modes at each boundary are
all empty or all filled. The gapped boundaries carry the same
charge ±1 and spin 0.

To show this, we again take the two surface Hamiltonians
in Eq. (46), and add mass perturbations of the form

Ht-mass = [mx,tσ
zσ x + my,tσ

zσ y + mz,tσ
zσ z]σ 0,

Hb-mass = [mx,bσ
zσ x + my,bσ

zσ y + mz,bσ
zσ z]σ 0.

(52)

Under mirror symmetry, mi,t → mi,b, for i = x, y, z. Follow-
ing our discussion in Sec. III E, the spin-1/2 rTCI can be
dimensionally reduced to an SSH chain with gapless edge
modes by setting mz,t = mz,b = 0 and mx,t + imy,t = mx,b +
imy,b = ms(r) exp(iθ ), where (r, θ ) are polar coordinates on
the surface and ms(r) � 0 is a function of the radial coordinate
that vanishes at r = 0 and goes to a nonzero constant m̄s,
as r → ∞. This mass configuration preserves TRS, mirror
symmetry, and C4 rotation symmetry.

With this mass configuration there are two localized zero-
energy modes, ψ0↑,t/b, and ψ0↓,t/b, at the rotation center of each
surface (see Appendix D). The zero-energy modes of each
surface form a Kramers pair with spin ±1/2. The zero-energy
subspace is acted upon with the symmetries as

T : (ψ0↑,t/b, ψ0↓,t/b ) → (ψ0↓,t/b,−ψ0↑,t/b ),

C4 : (ψ0↑,t/b, ψ0↓,t/b ) → (ψ0↑,t/bei π
4 , ψ0↓,t/be−i π

4 ).
(53)

Interestingly, it is possible to gap out the edge modes of the
SSH chain by instead setting mz,t = mz,b = √

m̄2
s − ms(r)2,

such that mz,t and mz,b take on the same nonquantized value
near r = 0. This perturbation preserves all symmetries of the
spin-1/2 rTCI and gaps out the zero modes located at r = 0
on each surface.

To determine the charge that is bound at r = 0, we integrate
out the massive fermions, leading to the effective response
theory

Leff-t = εμνρ

4π
nt · (∂μnt × ∂νnt )Aρ + nz,t

4π
εμνρωμ∂νAρ,

Leff-b = εμνρ

4π
nb · (∂μnb × ∂νnb)Aρ + nz,b

4π
εμνρωμ∂νAρ,

nt/b = mt/b

|mt/b| , mt/b = (mx,t/b, my,t/b, mz,t/b). (54)

For the mass configurations discussed above, the response
theory indicates that charge −1 is localized near r = 0 on
both the top and bottom surfaces. It is also possible to have a
gapped surface with charge +1 localized near r = 0 by chang-
ing the signs of mz,t and mz,b. Viewed as two 0D systems, the
rotation centers of the top and bottom surfaces each have a
Kramers pair of unprotected modes, and carry charge −1 (+1)
when the zero modes are empty (filled). These are exactly the
characteristic features of the 0D surfaces of the spin-1/2 SSH
chain with mirror symmetry, and, using the bulk-boundary
correspondence, we conclude that the spin-1/2 rTCI and spin-
1/2 SSH chain with mirror symmetry are equivalent. We can
understand the bound disclination charge from this picture as
well. For example, a π/2 disclination will remove one quarter
of the −1 charge leaving a total charge of −3/4. Since such a
1D chain should have an integer charge polarization we expect
the disclination itself to carry the compensating −1/4 charge.

Since the mirror preserving gapped surfaces both carry
charge ±1, the net charge of the rTCI with mirror sym-
metry preserving gapped surfaces is ±2. The fact that the
symmetrically gapped surface has a net charge indicates that
the rTCI with mirror symmetry has a filling anomaly [92].
This filling anomaly also occurs for the spin-1/2 SSH chain
with mirror symmetry [93].

The spin-1/2 SSH chain with mirror symmetry can also
be further dimensionally reduced to a nontrivial 0D spin-1/2
system with on-site Z2 symmetry, which is inherited from the
mirror symmetry [93]. By extension, the spin-1/2 rTCI can
also be further dimensionally reduced to the same 0D system,
with an on-site Z4 spin rotation symmetry.

F. Octopole insulator

Interestingly, the rTCI with mirror symmetry can host a
pattern of gapped surfaces that generate corner charges. This
surface mass configuration turns the rTCI into an octopole
insulator [62]. Heuristically, we can see this by considering
the rTCI defined on a lattice with open boundaries in all di-
rections. Based on our previous discussion, this system admits
a surface mass configuration that fully gaps each surface and
that binds the same charge ±1 to the rotation center on the +z
and −z surfaces. To create an octopole insulator, we fraction-
alize the ±1 on each surface charge into four charges of +1/4
or four charges of −1/4 and then we move the charges to the
vertices of the cubic lattice surface. This can be done smoothly
and without breaking any symmetries. The resulting system is
an octopole insulator with the same corner charge of either
all +1/4 or all −1/4 located at each vertex of the surface.
The resulting insulator has net charge ±2 which matches the
previously mentioned filling anomaly that is present when
mirror symmetry is preserved.

In terms of the microscopic model, the octopole insulator
is found by adding the following terms to the surfaces of the
rTCI with mirror symmetry,

Hs =
∑

r∈±z surface

±msc
†(r)�5σ 0σ 0c(r)

+
∑

r∈±x surface

±msc
†(r)�0σ xσ 0c(r)

+
∑

r∈±y surface

±msc
†(r)�0σ yσ 0c(r), (55)

where the sum is taken such that +ms is used for the fermions
on the +x,+y, and +z surfaces and −ms is used for the
fermions on the −x,−y, and −z surfaces. As shown in Fig. 14,
these surface mass terms lead to the octopole insulator with
charge −1/4 localized on each vertex of the cubic lattice when
ms > 0. The charge at each vertex is +1/4 when ms < 0. It
should be noted that these quantized charges are not fixed to
the vertices by the rotation and mirror symmetry alone. For
example, it is possible to move the charges such that charge
±1 is localized at the points where the rotation axis intersects
the surface of the rTCI (as in Sec. IV E). Equivalently, it
is possible to move the charges such that charge ±1/2 is
localized at the corners where the mirror plane intersects the
hinges of the surface of the rTCI.
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FIG. 14. The surface charge configuration for the lattice Hamil-
tonian in Eq. (36) with mirror symmetry preserving surface mass
terms in Eq. (55) on a 10 × 10 × 10 lattice with M = −2, ms = 1.
A background charge of −8 per site is added such that the bulk of
the insulator is charge neutral. A fractional charge −1/4 is bound to
each corner.

V. SYMMETRY EIGENVALUE FORMULAS
FOR rTCI INVARIANTS

In Sec. IV and Appendix F, we determine the coefficient
of the R ∧ F term, �, using linear response theory for lattice
models with C4 symmetry, mirror symmetry, and TRS. In this
section we construct a symmetry indicated version of this
topological invariant that distinguishes the topological (� 
=
0) and trivial phases (� = 0) phases of mirror symmetric
rTCIs with additional inversion symmetry. We consider two
generic classes of insulators in the following sections:

(1) spinless insulators with TRS, Cn symmetry, mirror
symmetry, and inversion symmetry;

(2) spin-1/2 insulators with conserved spin, TRS, Cn sym-
metry, mirror symmetry, and inversion symmetry.

Notably, this list excludes spin-1/2 insulators with spin-
orbit coupling. Determining an analogous formula for such
systems remains an open question. It should be noted that
the combination of mirror and inversion symmetry leads to C2

symmetry around the same axis as the Cn symmetry. This C2

symmetry is redundant for n = 2, 4, and 6, but enlarges the
C3 rotation symmetry to C6. So, the above classes effectively
consider Cn rotations with only n = 2, 4, and 6.

A. Spinless fermions

Here we construct an invariant for spinless insulators with
TRS (T 2 = 1), Cn symmetry, mirror symmetry, and inversion
symmetry. As noted previously, these insulators necessarily
have a C2 rotation subgroup. The invariant is constructed in
terms of the symmetry eigenvalues of the occupied bands at
the time-reversal invariant momenta (TRIM) of the Brillouin
zone, i.e., lattice momenta k such that k = −k modulo a
reciprocal lattice vector. Since the TRIM are invariant under
C2 rotations, we consider only C2 rotations in this section, with
the implicit understanding that the C2 rotations may be part of
a larger rotation group. In Appendix G, we discuss why it is
sufficient to only consider C2 rotations when considering Cn

rTCIs with n = 4 or 6.
Before we define the invariant, it is necessary to go over

some preliminary details. Take a generic insulator with the

above symmetries. When restricted to the mirror invariant
plane kz = 0 or π , the occupied bands have an M̂z eigenvalue
that is independent of the kx and ky components of the mo-
mentum. We can define the Chern number parity of a band
restricted to a mirror invariant plane as [95]

(−1)Ci[kz] = χi(0, 0, kz )χi(0, π, kz )χi(π, 0, kz )χi(π, π, kz )

= ζi(0, 0, kz )ζi(0, π, kz )ζi(π, 0, kz )ζi(π, π, kz ),
(56)

where kz = 0 or π , i is a band index, and χi = ±1, ζi = ±1
are the C2 and inversion eigenvalues, respectively, of the ith
band at a given high-symmetry point. We can therefore label
each band by its mirror eigenvalue and Chern number parity
at each mirror invariant plane.

If we restrict our attention to the kz = 0 (kz = π ) slice
of the Hamiltonian, bands with (−1)Ci[0] = −1 ((−1)Ci[π] =
−1) must come in TRS related pairs. Since mirror symmetry
eigenvalues are real for spinless fermions, these pairs must
also share the same mirror symmetry eigenvalue at the mirror
invariant plane. Additionally, for such a pair of TRS-related
bands, the Chern number parity of each band at the mirror
invariant plane is separately conserved (only the total Chern
number is conserved without C2/inversion symmetry) [95].
This follows from Eq. (56) and the fact that the Ĉ2 and
inversion eigenvalues of a pair of TRS-related bands must
be the same at high symmetry points. For example, take the
following four-band model for a pair of 2D insulators with
Chern number ±1,

H(kx, ky) = (m + cos(kx ) + cos(ky))σ zσ z

+ sin(kx )σ xσ 0 + sin(ky)σ yσ 0, (57)

with time reversal symmetry T̂ = σ yσ yK and C2 symmetry
Ĉ2 = σ zσ z. At half filling, this model has two TRS related
bands with Chern number ±1 for 0 < |m| < 2 and two bands
with Chern number 0 for 2 < |m|. Without C2 symmetry, it is
possible to adiabatically transition between these two phases
by adding a second mass term, e.g., σ zσ x or σ zσ y.

With this in mind, we proceed to construct the invariant for
the coefficient of the R ∧ F term. Consider the bands with odd
Chern number parity for a fixed mirror invariant plane (kz = 0
or kz = π ). Since the fermions are spinless, these bands have
mirror eigenvalue ±1 when restricted to this mirror plane.
By our above arguments, the bands with odd Chern number
parity come in pairs with the same mirror eigenvalue. We take
the number of occupied bands with mirror eigenvalue ±1 and
odd Chern number parity at kz = 0/π to be Nodd

0/π,±1 ∈ 2Z, and
define the following four invariants:

η0,+1 = exp

(
i
π

2
Nodd

0,+1

)
,

ηπ,+1 = exp

(
i
π

2
Nodd

π,+1

)
,

η0,−1 = exp

(
i
π

2
Nodd

0,−1

)
,

ηπ,−1 = exp

(
i
π

2
Nodd

π,+1

)
.

(58)
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Since Nodd
0/π,±1 is even, these four invariants all take values

of ±1. We can understand η0/π,±1 as the net Chern number
parity of half of the bands with odd Chern number parity in
the appropriate sector.

The η terms are not meaningful individually, as a re-
definition of the mirror symmetry M̂z → −M̂z exchanges
η0/π,+1 ↔ η0/π,−1, and shifting momentum kz → kz + π ex-
changes η0,±1 ↔ ηπ,±1. We therefore first consider the
product of all four η invariants,

(−1)ν = η0,+1ηπ,+1η0,−1ηπ,−1. (59)

Using Eq. (56), we find that ν is actually the same invariant
that describes the quantized axion electrodynamics � term of
3D inversion symmetric topological insulators [ν = �/π in
Eq. (6)] [95]. Since spinless fermions with TRS (T̂ 2 = +1)
cannot support a nontrivial quantized � term in 3D [1], it is
necessarily the case that ν = 0 for the systems we consider
here.

Here we show that the spinless rTCI with mirror symmetry
is described by the invariant,

(−1)νRF = η0,+1ηπ,+1 = η0,−1ηπ,−1, (60)

where the second equality follows from ν = 0. In Appendix F,
we construct a lattice model that realizes the spinless rTCI,
and determine the coefficient of the R ∧ F term using a linear
response formalism analogous to those in Secs. III B and
IV B. For this lattice model, νRF = 0, when the lattice model
is described by a trivial R ∧ F term and νRF = 1 when the
lattice model is an rTCI with nontrivial R ∧ F term. Con-
cisely, νRF = �/π , where the left-hand side is calculated
using the symmetry eigenvalue formula, and the right-hand
side is calculated using linear response. Additionally, as we
show in Appendix G, a linear, Dirac-like band crossing for
a system of spinless fermions with TRS, C2 symmetry and
mirror symmetry requires a minimum of eight bands, and a
nontrivial R ∧ F term is either generated or removed during
such a band crossing, if and only if the value of νRF changes
as well. More generally, we find that νRF = �/π for all in-
sulators with these symmetries that have transitions generated
by Dirac-like band structures at TRIM. We conjecture that the
relation νRF = �/π holds in general, but additional analysis
is required to confirm this.

The invariant νRF may be written in a Fu-Kane-like form
as follows [29]. For a single TRIM, �n, there are Nodd

−1 [�n]
bands that have odd Chern number in the mirror plane that
contains �n, and have C2 eigenvalue −1 at �n. Based on our
previous arguments, these bands come in pairs, and we can
order them such that the 2i and 2i − 1 bands have the same
inversion eigenvalue at �n, ζ2i[�n] = ζ2i−1[�n]. In terms of
these bands, νRF is

(−1)νRF =
∏

n

δ−1[�n],

δ−1[�n] =
1
2 Nodd

−1 [�n]∏
i=1

ζ2i[�n], (61)

where we have used Eq. (56) and the fact that inversion sym-
metry is equal to the product of C2 and mirror symmetries.

This leads to an interpretation of νRF as the Fu-Kane invariant
[29] for the nontrivial bands with C2 eigenvalue −1 at a given
TRIM. A similar invariant can be constructed in terms of the
nontrivial bands with C2 eigenvalue +1 at a given TRIM, and
since ν = 0, these invariants are equal.

We also note that there is a second independent invariant to
consider:

(−1)νW Z,z = η0,+1η0,−1 = ηπ,+1ηπ,−1. (62)

Since νW Z,z only involves a single mirror invariant plane, it
is a weak topological invariant. As we argue here, a nonzero
value of νW Z,z indicates that the insulator is described by a 3D
Wen-Zee term

LW Z,z = Sz

4π2
Gzε

μνρωμ∂νAρ (63)

where Sz is a constant integer, Gz is the reciprocal lattice
vector in the z direction, and μ, ν, and ρ run over x, y, and t .
The coefficient of the 3D Wen-Zee term is related to the weak
invariant as Sz = νW Z,z mod(2). The anisotropic 3D Wen-Zee
term indicates that disclinations in an xy plane bind charge,
or equivalently, disclination lines carry charge per unit length
along the z direction.

To show the connection between νW Z,z and the 3D Wen-
Zee term, we consider a spinless 2D insulator with C2 rotation
symmetry and TRS. Such an insulator will have Nodd

2D occupied
bands with odd Chern number parity, and these bands will
come in pairs that are related by TRS with opposite Chern
number. In Ref. [55], it was shown that for such insulators, a
filled pair of TRS related bands with Chern numbers ±C are
described by a 2D Wen-Zee term

LW Z,2D = S
2π

εμνρωμ∂νAρ, (64)

with discrete shift S = C. To proceed, we use the fact that the
Chern number parity of the ith band is

(−1)Ci = χi(0, 0)χi(0, π )χi(π, 0)χi(π, π ), (65)

where χi is the C2 eigenvalue at a given high symmetry point
[95]. Taking the number of occupied bands with odd Chern
number parity to be Nodd

2D ∈ 2Z (Nodd
2D must be even due to

TRS) we define the following invariant:

(−1)νW Z = exp

(
i
π

2
Nodd

2D

)
. (66)

Following our above discussion, the 2D insulator we are con-
sidering here is described by a Wen-Zee term with discrete
shift S = νW Z mod(2), i.e., (−1)νW Z is the parity of the Wen-
Zee term.

Returning to the weak invariant νW Z,z of a 3D insulator, if
we treat the kz = 0 plane as a 2D insulator, then η0,±1 is the
parity of the Wen-Zee term that describes the Mz = ±1 sector
of the kz = 0 plane. The product η0,+1η0,−1 is therefore the
parity of the full Wen-Zee term of the kz = 0 plane. Since the
coefficient of the Wen-Zee term is quantized, it cannot change
as a function of kz as long as the gap and rotation symmetry
are maintained. Each constant kz plane is therefore described
by the same Wen-Zee term as the kz = 0 plane. From this, we
conclude that Sz = νW Z,z mod(2), i.e., (−1)νW Z,z is the parity
of the 3D Wen-Zee term.
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For the rTCIs from Secs. III and IV, νW Z,z = 0. The
minimal model for νW Z,z = 1 consists of stacking the 2D
Hamiltonian in Eq. (57) along the z direction. Using linear re-
sponse theory, we find that for 2 < |m|, νW Z,z = 0 and the 3D
Wen-Zee response vanishes, while for 0 < |m| < 2, νW Z,z = 1
and there is a 3D Wen-Zee response with Sz = sgn(m) (see
Appendix H for details of the linear response calculation).

Our 2D analysis also gives a new perspective on the
“strong” invariant νRF . The invariant η0/π,+1 indicates that
the kz = 0/π plane of the Mz = +1 sector is described by
a Wen-Zee term (Eq. (64)) with (−1)S = η0/π,+1. We can
therefore interpret (−1)νRF = η0,+1ηπ,+1 as the change in the
parity of the Wen-Zee term between the Mz = +1 sectors of
the kz = 0 and kz = π planes. Since the total Wen-Zee term
must be constant as a function of kz, there must be a com-
pensating change in the parity of the Wen-Zee term between
the Mz = −1 sectors of kz = 0 and kz = π planes. This is
reflected in the second equality in Eq. (60).

B. Spin-1/2 fermions with additional spin conservation

Having discussed spinless fermions, we now construct an
analogous invariant for spin-1/2 insulators with conserved
spin, TRS (T 2 = −1), Cn symmetry [(Ĉn)n = −1], mirror
symmetry [(M̂z )2 = −1], and inversion symmetry. Again, we
only consider the C2 subgroup of rotations here.

The analysis is simplified by the observation that for a spin-
1/2 insulator with conserved spin, it is possible to decompose
the insulator into two blocks with Sz = ±1/2, and that each
of these blocks can be treated as a spinless insulator with a
spinless TRS and C2 rotation symmetry, mirror symmetry and
inversion symmetry. To show this, we write the block diagonal
Hamiltonian for a spin-1/2 insulator as

H(k) = H′(k) ⊗ σ 0, (67)

where H is a 2n × 2n Bloch Hamiltonian, H′ is an n × n
matrix, and the fermionic spin is given by Si = 1

2 In ⊗ σ i for
i = x, y, and z. Here we have made the Kronecker product
explicit for clarity. In general, the TRS, C2 rotation symmetry,
mirror symmetry, and inversion symmetry operators are

T̂ = T̂ ′ ⊗ σ yK,

Ĉ2 = Ĉ′
2 ⊗ iσ z,

P̂ = P̂′ ⊗ σ 0,

M̂z = Ĉ2P̂ = [Ĉ′
2P̂′] ⊗ iσ z,

(68)

where P̂ is the inversion symmetry operator, and the Pauli
matrices that act on the spin degrees of freedom are fixed
by the transformation properties of fermionic spin under the
symmetries. The symmetry operators satisfy

T̂ ′H(k)T̂ −1 = H(−k),

Ĉ2H(k)Ĉ−1
2 = H(R2k),

P̂H(k)P̂−1 = H(−k),

M̂zH(k)M̂−1
z = H(−R2k).

(69)

If we consider the Hamiltonian for the Sz = +1/2 block,
H′(k), we find that

T̂ ′H′(k)T̂ ′−1 = H′∗(−k),

Ĉ′
2H′(k)Ĉ′−1

2 = H′(R2k),

P̂′H′(k)P̂′−1 = H′(−k),

M̂ ′
zH′(k)M̂ ′−1

z = H′(−R2k),

(70)

where T̂ ′ = T̂ ′K, and Ĉ′
2, P̂′ and M̂ ′

z are defined as in Eq. (68).
We therefore find that the Sz = +1/2 block inherits a TRS,
C2, mirror, and inversion symmetry. Importantly, (T̂ ′)2 =
(Ĉ′

2)2 = (M̂′
z )2 = +1, and so the Sz = +1/2 block can be

treated as spinless fermions with appropriate TRS, C2 symme-
try, mirror symmetry and inversion symmetry. Physically, Ĉ′

2
is generated by the orbital angular momentum of the fermions.
Similar logic also holds for the Sz = −1/2 block.

We now consider the invariant constructed in Sec. V A for
the Sz = +1/2 block, νRF↑. As discussed previously, if we
restrict the system to a single mirror invariant plane, bands
with odd Chern number parity come in pairs with the same
mirror eigenvalue. We take the number of bands with Sz =
+1/2, and M̂′

z eigenvalue ±1 and odd Chern number in the
kz = 0/π plane to be Nodd,↑

0/π,±1 ∈ 2Z and define the following
invariants:

η
↑
0,+1 = exp

(
i
π

2
Nodd,↑

0,+1

)
,

η
↑
π,+1 = exp

(
i
π

2
Nodd,↑

π,+1

)
,

η
↑
0,−1 = exp

(
i
π

2
Nodd,↑

0,−1

)
,

η
↑
π,−1 = exp

(
i
π

2
Nodd,↑

π,−1

)
.

(71)

We can understand η0/π,±1 = ±1 as the net Chern number
parity of half of the Sz = +1/2 bands with odd Chern number
parity and mirror eigenvalue ±1 at kz = 0 or kz = π . The η↓
invariants for the Sz = −1/2 fermions are constructed analo-
gously.

Since the Sz = ±1/2 sector can be mapped onto a system
of spinless fermions, all results pertaining to η↑ follow those
established in Sec. V A. In particular,

1 = η
↑
0,+1η

↑
π,+1η

↑
0,−1η

↑
π,−1. (72)

The invariant νRF↑ is defined as

(−1)νRF↑ = η
↑
0,+1η

↑
π,+1 = η

↑
0,−1η

↑
π,−1. (73)

The corresponding invariant for the Sz = −1/2 fermions,
νRF↓, is related to νRF↑ by TRS, and as such νRF↑ = νRF↓.
For the spin-1/2 lattice model in Sec. IV, we calculate
νRF↑ and find that νRF↑ = 1 for 1 < |M| < 3, and νRF↑ = 0
otherwise. Hence, νRF↑ = 1 correctly differentiates the
spin-1/2 rTCI from the trivial states, and νRF↑ = �/2π . In
Appendix G, we also show that νRF↑ = �/2π generically
for Hamiltonians that have a Dirac-like band structure at
TRIM. We again conjecture that νRF↑ = �/2π for the class
of insulators considered here, but an analysis for general
lattice bandstructures is required.
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We can put Eq. (73) into a form similar to Eq. (61) as
follows. For a single TRIM �n, there are Nodd

−i,↑[�n] bands that
have Sz = +1/2, odd Chern number in the mirror plane that
contains �n, and C2 eigenvalue −i at �n. Such bands come in
pairs with the same inversion eigenvalue at �n. If we organize
these bands such that the 2 j and 2 j − 1 bands share the same
inversion eigenvalue at �n, the invariant νRF,↑ is

(−1)νRF,↑ =
∏

n

δ−i,↑[�n],

δ−i,↑[�n] =
1
2 Nodd

−i,↑[�n]∏
j=1

ζ2 j[�n]. (74)

This is effectively Eq. (61) applied to the Sz = 1/2 fermions.
The corresponding formula for νRF,↓ is related to Eq. (74) by
the spin-1/2 TRS of the full system.

We also note that

(−1)νRF↑,z = η
↑
0,+1η

↑
0,−1 = η

↑
π,+1η

↑
π,−1, (75)

defines a weak invariant that describes a system with a 3D
Wen-Zee term (as does the TRS related invariant νRF↓,z). This
Wen-Zee term differs by a factor of 2 from that given in
Eq. (63) due to Kramers degeneracy for spin-1/2 fermions.

To conclude this section, it is worth reiterating that the
expressions derived for spinful fermions are based on the
assumptions that spin is conserved and cannot be applied
to systems with spin-orbit coupling. Determining a general
invariant for spin-1/2 insulators, and relating it to the R ∧ F
term remains an open question for further research.

VI. THE R ∧ F TERM IN SYSTEMS WITH BROKEN
TIME-REVERSAL SYMMETRY

In this section, we discuss the R ∧ F term in systems that
break time-reversal symmetry (TRS). As we show below,
the mixed geometry-charge responses arising from the R ∧ F
term are intertwined with the charge response of the axion
electrodynamics � term [Eq. (6)] in spinless systems when
TRS is broken. Interestingly, we find that a nonzero quantized
R ∧ F term naturally arises alongside a quantized � term in
spinless mirror symmetric axion insulators [91,95,96] with
additional Cn rotation symmetry.

A. Disclination charges in 2D systems with broken TRS

To demonstrate this intertwining of responses in 3D, we
first analyze the interplay between geometry-charge responses
and purely charge responses in 2D systems with broken
TRS. The charge bound to disclinations in 2D systems with
broken TRS depends on whether the fermions are spinless
or have spin-1/2. For spinless fermions without TRS, the
charge bound to 2π/n disclinations satisfies Qdisc = C/2n
mod (1/n), where C is the Chern number of the insulator.
For spin-1/2 fermions without TRS, the disclination charge
comes in multiples of 1/n (Qdisc = 0 mod (1/n)) regardless
of the Chern number of the insulator [51]. This was result
was previously proved in Ref. [57], and we shall provide an
alternative proof below.

To establish this, we first note that spinless fermions sat-
isfy (Ûn)n = +1, and spin-1/2 fermions satisfy (Ûn)n = −1,
where Ûn is the 2π/n rotation operator. In systems without
TRS, a system of spinless fermions can be mapped onto a
system of spin-1/2 fermions and vice versa, by redefining the
rotation operator

Ûn → Û ′
n = Ûne±iπ/n. (76)

This phase shift of the rotation operator also changes the
effective structure of lattice disclinations. In 2D, changing
from a spinless (spin-1/2) insulator with rotation operator
Ûn to a spin-1/2 (spinless) insulator with rotation operator
Û ′

n, amounts to adding an additional ±π/n U(1) symmetry
flux to 2π/n disclinations. The extra U(1) flux binds charge
±C/2n, where C is the Chern number of the insulator (note
that redefinition of the rotation operator does not change the
Chern number of the insulator).

From this relationship, we can draw some conclusions. If a
spin-1/2 insulator exists where C = +1 and the disclination-
bound charge Qdisc = 0, it implies the existence of a spinless
insulator with C = +1 and disclination charge Qdisc =
±1/2n. Continuing this logic, it must then be true that
Qdisc = 0 mod (1/n) for spin-1/2 insulators regardless of
the Chern number, and Qdisc = C/2n mod (1/n) for spinless
insulators with Chern number C.

Conversely, if there exists a spinless insulator with C =
+1, and Qdisc = 0, then there must exist a spin-1/2 insulator
with C = +1, and disclination-bound charge Qdisc = ±1/2n.
If this is true, then Qdisc = 0 mod (1/n) for spinless in-
sulators regardless of the Chern number, and Qdisc = C/2n
mod (1/n) for spin-1/2 insulators with Chern number C. Im-
portantly, it is not possible to have both spinless and spin-1/2
insulators with C = +1 and Qdisc = 0. If this were true, it
would imply that there exist insulators with zero Chern num-
ber and Qdisc = 1/2n, violating the results of Ref. [51].

To find out which one of these two scenarios plays out we
can calculate the disclination-bound charge in lattice models.
Indeed, this has already been previously done. The calcula-
tions in Refs. [51,55] show that there are spin-1/2 insulators
with C = +1, and Qdisc = 0, and spinless insulators with C =
+1, and Qdisc = ±1/2n. We therefore conjecture that Qdisc =
0 mod (1/n) for spin-1/2 insulators having broken TRS re-
gardless of Chern number, and Qdisc = C/2n mod (1/n) for
spinless insulators with broken TRS and Chern number C. In
terms of the response theories, this means that a system of
spinless fermions can have a Wen-Zee term with discrete shift
1/2 mod (1) if and only if it also has a Chern-Simons term
at level 1 mod (2). That is spinless fermions can have the
response action

L2D,spinless = S
4π

εμνρωμ∂νAρ + C

4π
εμνρAμ∂νAρ + · · · ,

(77)

where S = C mod (2).

B. Periodicity of the R ∧ F term in systems with broken TRS

To see how the intertwining of mixed geometry-charge and
pure charge responses in 2D insulators affects the 3D R ∧ F
term, we determine the periodicity of the coefficient of the
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R ∧ F term � when TRS is broken. For spin-1/2 insulators
with broken TRS, the disclination charge comes in multiples
of 1/n, regardless of Chern number, and the same logic used
in Sec. II C indicates that � has period 2π for these systems.
The situation for spinless insulators with broken TRS is more
complex. Here we show that the coefficients of the R ∧ F
term (�) and axion electrodynamics � term have a combined
periodicity, where

(�,�) ≡ (� + π,� + 2π ) ≡ (� + π,� − 2π )

≡ (� + 2π,�) ≡ (�,� + 4π ). (78)

To show this explicitly, consider a domain wall where the
value of � changes by ��. If the domain wall response can be
canceled by a purely 2D insulator without topological order,
then � and � + �� are equivalent. As noted in the main text,
a domain wall where the value of � changes by �� hosts a
Wen-Zee term with discrete shift S = ��/2π . When �� =
π the domain wall Wen-Zee term is canceled by the response
theory of the 2D spinless TRS breaking insulator in Eq. (77)
with S = −1. However, when S = −1, the Chern-Simons
term in Eq. (77) is nonvanshing. Therefore, if we add such a
2D insulator to the R ∧ F term domain wall with �� = π , the
domain wall does not host a Wen-Zee term, but instead hosts
a Chern-Simons term at level 1 mod (2). Hence, a domain
wall where � changes by π cannot be completely trivialized
by adding a purely 2D system.

Let us now consider a domain wall of both the R ∧ F term
and the � term [Eq. (6)], where � changes by �� and �

changes by ��. There is a Wen-Zee term at this domain wall
with discrete shift S = ��/2π and a Chern-Simons term
with coefficient ��/8π2. Based on our previous discussion,
when �� = π and �� = ±2π , the domain wall can be
completely trivialized by a 2D insulator. The R ∧ F term and
the � term therefore have a combined periodicity where � is
shifted by π, and � is shifted by ±2π . The other equivalence
relationships in Eq. (78) can be established using similar logic.

An interesting corollary of this analysis is that � = 2π is
not necessarily trivial for spinless fermions when Cn rotation
symmetry is present. We can show this using similar logic
to before. Consider a domain wall where � changes by 2π .
This domain wall will host a Chern-Simons term at level 1.
We can cancel this out by adding a 2D insulator with Chern
number 1 to the domain wall. However, as discussed above,
this 2D insulator will contribute a Wen-Zee term with discrete
shift S = 1/2 mod (1). Hence, a 2π domain wall of the �

term cannot be fully trivialized if Cn rotation symmetry is also
present.

C. Charge and geometry-charge responses in rTCIs with
broken TRS

Will will now argue, based on Eq. (78), that there exists
a special type of spinless mirror symmetric rTCI in a TRS-
breaking context. To show this, we note that both the R ∧ F -
and � terms are odd under mirror symmetry. Hence, for a
mirror symmetric insulator (�,�) = (−�,−�). This equa-
tion admits two nontrivial solutions (�,�) = (π/2, π ) and
(π/2,−π ), each of which describes a nontrivial spinless rTCI
with mirror symmetry. Since � is odd under time-reversal, the
two rTCIs are related to each other by time-reversal and do

not need to be considered individually. These insulators have
both a nontrivial R ∧ F term, and a nontrivial � term. The
� term has the same quantized coefficient as the � term that
describes time-reversal symmetric topological insulators and
axion insulators [25]. The coefficient of the R ∧ F term is half
of that which is allowed for mirror symmetric insulators with
TRS (see Sec. II C 2).

Since these rTCIs have both a nonvanishing R ∧ F term
and a nonvanishing � term, they exhibit topological charge
responses as well as mixed geometry-charge responses. In-
dividually, the charge responses should resemble those that
have been previously studied in the contexts of 3D topological
insulators with � = π [25]. The geometry charge responses
should be similar to those that we have discussed in previous
sections, albeit with a different quantization. It is also possible
that the combination of the R ∧ F term and the � term may
lead to fundamentally new phenomena,and we leave that to
future work.

Let us compare the spinless TRS-breaking system with
mirror symmetry to that with PHS. Naively, for spinless
insulators with PHS � = 0 or π [see second line of
Eq. (78)], and the value of � in unconstrained. However,
a spinless � = π insulator with broken TRS can actually
be adiabatically deformed into a � = 0 insulator without
breaking PHS. To show this, take a spinless insulator with
PHS and broken TRS where (�,�) = (π, 0). Since the value
of � is not quantized by PHS, we can adiabatically increase
� by 2π in this insulator, i.e., (�,�) → (π, 2π ). However,
from Eq. (78) we have that (�,�) = (π, 2π ) ≡ (0, 0). So,
the � = π insulator can be adiabatically deformed into a
trivial insulator without breaking PHS symmetry, and is
therefore a trivial insulator itself. The fact that PHS alone
cannot lead to a nonzero quantized value of � in spinless
systems is a direct consequence of the shared periodicity of
� and � in spinless systems without TRS.

For spin-1/2 insulators with broken TRS, � is 2π periodic
(regardless of �), and so � = 0 or π for systems with PHS or
mirror symmetry. As previously discussed, the � = π R ∧ F
term can also be realized in spinless insulators with TRS. So
the geometric-charge responses of these insulators will match
those already discussed in Sec. III and Appendix F.

D. Models for the mirror symmetric rTCI with broken TRS

In this section, we present a lattice model for the (�,�) =
(π/2, π ) rTCI with mirror symmetry and C4 rotation symme-
try. The minimal model for this rTCI is given by the following
four-band Bloch Hamiltonian:

H(k) = sin(kx )�x + sin(ky)�y + sin(kz )�z

+ (M + cos(kx ) + cos(ky) + cos(kz ))�0. (79)

The C4 rotation symmetry and mirror symmetry act on
Eq. (79) as

Û4 = exp

(
i
π

4
(�xy + I4)

)
,

M̂z = �z5, (80)

where I4 is the 4 × 4 identity matrix. This model also has
inversion symmetry, which is the product of Mz and C2 =
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(C4)2 symmetries. The spectrum of Eq. (79) is gapped except
when |M| = 1, 3, and below we show that this model real-
izes a mirror symmetric rTCI with (�,�) = (π/2, π ) when
1 < |M| < 3.

We determine the response theory for this insulator using
the same methods as in the main text. Specifically, for the band
crossing near M = −3 the continuum Hamiltonian is

H = �xi∂x + �yi∂y + �zi∂z + m�0. (81)

We couple this system to the spin connection ω and U(1)
gauge field Aμ via the covariant derivative

Dμ = ∂μ − iAμ − i 1
2ωμ(�xy + I4) (82)

and add the mirror symmetry breaking perturbation

H′ = m′�5. (83)

If we set m = −m̄ cos(φ), and m′ = −m̄ sin(φ), we find that
the effective response theory in terms of φ, A, and ω is given
by

Leff = φ

8π2
εμνρκ∂μων∂ρAκ + φ

8π2
εμνρκ∂μAν∂ρAκ

+ φ

32π2
εμνρκ∂μων∂ρωκ. (84)

When φ = 0 (M < −3 in the lattice model) the response
theory vanishes. When φ = π (−3 < M < −1 in the lattice
model), the response theory is

Leff = 1

8π
εμνρκ∂μων∂ρAκ + 1

8π
εμνρκ∂μAν∂ρAκ

+ 1

32π
εμνρκ∂μων∂ρωκ. (85)

The first two terms are the R ∧ F term with � = π/2 and the
� term with � = π , confirming that this model realizes the
previously predicted mirror symmetric rTCI with broken TRS.
We also find that there is an additional term that is quadratic
in the spin connection. This term was not predicted by our
earlier heuristic argument, but is not unexpected, and similar
terms have been previously studied [97].

If we ignore the Cn rotation symmetry, Eq. (79) is simply a
mirror symmetric axion insulator for 1 < |M| < 3 insulator,
as indicated by the nonvanishing � term in Eq. (85). The
spinless rTCI with (�,�) = (π/2, π ) is therefore equiva-
lent to a mirror symmetric axion insulator with additional
Cn symmetry. Based on this, the (�,�) = (π/2, π ) rTCI
with additional inversion symmetry is described by the same
topological invariant as inversion symmetric axion insulators
[95].

The surface theory of the model in Eq. (79) has been
exhaustively analyzed elsewhere (see Ref. [98], for example).
We would like to point out that the surface theory for Eq. (79)
when 1 < |M| < 3 consists of an odd number of 2-component
Dirac fermions, with a Dirac mass term that is odd under
mirror symmetry. So, for open boundary conditions, the sur-
faces on the top half and bottom half of the model can each
be gapped out by adding opposite mass terms to each half.
However, at the mirror invariant plane where the two halves
meet, there will be a domain wall that hosts an odd number

of one-dimensional chiral fermion modes. Since the fermions
are chiral, they cannot acquire a mass without closing the bulk
gap.

As mentioned above, there is also a spinless mirror sym-
metric rTCI with (�,�) = (π/2,−π ). This rTCI is related
to the (�,�) = (π/2, π ) rTCI by time reversal symmetry.
Hence, the minimal model for the (�,�) = (π/2,−π ) rTCI
is found by acting on Eq. (79) with the TRS operator �yK,
and redefining the C4 rotation operator as

Û4 → exp

(
i
π

4
(�xy − I4)

)
. (86)

Using linear response theory, we find that in the topological
insulator phase the effective response theory is the same as
in Eq. (85) but with opposite signs for the second and third
terms, i.e., � = π/2 and � = −π as expected.

VII. CONCLUSION AND OUTLOOK

In this work, we analyzed how electromagnetic and geo-
metric responses can be intertwined in 3D rotation-invariant
insulators. Our main focus was a mixed geometry-charge
term, denoted the R ∧ F term that can occur in the effective
response theories of such systems. The R ∧ F term gives rise
to a mixed Witten effect and imparts fractional statistics to
magnetic flux lines and disclination lines. Additionally, Wen-
Zee terms are bound to domain walls where the coefficient
of the R ∧ F term changes such as a surface. Using sym-
metry analyses and lattice models we show that a quantized
R ∧ F term occurs for a class of rotation-invariant topological
crystalline insulators with either PHS or mirror symmetry.
The coefficient of the R ∧ F term depends on if the rTCI is
composed of spinless fermions or spin-1/2 fermions. When
a mass term is added to the surface of an rTCI, the resulting
massive surface is described by a Wen-Zee response that has
half the coefficient that is allowed in purely 2D systems.

Based on our results, there are several open questions for
future work. First is the question of what mixed geometry-
charge responses are exhibited by other 3D topological
crystalline insulators, and how to relate a given continuum
response theory to a lattice model. We use linear response
theory to accomplish the latter in this work, but this approach
cannot be used on systems where the geometric effects are
nonperturbative. Second is the question of what other anoma-
lous symmetry-enriched topological orders can be realized on
the surface of only a topological crystalline insulator. A partial
answer to this question would come from a set of anomaly
indicators [99] for topological orders that are enriched by
crystalline symmetries. A final question is whether any phys-
ical systems can realize the R ∧ F term constructed here. In
this work, we find that for certain Cn and mirror symmetric
insulators without spin-orbit coupling, the R ∧ F term is de-
termined by the angular momentum and inversion eigenvalues
of the occupied bands at TRIM. To consider more realistic
materials, it is likely necessary to generalize this result to more
generic band-structures and systems with spin-orbit coupling.
In experiments, the R ∧ F term could be observed by using
scanning probes to detect the charge that is bound to surface
disclinations.
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APPENDIX A: DISCLINATION LINES AND COMPOSITE
DISCLINATION LINES WITH EMBEDDED

1D INSULATORS

As noted previously, the R ∧ F term indicates that discli-
nations carry polarization. However, it is possible to change
the local polarization of a disclination defect by embedding
an additional isolated 1D insulator at the disclination core.
For a gapped 3D system described by an R ∧ F term with
coefficient �, embedding a 1D insulator in the core of a 2π/n
disclination will result in a composite defect (disclination +
embedded 1D insulator) with polarization Pcomp = �/2πn +
P1D. Note that a disclination and a composite defect differ only
locally (i.e., near the defect core) and share the same Frank
angle. When the composite defect terminates at a surface of
the insulator, a composite surface defect is formed (surface
disclination + 0D edge of the embedded 1D insulator) with
charge �/2πn + P1D.

It is useful to consider embedding a 1D insulator in the core
of a disclination line in a 3D insulator with either PHS or mir-
ror symmetry. From the symmetry, we know the polarization
of the 1D insulator must be 0 or 1/2 mod (1) for spinless
fermions (we discuss spin-1/2 fermions below). As noted in
the main text, for spinless fermions with TRS, � is quantized
to 0 or π mod (2π ), where the latter corresponds to an rTCI.
Hence, for an rTCI, a symmetric 1D insulator embedded in
the core of a 2π/n disclination line will result in a composite
defect that carries polarization �/2πn + P1D = 1/2n + 1/2.
This also leads to a composite surface defect with charge
1/2n + 1/2.

For n = 2, 4, and 6, the difference in polarization bound
to a 2π/n disclination and a 2π/n composite defect (2π/n
disclination + embedded 1D insulator with polarization 1/2)
is inconsequential and does not change our conclusions.
This is because � (which is 2π periodic) determines the
polarization of a disclination only mod 1/n, and the polar-
ization of the disclination and composite defect differs by
1/2 = 0 mod (1/n) for n = 2, 4, and 6. However, for n =
3 there is a distinction since the difference in polarization
bound to a 2π/3 disclination and a 2π/3 composite defect is
1/6 mod(1/3). Hence, an n = 3 spinless rTCI hosts disclina-
tions with polarization 1/6 mod(1/3) and composite defects
with polarization 0 mod(1/3), while a trivial insulator hosts
disclinations with polarization 0 mod(1/3) and composite
defects with polarization 1/6 mod(1/3). We find that for all Cn

symmetries, the polarization of a disclination of an rTCI and
the polarization of a disclination of a trivial insulator differ
by 1/2n mod(1/n), and that the polarization of a composite
defect of an rTCI and the polarization of a composite defect of
a trivial insulator also differ by 1/2n mod(1/n). Similar argu-

ments indicate that the difference between the surface charge
bound to a surface disclination of an rTCI and the surface
charge bound to a surface disclination of a trivial insulator
is 1/2n mod(1/n), as is the difference between the surface
charge bound to a composite surface defects of an rTCI and
the surface charge bound to a composite surface defects of
a trivial insulator. For spin-1/2 fermions, the difference in
the polarization (charge) of both disclinations (surface discli-
nation) and composite defects (surface composite defects)
between an rTCI and a trivial insulator is 1/n mod(2/n) due
to Kramers degeneracy.

APPENDIX B: COUPLING LATTICE DIRAC
FERMIONS TO THE SPIN CONNECTION

In this Appendix, we discuss how to couple Dirac fermions
to the spin connection. The spin connection is a gauge field
whose flux distribution encodes the configuration of lattice
disclinations. For our purposes, it will suffice to analyze a
single four-component Dirac fermion that is located near an
n-fold high-symmetry point (HSPs) of the Brillouin zone of
a Cn symmetric lattice (i.e., the points of a Brillouin zone
that are invariant under Cn rotations). One can describe the
low-energy physics of generic systems that are Dirac-like near
HSPs by combining multiple four-component Dirac fermions.

The Hamiltonian for a single Dirac fermion located at an
n-fold HSP can be written as,

Ĥ = ψ†Hψ,

H = �xi∂x + �yi∂y + �zi∂z + m�0,
(B1)

where the � matrices are 4 × 4 anticommuting matrices. It is
useful to write the Cn rotation operator as

Un = exp

(
i
2π

n
L

)
, (B2)

where L is the Cn angular momentum operator and Un satisfies

U †
n H(k)Un = H(Rnk), (B3)

where H(k) is the Bloch Hamiltonian of Eq. (B1). To proceed,
we note that the continuum Dirac Hamiltonian in Eq. (B1) has
a continuous U(1) rotation symmetry. In order for the contin-
uum theory to be consistent, the Cn lattice rotation symmetry
should be embedded in this enlarged U(1), i.e.,

U †(θ )H(k)U (θ ) = H(R(θ )k),

U (θ ) ≡ exp(iθL),
(B4)

where R(θ ) is a rotation of the momentum by θ . The most
general, consistent definition of the Cn angular momentum is

L ≡ 1
2�xy + pI4, (B5)

where I4 is the 4 × 4 identity matrix, and �xy = −i�x�y.
For spinless fermions (Un)n = +1 and for spin-1/2 fermions
(Un)n = −1. So, for spinless fermions p must be a half-
integer, while for spin-1/2 fermions, p must be an integer.
Here, the value of p is defined only modulo n, and any
physical quantity should only depend on the value of p
modulo n.
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We now gauge the Cn lattice rotation symmetry. To do
this, we must introduce the frame fields, eA

i (and inverses
Ei

A) for A = x, y, z, and the spin connection ω. Under a local
Cn transformation θ (xμ), the inverse frame fields, and Dirac
fermions transform as

Ei
x → cos(θ )Ei

x + sin(θ )Ei
y,

Ei
y → cos(θ )Ei

y − sin(θ )ei
x+,

ωμ → ωμ − ∂μθ,

ψ → eiθLψ = eiθ ( 1
2 �xy+pI4 )ψ.

(B6)

In terms of these fields, the minimally coupled Lagrangian is

L = ψ̄
[
i�̄0D0 + iE i

A�̄ADi − m
]
ψ, (B7)

where �̄A = �0�A, �̄5 = �0�5, and �̄0 = �0. The covariant
derivative is given by

Dμ = ∂μ − iωμ

[
1
2�xy + pI4

]
. (B8)

The Lagrangian in Eq. (B7) is invariant under the Cn gauge
transformation given in Eq. (B6), as desired.

APPENDIX C: DETAILS OF THE DISCLINATED LATTICE

In this Appendix, we present details on how to define a
tight-binding lattice model with disclinations. For a cubic
lattice that is free of disclinations, a generic Hamiltonian can
be written in real space as

Ĥ =
∑

r

1

2
c†(r)T0c(r) + c†(r + ẑ)Tzc(r)

+ c†(r + x̂)Txc(r) + c†(r + ŷ)Tyc(r) + H.c., (C1)

where c† is an n-component fermionic creation operator (in
this work n = 8 for the spinless fermion models and n = 16
for the spin-1/2 fermion models). The matrices T0 and Tx,y,z

are the on-site and nearest-neighbor hopping terms, respec-
tively. The next-nearest-neighbor (NNN) hopping terms that
appear in the models considered in the main text take the form

ĤNNN =
∑

r

c†(r + x̂ + ẑ)Tx+zc(r) + c†(r + x̂ − ẑ)Tx−zc(r)

+ c†(r + ŷ + ẑ)Ty+zc(r)

+ c†(r + ŷ − ẑ)Ty−zc(r) + H.c. (C2)

In this work, we study π/2 site-centered disclinations, as
depicted in Fig. 15. The important features of the disclina-
tion are the disclination core, indicated by the cross, and the
hopping terms across the disclination cut, indicated by dashed
lines. On this lattice, the Hamiltonian in Eq. (C1) becomes

Ĥdisc =
∑

r

1

2
c†(r)T0c(r) + c†(r + ẑ)T+zc(r)

+
∑
〈r,r′〉

solid, x

c†(r′)Txc(r) +
∑
〈r,r′〉

solid, y

c†(r′)Tyc(r)

+
∑
〈r,r′〉

dashed

c†(r′)Tdiscc(r) + H.c., (C3)

r1

r2

+

FIG. 15. An xy-cross section of the disclinated lattice. The center
of the disclination is marked as +.

where the first sum is over all sites of the lattice, the second
sum is over sites connected by solid lines along the +x di-
rection in Fig. 15, the third sum is over sites connected by
solid lines along the +y direction, and the fourth sum is over
sites connected by dashed lines. We exclude hopping terms
between the disclination core and its nearest-neighbor sites
as these terms are not determined by the bulk Hamiltonian.
If included, these terms must be carefully chosen to respect
the C3 rotation symmetry of the disclinated lattice. The terms
involving Tdisc are hopping terms across the disclination. Since
crossing the disclination rotates the fermions, the disclination
hopping terms are given by

Tdisc = TxU
−1
4 = U −1

4 Ty, (C4)

where U4 is the C4 rotation matrix.
The NNN hopping terms on the disclinated lattice are

Ĥdisc, NNN

=
∑
〈r,r′〉

solid, x

c†(r′ + ẑ)Tx+zc(r) +
∑
〈r,r′〉

solid, x

c†(r′ − ẑ)Tx−zc(r)

+
∑
〈r,r′〉

solid, y

c†(r′ + ẑ)Ty+zc(r) +
∑
〈r,r′〉

solid, y

c†(r′ − ẑ)Ty−zc(r)

+
∑
〈r,r′〉

dashed

c†(r′ + ẑ)Tdisc, +zc(r)

+
∑
〈r,r′〉

dashed

c†(r′ − ẑ)Tdisc, −zc(r) + H.c. (C5)

The first and second sums are over sites r and r′ in the same xy
plane that are connected by a solid line along the +x direction
in Fig. 15. The third and fourth sums are over sites r and r′ in
the same xy plane that are connected by a solid line along the
+y direction. The third and fourth sums are over sites r and r′
in the same xy plane that are connected by a dashed line with a
clockwise orientation. The next-nearest-neighbor disclination
hopping terms Tdisc,±z are defined as

Tdisc, +z = −Tdisc, −z = Tx+zU
−1
4 = U −1

4 Ty+z. (C6)
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APPENDIX D: ZERO-ENERGY SURFACE MODE

In this Appendix, we demonstrate the existence of a zero
energy mode on the surface of the spinless rTCI when a mass
vortex is added. The continuum surface Hamiltonian is

H = σ xσ 0(i∂x ) − σ yσ 0(i∂y), (D1)

and the mass vortex term takes the form

HM = ms(r)σ z(σ x cos θ + σ y sin θ ), (D2)

where θ is the polar-coordinate angle in the xy plane, and
ms(r) is a function of the polar-coordinate radius that vanishes
at r = 0. It is convenient to convert the Hamiltonian to polar
coordinates to identify the zero energy eigenstate:

H = i

(
0 eiθ

e−iθ 0

)
⊗ σ 0 ∂

∂r
−

(
0 eiθ

−e−iθ 0

)
⊗ σ 0 1

r

∂

∂θ

+ ms(r)σ z ⊗
(

0 e−iθ

eiθ 0

)
. (D3)

Let us choose ms(r) = m̄s�(r − R), where � is a step func-
tion and R > 0. We make use of the following ansatz to obtain
the zero mode:

� =

⎛
⎜⎜⎜⎜⎝

u1(r)einθ

u2(r)ei(n+1)θ

u3(r)ei(n−1)θ

u4(r)einθ

⎞
⎟⎟⎟⎟⎠. (D4)

Applying the Hamiltonian to this ansatz, we find that the zero
energy solution must satisfy the following equations:(

∂2
r − n(n + 1)

r2
− m2

s

)
u1 = 0, (D5)(

∂2
r + 2

r
∂r − n(n + 1)

r2
− m2

s

)
u2 = 0, (D6)(

∂2
r + 2

r
∂r − n(n − 1)

r2
− m2

s

)
u3 = 0, (D7)(

∂2
r − n(n − 1)

r2
− m2

s

)
u4 = 0. (D8)

Making the substitution u = r
1
2 f in the first and last equa-

tions yields

r2 d2 f

dr2
+ r

df

dr
−

[
m2

s r2 + n(n ± 1) + 1

4

]
f = 0, (D9)

and making the substitution u = r− 1
2 f in the remaining two

equations yields

r2 d2 f

dr2
+ r

df

dr
−

[
m2

s r2 + n(n ± 1) + 1

4

]
f = 0. (D10)

The mass vanishes in the region r < R, ms(r) = 0, and the
four equations have solutions

u1 = c1r−n, u2 = c2r−n−1, u3 = c3rn−1, u4 = c4rn.

(D11)

For r > R where the mass is finite, these equations can be
solved with modified Bessel functions.

As the potential is regular at the origin and at infinity,
� must also be regular at r = 0 and as r → ∞. The wave
function � must also be continuous at r = R. These condi-
tions lead to the conclusion u2 = u3 = 0. First, suppose u2

is finite for r > R. Then the regularity at r → ∞ requires it
to be a modified Bessel function of the second kind, which
is nonvanishing at r = R. We therefore must have n � −1
to ensure continuity at r = R and for u2 to be regular at the
origin. However, for r < R, the eigenvalue equations

u2 = − i

m̄s
e2iθ

(
∂r − 1

r
∂θ

)
u3, (D12)

u3 = i

m̄s
e−2iθ

(
∂r + 1

r
∂θ

)
u2 (D13)

indicates that u3 must be nonzero for r > R when u2 is
nonzero. Following the same logic as before, this indicates
that c3 
= 0, which in turn indicates that n � 1 for u3 to be
regular at the origin. Thus, there is a contradiction, and the
only possibility is that u2 = u3 = 0 for all r.

A similar argument applied to u1 and u4 leads to the con-
clusions n = 0, and the solution must be

u =

⎛
⎜⎜⎝

1
0
0
−i

⎞
⎟⎟⎠

√
π

2m̄s

{
e−m̄sr (r > R)

e−m̄sR (r < R)
. (D14)

The symmetries of the model are T̂ = σ y ⊗ σ yK , Ĉ =
σ x ⊗ σ xK, and Ĉ4 = exp[i π

4 (−σ z ⊗ σ 0 + σ 0 ⊗ σ z )]. Under
these symmetries, the zero mode transforms as T̂ u = −iu,
Ĉu = iu, and Ĉ4u = u.

APPENDIX E: TOPOLOGICAL CRYSTALLINE
INSULATOR WITH PHS FOR SPIN-1/2 FERMIONS

In this Appendix, we present a model for the spin-1/2 rTCI
with TRS, PHS and C4 rotation symmetry. The spin-1/2 rTCI
is realized by the following 16-band model (eight bands per
spin):

H(k) = [sin(kx )�xσ 0 + sin(ky)�yσ 0 + sin(kz )�zσ 0

+ sin(kx ) sin(kz )�0σ x + sin(ky) sin(kz )�0σ y

+ (M + cos(kx ) + cos(ky) + cos(kz ))�0σ z]σ 0,

(E1)

where the spin of the fermions is given by Sz = 1
2 Iσ 0σ z.

The spectrum for the lattice model is fourfold degenerate and
gapped for |M| 
= 1, 3,

E±(k) = [sin(kx )2 + sin(ky)2 + sin(kz )2

+ sin(kx )2 sin(kz )2 + sin(kz )2 sin(kz )2

+ (M + cos(kx ) + cos(ky) + cos(kz ))2]1/2. (E2)

Here we show that this lattice model realizes a spin-1/2 rTCI
with a � = 2π R ∧ F term for 1 < |M| < 3.

Equation (E1) conserves charge and is invariant under
TRS, PHS, and C4. The TRS and PHS operations are defined
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as

T̂ = i�yσ yσ yK,

Ĉ = i�5yσ yσ yK,
(E3)

and C4 rotation is defined as

Û4 = exp

(
i
π

4
[�yxσ 0σ 0 + Iσ zσ 0 + Iσ 0σ z]

)
. (E4)

Here T̂ 2 = (Û4)4 = −1 because the fermions have spin-1/2.

1. Response theory

We follow the methodology used in Sec. III B to derive
the response theory for the spin-1/2 model. We consider the
system close to the band crossing at M = −3 where the low-
energy degrees of freedom obtain the Dirac-like form

H = [�xσ 0i∂x + �yσ 0i∂y + �zσ 0i∂z + m�0σ z]σ 0, (E5)

with m ∼ M + 3. To determine the effective response theory,
we gauge the U(1) charge and C4 rotation symmetries and
couple the fermions to the gauge field Aμ and spin connection
ωμ via the covariant derivative (see Appendix B),

Dμ = ∂μ − iAμ − i
1

2
ωμ[�xyσ 0σ 0 + Iσ zσ 0 + Iσ 0σ z]. (E6)

Similar to before, the C4 rotation symmetry of Eq. (E5) is
part of an enlarged U(1) rotation symmetry. In addition to the
gauge fields, we also include a PHS breaking perturbation

H′ = m′�5σ 0σ 0, (E7)

and set m = −m̄ cos(φ), and m′ = −m̄ sin(φ), with m̄ > 0,
such that m < 0 when φ = 0, and m > 0 when φ = π . The
effective response theory is obtained via a diagrammatic ex-
pansion in terms of Aμ, ωμ, and φ. As before, we are primarily
interested in the triangle diagrams shown in Fig. 5. The con-
tribution from the triangle diagrams is

Leff = φ

2π2
εμνρκ∂μων∂ρAκ . (E8)

For φ = π , the effective response is

Leff = 1

2π
εμνρκ∂μων∂ρAκ , (E9)

which is exactly the R ∧ F term with � = 2π . We therefore
find that the continuum model with m > 0 (equivalent to the
lattice model with −3 < M < −1) is a spin-1/2 rTCI with a
� = 2π R ∧ F term. Repeating this procedure for the band
crossings at M = ±1, 3 we conclude that � = 2π for 1 <

|M| < 3 and vanishes otherwise.

2. Surface theory

Here we analyze the surface theory of the spin-1/2 rTCI.
For a C4 invariant surface with −3 < M < 1 for z < 0 and
M < −3 for z > 0, the surface theory consists of four two-
component Dirac fermions,

Ĥsurf = ψ†Hsurfψ,

Hsurf = [σ xi∂x − σ yi∂y]σ 0σ 0,
(E10)

where ψ is an eight-component spinor. The spin of the surface
fermions is given by Sz

surf = 1
2σ 0σ 0σ z and the surface symme-

try operations are

T̂surf = σ yσ yσ yK,

Ĉsurf = σ xσ xσ yK,

Û4−surf = exp

[
i
π

4
(−σ zσ 0σ 0 + σ 0σ zσ 0 + σ 0σ 0σ z )

]
.

(E11)

The symmetry operations satisfy T̂ 2
surf = (Û4−surf )4 = −1 be-

cause the fermions have spin-1/2.
As expected, the surface theory is gapped out by the PHS

breaking surface mass term msσ
zσ zσ 0. To find the response

theory for the massive, PHS breaking surface, we once again
introduce the gauge field Aμ and spin connection ωμ via the
covariant derivative

Dμ = ∂μ − iAμ − i 1
2ωμ[−σ zσ 0σ 0 + σ 0σ zσ 0 + σ 0σ 0σ z].

(E12)

The response theory for the spin-1/2 surface is given by the
Wen-Zee term

Lsurf = sgn(ms)

2π
εμνρωμ∂νAρ. (E13)

This is exactly the anomalous surface term where �� = 2π ,
and indicates that charge ±1/4 is bound to π/2 disclinations
on the surface. The discrete shift of the surface Wen-Zee term
can be shifted by an even integer by purely surface effects,
and, in general, a surface π/2 disclination binds charge 1

4 + m
2

for m ∈ Z.

3. Dimensional reduction to a 1+1D SPT

In this section, we use the logic of Ref. [30] and dimension-
ally reduce the 3D spin-1/2 rTCI to a 1D SPT. The resulting
1D SPT is equivalent to the spin-1/2 SSH chain, with an ad-
ditional Z4 symmetry that is inherited from the C4 symmetry
of the rTCI. The spin-1/2 SSH chain can be though of as a
doubled version of the spinless SSH, one copy per spin. The
edge of this system hosts two zero-energy modes that form
a Kramers’ pair. The edge also has charge ±1 when TRS is
preserved on the edge. The ±1 edge charge is protected for
the spin-1/2 system, unlike the spinless version, since TRS
requires that particles are added in Kramers’ pairs, which
carry charge 2. The Z4 symmetry of the SSH chain can be
interpreted as a discrete internal spin rotation symmetry along
the z axis. In this interpretation, the two zero-energy modes of
the spin-1/2 SSH chain have spin Sz = ±1/2, respectively.

To show that the spin-1/2 rTCI can be dimensionally re-
duced to this system, we add a mass term of the form,

Hsurf-mass = [mxσ
zσ x + myσ

zσ y + mzσ
zσ z]σ 0, (E14)

to the surface theory in Eq. (E10), and set mz = 0 and mx +
imy = ms(r) exp(iθ ). Here, (r, θ ) are polar coordinates on the
surface and ms(r) � 0 is a function of the radial coordinate
that vanishes at r = 0 and goes to a nonvanishing constant
value m̄s > 0 as r → ∞. This mass term trivializes the sur-
face, except for at the C4 rotation center.
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At the rotation center, there are two localized zero-
energy modes, ψ0↑, and ψ0↓ (see Appendix D). These two
zero-energy modes form a Kramers’ pair under TRS, T :
(ψ0↑, ψ0↓) → (ψ0↓,−ψ0↑). Under a C4 rotation the zero
modes transform as C4 : (ψ0↑, ψ0↓) → (ψ0↑ei π

4 , ψ0↓e−i π
4 ).

The ψ0↑ mode therefore has internal angular momentum (i.e.
spin) +1/2 and ψ0↓ has spin −1/2. Since the zero modes have
finite spin, both of the zero modes must either be empty or
occupied in order to preserve TRS.

When the two zero-energy modes are empty, the effective
response theory for the massive surface is

Leff-surf = εμνρ

4π
n · (∂μn × ∂νn)Aρ + nz

2π
εμνρωμ∂νAρ,

(E15)

where n = m/|m| and m = (mx, my, mz ). Using the definition
of the mass terms from above, we find there is a charge
Q = −1 localized at r = 0. Due to the aforementioned gap-
less modes at r = 0, this charge is only defined mod(2) for a
time-reversal invariant surface.

Based on this, we can conclude that the surface physics of
the mass-deformed spin-1/2 rTCI matches the surface physics
of a spin-1/2 SSH chain with additional Z4 spin rotation
symmetry. Namely, both surfaces have two zero modes, which
form a Kramers’ pair and have spin ±1/2. Additionally, when
TRS is preserved, the charge at the surfaces is 1 mod (2).
Using the bulk boundary correspondence, we conclude that
the spin-1/2 rTCI and spin-1/2 SSH chain with additional Z4

spin-rotation symmetry are equivalent.

4. Surface topological order

Similar to the spinless model, the spin-1/2 rTCI
admits a symmetric gapped topologically ordered
surface state. This surface state has anyon content
{1, v, v2, v3,w,w2,w3, vawb} × {1, f }, for a, b = 1, 2, 3.
Similar to before, the f particle is a fermion and the v and
w anyons are self-bosons with π/2 mutual statistics. The v

particle has charge 1/2 and angular momentum 0, and the
w particle has charge 0 and angular momentum 1/2. This
topological order can be viewed as the spinless topological
order described in Sec. III F, except that the m particle has
angular momentum 1/2 instead of 1/4. Nevertheless, we shall
label the anyons of the spin-1/2 surface topological order as
v and w instead of e and m to avoid confusion.

The spin-1/2 topological order can be constructed using a
vortex proliferation argument similar to that in Sec. III F. As
before, the starting point is to add a superconducting term to
the surface theory. If we divide the eight-component spinor
in Eq. (E10) into four two-component Dirac fermions, ψ =
(ψ1, ψ2, ψ3, ψ4), the superconducting surface can be written
as

ĤSC = i�1ψ1σ
yψ1 + i�2ψ2σ

yψ2

+ i�3ψ3σ
yψ3 + i�4ψ4σ

yψ4 + H.c.
(E16)

Under U (1) and C4 rotations, the �i’s transform as

U(1) : (�1,�2,�3,�4)

→ (�1ei2θ ,�2ei2θ ,�3ei2θ ,�4ei2θ ),

C4 : (�1,�2,�3,�4)

→ (�1eiπ ,�2,�3,�4e−iπ ).

(E17)

Therefore �1 describes a Cooper pair with charge 2 and
angular momentum 2, �2 and �3 describe Cooper pairs with
charge 2 and angular momentum 0, and �4 describes a Cooper
pair with charge 2 and angular momentum −2. By extension,
there also exist composite Cooper pairs with charge 0 and
angular momentum ±2. The TRS and PHS operations act via

T : (�1,�2,�3,�4) → −(�∗
4,�

∗
3,�

∗
2,�

∗
1 ),

C : (�1,�2,�3,�4) → (�∗
4,�

∗
3,�

∗
2,�

∗
1 ). (E18)

We can identify two types of vortices that must be
proliferated in order to restore all symmetries. First are
2πn w-vortices, where all �i wind by 2πn. Second are 2πn v-
vortices where �1 winds by 2πn, �4 winds by −2πn, and �2

and �3 are left invariant. Based on Eq. (E17), a 2π w-vortex
is generated by a π electromagnetic flux, while a 2π v-vortex
is generated by a π disclination.

Using the effective response theory, we find that a −2π w-
vortex has charge 0 and angular momentum 1/2, and a
−2π v-vortex has charge 1/2 and angular momentum 0.
Both the w and v-vortices are self-bosons, and the 2π w and
v-vortices have π/2 mutual statistics. Additionally, a 2π w-
vortex binds four Majorana fermions (2-complex fermions)
and a 2π v-vortex binds 2 Majorana fermions (1-complex
fermion). Following the same logic used in Sec. III F, the
following two types of vortices can be simultaneously con-
densed: first, an 8π w-vortex and composite Cooper pair with
charge 0 angular momentum −2, and second, an 8π v-vortex
along and a Cooper pair with charge 2 angular momentum 0.
The Majorana zero modes of these vortices can all be gapped
while preserving symmetry. Based on Eqs. (E17) and (E18),
proliferating these two types of vortices restores the symmetry
of the surface.

The anyon content of the gapped surface theory corre-
sponds to the vortices that have trivial braiding statistics with
the condensate. These are the 2πn w-vortices, 2πn v-vortices,
and their combinations. There is also a fermion f , which is the
remnant of the gapped fermionic zero modes. The −2π w-
vortex is a self-boson with charge 0 and angular momentum
1/2, and it constitutes the w anyon. The −2π v-vortex is a
self-boson with charge 1/2 and angular momentum 0, and
it constitutes the v anyon. The v and w anyons have π/2
mutual statistics. The w4 and v4 anyons have trivial braiding
statistics and unfractionalized quantum numbers, so they can
be regarded as local particles that do not enter into the anyonic
data.

We conclude that the topological order described at the
beginning of the section can be realized on the surface of the
spin-1/2 rTCI. Due to the same logic used in Sec. III F, this
topological order cannot be realized in a purely 2D system
with PHS but can be realized on the surface of the particle-
hole symmetric spin-1/2 rTCI.

205149-28



TOPOLOGICAL FIELD THEORIES OF … PHYSICAL REVIEW B 107, 205149 (2023)

APPENDIX F: TOPOLOGICAL CRYSTALLINE
INSULATOR WITH MIRROR SYMMETRY

FOR SPINLESS FERMIONS

In this section, we present a model for the spinless rTCI
with TRS, C4 rotation symmetry and mirror symmetry. Our
starting point is the 8-band lattice model in Eq. (12),

H(k) = [sin(kx )�x + sin(ky)�y + sin(kz )�z]σ 0

+ sin(kx ) sin(kz )�0σ x + sin(ky) sin(kz )�0σ y

+ (M + cos(kx ) + cos(ky) + cos(kz ))�0σ z, (F1)

In Sec. III A, we were primarily interested in the topological
features of Eq. (12) associated with PHS. Here, we are in-
terested in the topological features associated with the mirror
symmetry. The mirror symmetry operator is given by

M̂z = �5zσ 0 (F2)

and satisfies the relation M̂−1
z H(kx, ky, kz )M̂z =

H(kx, ky,−kz ). Since mirror reflection is equivalent to
the combination of a π rotation and inversion, (M̂z )2 = +1
for spinless fermions.

The lattice model also has PHS,

Ĉ = �5yσ yK, (F3)

but the PHS should be regarded as an “accidental” symmetry
of the lattice model and we explicitly break this symmetry
throughout this section.

1. Response theory

The response theory for the rTCI with mirror symmetry
is with the same technique as in Sec. III B. The continuum
theory near the band crossing at M = −3 is the same as
in Eq. (17). In the continuum limit, the effective response
theory is found by coupling the Dirac fermions to the spin
connection ω and U(1) gauge field A [see Eq. (18)]. We also
include the perturbation in Eq. (21) and set m = −m̄ cos(φ)
and m′ = −m̄ sin(φ). Here, if φ is a function of z, mirror
symmetry is preserved only when φ(z) = −φ(−z) mod(2π ).
After integrating out the massive fermions, the response the-
ory as a function of ω, A, and φ is again given by Eq. (22).

When φ is constant, mirror symmetry requires that φ = 0
or π . The former corresponds to the m < 0 insulator (M < −3
in the lattice model), which has a trivial R ∧ F term. The
latter corresponds to the m > 0 insulator (−3 < M < −1 in
the lattice model), which is a mirror symmetric rTCI with a
� = π R ∧ F term. This analysis is much the same as that of
the rTCI with PHS. However, as noted before, the coefficient
of the R ∧ F term can fluctuate while preserving mirror sym-
metry, provided that �(z) = −�(−z) mod(2π ). Because of
this, it is possible to have mirror symmetry preserving domain
walls between the rTCI and a trivial insulator (see Sec. II C 2).
We show this explicitly in the next section.

2. Surface theory

To analyze the surface theory of the rTCI with mirror
symmetry, we consider a pair of domain walls that are related
to one another by mirror symmetry. Specifically, we use a

geometry where −3 < M < 1 for |z| < zdw and M < −3 for
|z| > zdw, which corresponds to a pair of symmetry related
domain walls at z = ±zdw (zdw is taken to be large compared
to the correlation length of the insulators).

The Hamiltonians for the two surfaces are

Ht = [σ xi∂x − σ yi∂y]σ 0,

Hb = [σ xi∂x − σ yi∂y]σ0,
(F4)

where the t and b subscripts indicate the top and bottom sur-
faces, respectively. The two surface theories can be combined
as

Ht-b = [σ xi∂x − σ yi∂y]σ 0σ 0, (F5)

where the two domain walls are indexed by σ 0σ 0σ z. Mirror
symmetry acts on Eq. (F5) as

M̂z−surf = σ 0σ 0σ x. (F6)

Using the eight-band description of the surfaces in
Eq. (F5), there are two surface mass terms of note. First is
the mass term promotional to σ zσ zσ z that preserves TRS and
breaks mirror symmetry. Second is the mass term proportional
to σ zσ zσ 0 that which preserves both TRS and mirror symme-
try. Hence, in agreement with our discussion from Sec. II C 2,
we find that the surface Dirac fermions are not protected by
mirror symmetry.

For the mirror symmetry breaking surface masses, the
surface response theory consists of two Wen-Zee terms, one
per surface. The Wen-Zee terms discrete shifts of the form
S = 1/2 mod (1), half the amount allowed in 2D systems.
In general, the two surfaces will have different coefficients.
Following the same logic used before, a π/2 disclination of
the rTCI with mirror symmetry breaking surfaces binds charge
±1/8 mod(1/4) on one surface and charge ∓1/8 mod(1/4)
on the other surface.

For the mirror symmetry preserving surface masses, the
response theory consists of a Wen-Zee term defined on each
surface. Due to mirror symmetry, these Wen-Zee terms have
the same discrete shift S = 1/2 mod (1). A π/2 disclination
of the rTCI with mirror symmetry preserving surfaces will
therefore bind charge ±1/8 mod(1/4) on both surfaces.

3. Dimensional Reduction to 1D SPT

Here we dimensionally reduce the rTCI with mirror sym-
metry to a 1D SPT, as in Sec. III E. The resulting SPT is
the SSH chain protected by mirror symmetry with a trivial
on-site Z4 symmetry. Much like the SSH chain with PHS, the
SSH chain with mirror symmetry has half-integer quantized
charges at its boundaries. However, the SSH chain with mirror
symmetry does not have protected zero edge modes. This is
because mirror symmetry only requires that the energies of
the two edge modes are equal to each other (under PHS, the
energies of any edge modes must be exactly zero). However,
the fractional charge localized at a pair of mirror symmetry
related edges must be the same for the SSH chain, which leads
to a filling anomaly [92].
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With this in mind, consider the two surface Hamiltonians
in Eq. (F4) with additional mass perturbations of the form

Ht-mass = mx,tσ
zσ x + my,tσ

zσ y + mz,tσ
zσ z,

Hb-mass = mx,bσ
zσ x + my,bσ

zσ y + mz,bσ
zσ z.

(F7)

Under mirror symmetry, mi,t → mi,b, for i = x, y, and z. As
discussed in Sec. III E, the rTCI can be dimensionally reduced
to an SSH chain with gapless edge modes by setting mz,t =
mz,b = 0, mx,t + imy,t = mx,b + imy,b = ms(r) exp(iθ ), where
(r, θ ) are polar coordinates on the surface, and ms(r) � 0 is
a function of the radial coordinate that vanishes at r = 0, and
goes to a nonzero constant m̄s, as r → ∞. This mass con-
figuration preserves TRS, mirror symmetry and C4 rotation
symmetry. Similar to before, there is a zero energy mode on
each surface located near r = 0, which transforms trivially
under C4 symmetry.

It is possible to gap out the edge modes of the SSH chain by
setting mz,t = mz,b = √

m̄2
s − ms(r)2, such that mz,t and mz,b

take on the same nonzero value at r = 0. This perturbation
preserves all symmetries of the model, and gaps out the zero
modes located at r = 0 on each surface (see Appendix D).

We integrate out the massive fermions to determine the
charge that is bound at r = 0, leading to the effective response
theory

Leff-t = εμνρ

8π
nt · (∂μnt × ∂νnt )Aρ + nz

4π
εμνρωμ∂νAρ,

Leff-b = εμνρ

8π
nb · (∂μnb × ∂νnb)Aρ + nz

4π
εμνρωμ∂νAρ,

nt/b = mt/b

|mt/b| , mt/b = (mx,t/b, my,t/b, mz,t/b). (F8)

For the mass configurations discussed above, the response
theory indicates that charge 1/2 is localized near r = 0 on
both the top and bottom surfaces (this charge is only defined
modulo 1 due to surface effects).

Viewed as two 0D systems, the rotation centers of the
top and bottom surfaces each have an unprotected mode and
carry the same half-integer of charge. These are exactly the
characteristic features of the 0D edges of a 1D SSH chain with
mirror symmetry. Using the bulk-boundary correspondence,
we conclude that the deformed rTCI and SSH chain with
mirror symmetry are adiabatically connected.

It is worth noting that the 1D SSH chain with mirror
symmetry can be further dimensionally reduced to a nontrivial
0D system with on-site Z2 symmetry, which is inherited from
the mirror symmetry (see Ref. [93] for further discussion). By
extension, the rTCI can also be dimensionally reduced to the
same 0D system, with an additional trivial Z4 symmetry.

APPENDIX G: TOPOLOGICAL INVARIANT AND R ∧ F
TERM FOR DIRAC-LIKE INSULATORS

In this Appendix, we calculate the R ∧ F term
and topological invariant for insulators that have a
Dirac-like band structure at the time-reversal invari-
ant momentum (TRIM). We show that νRF = �/π

for spinless Dirac-like insulators with TRS, Cn

rotation, mirror, and inversion symmetry, where νRF is defined
as in Eq. (60). Similarly, we show that νRF↑ = �/2π for

spin-1/2 Dirac-like insulators with TRS, Cn rotation, mirror,
and inversion symmetry, and additional spin conservation,
where νRF↑ is defined as in Eq. (73).

The analysis we present here is simplified by the following
observations. First, the combination of mirror and inversion
symmetry leads to a C2 symmetry, and so we need to consider
Cn symmetry only for n = 2, 4, and 6, as combining C3 and
C2 symmetry leads to C6 symmetry. Second, for Cn-invariant
systems (n = 2, 4, and 6), the R ∧ F term can be determined
by gauging only the C2 subgroup of the full rotation symmetry.
All the TRIM are invariant under C2 rotations, so these con-
siderations greatly simplify our analysis. Physically, gauging
only the C2 rotation symmetry is equivalent to considering
responses only to the π disclinations of a C4 or C6 symmetric
system. Since a π disclination is the fusion of two π/2 discli-
nations or three π/3 disclination, the response of a system
to either π/2 or π/3 disclinations can be deduced from the
response of the system to π disclinations and the disclination
fusion rules.

First, we consider the R ∧ F term for a lattice model of
spinless fermions, where the band-structure is Dirac-like near
the TRIM. We take this model to have TRS (with T 2 = 1),
U(1) charge conservation, Cn symmetry, Mz mirror symmetry,
and inversion symmetry. As noted before, the rotation sym-
metry has a C2 subgroup, and we need to consider only this
C2 subgroup to determine the R ∧ F term of this system. A
3D spinless Dirac-fermion with TRS requires a minimum of
eight bands, and the lattice models therefore have Nband ∈ 8Z
bands.

Our goal is to show that νRF = �/π for these systems,
where νRF is defined as in Eq. (60). To do this, we note that
any two band insulators with the same symmetries (and rep-
resentations) can be symmetrically evolved into one another
via a sequence of band crossings. Since the R ∧ F term is
quantized in mirror symmetric insulators, the difference in
the R ∧ F term between two mirror symmetric insulators is
equal to the total change in the R ∧ F term that occurs during
the aforementioned gapless band crossings. Based on this,
we prove that νRF = �/π by first proving that νRF = 0 for
a trivial symmetric insulator (where � = 0 by definition), and
that any band crossing that generates a nontrivial R ∧ F term
also changes the value of νRF .

To this end, take a trivial (atomic) insulator, where the
lattice Hamiltonian contains only a constant on-site poten-
tial HTriv = σ z ⊗ INband/2. Importantly, the band structure is
constant throughout the Brillouin zone, which implies that
η0,+1 = ηπ,+1 [see Eq. (58)]. Because of this, νRF = 0 for
such a spinless trivial insulator.

Now consider a generic symmetric band crossing. This
band crossing can either occur at a TRIM or at an arbitrary
point in the Brillouin zone. We begin with the latter case.
Due to the C2 and Mz symmetries of the lattice Hamiltonian,
such a band crossing must be accompanied by an odd number
of other symmetry related band crossings. In general, it is
possible to adiabatically and symmetrically evolve the lattice
Hamiltonian such that the momentum space distance between
the multiple band crossings is taken to zero (modulo a recip-
rocal lattice vector). After this evolution, an even number of
band crossings will occur at a single TRIM, �n. Because of
this, any two band insulators that are related by band crossings
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at arbitrary momenta are also related by an even number of
band crossings that only occur at TRIM. Since moving the
location of the band crossings can be done symmetrically and
adiabatically, it does not affect the change in the R ∧ F term
that is generated by the band crossing.

We now consider the case where the band crossing occurs
at a TRIM, �n (recall that we assume the band structure
is Dirac-like at �n). To begin, we analyze a band crossing
that involves eight bands (the minimal number of bands for a
spinless Dirac fermion with TRS). In an appropriate basis, the
Hamiltonian for the low energy bands can be written as

HDirac = �xσ 0i∂x + �yσ 0i∂y + �zσ 0i∂z + m�0σ z, (G1)

where m parameterizes the band-crossing and the � matrices
are a set of 4 × 4 anticommuting matrices. The TRS, C2,
inversion, and mirror symmetries act on Eq. (G1) via

T̂ = �yσ yK,

Û2 = (Ûn)
n
2 = exp

(
i
π

2
[�xyσ 0 + I4σ

z]IN

)
,

P̂ = �0σ z,

M̂z = Û2P̂.

(G2)

We now determine how the R ∧ F term for Eq. (G1) changes
during the band crossing where m changes from a negative to
a positive value. As before, we do this by gauging the U(1)
and C2 symmetries, and coupling the Dirac fermions to the
electromagnetic gauge field Aμ and spin connection ωμ, via
the covariant derivative

Dμ = ∂μ − iAμ − iωμ
1
2 [�xyσ 0 + I4σ

z]. (G3)

We also add an additional mass term

H′ = m′�5σ 0, (G4)

that preserves TRS but breaks mirror symmetry. Upon set-
ting m = −m̄ cos(φ), m′ = −m̄ sin(φ) and integrating out the
massive fermions, we find the following R ∧ F term:

Leff[Aμ, ωμ, φ] = φ

2π2
εμνρκ∂μων∂ρAκ . (G5)

As we can see, the coefficient of the R ∧ F term � shifts
by π when m changes sign (since the R ∧ F term is a to-
tal derivative, it is only possible to determine the change
in the coefficient of the R ∧ F term during this process). It
is straightforward to generalize this result to a Dirac band
crossing at �n that involves 8N bands, in which case � shifts
by Nπ during the band crossing. Taking into account that � is
defined mod(2π ), the 8N band crossing changes the physical
value of � by 0 when N is even and by π when N is odd.

Let us now consider the eight-band Dirac Hamiltonian
restricted to the mirror invariant plane that contains �n. On
this mirror plane, we can divide the Hamiltonian into sectors
with mirror eigenvalue M̂z = ±1. The Hamiltonian for the
M̂z = +1 sector can be written as

Hmirror = �xi∂x − �yi∂y − m�z, (G6)

where the TRS, and C2 (equivalently 2D inversion) symmetry
act as

T̂mirror = σ yσ yK,

Û2 = P̂ = exp

(
i
π

2
[−�xy + σ 0σ z]

)
. (G7)

Equation (G6) therefore describes a pair of TRS related 2D
Dirac fermions. Using Eq. (56) we find that the Chern number
parities of the two occupied bands with M̂z = +1 at this
mirror invariant plane change sign when m changes. Based
on this, the band crossing sends ηkz,+1 → −ηkz,+1, where
kz = 0, π is the mirror invariant plane that contains �n (see
Eq. (58)). It is again straightforward to extend this analy-
sis to an 8N-band crossing at �n, where the band crossing
sends ηkz,+1 → +ηkz,+1 when N is even and ηkz,+1 → −ηkz,+1

when N is odd. Based on this, νRF → νRF + 1 mod(2) and
� → � + π mod(π ) if N is odd for an 8N-band, Dirac-like
crossing at a TRIM. The values of both νRF and � do not
change if N is even.

We can therefore conclude that when the coefficient of the
R ∧ F term changes due to any symmetric band crossing, the
value of νRF will also change and vice versa. Combined with
the fact that νRF = 0 for a trivial insulator, and that any two
symmetric insulators (with the same representations) can be
evolved into one another via a sequence of symmetric band
crossings, we conclude that νRF = �/π for the insulators
considered here.

We now turn our attention to Dirac-like lattice models of
spin-1/2 fermions with TRS (with T 2 = −1), U(1) charge
conservation, Cn rotation symmetry, mirror symmetry, inver-
sion symmetry, and spin conservation. To show that νRF,↑ =
�/2π , where νRF,↑ is defined as in Eq. (73), we note that
such a system can be divided into Sz = +1/2 and Sz = −1/2
sectors. Furthermore, as shown in Sec. V B, each sector can be
treated as a system of spinless fermions. In this framework,
the invariant νRF,↑ is simply the invariant νRF evaluated for
the effectively spinless Sz = +1/2 sector. Using our previ-
ous analysis, we find the effective response theory of the
Sz = +1/2 sector contains an R ∧ F term with coefficient
�↑ = πνRF,↑. The total R ∧ F term of the spin-1/2 insulator
contains contributions from the both the Sz = ±1/2 sectors,
� = �↑ + �↓, and by TRS �↑ = �↓. Hence, νRF,↑ = �/2π

for these spin-1/2 insulators.

APPENDIX H: LINEAR RESPONSE
FOR THE 3D WEN-ZEE TERM

In this Appendix, we use linear response theory to deter-
mine the topological response theory that describes the 3D
layered Hamiltonian

H(k) = sin(kx )σ xσ 0 + sin(ky)σ yσ 0

− (m + cos(kx ) + cos(ky))σ zσ z. (H1)

The TRS, C2 rotation symmetry (which is part of a large C4

symmetry), and mirror symmetry act as

T̂ = σ yσ yK, Ĉ2 = σ zσ z, M̂z = σ 0σ 0. (H2)

Note that this Hamiltonian is independent of kz, as it has a
decoupled-layer structure.
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The Hamiltonian is gapped except when |m| = 0, 2. The
2 < |m| phase is a trivial insulator that is adiabatically con-
nected to an atomic insulator when |m| → ∞. To find the
effective response theory, we consider the system near the
m = −2 band crossing, where the low energy physics near
momentum kx = ky = 0 takes on the Dirac form

H = i∂xσ
xσ 0 + i∂yσ

yσ 0 − m′σ zσ z, (H3)

where m′ ∝ m + 2 for m ∼ −2 controls the transition be-
tween the m < −2 and −2 < m < 0 phases. When introduc-
ing the spin connection ω, and U(1) gauge field A, we should
replace ordinary derivatives with the covariant derivative

Dμ = ∂μ − iAμ − iωμ
1
2 [σ zσ 0 + σ 0σ 2], (H4)

where ωμ couples via the C2 angular momentum.
Let us first consider the Hamiltonian for a single layer at a

fixed z coordinate. The topological term in the linear response
theory for the 2D system is the Wen-Zee term

Leff,2D = sgn(m′) + 1

4π
εμνρωμ∂νAρ, (H5)

where μ, ν, and ρ run over x, y, and t . The term proportional
to sgn(m′ )

4π
is contributed by the low-energy fermions while

the term proportional to 1
4π

arises from massive fermions at
the other C2 invariant momenta. This second term ensures
that the Wen-Zee term vanishes for the trivial insulator with
m′ < 0 (m < −2 in the lattice model). Since the Hamiltonian
is independent of the z direction, the full topological response
theory is given by

Leff,3D = sgn(m′) + 1

8π2
Gzε

μνρωμ∂νAρ, (H6)

where Gz is the reciprocal lattice vector along the z direction,
which results from stacking the response in Eq. (H5). The
numeric prefactor of the response theory is therefore − 1

4π2

for −2 < m < 0 and zero for m < −2 in the lattice model.
Similar calculations show that the numeric prefactor is 1

4π2

for 0 < m < 2 and zero for 2 < m. These conclusions are
not modified if we couple the layers, as long as the rotation
symmetry and bulk gap are maintained.
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