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systems exhibiting competing orders

Nei Lopes ,1,* Daniel Reyes ,2,3 Natanael C. Costa ,4 Mucio A. Continentino ,5 and Christopher Thomas 6

1Departamento de Física Teórica, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524,
Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil

2Instituto Militar de Engenharia - Praça General Tibúrcio 80, 22290-270 Praia Vermelha, Rio de Janeiro, Brazil
3Laboratorio de Cerámicos y Nanomateriales, Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos,

Ap. Postal 14-0149, Lima, Peru
4Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-972, Brazil

5Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, Urca, 22290-180 Rio de Janeiro, Brazil
6Instituto de Física, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Brazil

(Received 11 July 2022; revised 10 April 2023; accepted 10 May 2023; published 22 May 2023)

The appearance of an incommensurate charge density wave vector Q = (Qx, Qy ) on multiband intermetallic
systems presenting commensurate charge density wave (CDW) and superconductivity (SC) orders is investi-
gated. We consider a two-band model in a square lattice, where the bands have distinct effective masses. The
incommensurate CDW (inCDW) and CDW phases arise from an interband Coulomb repulsive interaction, while
the SC emerges due to a local intraband attractive interaction. For simplicity, all the interactions, the order
parameters, and hybridization between bands are considered k independent. The multiband systems that we are
interested are intermetallic systems with a d band coexisting with a large c band, for which a mean-field approach
has proved suitable. We obtain the eigenvalues and eigenvectors of the Hamiltonian numerically and minimize
the free energy density with respect to the diverse parameters of the model by means of the Hellmann-Feynman
theorem. We investigate the system in real as well as momentum space, and we find an inCDW phase with
wave vector Q = (π, Qy ) = (Qx, π ). Our numerical results show that the arising of an inCDW state depends
on parameters such as the magnitude of the inCDW and CDW interactions, band filling, hybridization, and the
relative depth of the bands. In general, inCDW tends to emerge at low temperatures, away from half-filling.
We also show that whether the CDW ordering is commensurate or incommensurate, large values of the relative
depth between bands may suppress it. We discuss how each parameter of the model affects the emergence of an
inCDW phase.

DOI: 10.1103/PhysRevB.107.205141

I. INTRODUCTION

The search for coexistence, competition, or even a coop-
erative behavior between superconductivity (SC) and other
collective states, such as magnetism and charge density waves
(CDWs), may shed light on novel and exotic states of matter.
However, understanding the emergence and interplay of these
different types of electronic order is a challenge and remains
an ongoing topic of research. Prominent examples include SC
in high-temperature copper oxide superconductors [1–3], or-
ganic charge-transfer salts [4–6], heavy-fermion compounds
[7], superconducting cobalt systems [8], A15 compounds
[9–12], Ni- and Fe-based superconductors [13–17], per-
ovskites [18], quasiskutterudite superconductor [19–24], in-
tercalated graphite CaC6 [25], sulfuride-based compounds at
very high pressure [26], and some transition-metal dichalco-
genides (TMDs) [4,27–42].

Within this context, TMD materials have gained
widespread attention due to parallels and similarities between
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their electronic phases and/or interactions with those observed
in high-temperature superconducting copper oxide and iron
arsenide materials [43–45]. The occurrence of strange metal
behavior, Mott insulating phases, pseudogap states [44,45],
and the emergence of two superconducting domes in the phase
diagram of 1T -CuxTiSe2 as a function of Cu intercalation
or pressure, in proximity of the CDW state [30], have
pointed out analogies between these compounds. It has also
intensified the debate about the role of the electron-electron
and electron-phonon interactions [41,43]. Of particular
interest is the response of such materials to impurity dopants
or pressure, which are known to tune the structural and
electronic properties of TMD materials [46–51].

In principle, the SC observed in these compounds can
be investigated within the framework of Bardeen-Cooper-
Schrieffer (BCS) theory [52,53] due to the nodeless nature of
the superconducting gap function [19,20,22,23,54]. Further-
more, this is supported by the temperature dependence of the
specific heat and the ratios 2�/kBTSC and �C/γ TSC close to
the expected values of the BCS theory [52,53]. However, for
other materials/compounds it is necessary to go well beyond
the BCS picture. This is the case when the pairing mechanism
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may not be phonon mediated and the SC becomes uncon-
ventional, i.e., being enhanced by quantum fluctuations and
accompanied by the suppression of the CDW to a quantum
critical point (QCP) [55,56].

In addition, it has been observed that several TMDs ex-
hibit an interplay between SC and incommensurate charge
density wave (inCDW) orders [31,57–66], while the coex-
istence of SC and commensurate CDW (hereafter denoted
only by CDW) is relatively rare [67]. Recently, it has been
shown that coexistence depends directly on the band filling
and the relative depth of the bands [68]. This interplay has
also been reported in Ni- and Fe-based pnictides [69,70], and
in Y-, Bi-, and Hg-based cuprates [71–79], and rare-earth
intermetallic systems [80]. Therefore, further studies on the
relation between inCDW, CDW, and SC states might lead
to a deeper understanding of these collective quantum states
in solids.

In order to contribute to such a discussion, we investi-
gate the interplay of CDW, inCDW, and SC on intermetallic
systems. In particular, we examine how an incommensurate
charge modulation wave vector (Q), which give rises to an
inCDW state, appears in the phase diagrams of multiband
intermetallic systems, and how it affects the emergence of
SC. To this end we disregard the complexities behind specific
compounds and investigate their global fundamental aspects
by means of effective lattice Hamiltonians, focusing on the
incommensurability features. Here, we consider a two-band
model in a square lattice, whose bands exhibit different effec-
tive masses [68]. The inCDW and CDW phases arise from an
interband Coulomb repulsive interaction, while SC emerges
due to a local intraband attractive interaction.

However, even dealing with simplified Hamiltonians, the
analysis of inCDW is a challenge: unbiased methods, such
as quantum Monte Carlo or a density matrix renormaliza-
tion group, may not be adequate, whether because large
lattice sizes are too computationally demanding or because of
technical constraints (such as the fermionic minus sign prob-
lem). Therefore, we analyze it through a mean-field theory
in both real- and momentum-space configurations. Using a
self-consistent procedure to minimize the free energy den-
sity, we are able to obtain phase diagrams for our model
that exhibit a plethora of phases and examine their interplay
and competition. We show that the appearance of an in-
CDW state depends on many parameters, such as temperature,
band filling, hybridization, and on-site orbital energies. For
instance, a strong interband Coulomb interaction suppresses
an inCDW order. This incommensurate charge-ordered phase
tends to emerge in the low-temperature regime, away from
half-filling, and close to the transition between CDW and SC,
and pure SC, in the absence of hybridization. By contrast,
for large hybridization the inCDW appears near the half-
filling.

It is worth pointing out that our phase diagrams for
CDW, inCDW, and SC orders are in line with those obtained
from mainly phononic interactions [81]. Despite having dif-
ferent natures, phononic and electronic models share some
similarities: for instance, from a Lang-Firsov transformation,
one is able to map electron-phonon systems in electronic ones
by integrating out the bosonic degrees of freedom, leading to
nonlocal interactions [82,83]. That is, fundamental properties

of the competition between charge and pairing orders may
be described with both approaches. We expect that, notwith-
standing we are dealing with an electronic model, our study
can give further insights on the emergence of CDW, inCDW,
and SC.

The paper is organized as follows: In Sec. II we describe
the main aspects of our two-band model to investigate the
effects of inCDW, CDW, and SC orders on multiband inter-
metallic systems as well as the mean-field approximation used
to solve the many-body problem. In Sec. III we present our
numerical results in real and momentum space, focusing in
the phase diagrams as a function of different parameters. In
Sec. IV we conclude and make some remarks about our main
results.

II. MODEL AND METHODS

A. The model

We consider a two-band model consisting of a large c-type
band and a narrower one with moderate correlations, in a
square lattice. The latter has essentially a d character. We take
into account on-site interband Coulomb repulsion between the
bands that gives rise to CDW/inCDW, and local attractive
intraband interactions in the d band, which is responsible
for SC.

The real-space Hamiltonian of the model reads [68]

H = − tc
∑
〈i j〉,σ

(c†
iσ c jσ + H.c.) − td

∑
〈i j〉,σ

(d†
iσ d jσ + H.c.)

+ εd0

∑
i,σ

d†
iσ diσ − μ

∑
i,σ

(d†
iσ diσ + c†

iσ ciσ )

+
∑
i, j,σ

Vi j (c
†
iσ d jσ + d†

iσ c jσ )

+ Udc

∑
i

nd
i nc

i + Jd

∑
i

d†
i↑di↑d†

i↓di↓, (2.1)

where ciσ (c†
iσ ) and diσ (d†

iσ ) denote annihilation (creation)
operators of c and d electrons, respectively, in a given site
i, with spin σ , in the standard second quantization formalism.
The first two terms on the right-hand side of Eq. (2.1) cor-
respond to the hopping of c and d bands, with tc,d defining
their hopping integrals. The third term defines the relative
shift εd0 between c and d bands, while the chemical po-
tential μ, in the fourth term, is self-consistently determined
to accommodate a given total number ntot of electrons. The
fifth one denotes the hybridization between the orbitals. For
simplicity, we define the hybridization Vi j between different
orbitals on-sites as real and symmetric. The last two terms
denote the on-site interband electronic repulsion (Udc > 0),
and an on-site effective attraction between d electrons
(Jd < 0).

Since our main interest is to investigate charge order-
ings, we allow for the occurrence of commensurate and
incommensurate charge density waves by means of a mod-
ulation of the average values of the occupation numbers [84],〈

nc
i

〉 = nc + δc cos (Q · Ri ), (2.2)

〈
nd

i

〉 = nd + δd cos (Q · Ri ), (2.3)
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where δc and δd play the role of the CDW/inCDW order
parameters for c and d orbitals, respectively, while Q =
(Qx, Qy) is the modulation wave vector [85]. It is worth men-
tioning that, by incommensurate, we meant a wave vector
different from (π, π ), with Qα = 2π l

L , l = − L
2 , . . . , L

2 − 1,
and L being the linear size of the lattice. Also, we define the
number of particles for each band as nd (c) = nd (c)

↑ + nd (c)
↓ and

disregard magnetic solutions by enforcing 〈nd (c)
↑ 〉 = 〈nd (c)

↓ 〉.
We investigate the properties of the Hamiltonian in Eq. (2.1)
by a static mean-field theory, performing this approach for real
and momentum spaces, whose procedures are outlined in the
next two sections, respectively.

B. The real-space mean-field approach

By performing a Hartree-Fock approach on the interacting
terms of Eq. (2.1) and using Eqs. (2.2) and (2.3), one obtains

HMF = −tc
∑
〈i, j〉σ

(c†
iσ cjσ + H.c.) − td

∑
〈i, j〉σ

(d†
iσ djσ + H.c.)

+V
∑

iσ

(c†
iσ diσ + H.c.) + �d

∑
i

(d†
i↑d†

i↓ + H.c.)

+
∑

iσ

[−μ + Udc(nd + δd cos(Q · Ri ))]c
†
iσ ciσ

+
∑

iσ

[εd0 − μ + Udc(nc + δc cos(Q · Ri ))]d
†
iσ diσ

−N

(
�2

d

Jd
+ Udcnd nc + NQUdcδdδc − μ(nc + nd )

)
.

(2.4)

Here we assume a local hybridization (i.e., Vi j = δi jV ), while
defining

�d = 1

N

∑
i

〈d†
i↑d†

i↓〉 = 1

N

∑
i

〈di↓di↑〉, (2.5)

and

NQ =
{

1 if Q = (±π,±π );
1/2 otherwise. (2.6)

Notice that the Hamiltonian in Eq. (2.4) may be
written in a 4N×4N matrix representation in a basis
{c†

↑c↓d†
↑d↓}, with N = L×L being the number of sites.

That is, the Nambu spinor may be defined as 	† =
(c†

1↑, . . . , c†
N↑, c1↓, . . . , cN↓, d†

1↑, . . . , d†
N↑, d1↓, . . . , dN↓).

The diagonalization of HMF provides 4N eigenvalues λi

which allow us to obtain the free energy density,

F = −T

N

∑
i

ln [1 + exp (−βλi )] + const., (2.7)

where β = 1/(kBT ), with kB being the Boltzmann constant,
and T the absolute temperature. The numerical minimization
of the free energy density with respect to the mean-field pa-
rameters, i.e.,

∂F

∂μ
= ∂F

∂nd
= ∂F

∂δd
= ∂F

∂δc
= ∂F

∂�d
= ∂F

∂Qα

= 0, (2.8)

is performed self-consistently with the aid of the
Hellmann-Feynman theorem [86–88].

C. The momentum-space mean-field approach

By performing a Fourier transform of the mean-field
Hamiltonian in Eq. (2.4), one obtains

HMF =
∑
kσ

εc
kc†

kσ ckσ +
∑
kσ

εd
k d†

kσ dkσ

+ V
∑
kσ

(c†
kσ dkσ + H.c.) + �d

∑
k

(d†
k↑d†

−k↓ + H.c.)

+ NQUdc

∑
kσ

(δdc†
kσ ck+Qσ + δcd†

kσ dk+Qσ + H.c.)

− N

(
�2

d

Jd
+ Udcnd nc + NQUdcδdδc − μ(nc + nd )

)
,

(2.9)

where εk = −2tc[cos(kxa) + cos(kya)], εc
k ≡ εk + Udcnd −

μ, εd
k ≡ γ εk + Udcnc − μ + εd0, and γ = td/tc. The latter is

the inverse ratio of effective masses, while εd0 plays the
role of the relative depth between the centers of the bands.
Finally, the order parameters are defined in the momentum
space as

�d ≡ Jd

N

∑
k

〈d−k↓dk↑〉 = Jd

N

∑
k

〈d†
k↑d†

k↓〉, (2.10)

δd ≡ 1

N

∑
kσ

(〈d†
k+Qσ dkσ 〉 + 〈d†

kσ dk+Qσ 〉), (2.11)

δc ≡ 1

N

∑
kσ

(〈c†
k+Qσ ckσ 〉 + 〈c†

kσ ck+Qσ 〉). (2.12)

We have not included interband pairing, since hybridiza-
tion already gives rise to hybrid pairs [89]. We find, however,
that explicitly including interband pairing in the Hamiltonian
is detrimental to phase coexistence, as discussed below.

For Q = (π, π ), one is able to block-diagonalize the
Hamiltonian in Eq. (2.9) using the Nambu’s spinor basis:

	
†
k = (c†

k↑, d†
k↑, c−k↓, d−k↓, c†

k+Q↑, d†
k+Q↑, c−k−Q↓, d−k−Q↓).

(2.13)

That is, the mean-field (MF) Hamiltonian can be written in a
quadratic form, HMF = ∑

k 	
†
kM	k + const., with the matrix

205141-3



NEI LOPES et al. PHYSICAL REVIEW B 107, 205141 (2023)

representation

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

εc
k V 0 0 Udcδ

d 0 0 0
V εd

k 0 �d 0 Udcδ
c 0 0

0 0 −εc
−k −V 0 0 −Udcδ

d 0
0 �d −V −εd

−k 0 0 0 −Udcδ
c

Udcδ
d 0 0 0 εc

k+Q V 0 0
0 Udcδ

c 0 0 V εd
k+Q 0 �d

0 0 −Udcδ
d 0 0 0 −εc

−k−Q −V
0 0 0 −Udcδ

c 0 �d −V −εd
−k−Q

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.14)

Here, the sums over k’s are performed in the extended
Brillouin zone (from −π/a to π/a, in kx and ky directions),
which makes the subspace (k ↑,−k ↓, k + Q ↑,−k − Q ↓)
two-folded degenerate. Similarly to the previous case, the free
energy density is obtained from the eigenvalues Emk of the
matrix in Eq. (2.14) as follows:

F = − 1

2N
T

∑
k

∑
m

ln [1 + exp (−βEmk )] + const, (2.15)

with m = 1, . . . , 8 [68]; the 1/2 coefficient is due to the de-
generacy.

Proceeding, we now turn to discuss the incommensurate
case, which is challenging, since it usually requires large unit
cells and, consequently, large blocks in momentum space. In-
stead, here we employ a quasidegenerate perturbation theory,
i.e., we treat the charge modulation contribution to energy
as a perturbation, correcting the nearly degenerate unper-
turbed eigenstates. To this end, it is worth noticing that, in
absence of charge modulation (δc = δd = 0) in Eq. (2.9), the
Hamiltonian is nonfolded degenerate block-diagonal in the
subspace (k ↑,−k ↓), which provides us the unperturbed
eigenvalues E0

n,k (n = 1, . . . , 4).
Within this strategy, we treat the fifth term on the right-

hand side of Eq. (2.9) as a perturbation,

V̂ (Q) = Udc

∑
kσ

(δd c†
kσ ck+Qσ + δcd†

kσ dk+Qσ + H.c.),

(2.16)

fixing NQ = 1, since it just renormalizes the parameters δc

and δd but does not change the actual gap. We recall that
the corrections due to V̂ (Q) are particularly relevant when
E0

n,k ≈ E0
n′,k+Q, lifting the degeneracy while leaving the bands

almost unchanged away from this point. In view of this,
one may span the Hamiltonian in (k ↑,−k ↓) and (k +
Q ↑,−k − Q ↓) subspaces, a procedure that leads to the
same block represented in Eq. (2.14). Similarly to the previous
case, δc and δd are obtained by performing a self-consistent
analysis to minimize the free energy, Eq. (2.15), with respect
to all mean-field parameters, Eq. (2.8); however, we need to
add a constant −N

2 〈V̂ (Q)〉 = −NUdcδcδd [90].

III. RESULTS

In what follows we set the energy scale by the hop-
ping of the c orbitals tc = 1.0 while defining the lattice and
Boltzmann constants as unities (a = 1.0 and kB = 1.0). Un-
less otherwise explicitly mentioned, we assume a fixed ratio

between the effective masses, γ = 0.4. The latter is appropri-
ate to describe the intermetallic compounds in which we are
particularly interested.

We start discussing our results in the real-space
Hamiltonian, Eq. (2.4), investigating the possible occurrence
of inCDW order on these multiband intermetallic systems. To
this end, we examine a 100×10 lattice (i.e., 2000 orbitals),
varying Qx, while keeping Qy = π , which will be justified
later. We recall that commensurate CDW is favored if the
system is at the half-filling (ntot = 2.0) due to nesting prop-
erties. Therefore, in order to find out inCDW, one has to
explore it for ntot < 2.0. We also consider a difference in the
single-particle c and d levels (εd0 	= 0.0). Given this, we first
examine our system at ntot = 1.6 and εd0 = −0.12, whose
results are displayed in Fig. 1, which presents the difference
of the free energy density as a function of Qx in compari-
son to the staggered case, for fixed Udc = 1.2, V = 0.5, and
J = −1.0. As exhibited in Fig. 1, the commensurate CDW is
favored at high temperatures, while an inCDW phase emerges
when the temperature is reduced (notice the minima of the free
energy density). Interestingly, this result shows that the com-
mensurate CDW phase is a very robust one, existing even far

FIG. 1. Difference between the free energy for Q = (Qx, π ) and
the staggered one, Q = (π, π ), as a function of qx ≡ Qx/π , for fixed
parameters γ = 0.4, J = −1.0, Udc = 1.2, V = 0.5, εd0 = −0.12,
and ntot = 1.6. The symbols correspond to the solutions for the full
diagonalization at the real space, for a 100×10 lattice, while the
solid curves are those for the perturbation approach at the momentum
space, for a 200×200 system size.
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FIG. 2. Panels (a), (b), and (c) show maps of the free energy
density, (d), (e), and (f) CDW order parameter δc, and (g), (h), and (i)
superconducting order parameter �d as functions of qx and qy, where
qx,y = Qx,y/π . Each row represents a fixed value of temperature:
T = 0.1, T = 0.06, and T = 0.0001 from the top to the bottom.
The parameters used are ntot = 1.6, V = 0.5, J = −1.0, εd0 = 0.0,
and Udc = 0.8. As temperature decreases, the system goes from a
commensurate CDW to an inCDW to a coexistence of inCDW and
SC, as can be inferred from the minima of the free energy density
and the values of the order parameters δc and �d for different values
of qx and qy. The analysis always shows that the inCDW solution is
obtained by a symmetric wave vector with Q = (Qx, π ) ≡ (π, Qy ).
In (g) and (h) the value of �d is smaller than 10−8.

away from half-filling and being stable at high temperatures.
On the other hand, the inCDW becomes more stable only
at low temperatures and in regions where the commensurate
one is weakened (such as for ntot = 1.6), which indicates that
this phase is less robust than the previous phase. Indeed, this
feature is present in most of our following results.

However, dealing with real-space problems is challenging,
which demands hard numerical calculations even for small
lattice sizes, as well as finite-size scaling analyses. In view
of this, hereafter we analyze the problem in the momen-
tum space, as discussed in Sec. II C. As a first step towards
this end, it is important to validate the perturbation theory
approach by comparing its results with those of the real-
space one. Figure 1 presents this comparison, with the solid
curves being the results of the perturbation theory approach,
where the quantitative and qualitative agreement between both
methodologies is evident. It is also worth mentioning that in
the following results we have performed a systematic analysis
of the internal and Helmholtz energies as a function of the
lattice size to avoid finite-size effects from the incommensu-
rability of Q.

Given this, we now proceed within the momentum-space
approach, determining the Q vector that defines the inCDW or

FIG. 3. The critical temperature of the inCDW, CDW, and SC
orders as a function of band filling (ntot) for J = −1.0, Udc = 0.8,
V = 0.0, and εd0 = 0.0. One can see the small coexistence region
between inCDW and SC orders at very low temperatures and in
between the CDW+SC phase and pure SC phase. Continuous lines
denote second-order phase transitions, while dotted lines indicate
first-order ones.

CDW order from the dependence of the free energy density on
the components of the modulation wave vector Q = (Qx, Qy).
The panels (a)–(c) of Fig. 2 show contour plots of the free
energy densities as functions of the wave vector components
for three selected temperatures, T = 0.1, 0.06, and 0.0001 (in
units of the hopping), while fixing ntot = 1.6, V = 0.5, J =
−1.0, εd0 = 0.0, and Udc = 0.8. For T = 0.1, the minimum of
the free energy density occurs for a commensurate CDW state,
while an inCDW emerges (with either Qx or Qy 	= π ) at lower
temperatures. Notice that the latter breaks the x-y symmetry,
such that one may fix Qx = π and find Qy self-consistently,
or vice versa. Here, we chose to fix the component Qy = π

while looking for different possibilities of Qx. We also present
the behavior of the order parameters δc and �d as functions
of the normalized components qx and qy (qx(y) = Qx(y)/π ) in
panels (d)–(f) and (g)–(i) of Fig. 2, respectively. Interestingly,
at T = 10−4, the minima of the free energy density leads to
a coexistence between a superconducting and inCDW phases
[see, e.g., panels (c), (f), and (i)].

By repeating the procedure outlined previously to other
values of electronic densities and temperatures, one may ob-
tain a phase diagram. Figure 3 displays such a phase diagram
for nonhybridized bands with the same shift energy (εd0 =
0.0), exhibiting the critical temperatures for inCDW, CDW,
and SC orders. Here and in what follows, the continuous
lines denote second-order phase transitions while the dotted
lines indicate first-order ones [91]. As discussed above, the
occurrence of a perfect nesting at the half-filling (ntot = 2.0)
favors the commensurate CDW state and makes this phase
extend for different occupations at higher temperatures.

The phase diagrams for such systems may be complex—
in particular, for the coexistence between charge ordering
and superconductivity—due to the strong dependence of the
phases on the magnitude of the interactions. For instance, by
reducing Udc, the SC phase may also appear at half-filling,
coexisting with CDW [68]. But here our focus is away from
half-filling, due to unexpected behavior. Going far away from
half-filling is detrimental to the CDW phase, which is sup-
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FIG. 4. (a) Phase diagram for fixed T = 0.0001, J = −1.0,
Udc = 0.8, and εd0 = 0.0. (b), (c), and (d) Order parameters as a
function of ntot and V for V = 0.0, V = 0.5, and ntot = 1.9, respec-
tively. Note that two distinct and disconnected coexisting regions
between inCDW and SC are observed on the edges of the CDW+SC
and pure SC states. Observe that in (a) we find first- (dotted lines) or
second-order (continuous lines) phase transitions depending on the
parameters.

pressed, leaving only SC at the ground state. Interestingly, at
the boundary of the “CDW+SC” and the pure SC phases an
inCDW one emerges, also coexisting with SC. This behavior
points out the fact that the charge-ordered phase is robust,
with the system preferring changing its wave vector to ac-
commodate the electrons into an inCDW order, instead of just
destroying the CDW one. However, the inCDW is less robust
than the commensurate case, occurring for a small range of
electronic density and only for low temperatures, consistent
with the results presented in Fig. 2.

In order to further investigate the features of the coexis-
tence between inCDW and SC orders displayed in Fig. 3,
we present a “V ×ntot” phase diagram in Fig. 4(a) for fixed
T = 0.0001 (i.e., at the ground state). It shows two distinct
and disconnected regions of coexistence between inCDW and
SC on the edges with the pure SC phase, suggesting that
two different processes may give rise to inCDW order, de-
pending on the hybridization and/or the occupation number.
First, as displayed in Fig. 4(b) for V = 0, the inCDW phase
emerges presenting first-order transitions from CDW+SC to
inCDW+SC, as noticed by the abrupt change in δc and a
two minima behavior in the free energy density (not shown),
while �Qx = |1 − Qx/π | ≈ 0.05. Therefore this small co-
existence region seems to come from strong interactions at
the neighborhood of the transition inCDW+SC to SC, avoid-
ing the possibility of a reentrant behavior when we have
no inCDW ordering. On the other hand, for high values of
V , �Qx increases continuously as a function of ntot while
the parameter δc goes to zero as ntot decreases, similar to
a second-order phase transition. �d is exactly zero at the
half-filling and has two kinks related to the finite value �Qx,
one in the beginning and the other at the end of the inCDW
phase, being less affected by the variation of ntot, as pre-

FIG. 5. Phase diagram for T = 0.0001 as a function of Udc

and ntot for J = −1.0, V = 0.0, and εd0 = 0.0. There is a nar-
row range exhibiting inCDW+SC which separates CDW+SC from
pure SC. The �Qx component is almost constant and presents an
abrupt variation as a function of ntot , see Fig. 4(b). Note that the
transition CDW+SC to inCDW+SC is a first order (dotted line)
transition, while the inCDW+SC to pure SC is second-order one
(continuous line).

sented in Fig. 4(c) for V = 0.5. This region is more robust
and reflects the fact that hybridization between bands may
induce an inCDW phase at low temperatures. For ntot = 1.9,
one can see that δc and �d goes to zero asymptotically,
while �Qx 	= 0 appears for large values of V , as shown
in Fig. 4(d).

Similar conclusions are obtained when investigating the
“Udc×ntot” phase diagram, displayed in Fig. 5. Notice that
the transition between the CDW+SC phase to the pure SC
one always goes through a narrow inCDW+SC region before
the system became purely SC. Here, �Qx � 0.06, producing
an abrupt change in almost all phase diagrams, where �Qx

deviates from zero to a finite value.
In Fig. 6 are depicted δc, δd , �d , �Qx, μ, nd , and nc as a

function of ntot for different values of Udc, and fixed J = −1.0,
V = 0.5, and εd0 = 0.0. One can see that the behaviors of
|δc| and |δd | are very similar [see Figs. 6(a) and 6(b)], which
consequently justifies that fact that we have only shown the re-
sults for δc up to now. Figure 6(c) shows the variation of �d as
we deviate from half-filling. Note that the SC order parameter
initially increases and when �Qx 	= 0, i.e., the inCDW state
emerges, �d changes its behavior, see Figs. 6(c) and 6(d).
In other words, inCDW also exhibits an intrinsic competition
with SC. Deviating further from half-filling, δc and δd go to
zero continuously, where �Qx is defined only when δc,d 	= 0.
�d presents a monotonic decreasing, and eventually �d → 0
for very large deviations from ntot = 2.0. In Fig. 6(e) we
show that the chemical potential μ tends to decrease as a
function of ntot, with a slightly variation in the presence of
inCDW order, and it returns to decrease in the pure SC phase.
Finally, Fig. 6(f) shows the imbalance between the number
of electrons in different bands as a function of ntot , which is
detrimental to both CDW orders.

Thus, in general, a CDW phase emerges at ntot = 2.0,
where SC is suppressed. The coexistence between CDW and
SC is obtained as the occupation number is slightly varied
from half-filling. The SC reaches a maximum and coexistence
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FIG. 6. (a) δc, (b) δd , (c) �d , (d) �Qx , (e) μ, (f) nd , and nc as a
function of ntot for different values of Udc, and fixed J = −1.0, V =
0.5, and εd0 = 0.0. The imbalance between nd and nc is detrimental
to both CDW orders, i.e., CDW and inCDW, while SC is not directly
affected by the electronic occupation in the different bands.

between inCDW and SC takes place in the phase diagram
below this point at low temperatures. As ntot keeps decreasing,
only SC survives. Moreover, note that the inCDW emerges
around the fine-tuned density-driven CDW QCP. Therefore,
we can conclude that the appearance of an inCDW order is
intrinsically related to quantum critical fluctuations, associ-
ated with the CDW QCP (see also Fig. 3). From Fig. 6 it
is clear that Udc also plays an important role on both CDW
and inCDW phases since a small Udc is sufficient to suppress
CDW as well as inCDW orders.

So far, our results showing coexistence between inCDW
and SC orders were obtained for the case where the bands
have the same center, i.e., εd0 = 0.0. The effect of the shift
between the centers of the bands, εd0 	= 0.0, is relevant exper-
imentally when doping the d bands with elements belonging
to different rows of the periodic table such as 3d , 4d , or
5d , but within the same column. Pressure also may affect
the relative positions of the bands. Figure 7(a) shows the
critical temperatures as a function of εd0 for fixed Udc = 1.2,
V = 0.5, J = −1.0, and ntot = 1.6. One can see a very rich
phase diagram exhibiting multiple phases. For high T and
small |εd0|, CDW order prevails. Cooling down the system,
we obtain a robust pure inCDW phase. Further reducing T
we reach a coexistence region between inCDW and SC order.
On the other hand, for large values of |εd0| both inCDW
and CDW orders are suppressed and only SC survives. In
Fig. 7(b) we present the variation of δc, �d , and �Qx for

FIG. 7. (a) Critical temperatures as a function of εd0 for fixed
Udc = 1.2, V = 0.5, J = −1.0, and ntot = 1.6. (b) Variation of δc,
�d , and �Qx for a fixed T = 10−4 as a function of εd0. (c) Varia-
tion of δc, �d , and �Qx for a fixed εd0 = 0.0 as a function of T .
(d) Order parameters as a function of T for a fixed εd0 = −0.4. Note
that �Qx is defined only when δc,d 	= 0. In (a) the continuous lines
mean second-order phase transitions, while dotted lines correspond
to first-order ones.

a fixed T = 0.0001 as a function of εd0. One can see that
although �Qx is different from zero and does not change
considerably when it is defined, δc and �d present two abrupt
changes at the edges of the emergence of the inCDW order,
which is an indication of a first-order phase transition. In
addition, �d is finite and almost constant at the pure SC
states. Figure 7(c) shows the variation of δc, �d , and �Qx

for a fixed εd0 = 0.0 as a function of T . Note that all param-
eters are continuous, and also observe that the inCDW state
emerges at low temperatures, changing the behavior of δc,
which indicates the transition to an inCDW state. In Fig. 7(d)
we present the order parameters as a function of T for a
fixed εd0 = −0.4. Note that both δc and �d are continuous
as a function of T , which suggests a second-order phase
transition.

We emphasize that the imbalance between the number of
electrons in different bands as a function of εd0 (not shown) is
detrimental to CDW orders, which is very similar to Fig. 6(f).
Therefore we can state that whether the CDW ordering is com-
mensurate or incommensurate, increasing |εd0| may suppress
both inCDW and CDW states, while only SC remains weakly
affected by relative band shifts, as shown in Fig. 7(a).

We also have calculated the Fermi surfaces (FS) of both
c and d bands in normal state (εc,d

k = 0.0 contours in the
Brillouin zone), i.e., with no SC or CDW orders for Figs. 3
and 7(a) (not shown). By doing that we obtain the expected
FS structure for a square lattice depending on the band filling.
Indeed, at half-filling (ntot = 2.0) we find the nesting condi-
tion, i.e., the wave vector �Q = (π, π ) connects two points
of the FS, as expected, which might favor the emergence of
charge ordering at half-filling, as discussed previously. As
we deviate from half-filling, we have no longer the nesting
condition, also as expected. One of the bands (c band) remains

205141-7



NEI LOPES et al. PHYSICAL REVIEW B 107, 205141 (2023)

close to the nesting condition while the another band (d band)
moves away from the nesting condition, which is detrimental
to charge ordering. The latter is due to the parameter γ that af-
fects the d band as well as the imbalance between electrons in
the bands (nc,d ) as a function of ntot, see also Fig. 6(f). We also
investigated the FS structure in the case away from half-filling
at the normal state, i.e., for ntot = 1.6 as a function of εd0,
and we obtain that while one of the bands is close to nesting
condition the another band is far away from that. Therefore,
in this case the nesting condition is not achieved since we
have an occupation number different from half-filling. It is
important to point out that as we increase εd0 (in modulus)
we can invert the band that is close to the nesting condition,
i.e., one of the bands will always be distant from the nesting
condition, which, again, is prejudicial to both charge orderings
(CDW and inCDW). This aspect might explain the tendency
for the persistent SC order in Figs. 3 and 7(a), while the
charge ordering is suppressed as we move away from half-
filling or increase (in modulus) the relative shift between the
bands.

In Fig. 8 we show the dispersion relations of the quasipar-
ticle excitations with a zoom at the Fermi level (ω = 0.0), for
some selected points in the phase diagrams presented through-
out the text. The figures are plotted in the first two quadrants
of the extended Brillouin zone. In Figs. 8(a)–8(d) we use the
same parameters of Fig. 3, i.e., Udc = 0.8, J = −1.0, V =
0.0, and εd0 = 0.0. For ntot = 1.76 and T = 0.1441, i.e., away
from half-filling, the pure CDW state that appears at high
T exhibits a metallic aspect since, in this case, the bands of
electronic excitations cross the Fermi level, as can be seen in
Fig. 8(a). In Fig. 8(b) we display the dispersion relations when
the system enters the CDW+SC region, reducing the temper-
ature of the system to T = 0.0001 and keeping ntot = 1.76
fixed. Note that the spectrum of excitations now is completely
gapped out along the Fermi surface when we have coexis-
tence of phases. This can be understood from the fact that at
the pure CDW state away from half-filling, there are available
states at the Fermi level that might be responsible for the
appearance of the additional SC state. In Fig. 8(c) we present
the spectrum of excitations in the small coexistence region
of inCDW+SC at ntot = 1.69 at low temperatures. Note that
now the system is gapless around the points (π, 0), (-π, 0),
and between (-π, π ) and (0,0), at the Fermi surface, while
between (π, π ) and (0,0) it is gapped. The latter is a spe-
cific feature of the small inCDW+SC region that emerges
as a function of ntot. Here and afterwards, we choose to
display only the values of Qx > π for the inCDW phase.
The results for Qx < π and their respective negative val-
ues give rise to equivalent spectra as anticipated by the
free-energy-density analysis made earlier, and will not be
shown.

In Fig. 8(d) we show the dispersions for the pure SC state
as the system deviates further from half-filling. Note that
the d band is completely gapped out, while the c band is
not affected by the emergence of SC, as expected, since for
V = 0 the SC arises from an intraband attractive interaction.
In Figs. 8(e) and 8(f) we analyze the spectra of excitations
for the same parameters used in Fig. 7(a), i.e., ntot = 1.60,
Udc = 1.2, J = −1.0, and V = 0.5. Note that for the pure
inCDW state, represented here by εd0 = 0.0 and T = 0.0481,
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FIG. 8. Spectra of quasiparticle excitations plotted in the first
two quadrants of the extended Brillouin zone, with zoom at the
Fermi level (ω = 0), for some selected phase diagrams: (a), (b),
(c), and (d) use the same parameters of Fig. 3, i.e., Udc = 0.8,
J = −1.0, V = 0.0, and εd0 = 0.0. (a) Bands for fixed ntot = 1.76
and T = 0.1441, representing a pure CDW metallic phase; (b) in the
CDW+SC region for T = 0.0001 keeping ntot = 1.76; (c) for the
small inCDW+SC region, reached also by a first-order transition,
taking fixed ntot = 1.69 and T = 0.0001; and (d) in the pure SC
state with ntot = 1.60 keeping T = 0.0001. On the other hand, the
spectra in (e) and (f) use the same parameters of Fig. 7(a), that is,
ntot = 1.60, Udc = 1.2, J = −1.0, and V = 0.5. (e) Bands for the
pure inCDW state for fixed εd0 = 0.0 and T = 0.0481, and (f) the
spectra for inCDW+SC region with T = 0.0001 and εd0 = 0.0.

the system also exhibits a metallic character whereupon mul-
tiple bands cross the Fermi level. Moreover, observe that at
the pure inCDW state the peaks of the bands are no longer
symmetrical and the coexistence of inCDW+SC obtained re-
ducing the temperature of the system is again justified, since
there are remaining states at the Fermi level. These may lead
to the emergence of the SC state also, i.e., the coexistence of
inCDW+SC, gapping out the entire Fermi surface, as shown
in Fig. 8(f) for T = 0.0001. So we can state that the spectra
of excitations in the system can present a variety of behavior
depending on the parameters and phases of the model. At
half-filling we confirm that the system is completely gapped
out due to the nesting for the pure CDW state (not shown),
as expected. The latter corroborates the fact that there is no
coexistence of phases at half-filling in Fig. 3.
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IV. CONCLUSIONS AND REMARKS

It is known [68] that commensurate CDW and SC orders
may emerge on multiband intermetallic systems and their
alloys and that there is an intrinsic competition between these
phases. However, there are regions in the space of parameters
where these phases might coexist homogeneously. On the
other hand, the coexistence of inCDW and SC phases has
been reported in several materials, such as, TMD compounds
[31,57–64], Ni- and Fe-based pnictides [69,70], and Y-, Bi-,
and Hg-based cuprates [71–79]. It is remarkable that these
experimental results resemble those of the high-Tc cuprates,
which in itself justifies its importance and relevance in
understanding the coexistence of these phases of matter in the
phase diagram of these compounds.

In this work we have studied the possible appearance of an
inCDW state on multiband intermetallic systems that present
CDW and SC competing states. The systems we investigate
are two-dimensional and inhabit a square lattice. They are
characterized by a d band of moderately correlated electrons
coexisting and a large conductance c band. Our aim was to
provide a deeper insight on this collective quantum state in
solids and investigate how these phases depend on the pa-
rameters of the model. These parameters can, in principle, be
externally controlled by doping and/or applying pressure in
these systems. Although we do not wish to model any par-
ticular system, the phase diagrams we obtain show an overall
agreement when compared to the multiband intermetallic sys-
tems we want to describe. This ascertains our model and the
effects of the variation of its parameters in the phase diagrams.

The most important and new aspect of the present study
is the consideration of an incommensurate charge density
wave vector that is present in real systems. In order to search
for a possible inCDW phase, we allow the charge density
modulation wave vector, in principle, to be completely
arbitrary, given by Q = (Qx, Qy). We minimize the free
energy density numerically through the Hellmann-Feynman
theorem, which leads to self-consistent equations that allow
one to obtain the phase diagrams as a function of the several
parameters of the model.

We treat the electronic correlation within a Hartree-Fock
mean-field approximation, in both real- and momentum-space
configuration, which has been shown adequate to describe
systems such as the intermetallic compounds in which we are
interested. Also, our BCS approach to the attractive interac-
tions is consistent with the kind of superconductivity observed
in the intermetallic compounds.

The free-energy-density analysis shows that the inCDW
state presents a charge ordering that breaking the x-y sym-
metry, where the modulation wave vector that minimizes the
free energy density is given by Q = (Qx, Qy) = (π, Qy) =
(Qx, π ). We can use this result to fix one of the components of
Q and obtain the phase diagrams of the model, including an
inCDW phase. We investigate how parameters such as band
filling, temperature, hybridization, strength of inCDW/CDW
interaction, and the relative depth between the bands affect
the phase diagram and yield the possibility of an inCDW
phase. From the free-energy-density analysis we also identify
the order of the transitions depending on the parameters of the
model.

We show that varying the total occupation number of the
bands and hybridization, we obtain a coexistence region of
inCDW and SC at low temperatures, close to the coexistence
of CDW and SC and pure SC orders. The relative depth be-
tween bands (εd0) can be tuned to give rise to a robust inCDW
state for small T . Moreover, our results convincingly show
that increasing the relative depth between bands is detrimental
to both inCDW and CDW states. Both phases are very sen-
sitive to the imbalance between electrons in different bands.
By contrast, the SC state that appears in these intermetallic
systems is not much affected by varying εd0.

From the analysis of the spectra of excitations, we show
that the possibility for coexistence of phases, depending on the
parameters of the model, is intrinsically related to the metallic
aspect of the CDW and inCDW states away from half-filling.
In this case, both charge orders, CDW and inCDW, leave
states available at the Fermi level that might be responsible
for the emergence of the additional SC state, giving rise to the
coexistence of phases. At the coexistence of phases the system
is completely gapped out along the Fermi surface, except
for the small coexistence inCDW+SC region that appears
as a function of ntot in Fig. 3. The latter exhibits a gapless
spectrum around some points at the Fermi surface. In the case
of V = 0, the pure SC opens a complete gap in d band only
since SC is due to an intraband interaction in this band only.
We also confirm that at half-filling the system is completely
gapped out in pure CDW, due to nesting. This explains the
fact that there is no coexistence of phases at half-filling in
Fig. 3.

In addition, our phase diagrams for CDW, inCDW, and
SC orders as a function of occupation number endorse the
results obtained from a different approach considering a
phononic origin to the CDW/inCDW orderings in a single-
band model [81]. In this sense we can also state that our
results corroborate the fact that we cannot distinguish between
electronic- or phononic-driven transitions in a mean-field ap-
proximation.
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