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Two-dimensional coherent spectroscopy (2DCS) is a nonlinear spectroscopy technique capable of identifying
whether apparent continua in linear response are made out of multiplets of sharp deconfined quasiparticles.
This makes it a potent tool for experimental identification of fractionalized phases. Previous discussions have
focused on limits where the quasiparticles in question are infinitely long lived. In this paper we discuss
2DCS in the regime where the fractionalized quasiparticles can themselves decay. We introduce a powerful
path-integral-based approach, whereby the computation of nonlinear susceptibilities reduces to an efficient
exercise in diagrammatic perturbation theory. We apply this method to compute the 2DCS response of the
one-dimensional transverse field Ising model, in the presence of integrability-breaking perturbations. We discuss
aspects of the self-energy of the fractionalized quasiparticles that may be extracted via 2DCS, such as the
momentum-dependent decay rate.
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I. INTRODUCTION

Probing the linear response of equilibrium solid-state sys-
tems is the bread and butter of experimental condensed matter
physics. However, the relative simplicity of such experiments
often comes at the cost of complete information. Through-
out the last century, theorists have endeavored to predict and
characterize ever more exotic and intricate phases of matter,
which may not possess unambiguous signatures at the level
of linear response. One particularly pertinent example relates
to topologically ordered phases of magnetic systems [1–4],
which feature a topological ground-state degeneracy [5], long-
range entanglement [6–8], and fractionalized quasiparticles,
which cannot be created in isolation. Only the latter prop-
erty can be expected to give rise to meaningful experimental
fingerprints, but the presence of a multiparticle continuum
produces mundane, diffuse features in the dynamical spin
structure factor [4], which can be difficult to differentiate from
the more commonplace effects of, e.g., disorder and a finite
intrinsic quasiparticle lifetime. The dearth of sharp signatures
has made the discovery of new candidate material realizations
particularly challenging.

Thankfully, recent theoretical progress has been accom-
panied by a concomitant rise in experimental capability.
For instance, pump-probe spectroscopy, in which a system
is brought strongly out of equilibrium and subsequently
“probed” with a weaker pulse, sheds light on the nonequilib-
rium relaxation dynamics of solid-state systems on ultrafast
timescales [9,10]. In this paper, we consider a related
technique: two-dimensional coherent spectroscopy (2DCS)
[11,12], in which multiple weak pulses probe a system’s non-
linear response about equilibrium via multitime correlation
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functions. While the system is not pumped into a far-from-
equilibrium state, a system’s nonlinear response properties
nevertheless provide information beyond that revealed by lin-
ear response alone.

2DCS is a well-established technique in the optical and
radio-frequency ranges in the context of, e.g., biophysics and
physical chemistry [13–16], but it has only recently been
applied to solid-state systems [11,12,17–19] due to advances
in high-intensity terahertz (THz) sources. On the theory side,
the application of 2DCS to condensed matter systems remains
in its infancy, but it has already been used to characterize
and discover signatures of the Kitaev honeycomb model [20],
random quantum magnets [21], gapped spin liquids and frac-
tonic systems [22], Luttinger liquids [23], and other systems
[24–26]. Most relevant to this paper is the ability of 2DCS
to distinguish between “inhomogeneous” and “homogeneous”
broadening [14–16], which refer to broadening due to a con-
tinuum of sharp modes and broadening due to a finite lifetime,
respectively. As shown in Ref. [27], this allows 2DCS to
partially address the problem of identifying fractionalization
by disentangling the relative contributions of disorder, decay,
and the multiparticle continuum.

The question that we set out to answer is as follows:
Precisely what information can be extracted from 2DCS in
a many-body setting when a quasiparticle’s finite lifetime is
provided by realistic interactions. The main contributions of
this paper in this direction are twofold. First, we develop
a framework based on a real-time path-integral approach
capable of describing nonlinear response functions, which
provides a convenient language to treat interacting quantum
many-body systems via diagrammatic many-body perturba-
tion theory (MBPT). This is significant since many studies
to date have focused either on noninteracting systems, or on
models comprised of effective two-level systems (see, how-
ever, Refs. [22,24,26]). Second, inspired by Ref. [27], we

2469-9950/2023/107(20)/205143(20) 205143-1 ©2023 American Physical Society

https://orcid.org/0000-0002-5391-7483
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.205143&domain=pdf&date_stamp=2023-05-22
https://doi.org/10.1103/PhysRevB.107.205143


OLIVER HART AND RAHUL NANDKISHORE PHYSICAL REVIEW B 107, 205143 (2023)

apply this technique to the one-dimensional (1D) transverse
field Ising model (TFIM). Specifically, we extend the re-
sults of Ref. [27] by introducing experimentally relevant
perturbations that make the model interacting, endowing the
quasiparticles with a nonzero self-energy, which we treat
within MBPT. When the single-domain-wall dispersion re-
lation overlaps with the three-domain-wall continuum, spon-
taneous decay of domain walls is possible via the emission
of a pair of domain walls. Otherwise, nonzero temperatures,
leading to a thermally excited background of domain walls,
are needed to give rise to decay due to scattering. We consider
different parameter regimes so as to produce both types of
decay. In both cases, the resulting frequency-dependent self-
energy gives rise to additional spectral features, whose effect
on the 2DCS spectrum we describe quantitatively.

The paper is structured as follows. Due to the long and
technical nature of the calculations involved in evaluating the
nonlinear response in the presence of interactions, we opt to
provide a brief summary of our key physical results prior to
expanding upon the details of the calculations used to obtain
them. This summary is given in Sec. II, which also includes a
short introduction to the 2DCS protocol. We then describe in
detail the framework used to evaluate the nonlinear response
in Sec. III. This starts with an introduction to the TFIM and
the perturbations that we consider, followed by discussion of
its noninteracting Green’s functions on the closed, real-time
(Keldysh) contour. Next, we describe how various nonlin-
ear susceptibilities can be obtained via differentiation of a
generating functional, which sets the stage for introducing
interactions. The self-energy on the Keldysh contour is then
evaluated to second order in the interactions. Finally, we ex-
amine how the mixed absorptive and dispersive character of
the rephasing signal can be ameliorated by “phase untwist-
ing.” We close with a discussion of our results in Sec. IV.

II. SUMMARY OF MAIN RESULTS

We work throughout the paper with the one-dimensional
(1D) TFIM at nonzero temperatures in the presence of addi-
tional, experimentally relevant perturbations. The unperturbed
Hamiltonian is given by

Ĥ0

J
= −

L∑
i=1

σ̂ z
i σ̂ z

i+1 − g
L∑

i=1

σ̂ x
i , (1)

where g is the ratio of the static, “transverse” magnetic field
strength to the Ising interactions, and σ̂i are the Pauli matrices
for spin- 1

2 degrees of freedom. We consider exclusively the
ferromagnetic regime of the model g < 1, in which Ising
interactions between spins are predominant with respect to
the transverse field. In this regime, the quasiparticles can be
viewed as domain walls dressed by quantum fluctuations,
which can only be (locally) created in pairs. Motivated in
part by the prototypical material realization of the 1D TFIM,
CoNb2O6 [28–35], we consider the addition of residual “XY”
-like interactions between the spins [32]: In addition to Ising
interactions ∝σ̂ z

i σ̂
z
j between neighboring spins i and j, aligned

along z, we look at the effect of weak interactions in the xy
plane of the form ∝σ̂ x

i σ̂
x
j + σ̂

y
i σ̂

y
j , breaking the perfect Ising

anisotropy of Eq. (1). Absent any perturbations, the 1D TFIM

(1) is exactly solvable via a Jordan-Wigner transformation
from spins to noninteracting fermions [36,37]. Under the same
transformation, in addition to a renormalization of the single-
particle band structure, the residual XY interaction maps
to a density-density interaction between the Jordan-Wigner
fermions, which provides the fermions with a nonvanishing
self-energy whose effects we study quantitatively. While ad-
ditional perturbations are likely necessary for an accurate
description of CoNb2O6 [32,34], XY-like interactions give
rise to the salient phenomenology without additional com-
plexities. Further, the framework that we present is perfectly
capable of handling additional perturbations, which merely
give rise to a modification of the single-particle dispersion and
the interaction vertices1 (see Sec. III F 2).

Deep within the ferromagnetic regime, the spectrum of
domain walls obtained from Eq. (1) is gapped and remains
well separated from the three-domain-wall (3DW) continuum.
As the critical point of the noninteracting model g = 1 is
approached from below, the single-particle dispersion gets
closer to, but never touches, the 3DW continuum, due to the
relativistic character of the dispersion at long wavelengths.
This picture remains true when the XY-like interactions de-
scribed above are introduced perturbatively. Consequently, it
is not possible for the domain walls to decay spontaneously
into three domain walls at zero temperature, necessitating
nonzero temperatures to obtain a finite lifetime due to scat-
tering from thermally excited domain walls. To study the
impact of spontaneous decay on the nonlinear response,
we modify the single-particle dispersion such that overlap
with the 3DW continuum occurs. Practically, this can be
accomplished by adding next-nearest-neighbor terms to the
fermionic Hamiltonian. In the original spin degrees of free-
dom, such a modification is effected by three-body terms of
the form σ̂ z

i σ̂ x
i+1σ̂

z
i+2. Examples of dispersion relations that

avoid and permit spectral overlap are depicted in Fig. 1. While
such three-body interactions may be subleading in a typical
experiment, they illustrate the physics at play in more realistic
Hamiltonians that exhibit spectral overlap.

Since the ferromagnetic phase of Eq. (1) exhibits frac-
tionalized excitations, linear response probes the creation and
subsequent dynamics of a pair of quasiparticles. “Broaden-
ing” of the absorption spectrum therefore has two distinct
contributions, between which the linear response cannot
distinguish: (i) “inhomogeneous” broadening due to the two-
domain-wall continuum and (ii) “homogeneous” broadening
due to the finite lifetime of the quasiparticles. This effect is
illustrated by the qualitative similarity between the top panels
of Figs. 2(a) and 2(b), which depict the linear response of
noninteracting and interacting systems, respectively. To iso-
late these two in principle distinct contributions, one can probe
the system’s nonlinear response via 2DCS [27].

1In order for this description to be effective, the perturbations
should map to local interactions in the fermionic language. A no-
table exception is a “longitudinal” field, parallel to the Ising easy
axis, which inherits its nonlocality from the Jordan-Wigner string in
Eq. (9).
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FIG. 1. (a) Single-particle dispersion Ek of the nearest-neighbor
Ising model at first order in the interactions (7) within the ferromag-
netic regime (blue line) and the corresponding three-domain-wall
continuum Ep1 + Ep2 + Ek−p1−p2 for all pairs of momenta p1, p2

(gray shaded region). Absent next-nearest-neighbor contributions,
the two do not overlap, forbidding spontaneous decay of isolated
domain walls. (b) The analogous dispersion relation and three-
domain-wall continuum in the presence of next-nearest-neighbor
fermion processes that permit the single-particle mode to enter the
continuum.

A. 2DCS protocol

Motivated by Refs. [22,27], we consider the nonlinear re-
sponse of the model (1) to magnetic field pulses h(t ) in the
“transverse” direction (i.e., parallel to the transverse field,
which is oriented along x in our conventions), which couple
to the x component of the magnetization M̂x. Specifically, the
system’s nonlinear response is probed by the two-dimensional
coherent spectroscopy (2DCS) protocol [11,12,17–19], which
consists of three separate pulse sequences, which we refer
to as “A,” “B,” and “AB.” First, a pulse A is applied to
the system at time s = 0, hA(s) = A0δ(s). Second, a separate
pulse B at s = τ , with τ > 0,2 is applied to the system in
isolation, hB(s) = Aτ δ(s − τ ). Finally, in a third experiment,
both pulses are applied to the system in tandem, hAB(s) =
A0δ(s) + Aτ δ(s − τ ). In each of the three experiments, the
system is measured at a later time s = t + τ (i.e., a time
t > 0 after the second pulse). To find the nonlinear response
of some observable M̂, the responses to the two individual
pulses, A and B, are subtracted from the response to the sum,
AB, which removes the linear response component (as well
as contributions to the nonlinear response that do not involve
cross terms between the pulses A and B):

M2DCS(t + τ ) = MAB(t + τ ) − MA(t + τ ) − MB(t + τ ). (2)

A particularly natural and experimentally accessible choice
for the observable M̂ is the total magnetization of the system.
In this case, for the unperturbed TFIM, only the transverse
component of the total magnetization M̂x = 1

2

∑
i σ̂

x
i exhibits

a nonzero response. Hence, we will focus on the response
of M̂x in what follows. One finds that, after the subtraction

2One can also permit negative τ . See, for instance, the Methods
of Ref. [19]. A protocol that utilizes negative τ is also explored in
Sec. III H in the context of “untwisting” the rephasing signal.

scheme, the measured magnetization response has contribu-
tions from both the second-order (χ (2)

xxx) and third-order (χ (3)
xxxx)

susceptibilities:

Mx
2DCS(t + τ ) = A0Aτ χ

(2)
xxx(t, t + τ )

+ A2
0Aτ χ

(3)
xxxx(t, t + τ, t + τ )

+ A0A2
τ χ

(3)
xxxx(t, t, t + τ ) (3)

because the system does not possess any symmetries that en-
force the second-order susceptibility χ (2)

xxx to vanish. The time
argument convention used in Eq. (3) is defined such that the
nth-order response of Mx(t ) = ∑

n Mx
n (t ) is recovered from

the susceptibility by convolution, i.e.,

Mx
n (t ) =

∫
χ (n)

x...x(t − t1, . . . , t − tn)h(t1) . . . h(tn), (4)

where the integration is over times t1, . . . , tn and the nth-order
susceptibility χ (n)

x...x is causal in the sense that time argu-
ments remain ordered: χ (n)

x...x ∝ θ (t − t1)θ (t1 − t2) . . . θ (tn−1 −
tn). Since the two contributions from χ (3)

xxxx scale differently
with the strengths of the two pulses A0 and Aτ , they can, at
least in principle, be isolated from one another [22,27]. As
a result, we will examine the behavior of the two time ar-
gument sequences χ (3)

xxxx(t, t + τ, t + τ ) and χ (3)
xxxx(t, t, t + τ )

separately. It should be noted, however, that any individual
experiment with A0 and Aτ fixed will include a contribution to
the third-order response from both time argument sequences
appearing in Eq. (3).

B. Third-order response

While all contributions to Eq. (3) in principle contain new
information beyond the linear response of the magnetization
M̂x, of particular importance is the contribution from the third
line, proportional to χ (3)

xxxx(t, t, t + τ ). As shown in Ref. [27],
for the unperturbed TFIM, this particular sequence of time
arguments gives rise to a rephasing process analogous to
the spin echo in the context of nuclear magnetic resonance
(NMR): The phase accumulated during time evolution for a
time τ can, in the absence of any dephasing mechanism, be
entirely countered by time evolution during the time delay t
when the two delays are comparable, τ � t . If the Fourier
transform of this response function is evaluated, from times
t, τ to conjugate frequencies ωt , ωτ , respectively, the rephas-
ing process gives rise to a sharp streak along the antidiagonal
in the ωt -ωτ plane, i.e., along ωt = −ωτ . In the absence of dis-
sipation, and hence perfect rephasing, this streak is infinitely
narrow in the transverse direction, parallel to ωt = ωτ . In
Ref. [27], it was shown that adding dissipation by hand leads
to a nonzero broadening of the streak in the ωt = ωτ direction
that directly probes the “decoherence time” (also known as
T2) of the effective two-level systems that comprise the non-
interacting spectrum. The nonlinear response can therefore
qualitatively distinguish between the presence and the absence
of lifetime broadening in systems exhibiting a two-particle
continuum. We scrutinize the fate of, and elucidate what quan-
titative information can be garnered from, the rephasing signal
when the finite lifetime of excitations is provided by realistic
interactions between the quasiparticles.
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FIG. 2. The imaginary part of the Fourier-transformed linear susceptibility per site χ (1)
xx (t ) (top panel) and the Fourier-transformed third-

order susceptibility χ (3)
xxxx (t, t, t + τ ) (bottom panel) for both noninteracting [(a), (c)] and interacting [(b), (d)] systems. Two distinct cases

are considered. (a), (b) The single-particle dispersion does not overlap with the three-domain-wall continuum. (c), (d) Overlap is induced by
including next-nearest-neighbor interactions between spins (see Fig. 1). The noninteracting systems [(a), (c)] exhibit sharp streaks along the
antidiagonal ωt = −ωτ due to the rephasing process described in the main text. In the presence of interactions, but absent spectral overlap [(b)],
spontaneous decay is forbidden. However, interactions between particles and nonzero temperature conspire to furnish the domain walls with a
finite lifetime, leading to broadening of the antidiagonal streaks. At zero temperature when spectral overlap is present [(d)], the broadening is
confined to frequencies where domain walls can decay spontaneously, leaving the complementary frequencies sharp. The locations highlighted
by the arrows in (d) and Fig. 3(d) map onto one another. In (a), (b), the system size is L = 200, and the system is deep within the ferromagnetic
phase g = 1

4 at temperature T = J/2. In (c), (d) L = 200, g = 2
5 , and g2 = −0.48. Interaction strengths λ = 0.15J and λ = 0.3J are used in

(b) and (d), respectively. In all plots the color bar is normalized by the maximum absolute value of Im χ (3)
xxxx (ωt , ωτ ).

C. Adding interactions

To tackle the problem of introducing interactions, we intro-
duce a powerful real-time path-integral approach. Specifically,
one of the principal contributions of this work is to reduce the
problem of evaluating the nonlinear response to performing
a derivative expansion of a generating functional. Schemati-
cally, the nth-order response functions are obtained via

χ (n−1)
xx...x (t1; t2, . . . , tn) = 1

2i

δnZ[hcl, hq]

δhcl
n · · · δhcl

2 δhq
1

∣∣∣∣
hq=hcl=0

, (5)

where the notation is explained in detail in Sec. III C. At
the noninteracting level, the generating function Z[hcl, hq] can
be evaluated exactly, and the response to arbitrary orders in
the driving field can easily be obtained by taking as many
derivatives as one requires. This procedure circumvents the
calculation of the n-fold nested commutators that appear in
generalized Kubo formulas, which can be tedious to evaluate.
In the presence of interactions, the nonlinear response func-
tions in Eq. (5) have a diagrammatic interpretation, and the
standard methods of diagrammatic many-body perturbation
theory can be applied immediately to incorporate certain in-
teraction effects nonperturbatively.

The Fourier transform of the third-order susceptibility
χ (3)

xxxx(t, t, t + τ ) of the noninteracting TFIM without (with)
next-nearest-neighbor interactions between spins is shown
in Fig. 2(a) [Fig. 2(c)]. In both cases, sharp streaks can
be observed in the lower right and upper left quadrants at
energies corresponding to twice the quasiparticle spectrum
ωt = ωτ = ±2εk since the uniform magnetic field pulses
create two oppositely propagating domain walls. Absent next-
nearest-neighbor interactions, the streaks span the frequencies
2(1 − g) < εk < 2(1 + g), which coincide with the range of
frequencies that the absorption spectrum Im χ (1)

xx (ω) is nonva-
nishing. For the purposes of plotting, we couple the systems
to a zero-temperature bath with a frequency- and momentum-
independent spectral function Jk (ω) = γ , providing them

with a finite but large lifetime set by ∼1/γ , which sets the
width of the streaks observed in Figs. 2(a) and 2(c). The
absence of momentum dependence implies that the width of
the streaks in the ωt = ωτ direction does not vary with the
choice of cut. The amplitude of the streak, on the other hand,
does vary with momentum (and, hence, with the choice of
cut). The amplitude is set by the optical matrix element; at
zero temperature, the amplitude of the streak at ωt = ±2εk

is set by ∝ν(εk ) sin4(ϑk ), where ν(ε) is the single-particle
density of states and ϑk is the angle entering the Bogoliubov
transformation that diagonalizes the single-particle Hamilto-
nian [27] [see also Eq. (34)].

Upon introducing the residual XY interactions, there are
certain aspects of these interactions that can be treated ex-
actly. Namely, taking inspiration from Ref. [32], in order to
maintain normal ordering of the interactions and simultane-
ously diagonalize the bilinear contribution to the Hamiltonian,
the Bogoliubov transformation should be performed in a
self-consistent manner. This exact effect and the first-order
contribution to the self-energy conspire to give a renormal-
ization of the single-particle spectrum εk; at this order in
perturbation theory, the energy of the single-particle excita-
tions is modified, but they remain exact quasiparticles with an
infinite lifetime. Correspondingly, the locations of the streaks
in the ωt -ωτ plane are modified due to the renormalization of
the spectrum εk , and the amplitude profile along the antidi-
agonal is also modified, a consequence of the renormalized
Bogoliubov parameter ϑk and the single-particle density of
states ν(ε). While these modifications are important for a
full quantitative understanding of the 2DCS response, both
of these effects are already seen at the level of linear response,
and, consequently, this information can already be extracted
from the first-order susceptibility χ (1)

xx (t ).
At second order in the interactions, the system presents

additional spectral features that the linear response is effec-
tively blind to. The retarded Green’s function is shown in
Fig. 3 for the noninteracting systems [3(a) and 3(c)], and when
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FIG. 3. (a), (c) The diagonal entry of the retarded single-particle Green’s function ĎR(k, ω) [see Eq. (20)] of the unperturbed transverse
field Ising chain, without [(a)] and with [(c)] next-nearest-neighbor interactions between spins. (a)–(d) Correspond to the same systems as
Fig. 2. Absent perturbations, the model maps to free fermions and ĎR(k, ω) exhibits poles at energies corresponding to the quasiparticle
dispersion ω = ±εk [given in Eq. (11)]. (b), (d) The same component of the Green’s function at second order in the fermionic interactions. The
quasiparticles are endowed with a finite lifetime and the single-particle Green’s function develops nontrivial spectral features. Absent spectral
overlap but at nonzero temperatures [(b)], broadening occurs throughout the spectrum, but is most pronounced at the zone boundaries, where
the broadening becomes anomalous. When spectral overlap occurs but at zero temperature [(d)], broadening is confined to the frequencies
where spontaneous decay is permitted. The locations highlighted by the arrows in (d) and Fig. 2(d) map onto one another. All plots use the
same parameters as their counterparts in Fig. 2.

interactions are accounted for by including self-energy cor-
rections to second order in the interactions [3(b) and 3(d)]. In
both cases, a frequency- and momentum-independent lifetime
misses important aspects of the response function. Namely,
when spectral overlap is absent, but the system is subjected to
nonzero temperatures [Fig. 3(b)], while broadening is present
throughout the spectrum, it becomes most pronounced near
the edges of the Brillouin zone. Further, near the zone bound-
aries, this broadening becomes anomalous in the sense that
the quasiparticle peak splits in two. As we show in Sec. III F,
this anomalous broadening is a consequence of the sharp fre-
quency dependence of the self-energy in the vicinity of k = π .
When spectral overlap is present and there are few thermally
excited domain walls [Fig. 3(d)], quasiparticle decay proceeds
via spontaneous emission of domain wall pairs. In this case,
the broadening exhibits strong momentum dependence since
spontaneous decay can only occur at energies and momenta
where it is kinematically allowed. Again, this leads to broad-
ening that is most pronounced near the zone boundaries, while
the complementary momenta near the zone center remain
sharp. While we have access to these single-particle Green’s
functions analytically and numerically, they correspond to
string correlation functions in terms of the original, local spin
degrees of freedom σ̂i appearing in Eq. (1), and are there-
fore inaccessible in a conventional experimental setting (see,
however, Ref. [38]). Instead, as mentioned previously, linear
response of the experimentally accessible M̂x probes the broad
two-domain-wall continuum, and the lifetime broadening of
the Green’s function does not lead to a qualitative change in
the already broad response (see top panels of Fig. 2). Conse-
quently, even identifying the presence or absence of lifetime
broadening is challenging, and the intricate features discussed
above relating to the frequency and momentum dependence
of the self-energy will remain hidden to the linear response.

The corresponding 2DCS spectra for the systems exhibit-
ing quasiparticle decay are shown in Figs. 2(b) and 2(d).
Focusing first on Fig. 2(b), we observe that the broaden-
ing of the single-particle excitations, present throughout the

spectrum in Fig. 3(b), gives the streaks a nonzero width in
the ωt = ωτ direction. The anomalous broadening near the
zone boundaries, however, is seemingly absent. As we ex-
plain in Appendix D, this is a consequence of insufficient
“contrast” between the maxima, rather than a fundamental
insensitivity of the 2DCS spectrum. Indeed, in Appendix D
we detail how the anomalous broadening would manifest
in the nonlinear response if its effects were amplified. In
Fig. 2(d) the strong momentum dependence of the Green’s
function due to spontaneous decay can be observed, with the
location of the strongest broadening in the ωt = ωτ direction
indicated between the two arrows [which are also shown in
Fig. 3(d)]. These results highlight an important point: While
the 2DCS spectrum (within a self-energy approximation)
can be written entirely in terms of single-particle Green’s
functions [Eq. (33)], the inverse problem, extracting generic
single-particle properties from the 2DCS spectrum, can be
challenging. In summary, the typical scale of broadening as a
function of momentum can be gleaned from the diagonal width
of the rephasing “streak” in the 2DCS spectrum. More intri-
cate spectral features related to the frequency dependence of
the self-energy, such as the anomalous broadening in Fig. 3(d),
are more elusive, but may also be accessible if one is lucky
with matrix elements, as we shall discuss.

III. QUASIPARTICLE SCATTERING
FROM INTERACTIONS

A. Model

Our idealized system consists of the following three terms:

Ĥ (t ) = Ĥ0 + Ĥint + Ĥdrive(t ). (6)

The noninteracting Hamiltonian Ĥ0 corresponds to the trans-
verse field Ising model (TFIM) in one spatial dimension, and
is given in Eq. (1). It is well known that Eq. (1) maps to free
fermions via a standard Jordan-Wigner (JW) transformation
[36,37], and exhibits a ferromagnetic-paramagnetic quantum
phase transition at g = 1, characterizing the Ising universality

205143-5



OLIVER HART AND RAHUL NANDKISHORE PHYSICAL REVIEW B 107, 205143 (2023)

class [39]. We will focus solely on the ferromagnetic phase
g < 1, in which the system possesses a nonzero gap and hosts
fractionalized, domain-wall-like excitations.

We assume that interactions between fermions arise from
imperfect Ising anisotropy between neighboring spins, giving
rise to residual “XY”-like interactions in the plane perpendic-
ular to the Ising easy axis:

Ĥint = 1

2

∑
i �= j

Ui j
[
σ̂ x

i σ̂ x
j + σ̂

y
i σ̂

y
j

]
. (7)

For simplicity, we will take the interactions to be trun-
cated at nearest-neighbor distance with strength λ, i.e., Ui j =
λ(δi, j+1 + δi, j−1). Under this assumption, the XY interaction
maps to a density-density coupling between the JW fermionic
degrees of freedom, in addition to a bilinear fermionic term
that renormalizes the single-particle band structure. Finally,
the system is perturbed about equilibrium with a time-varying,
but spatially homogeneous, magnetic field h(t ):

Ĥdrive = −1

2

L∑
i=1

h(t ) · σ̂ i. (8)

In what follows we will take the driving field to be parallel
to the static field in (1), i.e., h(t ) · σ̂ i = h(t )σ̂ x

i . In principle,
we can allow h(t ) → h(xi, t ) to vary in space as well as
time, thereby probing the response of the system at nonzero
momenta. However, experiments do not, at least at present,
have access to such momentum-resolved measurements, so
we therefore focus on the translationally invariant drive in
Eq. (8). Since the static transverse field in Eq. (1) can be
treated exactly via the JW transformation, there are no restric-
tions placed on g other than the requirement that the system
belongs to the ferromagnetic phase.3 However, both the char-
acteristic scale of the interactions and the driving field are
assumed weak, gJ, J � λ, h. The former permits many-body
perturbation theory in the interactions to be applied, while the
latter is a prerequisite for the validity of (non)linear response
theory.

The exact solution of Eq. (1) is obtained by introducing a
standard JW transformation from spin- 1

2 degrees of freedom
to fermions

σ̂ x
i = 1 − 2ĉ†

i ĉi , (9a)

σ̂ z
i = −

∏
j<i

(1 − 2n̂ j )(ĉ
†
i + ĉi ). (9b)

This transformation is then followed by a Fourier trans-
form ĉk = ∑

i e−ikxi ĉi/
√

L and a Bogoliubov rotation to new
fermions γ̂k through ĉk = uk γ̂k + ivk γ̂

†
−k , where uk = cos 1

2ϑk ,
vk = sin 1

2ϑk , and tan ϑk = sin k/(g − cos k) [39]. Up to a
constant energy shift, this sequence of transformations brings

3Since we will be working at nonzero temperatures, the value of
g, which determines the gap through Eq. (10), will, in turn, deter-
mine the temperature regime over which our perturbative analysis is
quantitatively valid.

the free Hamiltonian into the canonical free-fermion form

Ĥ0 =
∑

k

εk

(
γ̂

†
k γ̂k − 1

2

)
, (10)

where the quantization of the quasimomentum k is dictated by
the boundary conditions4 on the real-space fermions ĉi. The
spectrum of the free Bogoliubov fermions γ̂k is given by

εk = 2J
√

1 + g2 − 2g cos k, (11)

which is gapped for all g �= 1, with a gap that scales as
2J|1−g| in the thermodynamic limit. In the strict limit g →
0+, the ground states of the model are the “cat” states ∝|⇑〉 ±
|⇓〉, where, e.g., |⇑〉 is the fully magnetized state with all spins
pointing along z. Applying σ̂ x

i to such a state flips the ith spin
and thus creates a pair of domain wall excitations on the two
adjacent bonds. Each member of the pair is subsequently able
to propagate freely throughout the system.

If the noninteracting Hamiltonian Ĥ0 is modified to include
translationally invariant next-nearest-neighbor fermion terms,
it remains exactly solvable via the sequence of transforma-
tions described above. Specifically, as long as the Hamiltonian
can still be brought into the standard form

Ĥ0 = 1

2
J

∑
k

(ĉ†
k ĉ−k )

(
αk −iβk

iβk −αk

)(
ĉk

ĉ†
−k

)
(12)

in momentum space, we obtain a dispersion relation of the
form ε2

k = α2
k + β2

k . In the specific case that the noninteracting
Hamiltonian is changed to Ĥ0 → Ĥ0 − g2J

∑
i σ̂

z
i σ̂ x

i+1σ̂
z
i+2,

the coefficients entering Eq. (12) are modified according to
αk → αk − 2g2 cos(2k), βk → βk + 2g2 sin(2k). This mod-
ification is used in Fig. 1(b) to engineer a single-particle
dispersion that enters the 3DW continuum.

B. Path-integral representation

1. Free Green’s functions

To compute the various linear and nonlinear susceptibil-
ities, we find it convenient to use a real-time path-integral
approach, using the Keldysh contour C [40]. The generating
functional Z[hcl, hq], which contains complete information
about the system’s response properties to all orders in the
drive, is written in terms of the classical (cl) and quantum
(q) components of the drive, defined by hcl/q(t ) = 1

2 [h+(t ) ±
h−(t )]. The fields h±(t ) are the generating fields on the upper
and lower branches of C, respectively:

Z[hcl, hq] =
∫

D[ψ̄, ψ] eiS0[ψ̄,ψ]+iSint[ψ̄,ψ]+iSdrive[ψ̄,ψ]. (13)

The upper and lower branches of the Keldysh contour C
are depicted schematically in Fig. 4. The figure also high-
lights why a closed-time contour approach is particularly

4For convenience, we will impose antiperiodic boundary conditions
on the JW fermions, such that the quasimomentum k is quan-
tized as kn = 2π

L (n + 1
2 ) − π , for L even [37]. If periodic boundary

conditions are imposed on the physical spins σ̂i, then periodic (an-
tiperiodic) boundary conditions must be imposed on the odd (even)
fermion parity sectors. The ground state is known to belong to the
even parity sector.
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FIG. 4. Schematic depiction of the Keldysh contour C. Both the
upper (+) and lower (−) branches span the entire real-time axis. Also
shown is a particular time ordering of operators Ô(ti ) that appears in
the generalized Kubo formula for the third-order response, which can
naturally be ordered on the Keldysh contour. The classical and quan-
tum components of the field hcl/q(t ) = 1

2 [h+(t ) ± h−(t )] are related to
the average and difference between the two branches, respectively.

convenient: In the generalized Kubo formulas for nonlinear
susceptibilities, one encounters expectation values such as
〈Ô(t1)Ô(t4)Ô(t3)Ô(t2)〉, where tn > tn−1. While the time argu-
ments are not monotonic, the expression can naturally be path
ordered on the Keldysh contour C. In the Keldysh formalism,
the functional (13) satisfies the identity Z[hcl, 0] = 1 since,
in the absence of any quantum component, hq = 0, there is
an exact cancellation between the forward and backward time
evolutions: Û (t1, t2)Û (t2, t1) = 1̂, with Û the time-evolution
operator from the second to the first time argument. The non-
interacting, Grassmann-valued action S0[ψ̄, ψ] is in general
described by the free Green’s function

S0[ψ̄, ψ] =
∫

dx dx′ ψ̄α (x)
[
G−1

0

]
αβ

(x, x′)ψβ (x), (14)

where the multi-indices α, β (which are implicitly summed
over) represent all internal degrees of freedom, including
the contour index, and the variables x, x′ denote space-time
indices. The fermionic Green’s function has the following
structure:

〈ψα (x)ψ̄β (x′)〉 = iGαβ

0 (x, x′) = i

(
GR GK

0 GA

)
K

, (15)

where the subscript “K” denotes that the depicted matrix
structure is with respect to the “Keldysh” indices only; space-
time and internal indices are left implicit. In the momentum
and frequency representation, the Keldysh components of G0,
corresponding to the Hamiltonian (10), are given explicitly by

GR/A(k, ω) = (ω − εk ± i0+)−1, (16a)
GK(k, ω) = −2π iF (ω)δ(ω − εk ), (16b)

where F (ω) = 1 − 2nF(ω) = tanh ( 1
2βω) denotes the equilib-

rium fermionic distribution function at temperature T = β−1.
The retarded/advanced (R/A) Green’s functions GR/A(k, ω)
are analytic in the upper/lower half plane, and therefore corre-
spond to upper/lower triangular matrices in the time domain.
In the absence of interactions, the energies εk are given by
Eq. (11). The inverse Green’s function that appears in Eq. (14)
is found by inverting the matrix in Eq. (15) with components
(16).

2. Majorana fermions

Since the interaction term (7) conserves only fermion
parity P̂ = (−1)N̂ f , not fermion number N̂ f = ∑

i ĉ†
i ĉi , we

find that it is convenient to work in an operator basis that

corresponds to Majorana fermions. At the operator level, we
introduce two Hermitian operators φ̂ap (a = 1, 2) for each
momentum p,

φ̂1p = 1√
2

(ĉ†
−p + ĉp) = 1√

2
eiϑp/2(γ̂ †

−p + γ̂p ), (17a)

φ̂2p = i√
2

(ĉ†
−p − ĉp) = i√

2
e−iϑp/2(γ̂ †

−p − γ̂p ), (17b)

which correspond to the Fourier transform of the real-space
Majorana operators, e.g., ĉi = (φ̂1i + iφ̂2i )/

√
2, with φ̂ai =

φ̂
†
ai and normalization φ̂2

ai = 1
2 . While Majorana fermions have

no Grassmann number analog (since anticommuting Grass-
mann numbers must square to zero), it is nevertheless possible
to perform the transformation in Eq. (17) at the level of
Grassmann numbers5 to express the Green’s function (16)
in the “Majorana basis” [41]. Grassman integration rules for
these variables are outlined in Appendix A. While this choice
is essentially immaterial at the level of the noninteracting
action, when interactions are accounted for in Sec. III F, the
Majorana basis will circumvent the need to introduce multiple
interaction vertices, thereby simplifying the obtained expres-
sions. Using this representation, the noninteracting action is
expressed in terms of the free Majorana Green’s function as

iS0[φα] = −1

2

∑
k

∫
dt dt ′ φα

−k (t )
[
D̆−1

0

]αβ

k (t, t ′)φβ

k (t ′).

(18)
The multi-indices α, β now run over both Keldysh (cl, q)
and Majorana (1, 2) indices. The breve “˘” is used to denote
matrices in Keldysh ⊗ Majorana space, while the check “ˇ” is
reserved for matrices with respect to Majorana indices only.
In contrast to (15), the causality structure of the matrix D̆0 is
now bosonic in character:

〈φα (t )φβ (t ′)〉 = D̆αβ (t, t ′) =
(

ĎK ĎR

ĎA 0̌

)
K

. (19)

This structure derives from using the Keldysh rotation for
bosons φcl/q(t ) = [φ+(t ) ± φ−(t )]/

√
2. The structure of the

Green’s functions with respect to Majorana indices can be de-
rived directly from the fermionic Green’s functions in Eq. (16)
using the transformation (17) treated as a linear transforma-
tion between Grassmann numbers. Expressed in terms of real
time, we find

ĎR(k, t ) = θ (t )

(
cos εkt eiϑk sin εkt

−e−iϑk sin εkt cos εkt

)
, (20)

where the momentum dependence of D̆αβ (k, t ) is defined
by 〈φα

k (t )φβ

−k (0)〉. The advanced component ĎA(k, t )
then follows directly from the symmetry properties
ĎA(k, t ) = −[ĎR(−k,−t )]T, with T denoting transposition
over Majorana indices. The Heaviside step function ensures
that the retarded and advanced Green’s functions are
appropriately causal. Meanwhile, for the Keldysh component,

5The transformation is given by, e.g., φ1p = 1√
2
eiϑp/2(ψ̄−p + ψp).

The “barred” fields φ̄ap are not independent from the φap. If they are
introduced, they are identically equal to φ̄ap ≡ φa,−p.
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we find

ĎK(k, t ) = −iFk

(
sin εkt −eiϑk cos εkt

e−iϑk cos εkt sin εkt

)
, (21)

where Fk is shorthand for F (εk ), which derives from the
fermionic distribution function in Eq. (16b) since the two
are connected to one another via the linear transformation
in Eq. (17). The Keldysh component satisfies ĎK(k, t ) =
−[ĎK(−k,−t )]T, where we have used antisymmetry of the
Bogoliubov parameter ϑ−k = −ϑk . The phase factors eiϑk can
be removed from Eqs. (20) and (21), if desired, by rotating the
fields into the “diagonal” basis ϕ1p = e−iϑp/2φ1p and ϕ2p =
eiϑp/2φ2p. This transformation is equivalent to the Bogoliubov
transformation from k-space fermions ĉk to the operators γ̂k

that diagonalize Ĥ0. If this transformation is performed, the
phase factors eiϑk are transferred from the Green’s functions
in Eqs. (20) and (21) to the interaction and drive vertices. We
opt to leave the phases in the Green’s functions (20) and (21).

3. Magnetization

We now move to expressing the time-dependent drive (8) in
the Majorana basis (17). At the operator level, the total mag-
netization evaluates to M̂x = 1

2

∑
i σ̂

x
i = −∑

p iφ̂1,−pφ̂2,p. On
the Keldysh contour C, the corresponding contribution to the
action becomes

Sdrive =
∫ ∞

−∞
dt

∑
p>0

[
hqφT

−pM̆qφp + hclφT
−pM̆clφp

]
, (22)

where (Mq)ab
cd = τ 2

abσ
0
cd , and (Mcl )ab

cd = τ 2
abσ

1
cd , with τ and σ

the Pauli matrices with respect to Majorana and Keldysh in-
dices, respectively. Note that the choice of operators φ̂ap in
Eq. (17) leads to magnetization vertices M̆cl/q that are inde-
pendent of momentum, and that the symmetry properties of
the integrand have allowed us to sum over positive momenta
only, removing an overall factor of 1

2 . Finally, we mention for
completeness that, since the fermionic fields are evaluated at
equal times in the continuum notation of Eq. (22), the constant
term generated by normal ordering M̂x has been removed in
order to generate the correct expectation values. This subtlety
is described in further detail in Ref. [40].

C. Nonlinear susceptibilities

The generating functional Z[hcl, hq]

We are interested in the response of the system’s magneti-
zation M̂x to the driving field given in Eq. (8). The expectation
value of the magnetization M̂x = 1

2

∑
i σ̂

x
i is, by construction,

given conveniently by functional differentiation of the gener-
ating functional Z[hcl, hq]. The classical component of Mx(t )
couples to the quantum component of the generating field,
such that the expectation value is recovered by evaluating

〈M̂x(t )〉 = 1

2i

δZ[hcl, hq]

δhq(t )

∣∣∣∣
hq=0

. (23)

Although formal, this expression is exact to all orders in
hcl(t ), i.e., Eq. (23) contains complete information about the
system’s linear and nonlinear response properties. The calcu-
lation of the system’s response properties is therefore reduced
to evaluating the generating functional Z[hcl, hq]. To obtain

the linear and the various higher-order (i.e., nonlinear) sus-
ceptibilities, Eq. (23) is written as functional series expansion
in the driving field hcl(t ). For instance, at the linear level

〈δM̂x (t1)〉 =
∫ ∞

−∞
dt2 χ (1)

xx (t1, t2)hcl(t2) + · · · , (24)

where the linear susceptibility χ (1)
xx (t1, t2) is identified from the

functional derivative expansion of Eq. (23) as

χ (1)
xx (t1, t2) = 1

2i

δ2Z[hcl, hq]

δhcl(t2)δhq(t1)

∣∣∣∣
hq=hcl=0

. (25)

The notation δM̂x(t1) denotes the removal of the equilibrium
magnetization δM̂x ≡ M̂x − 〈M̂〉0 (i.e., the expectation value
〈· · · 〉0 is evaluated in the absence of the driving field). In ther-
mal equilibrium, the derivative appearing in Eq. (25) contains
only time differences, and χ (1)

xx (t1, t2) can be redefined through
χ (1)

xx (t1, t2) → χ (1)
xx (t1 − t2). The generalization of this result to

higher orders in hcl(t ) is straightforward. Of particular impor-
tance to the problem at hand is the third-order susceptibility,
which is given by

χ (3)
xxxx(t1; t2, t3, t4) = 1

2i

δ4Z[hcl, hq]

δhcl
4 δhcl

3 δhcl
2 δhq

1

∣∣∣∣
hq=hcl=0

, (26)

where ha
n is shorthand for ha(tn), with a = cl, q. These expres-

sions are equivalent to the generalized Kubo formulas [42]
used in, e.g., Refs. [20,22,27]. In the above symmetric rep-
resentation, the third-order contribution to the magnetization
response is simply

〈M̂x(t1)〉(3) = 1

3!

∫ 4∏
n=2

dtn χ (3)
xxxx(t1; t2, t3, t4)

4∏
n=2

h(tn), (27)

where each time integration spans the entire real axis. An
alternative, and often more convenient, representation takes
advantage of (i) symmetry of the integrand under permuta-
tions of {tn}n>1, and (ii) causality, to restrict the domain of
integration to t1 > t2 > t3 > t4:

〈M̂x(t1)〉(3) =
∫

tn>tn+1

4∏
n=2

dtnχ
(3)
xxxx(t1; t2, t3, t4)

4∏
n=2

h(tn). (28)

Finally, since the response function is a function of time
differences only, at least in thermal equilibrium, we can once
again redefine the third-order susceptibility according to

χ (3)
xxxx(t1; t2, t3, t4) → χ (3)

xxxx(t1 − t2, t1 − t3, t1 − t4). (29)

Since tn > tn+1 in our convention, the positive time differences
on the right-hand side of Eq. (29) side increase when the time
arguments are read from left to right.

D. Discussion

At this point, we pause to reflect on what has been accom-
plished in the prior Secs. III B and III C. Rather than working
with the nested commutators that appear in generalized Kubo
formulas, we have framed the problem in the language of a
real-time path integral on the Keldysh contour. For nonin-
teracting theories, the generating functional Z[hcl, hq] can be
evaluated exactly (in the noninteracting TFIM, it can be ex-
pressed in terms of a Pfaffian, as shown in Appendix A). Once
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FIG. 5. Left: notation for the Green’s functions. Dashed (solid)
lines correspond to the Majorana field φq

a (t ) [φcl
a (t )]. Right: the only

diagram that contributes to the linear response of the magnetization.

Z[hcl, hq] has been obtained, all linear and nonlinear response
proprieties follow immediately via functional differentiation,
providing a simple recipe for deducing the nonlinear response
properties to arbitrary order in the driving field. In addition to
this practical benefit, the formalism additionally offers con-
ceptual benefits, since the nonlinear susceptibilities can be
represented using a familiar diagrammatic language (see, e.g.,
Figs. 5 and 6). These practical and conceptual benefits become
even more pronounced once interactions are introduced to the
model. As we will show in the following sections, the present
formalism allows us to write the nonlinear response directly
in terms of the free Majorana Green’s functions, which can
subsequently be augmented via introducing a self-energy, im-
mediately accounting for some of the most salient features
furnished by interactions. Other interaction effects can also
be conveniently represented in the diagrammatic language.
Of course, not all problems will lend themselves to such a
perturbative treatment, and one may have to resort to, e.g., the
nested commutator approach.

E. Noninteracting results

We begin by evaluating the linear and nonlinear response
properties of the noninteracting model (i.e., Ĥint = 0), which
constitute the zeroth-order term in the perturbative expansion
in the interaction strength λ. As studied in Ref. [27], the
results for χ (3)

xxxx are still highly nontrivial, even at the nonin-
teracting level. We begin by rederiving the results of Ref. [27]
explicitly as a demonstration of the techniques developed in
prior sections.

FIG. 6. The four connected Feynman diagrams that contribute
to the third-order nonlinear susceptibility χ (3)

xxxx (t1; t2, t3, t4), the re-
sponse at t1 to perturbations at times (t2, t3, t4). The diagrams are
shown for a particular permutation of the time arguments (t2, t3, t4);
analogous diagrams can be written down for the other permutations.
The momentum labels have been omitted.

1. Linear response

To first order in the drive, we must evaluate the functional
derivative in Eq. (25). Making use of Wick’s theorem for
Majorana fermions, we find that

δ2Z[hcl, hq]

δhcl(t ′)δhq(t )

∣∣∣∣
hq=hcl=0

=
∑
p>0

M̆q
μνD̆νλ(p; t, t ′)M̆cl

λσ D̆σμ(p; t ′, t ), (30)

where, as usual, the Greek indices run over both Keldysh
and Majorana indices. Any contributions from disconnected
diagrams can be shown to vanish identically by virtue of
the identity Z[hcl, 0] = 1, the nonequilibrium counterpart of
the linked cluster theorem [40]. Explicitly, such diagrams
either vanish by virtue of having vanishing temporal support,
∝θ (t )θ (−t ), or as a consequence of the result DR(t, t ) +
DA(t, t ) = 0 when the Green’s functions are evaluated at
equal times. An alternative derivation of the result (30) is
presented in Appendix A, where we take derivatives of the ex-
act generating functional Z[hcl, hq]. When expressed in terms
of the Keldysh components, making the causality structure
explicit, the above evaluates to

χ (1)
xx (t, t ′) = −i

∑
p>0

Tr[τ̌ 2ĎR(p; t, t ′)τ̌ 2ĎK(p; t ′, t )], (31)

where the trace is over Majorana indices only. The corre-
sponding Feynman diagram is shown in Fig. 5. Substituting
the expressions for the components of D̆0 in Eqs. (20) and
(21) under the trace, we arrive at the final expression

χ (1)
xx (t − t ′) = 2θ (t − t ′)

∑
p>0

Fp sin2 ϑp sin[2εp(t − t ′)]. (32)

At zero temperature, Fp = 1, since the spectrum εk is strictly
positive,6 and we recover the results of Ref. [27]. In the fer-
romagnetic regime g < 1, the Fourier transform of Eq. (32),
χ (1)

xx (ω), exhibits a broad continuum as a consequence of
the two-domain-wall continuum. The spatially homogeneous
nature of the magnetization pulses enforces that domain wall
pairs must have net zero momentum k1 + k2 = 0, but the mag-
nitude of the individual momenta |k1| = |k2| = k remains un-
constrained, giving rise to a broad response at ω = ±2εk . The
extension of the result to nonzero temperatures is trivial: For
T > 0, the weight of the contribution from quasimomentum p
is reduced from unity to tanh(βεp/2), with the states near the
minimum of the dispersion being most strongly modified.

2. Third-order response

The response properties at third order are more interest-
ing, since they contain the “spinon echo” [27] (or rephasing)
signal. We leave a discussion of the second-order response
to Appendix B; while the second-order response does con-
tribute to the magnetization response under the 2DCS protocol

6Since we impose antiperiodic boundary conditions and even L, the
k = 0 mode is not compatible with the boundary conditions and all
energies in a system of finite size are strictly positive, εk > 0, ∀ k,
even at g = 1, where the gap vanishes only in the thermodynamic
limit.
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[Eq. (3)], it does not contain significant new information
beyond linear response. The Feynman diagrams that re-
sult from differentiating Z[hcl, hq] four times are numerous.
Four of them are shown in Fig. 6, while the rest can
be obtained via permutations of the indices (t2, t3, t4) [the
resulting χ (3)

xxxx(t1; t2, t3, t4) is therefore symmetric in the in-
dices t2, t3, t4]. Again, the contributions from disconnected
diagrams can be shown to vanish identically as a direct con-
sequence of the identity Z[hcl, 0] = 1. The diagrams in Fig. 6
evaluate to

δ4Z[hcl, hq]

δhcl(t4)δhcl(t3)δhcl(t2)δhq(t1)

∣∣∣∣
hq=hcl=0

= −
∑
p>0

{
Tr

[
τ̌ 2ĎK

−p(t12)τ̌ 2ĎA
−p(t23)τ̌ 2ĎA

−p(t34)τ̌ 2ĎA
−p(t41)

]
+ Tr

[
τ̌ 2ĎR

−p(t12)τ̌ 2ĎK
−p(t23)τ̌ 2ĎA

−p(t34)τ̌ 2ĎA
−p(t41)

]
+ Tr

[
τ̌ 2ĎR

−p(t12)τ̌ 2ĎR
−p(t23)τ̌ 2ĎK

−p(t34)τ̌ 2ĎA
−p(t41)

]
+ Tr

[
τ̌ 2ĎR

−p(t12)τ̌ 2ĎR
−p(t23)τ̌ 2ĎR

−p(t34)τ̌ 2ĎK
−p(t41)

]}
+ permutations of (t2, t3, t4), (33)

where we have employed the shorthand notation ti j ≡ ti − t j

(as expected, the response is a function of time differences
only). We can immediately see that (33) is appropriately
causal: In each of the four terms the θ functions demand that
the time arguments t2, t3, and t4 must precede the “measure-
ment” time t1. This result can be expressed more compactly
using a sequential parametrization of the times. We define new
sequential time arguments sn via tn = ∑

i�n si (equivalently,
sn = tn − tn+1 for n < 4). One of the benefits of this repre-
sentation is that the two time argument orderings that appear
in the 2DCS response (3) are particularly simple in this lan-
guage: χ (3)

xxxx(t, t, t + τ ) is described by (s1, s2, s3) = (t, 0, τ )
and χ (3)

xxxx(t, t + τ, t + τ ) by (s1, s2, s3) = (t, τ, 0). In terms of
these new variables we are able to write Eq. (33) compactly as

χ (3)
xxxx(s1, s2, s3) = −2θ (s1)θ (s2)θ (s3)

∑
p>0

Fp

×{sin2(2ϑp) sin[2εp(s1 + s2 + s3)]

− sin2(2ϑp) sin[2εp(s2 + s3)]

+ 2 sin4(ϑp) sin[2εp(s1 + s3)]

+ 2 sin4(ϑp) sin[2εp(s1 − s3)]}. (34)

Again, at strictly zero temperature, Fp = 1 and this expression
is in agreement with the results of Ref. [27], with the final
line of (34) corresponding to the rephasing signal for the state
labeled by momentum p. Note that we employ a slight abuse
of notation since Eq. (34) uses an alternative convention for
the time arguments with respect to Eq. (29). The extension to
nonzero temperatures simply reweights the contributions from
the various momenta according to their corresponding energy.

When the final line of Eq. (34) is evaluated with the time
arguments that correspond to the third-order susceptibility
χ (3)

xxxx(t, t, t + τ ), it gives ∼ sin4(ϑp) sin[2εp(t − τ )]. Taking
the Fourier transform over time arguments t and τ to con-
jugate variables ωt and ωτ , respectively, the imaginary part
of the response, Im χ (3)

xxxx(ωt , ωτ ), exhibits sharp streaks along

the antidiagonal ωt = −ωt [see Figs. 2(a) and 2(c)]. These
streaks occur at the frequencies that were observed in the
broad linear response spectrum (32), i.e., ωt = ±2εp. In the
noninteracting expression, Eq. (34), these streaks are infinitely
sharp in the direction transverse to the streaks, i.e., ωt = ωτ .
This is a consequence of the perfect rephasing that occurs
in the absence of any dissipation since the Green’s functions
exhibit undamped oscillations. We will see in the next sec-
tion that the signal broadens along the ωt = ωτ direction in
the presence of interaction-induced quasiparticle decay, and
that the width will provide quantitative information about the
interaction-induced self-energy.

While we focus in this paper on the information that can
be extracted from the rephasing signal, we also briefly con-
sider the pump-probe response in Appendix C. In contrast
to the rephasing signal, the pump-probe response manifests
in the complementary contribution to the 2DCS response
χ (3)

xxxx(t, t + τ, t + τ ), and appears along the ωτ = 0 axis. This
contribution is also of experimental interest since, for two-
level systems, the width of the pump-probe signal contains
information about the T1 time, which characterizes the rate of
population decay [27].

F. Self-energy corrections

One of the benefits of formulating the nonlinear response
in the language of path integrals is that the tools of many-body
perturbation theory can be applied to the problem directly. The
first perturbative correction to the noninteracting result that
we will consider comes from one-particle-irreducible (1PI)
diagrams, i.e., we will perform a perturbative expansion of the
self-energy �̆. However, there also are a number of contribu-
tions to the bilinear part of the action, arising from normal
ordering the interaction terms, which can be accounted for
exactly. These terms generated by normal ordering lead to a
renormalization of the quasiparticle spectrum (11).

A nontrivial feature of the Keldysh formalism is that the
self-energy (which, like the Green’s function, is a matrix with
Keldysh indices) possesses the same causality structure as the
inverse Green’s function. Since we utilize the bosonic Keldysh
rotation for the Majorana fields φ(t ), the real-time self-energy
assumes the form

�̆(k; t, t ′) =
(

0̌ �̌A

�̌R �̌K

)
K

. (35)

The expression for the full Green’s function is then D̆ =
(D̆−1

0 −�̆)−1, which implies that, e.g., ĎR=([ĎR
0 ]−1−�̌R)−1,

while ĎK = ĎR�̂KĎA if the Keldysh component of the in-
verse Green’s function ĎK

0 is a pure regularization (i.e., if the
noninteracting system has no intrinsic lifetime arising from,
e.g., coupling to bath).

1. Exact bilinear contributions

In the presence of interactions, the way in which the
fermionic operators are normal ordered prior to introducing
the coherent state path integral allows different contribu-
tions to be taken into account exactly. Normal ordering at
the level of the real-space JW fermions merely gives rise
to (at most) a sign:

∑
i σ̂

x
i σ̂ x

i+1 ⊃ −∑
i ĉ†

i+1ĉ†
i ĉi+1ĉi . How-

ever, if the noninteracting Bogoliubov transformation is used
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[defined below Eq. (9)], then the interaction term does not
remain normal ordered; if the transformed interaction in the
γ̂k fermions is subsequently (re)normal ordered, new terms,
bilinear in fermionic operators γ̂k , are generated. This feature
can be remedied by determining the Bogoliubov parameter
ϑk self-consistently and nonperturbatively. In the manner of
Ref. [32], ϑk is found (in the thermodynamic limit) by solving
an integral equation that treats all bilinear terms generated via
normal ordering exactly. This procedure is outlined below for
completeness.

In momentum space, the Hamiltonian (absent the drive)
can be written in standard form as

Ĥλ = 1

2

∑
k

(ĉ†
k ĉ−k )

(
αk −iβk

iβk −αk

)(
ĉk

ĉ†
−k

)

− 4λ

L

∑
{ki}

Vk1,k2,k3,k4 ĉ†
k1

ĉ†
k2

ĉ−k3
ĉ−k4

, (36)

where the bilinear term is expressed in terms of the functions

αk = 2[g − (1 − λ) cos k] − 4λ, (37a)

βk = 2(1 + λ) sin k, (37b)

which include renormalization of the single-particle band
structure due to the term σ̂

y
i σ̂

y
i+1 and a diagonal chemical

potential term arising from cross terms in σ̂ x
i σ̂ x

i+1. If next-
nearest-neighbor fermion processes are additionally included,
then αk and βk are modified in the manner described below
Eq. (12), acquiring terms ∝cos(2k) and ∝sin(2k), respec-
tively. The interaction matrix elements are

Vk1,k2,k3,k4 = δP

(∑
i

ki

)
1

4
[cos(k1 + k3) − cos(k2 + k3)

+ cos(k2 + k4) − cos(k1 + k4)], (38)

where δP(x) is the 2π -periodic Kronecker delta that enforces
momentum conservation up to a reciprocal lattice vector.
As described above, the introduction of new fermions via
the Bogoliubov transformation ĉk = uk γ̂k + ivk γ̂

†
−k , with uk =

cos 1
2ϑk , vk = sin 1

2ϑk , does not maintain normal ordering for
a ϑk that diagonalizes the noninteracting part of Eq. (36).
Instead, we choose ϑk such that it satisfies the nonlinear equa-
tion

tan ϑk = βk + Bk[ϑ]

αk + Ak[ϑ]
. (39)

The functionals Ak[ϑ] and Bk[ϑ] are defined by the terms
generated by normal ordering the interaction in the new γ̂k

degrees of freedom. Explicitly, in the thermodynamic limit,

Ak[ϑ] = −16λ

∫
d p

2π
Vk,p,−p,−k sin2(ϑp/2), (40a)

Bk[ϑ] = −4λ

∫
d p

2π
Vp,−p,−k,k sin(ϑp). (40b)

A Bogoliubov parameter ϑk that satisfies the integral equa-
tion (39) simultaneously diagonalizes the bilinear contribution
and ensures that the interaction term remains normal ordered.
This allows the coherent state path integral to be constructed
in the “diagonal” basis. We resort to a numerical solution of
the integral equation (39) to obtain ϑk self-consistently using

FIG. 7. Left: the two types of interaction vertex that appear in Sint

[Eq. (42)] in frequency and momentum space. Right: the “tadpole”
diagram, which is the only diagram that contributes to the self-energy
at first order in the interactions. The �̌q,q ≡ �̌K component van-
ishes at this order. The diagram is local in time, i.e., independent
of frequency, and leads to a renormalization of the single-particle
spectrum.

standard methods. The quasiparticle spectrum εk is obtained
using the resulting self-consistently determined ϑk through

εk =
√

(αk + Ak[ϑ])2 + (βk + Bk[ϑ])2, (41)

which generalizes the free dispersion relation in Eq. (11).

2. Perturbative corrections

The preceding section dealt with treating certain compo-
nents of the interactions exactly through the introduction of a
self-consistently determined Bogoliubov parameter. We now
evaluate the contributions from the remaining four-fermion
terms perturbatively. To perform a perturbative expansion of
the self-energy, we write the interaction term in the form

Sint[φ] =
∫

dωi

2π

∑
{pi}

V{ai}({pi}, {ωi})

× [φcl(1)φq(2)φq(3)φq(4)

+φq(1)φcl(2)φcl(3)φcl(4)], (42)

with φα (i) shorthand for the Majorana fields in the momentum
and frequency representation φα

ai pi
(ωi). The two interac-

tion vertices are represented diagrammatically in Fig. 7.
By transforming Eq. (38) to Majorana fields, the (totally
antisymmetric) interaction matrix elements can be shown
to equal

4λ

3L
2πδ

(
4∑

i=1

ωi

)
δP

(
4∑

i=1

pi

)
cos

(
1

2

4∑
i=1

pi

)

×
{
δa1a2δa3a4 sin

(
p1 − p2

2

)
sin

(
p3 − p4

2

)

+ cyc. perm. [(a2, p2), (a3, p3), (a4, p4)]

}
. (43)

The delta functions give rise to energy and momentum con-
servation. Momentum conservation occurs modulo 2π , i.e.,∑

i pi = 2πn with n ∈ Z, which implies that the cosine term
on the first line contributes only a sign (−1)n. The expression
also vanishes identically if all ai are equal to one another.
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The first contribution to the self-energy �̆(k, ω) comes
from a tadpole diagram at linear order in the interaction, which
is shown in the right-hand side of Fig. 7. Accounting for
symmetry factors, the diagram evaluates to

�̌A
ab(p, ω) = −16λ

L

∑
k

nk

(
0 −eiϑk

e−iϑk 0

)
ab

sin

(
p + k

2

)2

,

(44)
where nk ≡ nF(εk ) = 1/(eβεk + 1) is the Fermi-Dirac dis-
tribution and the Bogoliubov parameter ϑk is determined
self-consistently via solving Eq. (39). Note that the full
self-energy matrix, which is (almost) diagonal in Fourier
space, satisfies �̌A

ab(p1, p2; ω1, ω2) = 2πδ(ω1 + ω2)δP(p1 +
p2)�̌A

ab(p2, ω2). The Keldysh component, on the other hand,
remains a pure regularization at this order, i.e., Eq. (44) cor-
responds to a renormalization of the single-particle spectrum,
but does not endow the quasiparticles with a finite lifetime at
first order in the interactions. The energy shift can be read off
directly from Eq. (44):

Ek =
∣∣∣∣∣εk+16λ

∫
d p

2π
np sin2

(
k + p

2

)
ei(ϑp−ϑk )

∣∣∣∣∣, (45)

where the dispersion relation absent self-energy corrections
(but including the nonperturbative corrections discussed in
Sec. III F 1) εk is given by Eq. (41). Note that normal ordering
in the “diagonal” basis implies that the dispersion relation (41)
is, in fact, exact to first order in the interactions at zero temper-
ature. Only at T > 0 is the dispersion relation modified due
to the presence of a nonvanishing background of thermally
excited quasiparticles, with the extrema of the dispersion be-
ing most strongly affected due to the presence of the factor
nF(εp). Note further that the expression (45) is substantially
simpler than the equivalent expression that would have been
obtained if we had worked in the complex fermion basis due
to the reduced number of interaction vertices.7 Equation (44)
satisfies �̌A(k, ω) = −[�̌A]T(−k,−ω), so the retarded com-
ponent is obtained via8�̌R(p) = �̌A(p). For the calculation of
the second-order correction, we will use the one-loop disper-

FIG. 8. Second-order contributions to the self-energy matrix
�̆(k, ω) on the Keldysh contour. Top: the two nonvanishing “sun-
set” diagrams that contribute to �̌cl,q ≡ �̌A. Bottom: the three
second-order “sunset” diagrams that contribute to �̌q,q ≡ �̌K. In
both rows the symmetry factors associated with each diagram are
shown underneath.

sion (45). In Eq. (45), we have taken the thermodynamic limit
L → ∞, in which the summation can be replaced with an
integral in the standard way: 1

L

∑
k → ∫ π

−π
dk
2π

. For numerical
calculations, however, we work with systems of finite size.

To calculate the second-order correction, we introduce the
following notation for the Majorana Green’s functions in
momentum and frequency space. The Fourier transform of
(20) and (21) equals

ĎR/A(k, ω) = i

2

∑
σ=±1

σ Ǎσ (k)(ω − σEk ± i0)−1, (46a)

ĎK(k, ω) = 1

2
Fk

∑
σ=±1

Ǎσ (k)2πδ(ω − σEk ), (46b)

respectively, where we have defined Ǎσ = ( σ ieiϑk

−ie−iϑk σ
). This

compact notation allows the various frequency integrations to
be calculated exactly. The contributions to the second-order
self-energy are given diagrammatically in Fig. 8, which take
the form of “sunset” diagrams (with additional Keldysh struc-
ture). We find that the diagrams on the top line of Fig. 8
evaluate to

�R
ab(k, ω) = −i

2 × 3!

8

∑
p1,p2,p3

Vaa1a2a3 (−k, p1, p2, p3)Vbb1b2b3 (k,−p1,−p2,−p3)

×
∑

σ1,σ2,σ3=±1

{
σ1σ2σ3 + [

σ1Fp2 Fp3 + cyc. perm. (1, 2, 3)
]}

Aσ1
a1b1

(p1)Aσ2
a2b2

(p2)Aσ3
a3b3

(p3)

× (
ω − σ1Ep1 − σ2Ep2 − σ3Ep3 + i0+)−1

, (47)

where the weights Aσ
ab(p) depend implicitly on the self-consistently determined Bogoliubov parameter ϑp. The advanced

component �A
ab(k, ω) is obtained from the same expression via the replacement ω + i0+ → ω − i0+, such that both �R and

�A have the appropriate causality structure. The Keldysh component follows similarly from the diagrams on the second line of

7Specifically, there are three interaction vertices (prior to introducing the contour index) since fermion number is not conserved; in addition
to the number-conserving term ∼γ̂ †

k1
γ̂ †

k2
γ̂−k3

γ̂−k4
, there are two additional terms ∼γ̂ †

k1
γ̂ †

k2
γ̂ †

k3
γ̂ †

k4
and ∼γ̂ †

k1
γ̂ †

k2
γ̂ †

k3
γ̂−k4

, plus their Hermitian
conjugates.

8If the time discretization is taken care of more precisely, the retarded and advanced components of the self-energy in the real-time
representation should be appropriately causal, e.g., �̌R(t, t ′) ∼ δR(t − t ′), where δR/A(t ) = δ(t ∓ 0+). This structure is hidden in the continuum
notation.
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Fig. 8:

�K
ab(k, ω) = −2 × 3!

8

∑
p1,p2,p3

Vaa1a2a3 (−k, p1, p2, p3)Vbb1b2b3 (k,−p1,−p2,−p3)
∑

σ1,σ2,σ3=±1

{
Fp1 Fp2 Fp3

+ [
σ1σ2Fp3 + cyc. perm. (1, 2, 3)

]}
Aσ1

a1b1
(p1)Aσ2

a2b2
(p2)Aσ3

a3b3
(p3)2πδ

(
ω − σ1Ep1 − σ2Ep2 − σ3Ep3

)
, (48)

where repeated matrix indices ai and bi are implicitly summed
over. While the quantitative details of these expressions are
not particularly illuminating, we note that the absence of
fermion-number conservation gives rise to contributions from
fermion creation and annihilation processes, in addition to
scattering processes. As a result, a particular term in the mo-
mentum summation is peaked at ω = σ1Ep1 + σ2Ep2 + σ3Ep3

for all eight choices of the sign variables σi = ±1. Note also
that momentum conservation requires that k = p1 + p2 + p3

mod 2π , which is enforced by the interaction vertices. Fi-
nally, at zero temperature, Fp = 1, and therefore the factor∏

i σi + ∑
i σi that weights terms in Eq. (47) vanishes if not all

σi are equal to one another [the same is true for the analogous
factor that appears in (48), which evaluates to (

∏
i σi )(

∏
i σi +∑

i σi )]. At T = 0, the combination of momentum and en-
ergy conservation (i.e., evaluating the self-energy on shell)
then requires that Ek = Ep1 + Ep2 + Ek−p1−p2 , which corre-
sponds to spontaneous creation of a domain wall pair with
momenta (p1, p2), while the original domain wall is scattered
to k − p1 − p2. If the single-domain-wall dispersion does not
enter the 3DW continuum, this equation has no solutions, and
spontaneous decay cannot occur at T = 0. To obtain a finite
lifetime, we therefore consider two cases. First, if sponta-
neous decay is forbidden [Fig. 1(a)], then we consider nonzero
temperatures, which give rise to a nonvanishing density of
excitations from which the quasiparticles are able to scatter,
i.e., at T > 0, Fp < 1, and all combinations of the sign factors
σi can contribute, at least in principle. Quasiparticle scat-
tering Ep1 + Ep2 = Ek + Ek−p1−p2 is, however, the dominant
process. Second, we consider a parameter regime in which
the single-particle dispersion relation enters the continuum
[Fig. 1(b)], such that a nonvanishing background of excita-
tions is no longer required since the domain walls inside the
continuum are able to lower their energy by spontaneously
emitting additional domain walls. While the process is permit-
ted kinematically by conservation of energy and momentum,
there must also be nonvanishing matrix elements in Eq. (47)
for spontaneous decay to occur, with the rate of decay being
proportional to both the interaction matrix elements and the
multiparticle density of states.

The expressions (47) and (48) can be further “simplified”
by performing the summation over the Majorana indices ai

and bi explicitly to obtain a closed-form expression for the
momentum- and sign-dependent weights. This procedure is

described in further detail in Appendix E and is used to evalu-
ate (47) and (48) efficiently in our numerical implementation.
Once conservation of momentum has been taken into account,
the resulting two-dimensional integral over the unconstrained
momenta can then be evaluated numerically to obtain the full
4×4 second-order self-energy matrix �̆(k, ω).

The result of including the second-order self-energy on
the Majorana Green’s functions is shown in Fig. 3. When
the lifetime is provided by a thermally excited background of
quasiparticles, the frequency dependence of the second-order
self-energy gives rise to nontrivial broadening of the single-
particle poles [Fig. 3(a) vs Fig. 3(b)]. In addition to simple
broadening throughout the spectrum, we observe “anoma-
lous” broadening of the single-particle Green’s function in the
vicinity of k = π , where the quasiparticle peak splits in two.
The anomalous broadening is a consequence of the strong
frequency dependence of �̌R(π,ω), which varies sharply
at the corresponding single-particle energy ω = E (k = π ).
When the lifetime is instead provided by spontaneous decay
[Fig. 3(c) vs Fig. 3(d)], we once again see that the character
of the broadening varies significantly with momentum, being
most pronounced at the zone edges. While the single-particle
mode enters the 3DW continuum at around k ≈ π/4, the 3DW
density of states at these momenta is strongly suppressed, only
becoming appreciable in the vicinity of the zone boundaries,
as shown in Fig. 9. The remainder of this section is devoted
to characterizing which features of the single-particle Green’s
function(s) described above can be probed by third-order non-
linear spectroscopy.

G. Nonlinear response of interacting system

We now combine all ingredients derived thus far to evaluate
the nonlinear response of the interacting TFIM chain. Inter-
action effects are incorporated using the self-energy matrix
derived in Sec. III F, which includes both nontrivial real and
imaginary parts that lead to decay when evaluated in the
time domain. The self-energy is included by augmenting the
diagrams in Fig. 6, i.e., all instances of the noninteracting
Green’s function D̆0 are replaced by their dressed counterparts
D̆ = (D̆−1

0 − �̆)−1. As mentioned previously, we focus in par-
ticular on the contribution from χ (3)

xxxx(t, t, t + τ ) in Eq. (3)
since it contains the rephasing signal. From the general ex-
pression presented in Eq. (33), we find that

χ (3)
xxxx(t, t, t + τ ) = i

2
θ (t )θ (τ )

∑
p

{
Tr

[
τ̌ 2ĎR

−p(t )τ̌ 2ĎR
−p(0+)τ̌ 2ĎR

−p(τ )τ̌ 2ĎK
−p(−t − τ )

]
+ Tr

[
τ̌ 2ĎR

−p(t )τ̌ 2ĎR
−p(0+)τ̌ 2ĎK

−p(τ )τ̌ 2ĎA
−p(−t − τ )

]
+ Tr

[
τ̌ 2ĎR

−p(t )τ̌ 2ĎR
−p( τ )τ̌ 2ĎK

−p(−τ )τ̌ 2ĎA
−p(−t )

]
+ Tr

[
τ̌ 2ĎR

−p(t )τ̌ 2ĎK
−p( τ )τ̌ 2ĎA

−p(−τ )τ̌ 2ĎA
−p(−t )

]}
, (49)

205143-13



OLIVER HART AND RAHUL NANDKISHORE PHYSICAL REVIEW B 107, 205143 (2023)

FIG. 9. Momentum-resolved three-domain-wall density of states
for the single-particle dispersion relation Ek , which is shown by
the white dashed line. While the single-particle mode enters the
continuum at k ≈ π/4, the corresponding density of states is strongly
suppressed. This behavior is inherited by the components of the
second-order self-energy (47) and (48), leading to pronounced decay
in the vicinity of the zone boundaries k = π .

where ĎR
−p(0+) = I, the 2×2 identity matrix, has been kept

for clarity. Note that the summation now runs over all
momenta, and that the permutations over the various time
orderings have been accounted for. It can be verified using
the symmetry properties of D̆ that (49) is pure real, as it must
be. The 2DCS spectrum is then found by transforming to
variables ωt and ωτ , Fourier conjugate to t and τ , respectively.
That is, we are interested in

χ (3)
xxxx(ωt , ωτ ) =

∫∫ ∞

−∞
dt dτ ei(ωt t+ωτ τ )χ (3)

xxxx(t, t, t + τ ). (50)

In practice, we find that it is most convenient to evaluate
(50) by first performing a fast Fourier transform (FFT) of
the frequency-space Green’s functions to find the real-time
Green’s functions D̆(t, t ′), allowing us to evaluate (49) in
the time domain. Equation (50) can then be evaluated us-
ing an inverse FFT using the same frequency discretization.
When evaluating the FFT, we compute the FFT of the differ-
ence between the free and interacting Green’s functions. This
removes discontinuities associated with the step functions en-
forcing causality, which mitigates Gibbs’ phenomenon.

The resulting 2DCS spectra for both flavors of decay,
obtained from the imaginary part of Eq. (50), are shown
in Figs. 2(b) and 2(d). When the lifetime is provided by a
thermally excited background of domain walls [Fig. 2(b)],
we observe that the rephasing signal in the upper left and
lower right quadrants is broadened throughout the spectrum.
The anomalous broadening seen in the single-particle Green’s
function [Fig. 3(b)], however, is seemingly absent. There are
a number of reasons for this absence, which we discuss in
detail below. Principally, the expression (49) depends in a
highly nonlinear way on the individual single-particle Green’s
functions. Hence, if the temporal decay of the single-particle
Green’s functions is not well described by simple lifetime
broadening, leading to exponential decay, the time arguments

will combine in a highly nontrivial manner. For the anomalous
broadening observed in Fig. 3(b), the Green’s functions can
be approximated by a sum of two simple poles separated in
frequency by 2δk . As we show in Appendix D, this simple
modification of the single-particle Green’s functions leads to
two additional peaks on either side of the rephasing streak (if
the peaks are separated in frequency by 2δ with broadening γ

in the Green’s function, they are separated by
√

2δ with broad-
ening 2γ in the rephasing streak). Since the separation of the
peaks relative to their broadening is reduced in the rephas-
ing streak, the anomalous broadening remains concealed in
Fig. 2(b). Evidently, additional spectral features associated
with nontrivial frequency dependence of the self-energy can
be more challenging to extract than simple Lorentzian broad-
ening.

When the lifetime is instead provided by spontaneous
decay [Fig. 2(d)], the strong momentum dependence of the
broadening of the single-particle Green’s function can be
observed. At the momenta where the single-particle Green’s
function is most strongly broadened [indicated by the white
arrows in Fig. 3(d)], the rephasing signal is also correspond-
ingly broadened at the frequencies ωk = ±2Ek . Nonlinear
spectroscopy can therefore be used to extract momentum-
dependent lifetimes with ease. However, when extracting
quantitative information about the lifetime from the rephasing
streak, there are a number of technical considerations that
must be discussed [which also contribute to obscuring the
anomalous broadening in Fig. 2(b)]. First, the rephasing signal
is weighted by the optical matrix element sin4 ϑk [27] [see also
Eq. (34)]. This weighting factor vanishes at k = π , which pro-
vides any potential signatures of broadening at the Brillouin
zone boundaries with a small relative weight. Second, the
response suffers from “broadening by convolution” [22], also
known as “phase twisting” in the literature [11,43]. Namely,
the signal of interest is convolved with δ(ωt )δ(ωτ ) − P 1

ωt ωτ
+

i[δ(ωt )P 1
ωτ

+ δ(ωτ )P 1
ωt

] since the response is causal in the
sense that t, τ > 0. This leads to a mixing of dispersive and
absorptive contributions, i.e., even a pure oscillatory signal
∼eiνt t+iντ τ will exhibit power-law smearing of its real part.
This latter effect can, however, be ameliorated by “phase
untwisting” the 2DCS spectrum, a process that we describe
in the next section.

H. Phase untwisting

The mixing of dispersive and absorptive contributions to
Im χ (3)

xxxx(ωt , ωτ ) can be reduced by performing a second set
of experiments in which one permits τ to be negative. In this
case, the three experiments that comprise the 2DCS protocol
are modified as follows. Pulse A remains unaltered, being
applied to the system at time s = 0, h<

A (s) = A0δ(s). The
pulse B is now applied at negative times s = τ < 0, pre-
ceding pulse A, h<

B (s) = Aτ δ(s − τ ) = Aτ δ(s + |τ |). Finally,
the third pulse sequence corresponds to applying A and B
in tandem h<

AB = A0δ(s) + Aτ δ(s − τ ). In each of the three
experiments, the system is measured at a time t after the
second pulse A (equivalently, t + τ after the first pulse, B).
With these definitions, the 2DCS protocol leads to a response

Mx
2DCS,<(t ) = A0Aτ χ

(2)
xxx(t, t − τ )+A0A2

τ χ
(3)
xxxx(t, t − τ, t − τ )

+ A2
0Aτ χ

(3)
xxxx(t, t, t − τ ), (51)
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FIG. 10. Illustration of the “untwisting” procedure for the rephasing signal. (a) The raw 2DCS spectrum obtained via the Fourier transform
of χ (3)

xxxx (t, t, t + τ ) over t and τ , equivalent to the data presented in Fig. 2(b). (b) The partially untwisted spectrum, in which the time-dependent
response χ (3)

xxxx (t, t, t + τ ) is symmetrized over τ prior to taking the Fourier transform. (c) The fully untwisted data, in which each momentum is
weighted by the appropriate combination of matrix elements [Eq. (54)], such that the rephasing and nonrephasing signals combine to produce
a purely absorptive line shape. (d) The width of the untwisted rephasing streak in (c), obtained by fitting to a Lorentzian line shape in the
ωt = ωτ direction. The corresponding single-particle decay rate appearing in, e.g., Eq. (53), is obtained via γ = τ−1

⊥ /
√

8.

which mirrors Eq. (3), corresponding to the τ > 0 pulse
sequence, but with the sign of τ flipped, τ → −τ , and
the strengths of the two pulses interchanged, A0 ↔ Aτ . The
“untwisting” procedure then works by taking the combination

θ (t )θ (τ )χ (3)
xxxx(t, t, t + τ ) + θ (t )θ (−τ )χ (3)

xxxx(t, t, t − τ ),
(52)

which is causal only in the sense that t > 0, while the ar-
gument τ spans the entire real axis. Equivalently, since one
can view Eq. (52) as symmetrizing the response over τ , the
second experiment is not necessary; because the two pulses
have the same polarization, the two experiments contain iden-
tical information. The rephasing contribution to the τ → −τ

susceptibility now occurs in the upper right and lower left
quadrants of the ωt -ωτ plane and therefore does not inter-
act with the signal of interest, which manifests in the upper
left and lower right quadrants. However, the third line of
Eq. (34), which corresponds to part of the the nonrephasing
signal, maps under τ → −τ to a response in the appropri-
ate quadrants. Specifically, combining the third and fourth
lines of Eq. (34), and assuming a frequency-independent self-
energy that gives rise to a momentum-dependent decay rate
γp, Eq. (52) contains the signal

− 4θ (t )
∑

p

Fp sin4 ϑpe−2γpt sin[2εp(t − τ )]

× {e−2γpτ θ (τ ) + e2γpτ θ (−τ )}. (53)

The term inside the braces on the second line evaluates to
e−2γp|τ |, whose Fourier transform over τ has a purely real
Lorentzian line shape. Hence, after Fourier transformation,
the imaginary part of the summand in Eq. (53) maps to
a product of two real Lorentzians in the ωt and ωτ direc-
tions, centered on (ωt , ωτ ) = ±(2εp,−2εp), which no longer
mixes real and imaginary parts. While the third and fourth
lines of Eq. (34) combine to produce a response of purely
absorptive character, there is also, however, a contribution
from the top line ∝sin2(2ϑp) sin[2εp(t + τ )]. At ϑp = π/2
(which occurs near the center of the rephasing streak), this
contribution vanishes and the spectrum is perfectly untwisted
at the corresponding frequencies; away from ϑp = π/2, the

cancellation is imperfect, but the broadening due to phase
twisting is still reduced with respect to the Fourier transform
of χ (3)

xxxx(t, t, t + τ ) alone. To fully untwist the noninteracting
spectrum for all frequencies simultaneously, one must weight
the contribution from each momentum p separately to account
for the differing matrix elements that accompany the rephas-
ing and nonrephasing signals. As can be seen from Eq. (34),
the relevant weighting factor wp for the nonrephasing signal
should be generalized from unity to

wp = 2 sin4(ϑp)

2 sin4(ϑp) + sin2(2ϑp)
(54)

for momentum p. The untwisting procedure is outlined graph-
ically in Fig. 10. Only in the fully untwisted spectrum,
Fig. 10(c), can a Lorentzian line shape be used to extract
a momentum-dependent lifetime.9 This procedure is used to
extract the effective lifetime from the width of the rephas-
ing streak in Fig. 10(d). The extracted broadening is most
pronounced at larger values of ωt , which correspond via the
dispersion relation to momenta near the zone boundaries, con-
sistent with the behavior of the Green’s function in Fig. 3(b).

IV. CONCLUSIONS

We have developed a framework based on a real-time
path-integral approach that is capable of describing the non-
linear response functions of interacting quantum many-body
systems, as probed by 2DCS. This framework, in the weak-
interaction regime, allows us to apply standard tools of
diagrammatic many-body perturbation theory, and to interpret
the response in terms of familiar objects such as Green’s
functions and self-energies. This methodology was applied to
the transverse field Ising model in the presence of additional

9Integrating the product of two Lorentzians oriented parallel to ωt

and ωτ along the ωt = −ωτ direction produces a simple Lorentzian
line shape in the orthogonal direction, parallel to ωt = ωτ , as long
as the variation of the envelope function, e.g., ν(ε) sin4 ϑ , can be
neglected over a frequency range set by ∼γ .
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XY interactions between spins, which break the model’s in-
tegrability and endow the quasiparticles with a nontrivial
self-energy.

We confirmed using this methodology that 2DCS is indeed
capable of extracting the momentum-dependent line broaden-
ing of the single-domain-wall Green’s function arising from
interactions. In addition, we showed that treating the XY
interactions microscopically gives rise to additional spectral
features not captured by the phenomenological model of de-
cay studied in Ref. [27]. First, when the single-domain-wall
dispersion does not enter the three-domain-wall continuum,
but the system contains a nonzero density of thermally ex-
cited domain walls, the self-energy exhibits strong frequency
dependence. As a result, the broadening of the single-particle
Green’s function becomes “anomalous” near the zone bound-
aries in the sense that the quasiparticle peak splits in two.
We showed that the rephasing signal probed by 2DCS is,
in principle, sensitive to the precise line shape implied by a
frequency-dependent self-energy, and could therefore be used
to diagnose this anomalous broadening. Second, when the
single-domain-wall dispersion does enter the continuum, but
thermally excited domain walls are sparse, the self-energy ex-
hibits strong momentum dependence since the single-particle
mode is broadened only in the regions where spontaneous
decay is kinematically permitted. The resulting momentum
dependence of the domain-wall lifetime can be observed di-
rectly with 2DCS as a frequency-dependent broadening of the
rephasing signal.

In practice, however, there are a number of additional
complications that can make the interpretation of the 2DCS
spectrum challenging. First, since the mapping between the
single-particle Green’s function and the response probed by
2DCS is highly nontrivial [Eq. (49)], additional spectral fea-
tures beyond simple lifetime broadening, which derive from a
frequency-dependence self-energy, may have rather complex
signatures. Second, the two-dimensional step functions that
are necessitated by causality give rise to “broadening via
convolution” [22] (also known as “phase twisting” [11,43]),
which has the potential to smear out such intricate spectral
features, and complicates extracting quantitative information
from the rephasing signal. We showed, however, that this
second issue can be remedied by “untwisting” the 2DCS
spectrum. Finally, the optical matrix element, which acts as
an envelope function for the rephasing signal, can provide
certain spectral features with a small relative weight.10 These
findings highlight the fact that, while the nonlinear response
of a given system contains a wealth of additional information
beyond linear response, the spectrum that is produced can
correspondingly be challenging to decipher in more realistic
systems. Nevertheless, in principle, 2DCS is able not only
to reveal the existence of deconfined fractional quasiparticles
[22,27], but even to reveal details about their self-energy in the

10Experiments on CoNb2O6 [34], however, suggest that the effect
of these matrix elements, at least at the level of the linear response
absorption spectra, is not as important as the simple calculations
presented in this paper suggest. Rather than being diminished, the
observed absorption is instead enhanced at the edges of the spectrum
[44].

presence of interactions, which we illustrated by extracting
the momentum-dependent decay rate of domain walls from
the 2DCS response.

A number of challenges present themselves for future
work. For one thing, we have confined our present investi-
gation to the simplest possible 2DCS experiment, where only
two drive pulses are used, and both have the same polarization.
Variations on the 2DCS experiment using three drive pulses
and/or crossed polarizations could yield additional informa-
tion beyond that accessible in the basic experiment. Such
generalized 2DCS protocols should be treatable using the
same path-integral formulation introduced herein.

Additionally, we have considered the simplest possible
example of a phase with deconfined fractionalized excita-
tions: the one-dimensional transverse field Ising model in
its ferromagnetic phase. Generalization to more complicated
fractionalized phases, such as spin liquids and models that
host fractons, is an important topic for future work. It might,
for instance, be fruitful to apply this technique to the spin- 1

2
Heisenberg model on a kagome lattice, which is conjectured
to support a spin-liquid phase [45,46]. We caution that, for
systems in greater than one spatial dimension, there will not
be a unique mapping between energy and momentum, which
may limit the information about the self-energy that is acces-
sible in the simplest 2DCS experiment described in Sec. II A.
However, it may still be possible to make progress under cer-
tain weak assumptions, such as a sufficient degree of isotropy
of the spinon dispersion, or, contrariwise, by generalizing to
momentum-resolved 2DCS. Exploration of such possibilities
is an interesting topic for future work. Meanwhile, even in
one spatial dimension there are fractionalized phases such
as the Luttinger liquid and its spin-incoherent generalization
[47]. While the application of 2DCS to the former has been
discussed [23], the generalization to the latter remains to be
performed, and should involve no more than a straightforward
extension of ideas discussed in this paper. This too would
be an interesting topic for future work. Finally, thus far we
have focused on broadening coming from interactions. Our
path-integral approach could also be generalized to incorpo-
rate disorder, and whether 2DCS can be deployed to reveal
disorder-induced self-energies [48] is also an interesting topic
for future work.

Most broadly, the 2DCS experiment is but a particular
example of a general theme, that of probing the ultrafast
quantum dynamics of solid-state systems to reveal new infor-
mation inaccessible to conventional experiments. This broader
research program is in its infancy, and we anticipate new
experimental protocols may arise as it matures.

Note added. Recently, we became aware of an independent
study of the effect of interactions on the nonlinear response
properties of the transverse field Ising model, although in the
paramagnetic phase [49].
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APPENDIX A: MAJORANA GRASSMANN INTEGRATION

In this Appendix we review for completeness the integra-
tion rules associated with 2N Majorana Grassmann variables
φi, and outline how the linear and nonlinear response prop-
erties of the noninteracting model can be evaluated using
derivatives of Pfaffians. The Grassmann variables anticom-
mute, {φi, φ j} = 0, square to zero, φ2

i = 0, and integration is
performed using ∫

dφi φ j = δi j . (A1)

The most important result is the following Gaussian integral,
which relates the Grassmann integral of an antisymmetric
matrix Ai j to the Pfaffian:

Z[A] ≡
∫

D[φ] exp

⎛
⎝−1

2

2N∑
i, j=1

φiAi jφ j

⎞
⎠ = Pf(A), (A2)

where D[φ] ≡ dφ1dφ2 · · · dφ2N . An alternative way to derive
the noninteracting nonlinear response properties (32) and (34)
without explicitly invoking Wick’s theorem is therefore to
express the generating functional Z[hcl, hq] as a Pfaffian, and
to subsequently evaluate derivatives thereof. An expression
for the derivative of a Pfaffian of a matrix that depends on the
set of variables {x j} can be derived by noting that Pf(A)2 =
det(A) and utilizing Jacobi’s formula, which gives

∂

∂xi
Pf(A) = 1

2
Pf(A)Tr

(
A−1 ∂A

∂xi

)
. (A3)

This expression can then be iterated to evaluate higher-order
derivatives. As an example, let us evaluate the second-order
derivative, which, in the context of the noninteracting trans-
verse field Ising model, gives rise to the linear susceptibility
χ (1)

xx (t ). The exact expression for the generating functional is
Z[hcl, hq] = Pf(D−1 − 2ihqMq − 2ihclMcl ), where all matri-
ces possess space-time, Majorana, and Keldysh indices. The
free Green’s function is defined in Eqs. (20) and (21), while
the magnetization vertices are defined by Eq. (22). Making
use of Eq. (A3) twice, we find that the second-order derivative
evaluates to

∂2

∂xi∂x j
Pf(A) = −1

2
Pf(A)Tr

(
A−1 ∂A

∂xi
A−1 ∂A

∂x j

)
+ · · · . (A4)

The additional terms, denoted by the ellipsis, vanish when
evaluated with A = D−1 (either they correspond to discon-
nected diagrams, or they vanish because A depends linearly
on {x j} in the present case). Since the magnetization vertices
are time local, we arrive at

δ2Z[hcl, hq]

δhcl(t ′)δhq(t )

∣∣∣∣
hq=hcl=0

= Tr[D(t, t ′) ◦ Mcl ◦ D(t ′, t ) ◦ Mq],

(A5)

where matrix multiplication over momentum, Majorana, and
Keldysh indices is denoted by “◦”; the integration over inter-
mediate times has already been performed. Once the diagonal
nature of the matrices D and Mq/cl with respect to momentum
is taken into account (∝δk+k′ ), the expression is equivalent to
Eq. (30) presented in the main text. The same procedure can

easily be generalized to higher-order derivatives to obtain the
higher-order susceptibilities relevant to nonlinear response.

APPENDIX B: SECOND-ORDER RESPONSE

In the main text, we focused on the third-order nonlinear
response of the magnetization χ (3)

xxxx and contrasted its behav-
ior with that of the linear response χ (1)

xx (t ). Here, we derive
the second-order response using the formalism developed in
the main text. Our starting point is Eq. (23), which can be
expanded to second order in the classical component of the
generating field hcl(t ) to give

χ (2)
xxx(t1; t2, t3) = 1

2i

δ3Z[hcl, hq]

δhcl
3 δhcl

2 δhq
1

∣∣∣∣
hq=hcl=0

. (B1)

Making use of Wick’s theorem, or the alternative procedure
outlined in Appendix A, the functional derivative can be eval-
uated to give

δ3Z[hcl, hq]

δhcl(t3)δhcl(t2)δhq(t1)

∣∣∣∣
hq=hcl=0

= i
∑
p>0

{
Tr

[
τ̌ 2ĎK

p (t13)τ̌ 2ĎA
p (t32)τ̌ 2ĎA

p (t21)
]

(B2a)

+ Tr
[
τ̌ 2ĎR

p (t13)τ̌ 2ĎK
p (t32)τ̌ 2ĎA

p (t21)
]

(B2b)

+ Tr
[
τ̌ 2ĎR

p (t13)τ̌ 2ĎR
p (t32)τ̌ 2ĎK

p (t21)
]}

+ permutations of (t2, t3). (B2c)

Since the times t2 and t3 precede the measurement time t1,
the response defined by Eq. (B2) is appropriately causal.
Specifically, the θ functions in Eq. (B2a) enforce t1 > t2 > t3,
while Eq. (B2c) enforces the opposite ordering t1 > t3 > t2.
Equation (B2b), on the other hand, does not restrict the order-
ing of t2 and t3; the θ functions only enforce that t1 > t2 and
t1 > t3 separately. The second-order susceptibility in Eq. (B2)
determines the second-order response of M̂x via

〈M̂x(t1)〉(2) = 1

2!

∫
dt2dt3 χ (2)

xxx(t1; t2, t3)
3∏

n=2

h(tn), (B3)

where both integrations over time span the entire real axis. As
in Eq. (28), we are able to take advantage of the symmetry
properties of χ (2)

xxx to restrict the domain of integration to the
region t1 > t2 > t3:

〈M̂x(t1)〉(2) =
∫

tn>tn+1

dt2dt3 χ (2)
xxx(t1; t2, t3)

3∏
n=2

h(tn). (B4)

If we evaluate Eq. (B2) in the region t1 > t2 > t3, we get
contributions from Eqs. (B2a) and (B2b). For the other permu-
tation of (t2, t3), Eqs. (B2b) and (B2c) give rise to a nonzero
contribution. Evaluating the traces over Majorana indices, we
find

χ (2)
xxx(t, t + τ ) = −4θ (t )θ (τ )

∑
p>0

Fp sin2 ϑp cos ϑp

×{cos(2εpτ ) − cos[2εp(t + τ )]}. (B5)

The difference in sign with respect to Ref. [27] de-
rives from a different convention for the Jordan-Wigner
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transformation and, hence, the Bogoliubov parameter ϑp; in
Eq. (B5) cos ϑp = 2(g − cos p)/εp.

APPENDIX C: PUMP-PROBE RESPONSE

While we have focused primarily on the rephasing signal
that occurs in the upper left and lower right quadrants in the

Fourier-transformed third-order susceptibility χ (3)
xxxx(t, t, t +

τ ), the other contribution to Eq. (3), proportional to
χ (3)

xxxx(t, t + τ, t + τ ), also contains useful information, which
we briefly explore in this Appendix. When evaluated with
the appropriate time arguments, the general expression (33)
reduces to

χ (3)
xxxx(t, t + τ, t + τ ) = i

2
θ (t )θ (τ )

∑
p

{
Tr

[
τ 2DR

−p(t )τ 2DR
−p(τ )τ 2DR

−p(0+)τ 2DK
−p(−t − τ )

]
+ Tr

[
τ 2DR

−p(t )τ 2DR
−p(τ )τ 2DK

−p(0+)τ 2DA
−p(−t − τ )

]
+ Tr

[
τ 2DR

−p(t )τ 2DR
−p(τ )τ 2DK

−p(0−)τ 2DA
−p(−t − τ )

]
+ Tr

[
τ 2DR

−p(t )τ 2DK
−p(τ )τ 2DA

−p(0−)τ 2DA
−p(−t − τ )

]}
, (C1)

where we note that the summation runs over all momenta p,
and that all permutations of the time arguments have been
appropriately accounted for. The Green’s functions evaluated
with infinitesimal time arguments can be further simplified by
noting that, e.g., DR

p (0+) = I. For the noninteracting model,
we obtain the simple expression

χ (3)
xxxx(t, t + τ, t + τ )

= −2θ (t )θ (τ )
∑
p>0

Fp
{
sin2(2ϑp) sin[2εp(t + τ )]

− sin2(2ϑp) sin[2εpτ ] + 4 sin4( ϑp ) sin[2εpt]
}
. (C2)

The term on the last line corresponds to the pump-probe
response, and produces a streak along the ωτ = 0 axis at
energies corresponding to twice the quasiparticle spectrum. If
the Green’s functions exhibit (perhaps momentum-dependent)
simple lifetime broadening, leading to exponential decay in
time, the pump-probe response will become broadened in the
direction orthogonal to the streak, parallel to ωτ .

APPENDIX D: SIGNATURES OF
ANOMALOUS BROADENING

In the main text it was shown that in spite of the anomalous
broadening present in the single-particle Green’s functions,
the 2DCS spectrum depicted in Fig. 2 appeared to show no
signatures thereof. Here, we show that the nonlinear response
can, at least in principle, indicate the presence of anomalous
broadening, but the conditions required for it to be visible
differ from the analogous conditions for the single-particle
Green’s function (depicted in Fig. 3). The single-particle
Green’s functions of the interacting system can be approxi-
mated by two separate excitation branches. Suppose that these
two branches have mean energy Ek and separation 2δk . In
order to simplify the analysis and to highlight the salient
physics, we assume that both branches have identical spectral
weight, intrinsic broadening γk , and off-diagonal phase eiϑk .
In this case, we obtain a relatively simple analytical approxi-
mation for the observed response:

χ (3)
xxxx(t, t, t + τ )

= 2θ (t )θ (τ )
∑

p

e−2γp(t+τ ) sin2 ϑp cos(δpt ) cos(δpτ )

×{cos(δpt ) cos(δpτ )(cos2 ϑp(2 sin(2Epτ )

− sin[2Ep(t + τ )]) − sin2 ϑp sin[2Ep(t − τ )])

− cos[δp(t + τ )] sin[2Ep(t + τ )]}. (D1)

The rephasing signal corresponds to the last term on
the penultimate line ∝sin[2Ep(t − τ )]. The new prefactor
cos2(δpt ) cos2(δpτ ), which only differs from unity in the pres-
ence of a nonzero splitting δk > 0, leads to additional peaks in
the 2DCS spectrum. Explicitly, isolating the rephasing contri-
bution, we write

−2e−2γp(t+τ ) sin4 ϑp cos2(δpt ) cos2(δpτ ) sin[2Ep(t − τ )]

→ i

16
sin4 ϑp(2 + e2iδpt + e−2iδpt )(2 + e2iδpτ + e−2iδpτ )

× (e2iEp(t−τ ) − e−2iEp(t−τ ) ), (D2)

FIG. 11. Imaginary part of the Fourier-transformed third-order
susceptibility χ (3)

xxxx (t, t, t + τ ) from the analytical expression (D1)
with an exaggerated separation δk between the two branches. The
splitting of the antidiagonal streak into multiple branches can be
seen in the vicinity of (ωt , ωτ ) = ±(2, −2) in units of 2J (1 + g).
The response is evaluated for a system of size L = 100.

205143-18



EXTRACTING SPINON SELF-ENERGIES FROM … PHYSICAL REVIEW B 107, 205143 (2023)

and expanding out the brackets gives rise to addi-
tional peaks located at (0,±2δp), (±2δp, 0), (±2δp,∓2δp)
with respect to the antidiagonal rephasing streak in
terms of the variables (ωt , ωτ ), Fourier conjugate to
(t, τ ).

As shown in Fig. 11, this can give rise to signatures of
anomalous broadening if the intrinsic broadening γk is re-

duced substantially (alternatively, if δk is increased). While we
have the freedom to tune parameters at will in (D1), in realistic
systems the two contributions γk and δk cannot be varied in-
dependently. Of course, one could try and “reverse engineer”
the interaction term so as to maximize δ while minimizing γ ,
although this may involve introducing long-range interactions
[50].

APPENDIX E: SELF-ENERGY: EXTRA DETAILS

In this Appendix we describe how the second-order contribution to the self-energy, whose components are given in Eqs. (47)
and (48), is evaluated. Multiplying the interaction vertices with the weights Aσi

aibi
(pi ), we find that the sum over Majorana indices

gives rise to the expression

Vaa1a2a3 (−k, p1, p2, p3)Vbb1b2b3 (k,−p1,−p2,−p3)Aσ1
a1b1

(p1)Aσ2
a2b2

(p2)Aσ3
a3b3

(p3)

=
(

4λ

3L

)2

δP

(
k −

3∑
i=1

pi

)
Bab(1 | 2, 3) sin2

(
k + p1

2

)
sin2

(
p2 − p3

2

)
+ sin

(
k + p2

2

)

× sin

(
p3 − p1

2

)
sin

(
k + p1

2

)
sin

(
p2 − p3

2

)
Cab(1, 2 | 3) + cyc. perm. (1, 2, 3), (E1)

where we have defined the functions

Bab(1 | 2, 3) = Aσ1
ab(p1)Tr[Ǎσ2 (p2)(Ǎσ3 (p3))T], (E2)

Cab(1, 2 | 3) = [Ǎσ1 (p1)(Ǎσ3 (p3))TǍσ2 (p2) + Ǎσ2 (p2)(Ǎσ3 (p3))TǍσ1 (p1)]ab. (E3)

Using the definition of the weights Aσi
aibi

(pi ) below Eq. (46), the traces and matrix products can be evaluated explicitly. This gives

Tr[Ǎσ j (p j )(Ǎσk (pk ))T] = 2
[
σ jσk − cos

(
ϑp j + ϑpk

)]
(E4)

for the trace factor appearing in Eq. (E2), and

C11(i, j | k) = 2{σiσ jσk + [σk cos(ϑi−ϑ j )−σ j cos(ϑi + ϑk ) − σi cos(ϑ j + ϑk )]}, (E5)

C12(i, j | k) = 2i{σ jσkeiϑi + σiσkeiϑ j − [σiσ je
−iϑk + ei(ϑi+ϑ j+ϑk )]}. (E6)

For the other components, C22 = C11, C21 = C̄12, ensuring that the matrix Cab is Hermitian. Hermiticity of the matrix Bab follows
from directly from Ǎ = Ǎ†.
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