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Random magnetic field and the Dirac Fermi surface
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We study a single two-dimensional Dirac fermion at finite density, subject to a quenched random magnetic
field. At low energies and sufficiently weak disorder, the theory maps onto an infinite collection of 1D
chiral fermions (associated to each point on the Fermi surface) coupled by a random vector potential. This
low-energy theory exhibits an exactly solvable random fixed line, along which we directly compute various
disorder-averaged observables without the need for the usual replica, supersymmetry, or Keldysh techniques.
We find the longitudinal dc conductivity in the collisionless h̄ω/kBT → ∞ limit to be nonuniversal and to vary
continuously along the fixed line.
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I. INTRODUCTION

In this paper, we introduce and analyze an effective theory
for studying the influence of a quenched random magnetic
field on a single Dirac fermion, moving in two spatial di-
mensions (2D) and placed at finite density. Applications of
this theory include the following: graphene when restricted
to a single valley [1] (where the vector potential disorder
describes the effects of ripples in the graphene sheet [2,3])
and the gapless surface states of a time-reversal invariant 3D
topological insulator [4]; an integer quantum Hall plateau
transition for spinless electrons in a periodic potential [5,6];
and Dirac composite fermion mean-field descriptions of the
half-filled Landau level and topological insulator surface state
[7–10], other even-denominator metallic states [11–13], and
the superconductor-insulator transition [14]. In this last guise,
the random vector potential arises from a random scalar po-
tential perturbation to the dual electron system.

In contrast to a 2D nonrelativistic fermion [15,16], a single
Dirac cone enjoys a sort of topological protection against
localization [17–19]: A free Dirac fermion cannot be gapped
without breaking, on average, either time-reversal symmetry1

or charge conservation; the random vector potential is unique
(among random perturbations quadratic in the fermions) in
that it respects a particle-hole symmetry [6]. The Dirac theory
therefore gives rise to a delocalized, critical state for all values

1Here we are explicitly referring to the symmetry of the La-
grangian for a single Dirac fermion. This may be realized in a
time-reversal invariant way as the surface state of a time-reversal
invariant topological insulator. In a purely 2D theory, the simplest
model breaks time-reversal microscopically [5,20,21]; the resulting
theory preserves a nonlocal particle-hole symmetry [7,10], which we
are viewing here as an effective time-reversal symmetry for the Dirac
fermion sector of the theory.

of the Fermi energy. The problem here is to find an effective
theory for this metal.

The conventional analytical approach to this problem, due
to Pruisken and others [22–27] (see [28,29] for reviews and
[30–35] for specific studies of a disordered Dirac fermion),
coarse grains away the elementary fermionic excitations in
favor of a nonlinear sigma model with topological term, in
which renormalization group fixed points are parameterized
by the (disorder-averaged) Dirac fermion conductivity tensor.
Because the longitudinal resistivity ∼1/σxx plays the role of
a coupling constant in this model, it is a challenge to quan-
titatively extend this description to the regime, σxx ∼ e2/h,
relevant to experiment (e.g., [36,37]). Tsvelik [38] has conjec-
tured a PSL(2|2)8 Wess-Zumino-Novikov-Witten theory for
the σxx ∼ e2/h regime, based on its consistency with various
numerical studies of the Chalker-Coddington model [39,40]
for the integer quantum Hall transition. Unfortunately, there is
as yet no consensus among the most recent numerical works
(e.g., [41–45]). For instance, there are statistically significant
deviations among the various predictions for the localization
length exponent (see Fig. 1 of [45]). These deviations are
understood to be the result of finite-size corrections to scaling
[46,47]; effects that are exacerbated by a leading irrelevant
perturbation that is close to marginality. Motivated in part
by the lack of numerical consensus, Zirnbauer [48,49] has
recently proposed a fixed point description in terms of a con-
formal field theory (CFT) with only marginal perturbations.
Currently, this scenario appears to lack direct numerical sup-
port [45,50]. An alternative study of the Dirac theory using
(non-)Abelian bosonization by Ludwig et al. [6] makes use of
an SU(2) symmetry that is present only at zero density. The
zero-density theory exhibits a fixed line (as a function of the
disorder variance), along which the dynamical critical expo-
nent varies continuously while the longitudinal conductivity
is constant and of the order of e2/h. Perturbation by a chem-
ical potential within this treatment leads to difficulty: The
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associated chemical potential deformation breaks the SU(2)
symmetry and causes a flow to strong coupling.2

Here we present a different approach to studying the finite
density theory. We first take the limit of the theory that fo-
cuses on the low-energy fluctuations about the Dirac Fermi
surface before incorporating disorder. Taking inspiration from
[6], the idea is to try to study the effects of disorder on the
scale-invariant effective theory of (a system with) a Fermi sur-
face [51,52], rather than the “microscopic” Dirac theory that
includes both particle and antiparticle excitations. We show
how this approach allows for an exact solution of the effective
theory—a random fixed line—provided the quenched vector
potential is suitably long ranged and weak, and for direct
calculations of the effects of disorder on various physical
observables without the need for replicas, supersymmetry, or
Keldysh formalisms. In contrast to the zero-density theory [6],
we find the longitudinal dc conductivity—calculated in the
collisionless h̄ω/kBT → ∞ limit [53]—to vary continuously
along this finite-density fixed line.

The remainder of the paper is organized as follows. In
Sec. II, we derive the effective theory of a Dirac Fermi surface
in a random magnetic field. This theory takes the form of
an infinite collection of 1D chiral fermions—one fermion for
each point on the Fermi surface—coupled by the quenched
vector potential disorder. The large emergent symmetry U(N ),
with N → ∞ of the clean theory, allows for an exact solu-
tion of the disordered theory, for each disorder realization, in
which the randomness is removed entirely from the effective
action by a gauge transformation. Operators not invariant
under the U(N ) symmetry, however, depend on the disorder.
In Sec. III, we use the exact solution to directly compute
various disorder-averaged physical observables. We warm up
by showing that the average fermion Green’s function is short
ranged and that the system has a finite density of states. We
then turn to a calculation of the longitudinal conductivity,
finding the conductivity to vary continuously with the strength
of the disorder. In Sec. IV, we summarize and discuss possible
directions of future work. Appendices A and B contain rele-
vant details of the calculations summarized in the main text.

II. LOW-ENERGY EFFECTIVE THEORY

In this section, we derive the low-energy effective theory
of a 2D Dirac fermion in a random magnetic field in terms
of an infinite collection of 1D chiral fermions, coupled via a
random vector potential.

A. Low-energy limit

Our starting point is the theory of a two-component Dirac
fermion �(t, x) at finite density, coupled to a quenched ran-
dom U(1) vector potential Aj (x),

S = S0 + S1, (1)

2It may be surprising that the chemical potential perturbation—an
operator quadratic in the fermions—leads to strong coupling. The
bosonization used in [6] to treat the 2D disordered theory maps
the chemical potential operator to a nonlinear cosine term in the
corresponding boson field with imaginary coefficient.

where S0 is the action of a free Dirac fermion in 2D,3

S0 =
∫

dtd2x �†(t, x)(iσa∂a + μ)�(t, x), (2)

and S1 is the coupling of the Dirac fermion to the vector
potential disorder,

S1 =
∫

dtd2x �†(t, x)σ jA j (x)�(t, x). (3)

Above, x = (x1, x2), a ∈ {0, 1, 2}, σ0 is the 2 × 2 identity
matrix, and σ j for j = 1, 2 are standard Pauli matrices; re-
peated indices are summed over unless otherwise specified.
The chemical potential μ is finite and nonzero, and we have
set the velocity of the Dirac fermion to unity. The vector
potential Aj (x) is chosen to be a zero-mean Gaussian random
variable. We specify its disorder ensemble in Sec. II C; for
the present discussion, we require that Aj (x) be of sufficiently
long wavelength that its Fourier transform Aj (q)4 is only
nonzero for wave vectors |q| � 2|μ|. This condition on the
vector potential restricts to small-angle impurity scattering
between fermionic excitations about nearby Fermi points.

Following [54], we derive the low-energy limit of this the-
ory, in which we first focus on the low-energy excitations near
the Fermi surface, defined by Eq. (2), and then incorporate
scattering between Fermi points mediated by Aj in Eq. (3).
This order of limits assumes that the fluctuations of Aj are
sufficiently weak compared with |μ|.

In Fourier space, the equation of motion following from
Eq. (2) is

[(ω + μ)σ0 − p jσ j] �(ω, p) = 0, (4)

where �(ω, p) is the Fourier transform of �(t, x) and
p = (p1, p2). The equation of motion (4) implies that the
particle/antiparticle excitations have the dispersion relation
ω + μ = ±p, with p = |p| � 0. As such, Eq. (4) can be
rewritten as

P(∓)(p)�(ω, p) = 0, (5)

where the projection matrices

P(∓)(p) ≡ 1

2

(
σ0 ∓ p jσ j

p

)
. (6)

Using the projection matrices, we may write Eq. (2) in Fourier
space as

S0 =
∫

dωd2p
(2π )3

�†(ω, p)[(ω + μ − p)P(+)(p)

+ (ω + μ + p)P(−)(p)]�(ω, p). (7)

For a spherical Fermi surface, we parametrize p = p r̂θ ≡
p (cos θ, sin θ ) with θ ∈ [0, 2π ) labeling the points on the

3This form of the action corresponds to a relativistic one with γ

matrices: (γ 0, γ 1, γ 2) = (σ3, iσ2, −iσ1).
4Our Fourier transform convention: Aj (x) = ∫ d2p

(2π ) eip·xAj (p) and

�(t, x) = ∫ dωd2p
(2π )3 e−iωt+ip·x�(ω, p).
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Fermi surface. The projection matrices become

P(∓)(p) = 1

2

(
1 ∓e−iθ

∓e+iθ 1

)
, (8)

and we may expand � in terms of its particle (R) and antipar-
ticle (L) excitations as

�(t, x) =
∫

dωd2p
(2π )3

e−iωt+ip·x
[

1√
2

(
e−iθ

1

)
Rθ (ω, p)

+ 1√
2

(−e−iθ

1

)
Lθ (ω, p)

]
, (9)

where

P(+)(p)�(ω, p) = 1√
2

(
e−iθ

1

)
Rθ (ω, p), (10)

P(−)(p)�(ω, p) = 1√
2

(−e−iθ

1

)
Lθ (ω, p). (11)

Inserting this expansion (9) into Eq. (7), the free Dirac
fermion action in Fourier space simplifies to

S0 =
∫

dωd2p
(2π )3

[R∗
θ (ω, p)(ω + μ − p)Rθ (ω, p)

+ L∗
θ (ω, p)(ω + μ + p)Lθ (ω, p)]. (12)

For μ > 0, particles (R) with momentum p ∼ kF ≡ |μ| are
light and antiparticles (L) have energy ω � kF ; for μ < 0, the
antiparticles are light and the particles are heavy. Therefore,
depending on the sign of μ, the low-energy effective theory
for excitations with p ∼ kF only retains the particles or an-
tiparticles. Expanding about the Fermi momentum kF ,

p = kF + p⊥, |p⊥| � kF , (13)

we have

d2p = pd pdθ ≈ kF d p⊥dθ, (14)

and, for μ > 0, S0 becomes

S0 =
∫

dωd p⊥dθ

(2π )3
R∗

θ (ω, p⊥)(ω − p⊥)Rθ (ω, p⊥), (15)

where we replaced Rθ (ω, p) → 1√
kF

Rθ (ω, p⊥). For μ < 0,
we substitute R → L and ω − p⊥ → ω + p⊥. Note that the
deviation p⊥ of the momentum about kF can be positive
or negative. Depending on the sign of μ, we may interpret
S0 [Eq. (15)] as an infinite collection of 1D chiral fermions
Rθ (ω, p⊥). We will only consider a single species of fermions
with μ > 0 so the low-energy theory will only involve R
fermions.

The vector field Aj (x) couples the chiral fermions
Rθ (ω, p⊥) to one another according to S1 [Eq. (3)]. To derive
this coupling, we first decompose the Fourier transform of the
vector potential Aj (q) in terms of its longitudinal AL(q) and
transverse AT (q) components,

Aj (q) = i
q j

q
AL(q) + iε jk

qk

q
AT (q). (16)

The momentum transfer

q = p − p′, (17)

where p = (kF + p⊥)r̂θ and p′ = (kF + p′
⊥)r̂θ ′ . Since p ∼

p′ ≈ kF , we take

q j

q
≈ r̂θ − r̂θ ′

|r̂θ − r̂θ ′ | . (18)

Plugging the resulting decomposition (16) and the expansion
(9) into Eq. (3), we obtain the low-energy vector potential
coupling for μ > 0,

S1 = i
∫

dωd2pd2p′

(2π )5
R∗

θ (ω, p)Rθ ′ (ω, p′)

× sign(θ − θ ′)e
i
2 (θ−θ ′ )AT (p − p′), (19)

where sign(X ) = 1 for X � 0 and sign(X ) = −1 for X < 0.
We have dropped a particle-antiparticle coupling between R
and L fermions that is mediated by the longitudinal compo-
nent AL of the vector potential since such a term has an energy
cost ∼2kF . The longitudinal component is therefore absent
from this low-energy vector potential coupling. For μ < 0,
Eq. (19) acquires an overall minus sign and we substitute
R → L.

In general, AT (q) couples Rθ (ω, p) and Rθ ′ (ω, p′) for ar-
bitrary θ and θ ′. By assuming that AT (q) is only nonzero
for |q| � 2kF (see Sec. II C for further discussion), we may
further simplify the effective coupling (19). For |q| � 2kF ,
the momentum transfer q = p − p′ can be approximated as

p − p′ = (p⊥ − p′
⊥)r̂θ ′ + kF (θ − θ ′)

d

dθ ′ r̂θ ′ , (20)

where |p⊥ − p′
⊥| � 2kF and |θ − θ ′| � 1. Here, r̂θ ′ =

(cos θ ′, sin θ ′) and d
dθ ′ r̂θ ′ = (− sin θ ′, cos θ ′) are orthogonal

unit vectors about the Fermi surface point θ ′. Defining

Vθθ ′ (p⊥ − p′
⊥) ≡ i kF sign(θ − θ ′) e

i
2 (θ−θ ′ ) AT (p − p′), (21)

and given Eq. (20), the vector potential coupling (19) becomes

S1 =
∫

dωd p⊥dθd p′
⊥dθ ′

(2π )5
R∗

θ (ω, p⊥)Rθ ′ (ω, p′
⊥)

× Vθθ ′ (p⊥ − p′
⊥). (22)

[Recall the rescaling Rθ (ω, p) → 1√
kF

Rθ (ω, p⊥).] Note that

the same AT (q) can enter different components of Vθθ ′ (p⊥ −
p′

⊥) since a given q can correspond to the momentum transfer
between distinct pairs of fermions.

We next perform the inverse Fourier transform5 (ω, p⊥) →
(t, z) on the fields appearing in the low-energy forms of S0

[Eq. (15)] and S1 [Eq. (22)]. For μ > 0, S = S0 + S1 becomes

S =
∫

dtdzdθ

2π
R∗

θ (t, z)i(∂t + ∂z )Rθ (t, z)

+
∫

dtdzdθdθ ′

(2π )2
R∗

θ (t, z)Vθθ ′ (z)Rθ ′ (t, z). (23)

The first term describes an infinite collection of 1D chiral
fermions, labeled by the Fermi point θ . The second term

5We have Rθ (t, z) = ∫ dωd p⊥
(2π )2 e−iωt+ip⊥zRθ (ω, p⊥) and Vθθ ′ (z) =∫ d p⊥

2π
eip⊥zVθθ ′ (p⊥).
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is a (quenched) random coupling Vθθ ′ (z) between fermions
associated to the Fermi points θ and θ ′.

B. Electrical current

The electrical current (density) is

Jj (t, x) = �†(t, x)σ j�(t, x). (24)

We are interested in the contribution to this current that arises
from the low-energy excitations near the Fermi surface when
μ > 0. The simplest way to obtain this low-energy current
is to replace in Eq. (3) the quenched vector potential Aj (x)
by a slowly varying background vector field A j (t, x) and to
take the low-energy limit described in the previous section.
(“Slowly varying” means |q0|, |q| � kF .) This produces the
coupling [compare with Eq. (19)],

S2 =
∫

dωd2pdω′d2p′

(2π )6
R∗

θ (ω, p)Rθ ′ (ω′, p′)

×
[

eiθ + e−iθ ′

2
Ax(q0, q) + eiθ − e−iθ ′

2i
Ay(q0, q)

]
,

(25)

where q0 = ω − ω′ and q = p − p′. As before, p = kF + p⊥
and p′ = kF + p′

⊥. The variational derivative Jj (−q0,−q) =
(2π )3 δS2

δA j (q0,q) gives the Fourier transform of the low-energy
current,

Jx(−q0,−q) =
∫

dωd2pd2p′

(2π )3
δ(q − p + p′)R∗

θ (ω, p)

×
(

eiθ + e−iθ ′

2

)
Rθ ′ (ω − q0, p′), (26)

Jy(−q0,−q) =
∫

dωd2pd2p′

(2π )3
δ(q − p + p′)R∗

θ (ω, p)

×
(

eiθ − e−iθ ′

2i

)
Rθ ′ (ω − q0, p′). (27)

In computing the electrical conductivity, we will use a
mixed Fourier space representation of the q = 0 component
of these currents. Fourier transforming Jj (−q0, q = 0) with
respect to q0,6 we have

Jx(t ) ≡ Jx(t, q = 0) =
∫

dzdθ

2π
R∗

θ (t, z) cos(θ )Rθ (t, z),

(28)

Jy(t ) ≡ Jy(t, q = 0) =
∫

dzdθ

2π
R∗

θ (t, z) sin(θ )Rθ (t, z).

(29)

Jj (t ) is the sum over the Fermi surface of the fermion density,
weighted by cos(θ ) or sin(θ ), according to the current com-
ponent j.

6We use our previous convention for the Fourier transform of
Rθ (t, z) and Jj (t, q) = ∫ dq0

2π
e−iq0t Jj (q0, q).

C. Disorder ensemble

We take the vector potential Aj (q) to be a zero-mean Gaus-
sian random variable with variance,

Aj (q)Ak (q′) = gδi j f (|q|)δ(q + q′). (30)

Here, g is a dimensionless constant that controls the overall
scale of the fluctuations of the vector potential; g f (|q|) is
a unit-normalized function with support |q| � kF . For defi-
niteness, we choose f (|q|) = exp(−|q|/M ), where M � kF

provides a smooth cutoff on the momentum transfer q in a
scattering process.

We would like to determine what Eq. (30) implies for the
random matrix Vθθ ′ (z). We will argue that Vθθ ′ (z) gives rise to
a local interaction in the effective 1D theory. To this end, we
consider the disorder average,

Vθ1θ2 (z)Vθ3θ4 (z′)

= −k2
F sign(θ1 − θ2)sign(θ3 − θ4)e

i
2 (θ1−θ2 )e

i
2 (θ3−θ4 )

×
∫

d p⊥d p′
⊥

(2π )2
eip⊥zeip′

⊥z′
AT (q)AT (q′), (31)

where [using our conventions from Eq. (20)]

q = p⊥r̂θ2 + kF (θ1 − θ2)
d

dθ2
r̂θ2 , (32)

q′ = p′
⊥r̂θ4 + kF (θ3 − θ4)

d

dθ4
r̂θ4 . (33)

We decompose AT (q) in terms of its Cartesian components by
replacing

i sign(θ1 − θ2)e
i
2 (θ1−θ2 )AT (q)

= eiθ1 + e−iθ2

2
Ax(q) + eiθ1 − e−iθ2

2i
Ay(q), (34)

i sign(θ3 − θ4)e
i
2 (θ3−θ4 )AT (q′)

= eiθ3 + e−iθ4

2
Ax(q′) + eiθ3 − e−iθ4

2i
Ay(q′), (35)

and then use Eq. (30) to find

Vθ1θ2 (z)Vθ3θ4 (z′) = k2
F

2

∫
d p⊥d p′

⊥
(2π )2

eip⊥zeip′
⊥z′

f (|q|)δ(q + q′)

× (ei(θ1−θ4 ) + e−i(θ2−θ3 ) ). (36)

We will approximate (36) by

Vθ1θ2 (z)Vθ3θ4 (z′) = gkF δ(θ1 − θ4)δ(θ2 − θ3) f (z − z′), (37)

where

f (z) =
∫

d p⊥
2π

eip⊥z f (p⊥), (38)

and it is to be understood that |θ1 − θ2| � 1 and |θ3−θ4|�1.
The disorder (37) is local in z since it depends on the relative
coordinate z − z′. We expect Eq. (37) to be a good approxima-
tion to Eq. (36) at small momentum transfers and sufficiently
low energies. More precisely, we require M/kF � 1 and that
the cutoff on p⊥ ∈ (−�,�) satisfies �/M � 1.

A detailed explanation for the approximation (37) goes as
follows. We begin by noting that for M/kF � 1 and using
δ(q + q′), f (q) = f (q′) fixes |θ1 − θ2| � 1 and |θ3−θ4|�1.
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Next, we expect the dominant contributions to Eq. (36) to
arise when the terms in the sum (ei(θ1−θ4 ) + e−i(θ2−θ3 ) ) are
in-phase. This sets θ1 = θ4 + θ3 − θ2 + 2πm, for an arbitrary
integer m. Using the earlier two conditions, the in-phase
requirement implies |θ1 − θ4 − πm| � 1: This is modeled
by δ(θ1 − θ4 − π |m|). Substituting θ1 = θ4 + πm into f (q)
and θ4 = θ1 − πm into f (q′) fixes |θ4 − θ2 + πm| � 1 and
|θ3 − θ1 + πm| � 1. Since θi ∈ [0, 2π ), these two conditions
allow either m = 0 or |m| = 1, 2. First consider m = 0. Since
θ2 ≈ θ1 and θ4 ≈ θ1, q ≈ p⊥r̂θ1 + kF (θ1 − θ2) d

dθ1
r̂θ1 and

q′ ≈ p′
⊥r̂θ1 + kF (θ3 − θ4) d

dθ1
r̂θ1 . Because r̂θ1 and d

dθ1
r̂θ1 are

orthonormal, δ(q + q′) = δ(p⊥ + p′
⊥)δ[kF (θ1 − θ2 + θ3 −

θ4)] = 1
kF

δ(p⊥ + p′
⊥)δ(θ3 − θ2), using δ(θ1 − θ4 − π |m|).

For Gaussian f (|q|), the dependence on p⊥ and θ1 − θ2

factorizes. Absorbing into g the variation of this Gaussian
on |θ1 − θ2| ≈ 0, we perform the integral over p′

⊥ using
δ(p⊥ + p′

⊥) to arrive at Eq. (37). Next consider m = 1;
the m = −1 and m = ±2 cases work similarly and
will not be discussed. Following the m = 0 logic, the
replacement θ4 = θ1 − π introduces a relative phase in
the angular δ function, δ(q + q′) = 1

kF
δ(p⊥ − p′

⊥)δ[θ1 −
θ2 − (θ3 − θ4)] = 1

kF
δ(p⊥ − p′

⊥)δ(2θ1 − θ2 − θ3 − π ) ≈
1

kF
δ(p⊥ − p′

⊥)δ(θ1 − θ2), using θ3 ≈ θ1 − π . The δ function
has support when θ1 = θ2 [and similarly requires using the
in-phase δ function δ(θ1 − θ4 − π ) and f (q′) that θ3 = θ4].
For �/M � 1, scattering along the Fermi surface dominates
and the relative contributions of the m �= 0 terms should be
suppressed. We therefore ignore the |m| = 1, 2 terms in the
remainder.

Before further studying the effect of the vector potential
disorder, we would like to make some remarks about other
types of disorders: quenched scalar potential A0 and mass m
disorders. Applying the same logic that lead to the low-energy
theory (23), these couplings take the form

SA0+m =
∫

d2xdt �†(t, x)[A0(x)σ0 + m(x)σ3]�(t, x)

≈
∫

dtdzdθdθ ′

(2π )2
R∗

θ (t, z)
[
V A0

θθ ′ (z) + V m
θθ ′ (z)

]
Rθ ′ (t, z),

(39)

where V A0
θθ ′ (z) and V m

θθ ′ (z) are the Fourier transforms (p⊥ → z)
of

V A0
θθ ′ (p⊥ − p′

⊥) ≡ 1
2 (ei(θ−θ ′ ) + 1)A0(p − p′), (40)

V m
θθ ′ (p⊥ − p′

⊥) ≡ 1
2 (ei(θ−θ ′ ) − 1)m(p − p′), (41)

with A0(q) and m(q) the Fourier transforms of A0(x) and
m(x). Taking A0(q) and m(q) to be zero-mean Gaussian ran-
dom variables, we find the disorder averages,

V A0
θ1θ2

(z) V A0
θ3θ4

(z′) ∝ (ei(θ1−θ2+θ3−θ4 ) + ei(θ1−θ2 ) + ei(θ3−θ4 ) + 1),

(42)

V m
θ1θ2

(z) V m
θ3θ4

(z′) ∝ (ei(θ1−θ2+θ3−θ4 ) − ei(θ1−θ2 ) − ei(θ3−θ4 ) + 1).

(43)

Denote θ1 − θ2 = α and θ3 − θ4 = β. Under the same as-
sumptions we used before, |α|, |β| � 1, and excluding

large-angle scattering, the most dominant in-phase (coherent)
contribution to the random scalar potential average occurs
when α = β = 0. This turns out to make no contribution to
disorder-averaged quantities in the large-N limit considered in
the next section, being suppressed by a factor of 1/N , where
N is the number of points on the Fermi surface. The random
mass average vanishes when α = β = 0. A subdominant con-
tribution to the random mass average occurs when α = −β.
The right-hand side of Eq. (43) then becomes 2 − 2 cos α ≈
α2

2 . This is an order of magnitude smaller than the contribution
of the random magnetic field that we focus on in the remainder
of this paper.

D. Random fixed point and its discrete approximation

Under the renormalization group transformation7 [51,52]
that leaves the S0 part of Eq. (23) invariant, the leading flow
equation [55] for the disorder variance g is

dg

d�
= (3 − 2�)g, (44)

where � = 1 is the scaling dimension of R∗
θ (t, z)Rθ ′ (t, z) and

� is the renormalization group length scale that increases as
the energy is reduced. We have substituted f (z − z′) = δ(z −
z′) in deriving Eq. (44). Randomness is therefore a relevant
perturbation that drives the clean Dirac theory towards strong
disorder.

Because the randomness is O(1) relevant, perturbation
theory about the clean fixed point cannot access the strong-
disorder regime. Luckily, the low-energy action (23) admits
an exact solution for arbitrary g (such that the derivation in
Sec. II A holds), in which Vθθ ′ (z) is eliminated via the field
redefinition [56–58],

R̃θ (t, z) =
∫

dθ ′

2π
Uθθ ′ (z)Rθ ′ (t, z), (45)

where the unitary matrix

Uθθ ′ (z) ≡ (
Tze

−i
∫ z

z0
dz′V (z′ ))

θθ ′ . (46)

Here, Tz denotes path ordering along z and z0 is an arbitrary
base point. The resulting action simplifies to

S =
∫

dtdzdθ

2π
R̃∗

θ (t, z)i(∂t + ∂z )R̃θ (t, z). (47)

The action (47) exactly describes the strong-disorder regime
of a Dirac fermion at finite density, subject to a random
vector potential of sufficiently long wavelength. The random
vector potential has been eliminated from the effective action
using the infinite-dimensional symmetry of the Fermi surface
[59–61].

The formal manipulations above are made concrete by
discretizing the θ coordinate (say, by putting the system in a
finite-size box). To this end, we take the Fermi surface to con-
sist of N discrete points: θ → θI = 2π I/N with I = 1, . . . , N .

7The scale transformation is the following: z → λz, t → λt, θ →
θ, Rθ (t, z) → λ−1/2Rθ (t, z).
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The fields and disorder are therefore replaced as

Rθ (t, z) →
√

NRθI (t, z) ≡
√

NRI (t, z), (48)

Vθθ ′ (z) → VθI θJ (z) ≡ VIJ (z). (49)

(The scaling of RθI (t, z) by
√

N is for notational simplicity.)
We are specifically interested in the limit N → ∞. Substitut-
ing in the discrete form of the angular integration

∫
dθ
2π

→
1
N

∑
I , we have the (equivalent) discrete forms for the low-

energy action,

S =
∫

dtdz
N∑

I=1

R∗
I (t, z)i(∂t + ∂z )RI (t, z)

+ 1

N

∫
dtdz

N∑
I,J=1

R∗
I (t, z)VIJ (z)RJ (t, z) (50)

=
∫

dtdz
N∑

I=1

R̃∗
I (t, z)i(∂t + ∂z )R̃I (t, z), (51)

where the rotated fermions, in discrete form, are

R̃I (t, z) =
N∑

J=1

UIJ (z)RJ (t, z), UIJ (z) = (
Tze

− i
N

∫ z
z0

dz′V (z′ ))
IJ .

(52)

The discrete action has an emergent U(N ) symmetry. In dis-
crete form, the low-energy currents (28) and (29) become

Jx(t ) =
∫

dz
∑

I

R∗
I (t, z) cos(θI )RI (t, z), (53)

Jy(t ) =
∫

dz
∑

I

R∗
I (t, z) sin(θI )RI (t, z). (54)

For discrete θ , the disorder variance (37) becomes

VIJ (z)VKL(z′) = gkF NδILδJK f (z − z′). (55)

The overall factor of N arises from the discrete form of
δ(q + q′) in Eq. (36) with θI = 2π I/N . It is the discrete form
of the action (51) that we will use in the next section.

III. OBSERVABLES ALONG THE FIXED LINE

In general, in the presence of quenched disorder V with
unit-normalized distribution P[V ], the disorder average of the
correlation function of a physical observable O is defined as

〈O〉 ≡
∫

DV P[V ] 〈O 〉V , (56)

where the correlation function 〈O 〉V in the disorder realiza-
tion V is

〈O 〉V ≡
∫

D� O eiS[�,V ]∫
D� eiS[�,V ]

. (57)

Here, we are momentarily denoting the dynamical fields of
the theory by � and the action S[�,V ] indicates a depen-
dence upon both � and the disorder V . In most theories, the
presence of V in the denominator of 〈O 〉V renders the direct
analytic integration over all possible disorders in 〈O〉 difficult,
if not impossible. As such, various ingenious tricks—such
as replica, supersymmetric, and Keldysh formalisms—have
been employed with various levels of success. In this paper,

we instead make use of the exact solution of the low-energy
effective theory presented in Sec. II D to directly perform the
disorder average.

To see how this works, consider the correlation function of
a local observable O(R), which is a function of the unrotated
RI (t, z) fermion,

〈O(R)〉V =
∫

DR†DR O(R) eiS[R,V ]∫
DR†DR eiS[R,V ]

=
∫

DR̃†DR̃ O(U †R̃) eiS[R̃]∫
DR̃†DR̃ eiS[R̃]

. (58)

In the first equality, S[R,V ] denotes the action (50); in the
second equality, S[R̃] denotes Eq. (51) with R̃ the rotated
fermion (52) with rotation U a function of V . After the ro-
tation, the denominator no longer depends on V and, in this
case, yields the usual fermion determinant. The disorder V
now only appears in the expression for the observable O(U †R̃)
and may, in principle, be averaged over.8 A key point for us is
that the local observables we consider separate into a sum of
terms of the form

O(U †R̃) =
∑
a,b

cabAa(R̃)Bb(V ), (59)

for some constants cab, such that the disorder-averaged corre-
lation function 〈O(R)〉 factorizes,

〈O(R)〉 =
∑
a,b

cab

∫
DR̃†DR̃ Aa(R̃) eiS[R̃]∫

DR̃†DR̃ eiS[R̃]
·
∫

dV P[V ]Bb(V )

≡
∑
a,b

cab〈Aa(R̃)〉 · Bb(V ). (60)

Terms such as 〈Aa(R̃)〉 are calculated using the exact solution
to the strong-disorder fixed point; terms such as Bb(V ) are
calculated with respect to the given disorder ensemble. We
will show how this factorization can be used to compute the
fermion Green’s function and the longitudinal conductivity at
the random fixed point (51).

A. Diffusive Green’s function and density of states

We begin by calculating the disorder-averaged Green’s
function and density of states. We will find that the average
Green’s function is short ranged and that the density of states
is a positive constant. These calculations will introduce the
technique we will later use to calculate the conductivity.

Using the low-energy action (51), the fermion two-point
function averaged over the disorder is

〈RI (t, z)R†
I (0, 0)〉 =

∑
A,B

〈R̃A(t, z)R̃†
B(0, 0)〉 · U †

IA(z)UBI (0)

=
∑
A,B

i

2π

δAB

(z − t ) + iα
· U †

IA(z)UBI (0),

(61)

8Note that any possible quantum anomalies [56] associated with the
unitary rotations (46) of the chiral fermion path-integral measures,
being a function of the disorder V only, mutually cancel between the
numerator and denominator.
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where U (z) is defined in (52), α is a short-distance cutoff,
and the index I is not summed over. Following [62], we
compute the disorder average of U matrices by decomposing
the interval [0, z] into n steps z0 = 0, z1 = δz, . . . , zn = nδz of
length δz = |z|/n such that

U (z) = e− i
N

∫ zn
zn−1

dz′V (z′ ) · · · e− i
N

∫ z2
z1

dz′V (z′ )e− i
N

∫ z1
z0

dz′V (z′ )
. (62)

We have chosen the arbitrary reference point z0 = 0. For suf-
ficiently large n with fixed nδz = |z|, the argument of each
exponential can be approximated as

1

N

∫ z j

z j−1

dz′V (z′) ≈ 1

N
V (z j )δz ≡ Mj . (63)

Using Eq. (55), Mj is a zero-mean Gaussian random variable
with variance,

(Mi )IJ (Mj )KL = gkF

N
δILδJK f (zi − z j )δz2, (64)

where f (zi − z j ) is given in Eq. (38). For discrete z, we take

f (zi − z j )δz = f0δ|i− j|,0 + f1δ|i− j|,1. (65)

The dimensionless coefficients f0 and f1 approximate a Gaus-
sian f (zi − z j ) of finite width.

Using this, the disorder average of the product of U matri-
ces in (61) becomes

∑
A

U †
IA(z)UAI (0) =

∑
A

(ei M1 · · · ei Mn )IA × 1AI

=
([

1 + iM1 − M2
1

2
+ · · ·

]
· · ·

[
1 + iMn − M2

n

2
+ · · ·

])
II

= δII − gkF

[
f0

2
n + f1(n − 1)

]
δz δII

= e−gkF

(
f0
2 + f1

)
|z|

δII . (66)

In the third equality, we have dropped higher-order terms in
δz. In Appendix A, we check that these higher-order terms
exponentiate to the form given in the fourth equality. Further
details on such computations are given in Appendix B. Defin-
ing

geff ≡ g

(
f0

2
+ f1

)
, (67)

we obtain the disorder-averaged Green’s function,

〈RI (t, z)R†
I (0, 0)〉 = i

2π

e−geff kF |z|

(z − t ) + iα
. (68)

This Green’s function has a spatial decay length λ = 1/geff kF .
We now use the Green’s function (68) to check that the den-

sity of states is finite. For this, we need the retarded Green’s
function averaged over the disorder,

GR
II (t, z; 0, 0) = −i�(t )〈{RI (t, z), RI (0, 0)}〉

= −�(t )
i

π

αe−geff kF |z|

(z − t )2 + α2
, (69)

where �(t ) is the step function. Fourier transforming
GR(t, z; 0, 0) for α → 0, we obtain

GR
II (ω, p⊥) = 1

ω − p⊥ + igeffkF
. (70)

From Eq. (70), we obtain the density of states per unit volume,

ρ(ω) = − 1

π
Im

∫
d p⊥
2π

1

ω − p⊥ + igeffkF
= 1

2π
. (71)

B. Longitudinal conductivity

We next turn to the disorder-averaged longitudinal conduc-
tivity σxx(ω). The Kubo formula reads

σxx(ω) = 1

iωn

1

L

kF

N

∫ β

0
dτeiωnτ 〈Tτ Jx(τ )Jx(0)〉

∣∣∣
iωn→ω+i0+

,

(72)

where τ = it , ωn = (2n + 1)πβ is a positive Matsubara fre-
quency at temperature 1/β, and L · N/kF is a spatial volume
factor equal to limq→0 δ(q) = limp⊥→0 δ(p⊥) · 1

2π
δ(kF θI ) for

some I .
Plugging in the expression for the current Jx(τ ) (53) and

using the unitary (52), the current two-point function is

〈Tτ Jx(τ )Jx(0)〉

=
∫

dzdz′ ∑
I,J,A,B,C,D

〈R̃†
A(τ, z)R̃B(τ, z)R̃†

C (0, z′)R̃D(0, z′)〉

× UAI (z) cos(θI )U †
IB(z)UCJ (z′) cos(θJ )U †

JD(z′)

=
∫

dzdz′
[

i

2β sinh
(

π (z−z′+i(τ−τ ′ )
β

)]2

× ·Tr U (z)CU †(z)U (z′)CU †(z′). (73)

In the first equality, we introduced the diagonal matrix CII ′ =
cos ( 2πI

N )δII ′ ; in the second equality, we used Eq. (51) to com-
pute the finite-temperature fermion four-point function and
expressed the product of U and C matrices using standard
matrix notation. The disorder average of the product of U and
C matrices is computed as in the previous section. To this end,
we partition the interval [0, z] into n segments and the interval
[0, z′] into m segments, each of size δz = z/n = z′/m, and
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decompose each U matrix as in Eq. (62). We find

Tr(e−i Mn · · · e−i M1 )C(ei M1 · · · ei Mn )(e−i Mm · · · e−i M1 )C(ei M1 · · · ei Mm ) =
∑

I

cos2

(
2π I

N

)
e−2geff kF |z−z′ | = N

2
e−2geff kF |z−z′ |, (74)

where geff is defined in Eq. (67). The details for the evaluation
of the disorder average are given in Appendix B. The sum
over I in the second equality is performed for N → ∞ using
the continuum limit 1

N

∑
I → ∫

dθ
2π

.
Inserting Eq. (74) into the current two-point function (73),

the conductivity (72) becomes

σxx(ω)= 1

iωn

kF

2L

∫
dzdz′dτ eiωnτ

[
i

2β sinh2
(

π (z−z′+i(τ−τ ′ )
β

)
]2

× e−2geff kF |z−z′ |
∣∣∣
iωn→ω+i0+

. (75)

Shifting z → z + z′ and τ → τ + τ ′, the integral over z′ pro-
duces a factor of L; we next calculate the integral over τ in the
zero-temperature limit β → ∞. The relevant term is∫ ∞

0
dτeiωnτ

[
i

2π

1(
z + iτ

)
]2

= − 1

4π
|ωn| e−ωnz�(ωnz).

(76)

Performing the remaining integral over z, we obtain the con-
ductivity

σxx(ω) = 1

8
· 1

geff − i ω
2vkF

(units of e2/h), (77)

where we have restored the fermion velocity v, previously set
to one. This is the main result of this paper. The dc longitudi-
nal conductivity varies as 1/geff along the random fixed line.
An identical calculation with cos ( 2πI

N ) → sin ( 2πI
N ) produces

σyy(ω) = σxx(ω). The Hall conductivity σxy(ω) vanishes be-
cause there is no time-reversal symmetry breaking on average.
This follows from an explicit computation similar to the
above, in which

∑
I cos2 ( 2πI

N ) → ∑
I cos ( 2πI

N ) sin ( 2πI
N ) = 0.

We may crudely estimate the regime of validity of Eq. (77)
as follows. Recall from Eq. (30) that geff ∼ g characterizes
the scale of the fluctuations of the random vector poten-
tial A(q), which in turn determines the random coupling
|Vθθ ′ (p⊥ − p′

⊥)| ∼ kF |A(q)| ∼ kF
√

geff in Eq. (22). General
effective field theory considerations require kF

√
geff � �,

where � � kF is the cutoff on momenta transverse to the
Fermi surface. Inserting this inequality into Eq. (77) at ω = 0,
we find

σxx(ω = 0) � 1

8
· k2

F

�2
. (78)

� � kF (rather than � � kF ) ensures that the scattering is
primarily tangential to the Fermi surface, instead of perpen-
dicular to it (see Sec. II C). A study of the effects of the
various leading corrections to the effective theory (23) could
potentially clarify the bound (78).

IV. DISCUSSION AND SUMMARY

We have studied the effects of a quenched random, trans-
verse magnetic field on a 2D Dirac fermion placed at finite

density. For weak disorder of sufficiently long wavelength,
we showed how the effective theory reduces to an infinite
collection of chiral fermions coupled by the vector potential.
This simplification allows for an exact treatment of the effects
of the disorder. We found a line of fixed points along which
the longitudinal dc conductivity (77) varies continuously with
the disorder variance.

The dc conductivity was calculated in the collisionless
h̄ω/kBT → ∞ limit. It is important to extend our study to
the opposite order of limits h̄ω/kBT → 0, the so-called in-
coherent regime [53], relevant to experiment. (See [63] for a
study of distinct dc limits of the ac conductivity of a clean
Dirac fermion at zero density.) This question is pertinent to
the expected universality of the conductivity at a quantum
phase transition [64]. Numerical studies [65–67] of the integer
quantum Hall transition appear to be roughly consistent with
experiment (e.g., [68,69]), giving a value for the dc longitudi-
nal conductivity σxx ∼ (0.54 − 0.60) e2/h.

We focused exclusively on the point where the Dirac
fermion is massless. In the clean limit at finite density, a
metal intervenes between integer quantum Hall states with
σxy = ± 1

2
e2

h as the mass m is tuned between ±μ, where μ

is the chemical potential. Based on numerics (e.g., [44]), the
metallic region is absent in the presence of disorder and a
direct integer quantum Hall transition should be obtained. It
would be interesting to redo our analysis with a finite mass m
to try to find the localization length exponent for this transi-
tion.

The disorder we studied was of sufficiently long wave-
length that it mediated elastic scattering between nearby
Fermi points only. The opposite regime, in which all Fermi
points are coupled by the disorder, might be interesting to
consider. The action of the theory at energy ω = 0 takes the
form

Sω=0 =
∫

dz
N∑

I,J=1

R∗
I (z)(i∂zδIJ + JIJ )RJ (z), (79)

with random JIJ coupling all Fermi points I, J , subject to a
given ensemble. Interpreting z as “time,” this action is rem-
iniscent of the quadratic Sachdev-Ye-Kitaev model [70,71]
with complex fermions.

The similarity of the effective theory (50) of the random
Dirac Fermi surface to the theory of N chiral free fermions
in 1D suggests a possible route towards a non-Fermi-liquid
generalization, in which disorder may be studied simultane-
ously. For example, we may consider two independent Dirac
fermions—with chemical potentials that are of equal magni-
tude and opposite sign—in the presence of quenched vector
potential disorder. The effective action is SR + SL, where

SR =
∫

dtdz
N∑

I,J=1

R∗
I (t, z)

[
i(∂t + ∂z )δIJ + 1

N
VIJ (z)

]
RJ (t, z),

(80)
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SL =
∫

dtdz
N∑

I,J=1

L∗
I (t, z)

[
i(∂t − ∂z )δIJ − 1

N
VIJ (z)

]
LJ (t, z),

(81)

and RI (LJ ) is the low-energy excitation about the Fermi
surface defined by positive (negative) chemical potential.
Couplings between right (R∗

I RI ) and left (L∗
J LJ ) densities lead

to Luttinger-liquid-like behavior. So long as the couplings pre-
serve a diagonal subgroup of the U(N )× U(N ) symmetry of
the Fermi surface, the interactions and disorder can be studied

simultaneously. The implications and possible microscopic
origin of such a theory are unclear.
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APPENDIX A: DISORDER AVERAGE OF SINGLE-PARTICLE GREEN’S FUNCTION

In this Appendix, we check that the higher-order corrections to the third equality in Eq. (66) exponentiate. This ensures the
disorder-averaged Green’s function takes the short-range form (68). Beginning with Eq. (66), we write∑

A

U †
IA(z)UAI (0) =

∑
A

(ei M1 . . . ei Mn−1 ei Mn )II

=
([

1 + iM1 − M2
1

2
+ · · ·

][
1 + iM2 − M2

2

2
+ · · ·

]
· · ·

[
1 + iMn − M2

n

2
+ · · ·

])
II

≡ Lin + Quad + Cubic + · · · , (A1)

where Lin, Quad, and Cubic stand for terms with two, four, and six M contractions. To simplify the presentation here, we set
f0 = 0 in Eq. (65), which leads to

(Mi )IJ (Mj )KL =
(

gkF

N
f1

)
δz δIL δJK δ|i− j|,1, gY ≡ gkF

N
f1. (A2)

First, we compute the linear term,

Lin = [(iM1)(iM2) + (iM2)(iM3) + · · · (iMn−1)(iMn)]II =
n−1∑
j=1

[(iMj )(iMj+1)]II = i2gY NδII (n − 1) δz. (A3)

Next we compute the quadratic term,

Quad =
[

n−1∑
j=1

1

4
(iMj )2(iMj+1)2 +

n−2∑
j=1

1

2
(iMj )(iMj+1)2(iMj+2) +

∑
j<k, j+1�=k

(iMj )(iMj+1)(iMk )(iMk+1)

]
II

= 1

4
i4g2

Y N2 (n − 1)δz2 + 1

2
i4g2

Y N2 (n − 2)δz2 + i4g2
Y N2 (n − 2)(n − 3)

2
δz2 → i4g2

Y N2 z2

2
. (A4)

In the last line, we took the continuum limit nδz → z, in which only the n2 term survives; in this limit, all linear in n terms can
be dropped. Finally, we compute the cubic term. Given the computation of the quadratic term, we only retain the n3 terms here,

Cubic =
∑

j,k,�, j<k<�, j+1�=k,k+1�=�

[(iMj )(iMj+1)(iMk )(iMk+1)(iM�)(iM�+1)]II

= i6 g3
Y N3 n3 + (subleading terms)

6
δz3 → i6 g3

Y N3 z3

6
. (A5)

Examining Lin, Quad, and Cubic, in particular, the combinational factors 1
2! ,

1
3! , we have confidence that the average∑

A U †
IA(z)UAI (0) indeed takes the exponential form

∑
A

U †
IA(z)UAI (0) = 1 + i2gY N z + i4g2

Y N2 z2

2
+ i6 g3

Y N3 z3

6
+ · · · = e−gY Nz = e−gkF f1 z. (A6)

APPENDIX B: DISORDER AVERAGE OF PRODUCTS OF U AND C MATRICES

In this Appendix, we detail the evaluation of the disorder average of products of U and C matrices, focusing on the product
that appears in Eq. (73),

Tr U (z)CU †(z)U (z′)CU †(z′) ≡ UAI (z)CII ′U †
I ′B(z)UBJ (z′)CJJ ′U †

J ′A(z′), (B1)
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where UIJ (z) is defined in Eq. (52), CII ′ = cos ( 2πI
N )δII ′ , and the sums over A, I, I ′, B, J, J ′ = 1, . . . , N are understood. The

computation of Eq. (66) is similar and will not be discussed.
To calculate Eq. (B1), we discretize the z direction into segments [zk−1, zk] of length δz > 0, where zk = kδz for all integer k.

We take z = zn, z′ = zm, and consider the limit n, m → ∞ with zn and zm fixed. U (z) is decomposed as

U (z) = e− i
N

∫ zn
zn−1

dz′ V (z′ ) · · · e− i
N

∫ z2
z1

dz′ V (z′ )e− i
N

∫ z1
z0

dz′ V (z′ )
, (B2)

and similarly for U (z′). Since δz is infinitesimal, we approximate

1

N

∫ z j

z j−1

dz′ V (z′) ≈ 1

N
V (z j )δz ≡ Mj . (B3)

The decomposition of U becomes

U (z) = e−i Mn e−iMn−1 · · · e−i M1 . (B4)

From Eq. (55), Mj is a zero-mean Gaussian random variable with variance,

(Mi)IJ (Mj )KL = gkF

N
δILδJK f (zi − z j )δz2, (B5)

where f (zi − z j ) is defined by

f (zi − z j )δz = f0δ|i− j|,0 + f1δ|i− j|,1 + f2δ|i− j|,2 + · · · + fkδ|i− j|,k . (B6)

We refer to f0 as the on-site correlation coefficient, f1 as the first-neighbor correlation coefficient, f2 as the second-neighbor
correlation coefficient, etc. Using Eq. (B6), we write the disorder average (B1) as

Tr U (z)CU †(z)U (z′)CU †(z′) = Tr[C C] + W0 + W1 + · · · + Wk, (B7)

where Wj denotes the contribution from f j . The first term Tr[C C] is the constant term without any Wick contraction due to the
disorder averaging.

First-neighbor correlation: W1

We begin with the first-neighbor contribution W1. We substitute Eq. (B4) into Eq. (B7) and expand the exponentials to obtain

W1 = (e−i Mn · · · e−i M1 )AICII ′ (ei M1 · · · ei Mn )I ′B × (e−i Mm · · · e−i M1 )BJ CJJ ′ (ei M1 · · · ei Mm )J ′A| f1

≈ [(1 − iMn) · · · (1 − iM1)]AICII ′[(1 + iM1) · · · (1 + iMn)]I ′B

× [(1 − iMm) · · · (1 − iM1)]BJCJJ ′[(1 + iM1) · · · (1 + iMm)]J ′A| f1 , (B8)

where | f1 indicates that we only consider the contributions due to the first-neighbor correlation f1 in Eq. (B6). Note that the
disorder average in the first equality is being performed over the entire product, not separately over each term in the product.
Assuming n > m, there are four possible contractions involving Mn that we isolate by writing W1 as

[(−iMn)(−iMn−1)]AICII ′δI ′B δBJCJJ ′δJ ′A + (−iMn)AI (iMn−1)I ′B CII ′δBJCJJ ′δJ ′A

+ (−iMn−1)AI (iMn)I ′BCII ′ δBJCJJ ′δJ ′A + δAICII ′[(iMn−1)(iMn)]I ′B δBJCJJ ′δJ ′A

+ (e−i Mn−1 · · · e−i M1 )AICII ′ (ei M1 · · · ei Mn−1 )I ′B(e−i Mm · · · e−i M1 )BJ CJJ ′ (ei M1 · · · ei Mm )J ′A| f1

= 2g f1 kF δz (−δAIδI ′B + 1

N
δII ′δAB)δBJĈII ′ĈJJ ′δJ ′A

+ (e−i Mn−1 · · · e−i M1 )AICII ′ (ei M1 · · · ei Mn−1 )I ′B(e−i Mm · · · e−i M1 )BJ CJJ ′ (ei M1 · · · ei Mm )J ′A| f1 . (B9)

The subleading term ∝ 1
N , which comes from “crossing-contractions,” vanishes because CII ′δII ′ = Tr[C] = 0.

We continue as above sequentially contracting first-neighbor pairs involving Mn−1, Mn−2, . . . , Mm+2 to arrive at

W1 = −2g f1 kF Tr[CC][n − (m + 2) + 1] δz + (Contractions of Mm+1, . . . , M1). (B10)

There are eight contractions that involve Mm+1 and Mm in the second term in Eq. (B10),

{[(−iMm+1)(−iMm)]AICII ′δI ′BδBJCJJ ′δJ ′A + (−iMm+1)AI (iMm)I ′BCII ′δBJCJJ ′δJ ′A

+ (−iMm+1)AI (−iMm)BJCII ′δI ′BCJJ ′δJ ′A + (−iMm+1)AI (+iMm)J ′ACII ′δI ′BδBJCJJ ′ }
+ [(Mm)AI (Mm+1)I ′BCII ′δBJCJJ ′δJ ′A − (MmMm+1)I ′BδAICII ′δBJCJJ ′δJ ′A

+ δAICII ′ (Mm+1)I ′B(Mm)BJCJJ ′δJ ′A − δAICII ′ (Mm+1)I ′B(Mm)J ′AδBJCJJ ′]. (B11)
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In the first [·], the first term cancels with the fourth, and the second term cancels with the third; the same pairs mutually cancel
in the second [·]. Next we consider the contractions involving Mm and Mm−1, and we again obtain zero. These cancellations
continue through to contractions involving M1. This makes sense since we expect the result to only depend on the difference
(n − m). Summarizing, we have

W1 = −Tr[CC]{2g f1 kF [n − (m + 2) + 1]δz}. (B12)

Second-neighbor correlation and beyond: W2, . . . ,Wk

Following the logic used to compute the first-neighbor correlations, we find

W2 = (e−i Mn · · · e−i M1 )AICII ′ (ei M1 · · · ei Mn )I ′B(e−i Mm · · · e−i M1 )BJ CJJ ′ (ei M1 · · · ei Mm )J ′A| f1

≈ [(1 − iMn) · · · (1 − iM1)]AICII ′[(1 + iM1) · · · (1 + iMn)]I ′B[(1 − iMm) · · · (1 − iM1)]BJCJJ ′[(1 + iM1) · · · (1 + iMm)]J ′A| f2

= −Tr[CC]{2g f2 kF [n − (m + 3) + 1]δz}. (B13)

Generalizing to kth-neighbor correlations, we have

Wk = −Tr[CC]{2g fk kF [n − (m + k + 1) + 1]δz}. (B14)

On-site correlation: W0

Unlike the off-site correlations discussed above, we have to expand the exponentials to quadratic order to obtain the
contribution from on-site correlations,

W0 = (e−i Mn · · · e−i M1 )AICII ′ (ei M1 · · · ei Mn )I ′B(e−i Mm · · · e−i M1 )BJ CJJ ′ (ei M1 · · · ei Mm )J ′A| f0

≈
[(

1 − iMn − M2
n

2

)
· · ·

(
1 − iM1 − M2

1

2

)]
AI

ĈII ′

[(
1 + iM1 − M2

1

2

)
· · ·

(
1 + iMn − M2

n

2

)]
I ′B

×
[(

1 + iMm − M2
m

2

)
· · ·

(
1 + iM1 − M2

1

2

)]
BJ

ĈJJ ′

[(
1 + iM1 − M2

1

2

)
· · ·

(
1 + iMm − M2

m

2

)]
J ′A

| f0

= gf0kF δz

(
−δAIδI ′B + 2

N
δII ′δAB

)
δBJĈII ′ĈJJ ′δJ ′A + (Contractions of Mn−1, . . . , M1). (B15)

The crossing term ∝ 1
N again vanishes. Continuing in this way, we arrive at

W0 = −Tr[CC]{g f0 kF [n − (m + 1) + 1]δz} + (Contractions of Mm, . . . , M1). (B16)

Similar to the cancellations that were discussed in the context of the first-neighbor correlations, the remaining contractions of
Mm, . . . , M1 equal zero. Thus, we have

W0 = −Tr[CC]{g f0 kF [n − (m + 1) + 1]δz}. (B17)

Final result

Collecting all correlations f0, f1, . . . , fk and replacing limn→∞ nδz = z and limm→∞ mδz = z′, we have

Tr U (z)CU †(z)U (z′)CU †(z′) = Tr[CC]

⎧⎨
⎩1 − 2gkF δz

⎡
⎣ f0

2
(n − m) +

k∑
j=1

f j (n − m − k)

⎤
⎦

⎫⎬
⎭ = Tr[CC]e−2gkF |z−z′ |

(
f0
2 + f1+··· fk

)
.

(B18)

Note that each term proportional to k in the sum vanishes at large n and m. This concludes our calculation of the disorder average
in Eq. (74). In the main text, f0 and f1 are nonzero, and fk�2 = 0. Since the calculation of this disorder average is essentially the
same as that of the fermion two-point function, the demonstration in Appendix A carries over and ensures that the exponential
form above holds.
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