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Isolated quantum many-body systems are often well described by the eigenstate thermalization hypothesis.
There are, however, mechanisms that cause different behavior: many-body localization and quantum many-
body scars. Here, we show how one can find disordered Hamiltonians hosting a tower of scars by adapting
a known method for finding parent Hamiltonians. Using this method, we construct a spin—% model which is
both partially localized and contains scars. We demonstrate that the model is partially localized by studying
numerically the level spacing statistics and bipartite entanglement entropy. As disorder is introduced, the adjacent
gap ratio transitions from the Gaussian orthogonal ensemble to the Poisson distribution and the entropy shifts
from volume-law to area-law scaling. We investigate the properties of scars in a partially localized background
and compare with a thermal background. At strong disorder, states initialized inside or outside the scar subspace
display different dynamical behavior but have similar entanglement entropy and Schmidt gap. We demonstrate
that localization stabilizes scar revivals of initial states with support both inside and outside the scar subspace.
Finally, we show how strong disorder introduces additional approximate towers of eigenstates.
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I. INTRODUCTION

The eigenstate thermalization hypothesis (ETH) describes
how isolated quantum systems reach thermal equilibrium
[1-3]. The hypothesis is a statement about generic quantum
many-body systems and has been verified for a wide variety
of physical models [3—13]. Despite the effectiveness of ETH,
several phenomena are known to cause nonthermal behavior.

One such mechanism is many-body localization (MBL)
[14-17]. MBL appears in many-body interacting systems and
may originate from different sources such as disordered po-
tentials [16], disordered magnetic fields [17,18], quasiperiodic
potentials [19-22], disordered interactions [23,24], bond dis-
order [25], gradient fields [26-28], periodic driving [29-32],
etc. In the case of quench disorder, all the energy eigen-
states become localized at strong disorder and an extensive
set of quasilocal integrals of motion (LIOM) emerges [33,34].
Consequently, all energy eigenstates behave nonthermally and
MBL represents a strong violation of ETH. Signatures of
MBL have been observed in experimental setups with ul-
tracold fermions [35], ultracold bosons [36], ultracold ions
representing an effective spin-% chain [37], superconducting
qubits [38], etc. While MBL is well established for finite
systems, the stability of MBL in the thermodynamic limit is
still an open question [39—44].

Another mechanism leading to nonthermal behavior was
found in the Affleck-Kennedy-Lieb-Tasaki model [45,46] and
in experiments with kinetically constrained Rydberg atoms
[47]. The atoms were arranged with strong nearest-neighbor
interactions so the simultaneous excitation of neighboring
atoms was prohibited. When initializing the system in the
Néel state, observables displayed abnormal persistent os-
cillations, contrary to the predictions by ETH. Subsequent
theoretical works uncovered that the revivals were caused by
a small number of nonthermal eigenstates dubbed quantum
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many-body scars (QMBS) [48-51]. The scar states are
uncommon and represent a vanishingly small part of an oth-
erwise thermalizing spectrum. Therefore, QMBS represent a
weak violation of ETH. After their initial discovery, QMBS
were uncovered in numerous different models [52-56].
Furthermore, the scarred models have been categorized
under several unifying formalisms, e.g., a spectrum gen-
erating algebra [57,58], the Shiraishi-Mori formalism [59],
quasisymmetry-based formalisms [60,61], scar states con-
structed from the Einstein-Podolsky-Rosen state in bilayer
systems [62], etc. These formalisms are generally overlap-
ping and each formalism only describes a subset of the
known scarred models. In addition to being widely investi-
gated theoretically, scarred models have also been realized
experimentally in different setups [63-65].

In this work, we realize both ETH-breaking mechanisms
simultaneously. We study a one-dimensional disordered spin-
% chain hosting a tower of QMBS. As the disorder strength
is increased, the model transitions from the thermal phase to
being partially localized while preserving the scar states. In
earlier works, a single scar state was embedded in an other-
wise MBL spectrum [66—68]. Our work adds to these studies
by considering a full tower of QMBS in an MBL spectrum.
The presence of multiple scar states enables us to study the ef-
fect of localization on the dynamical revivals characteristic of
scar states. Using this model, we demonstrate how scar states
can be distinguished from a localized background. We also
find two phenomena originating from the interplay between
QMBS and localization: disorder stabilization of scar revivals
and disorder-induced revivals.

Our results show that the phenomenon of quantum many-
body scars can be robust to disorder, and in some cases scar
revivals can even be stabilized by disorder. MBL systems have
properties that are interesting for quantum memories [69],
while quantum many-body scars can be utilized for metrology
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and sensing [70,71]. Quantum many-body scars in an MBL
background provide a device, in which part of the Hilbert
space can be utilized for quantum storage (the MBL states),
while other parts of the Hilbert space can be utilized for
processing (the scar states).

The paper is structured as follows. In Sec. IT A, we summa-
rize the model by Iadecola and Schecter which is the starting
point of our analysis. In Sec. II B, we explain how we find
Hamiltonians having a set of scar states with equal energy
spacing. In Sec. IIC, we use this method to determine all
local one- and two-body Hamiltonians for the tower of scar
states in the Iadecola and Schecter model. In Sec. III A, we
show that a subset of these Hamiltonians partially localize as
disorder is introduced. We quantify the partial localization as
a special structure in the energy eigenstates and compare with
results from exact diagonalization. We verify the localization
by studying the level spacing statistics in Sec. III B and the
entanglement entropy in Sec. III C. In Sec. IV, we show that
the fidelity between initial states and the corresponding time-
evolved states can be utilized to distinguish the scar states
from the partially localized background. We further show
that the bipartite entanglement entropy and Schmidt gap are
ineffective tools for distinguishing scar states from a partially
localized background. In Sec. V, we demonstrate how scar re-
vivals are stabilized by strong disorder. In Sec. VI, we uncover
additional approximate towers of eigenstates which emerge as
disorder is introduced. Finally, we summarize our results in
Sec. VIL

II. MODEL
A. Model by Iadecola and Schecter

We take the model by Iadecola and Schecter as our starting
point [53]. Consider a one-dimensional spin-% chain of even
length L with periodic boundary conditions. The local Hilbert
space on each site is described by the eigenkets |1) and ||) of
the Pauli z matrix, i.e., 6*|1) = |1) and 6% ||) = — || ). The
model by Iadecola and Schecter is given by

L
Jo = Z [x(67 — 67.,676%,,) + A6F + 6767, (D)

with A, A, J € R. All indices are understood as modulo L,
i.e., the index i + L is identified as i. The operators &7, 6I.y s
and 67 are the Pauli matrices acting on site i. The first term
in Eq. (1) flips the spin s; at site i if its nearest neighbors
are in different states, i.e., s;_; # s;+1. The second term is a
magnetic field along the z direction with strength A. The third
term represents nearest-neighbor interactions with strength J.

Two adjacent spins in different states represent a domain
wall, i.e., 1| or | 1. The Hamiltonian conserves the number of
domain walls Ng,, because only spins with different neighbors
are allowed to change their state. Furthermore, the Hamilto-
nian is invariant under spatial inversion and translation, but
these symmetries are broken when disorder is introduced in
Sec. III and we will not consider them any further.

For nonzero values of A, A, and J, the energy eigenstates
are thermal except for a small number of ETH-violating scar
states grouped into two towers. Throughout this work, we only
focus on one of these towers. This tower contains L/2 + 1

eigenstates and the nth state |S,) is constructed by acting n
times with the operator Q' on the “all-spin-down” state

1S,) o (OTY" 14 ... 1) 2)

The operator Q' is given by
0" = (—=1)PL6 P, 3)

where 6;" = (6] +i6;)/2 is the raising operator and P =
(I —67)/2 is the local projection onto spin down. The nth
scar state has energy E, = 2(A — 2J)n + (J — A)L, number
of domain walls Ng,, = 2n, and generally appears central in
the spectrum after resolving all symmetries. Since the scar
states are equally spaced in energy, any initial state in the
scar subspace displays the dynamical revivals characteristic
of QMBS. Furthermore, it was shown in Ref. [53] that the
bipartite entanglement entropy of the scar states displays log-
arithmic scaling with system size.

B. Determining Hamiltonians

All eigenstates of Hy located near the middle of the spec-
trum are thermal except the scar states. We wish to extend the
model so the scar states are embedded in a MBL background
instead of a thermal background. MBL is possible in disor-
dered systems. Unfortunately, disorder cannot be introduced
naively to the Hamiltonian Hy. When promoting any param-
eter to being site dependent A — A;;, A — A;, or J — J;,
the scar states are no longer eigenstates. Therefore, disorder
must be introduced through new terms. In this section, we
uncover all local few-body Hamiltonians which share the scar
states as eigenstates and maintain equal energy spacing. In the
next section, we show that a subset of these Hamiltonians are
partially localized.

We search for local Hamiltonians following Refs. [72,73].
The set of 2F x 2L Hermitian operators form a vector space.
Most of these operators are long ranged, contain many-body
interactions, and are difficult to realize in experiments. There-
fore, we restrict ourselves to Hamiltonians containing local
one- and two-body Hermitian operators. This subspace is
spanned by the operator basis

B, ={6{|a € {x,y,2}, i€Z}
a,be{x,yz}, ieZL}, 4

where Z; = {1,2, ..., L} are the first L integers. This sub-
space is considerably smaller than the full operator vector
space and has dimension |B;| = 12L where | - | denotes the
number of elements in a set. Any local one- or two-body inter-
acting Hamiltonian can be expressed as a linear combination
of the basis elements

Aanb
U {al- Gir

1B,
=Y ah, hebB ©)
i=1

where o; € R are free coefficients. To simplify notation, we
collect the coefficients in a vector o = (o, a2, ..., a‘82|)T
where T is the transpose.

We search for the vector of parameters « so the resulting
Hamiltonian has |S,) as eigenstates for n =0, 1,...,L/2.
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The scar state |S,) is an eigenstate of A if and only if the
energy variance of |S,) is exactly zero:

(SuH2IS,) — (SulHIS,) = 0. 6)

Inserting Eq. (5), the expression becomes
o' Ca =0, 7
where C, is the quantum covariance matrix

[Colij = (Sulhih;|S,) — (SalhilSn) (Salhj1S,) . (8)

Equation (7) is satisfied when the vector of coefficients lies in
the null space of the quantum covariance matrix e € Null(C,),
i.e., C,a = 0. We ensure all scar states |S,,) are simultaneously
eigenstates of H by demanding the vector of coefficients o lies
in the null space of every covariance matrix o € Null(Cp) N
Null(Cy) N - - N Null(Cy/2). While this condition ensures all
scar states are eigenstates of H, they are not necessarily
equally spaced in energy. Equal energy spacing is established
by imposing another set of requirements

(Sps2lH|Su12) — (Sur11H|Sps1)
= (Sut11H|Su11) — (SulHIS,) )

foralln =0,1,...,L/2 — 2. Inserting Eq. (5), we find

Ga =0, (10)

where we introduce the rectangular matrix of energy gap
differences

[Glij = (Sixalh|Sia) — 2 (Si1lhjI1Sis1) + (SilhjIS:) .

an

We observe that the scar states are equally spaced in energy
when the coefficient vector resides in the null space of the gap
matrix. In summary, the scar states appear as eigenstates of
the Hamiltonian with equal energy spacing when the vector
of coefficients lies in the intersection

L/2
o & (| Null(C,) N Null(G). (12)
n=0

It is straightforward to determine this subspace numerically
since the scar states are known analytically. Note how-
ever, that while the matrices C, and G are complex, we
only search for real vectors a € RZ:! [for complex vec-
tors a € C'B2!, the linear combination in Eq. (5) is not
necessarily Hermitian]. We find real coefficient vectors by
stacking the real and imaginary parts of the matrices (Re(Cy),
Im(Cy), ..., Re(Crn), Im(Cyp2), Re(G), Im(G))" and deter-
mining the null space of the resulting rectangular matrix by,
e.g., singular value decomposition.

The vectors «; produced by this numerical method are typ-
ically dense, i.e., have few nonzero entries. As a consequence,
the corresponding operator ), azh; is difficult to interpret.
We overcome this difficulty by noting that if {e;|i = 1,2, ...}
lies in the null space (12), then any linear combination of
these vectors also lies in the null space. We apply a heuristic
algorithm to determine sparse vectors in the subspace [74].

TABLE 1. Local one- and two-body operators which have |S,)
forn=0,1,...,L/2 as energy eigenstates with equal energy spac-
ing. The operators are determined by applying the numerical method
presented in Sec. IIB and the Appendix proves the statement
rigorously.

(1) A = Z,L 167

(ii) D; =67 +6}, + 667, forielZ,
(iii) H"dd Y265 65

(iv) ﬁxah = Z, 1(=1)(6, (Azx 6in + 516;11)
(v) A = S (=1)(8767, +676).,)

C. Generalized models

We apply the numerical method for system sizes L = 8§,
10, 12, 14 and for all sizes find L + 4 linearly independent
vectors «; satisfying Eq. (12). The corresponding operators
are summarized in Table I. The first operator A, was already
present in the initial model (1) and adds nothing new. The
L operators D; act locally on sites i and i + 1 and represent
good candidates for adding quench disorder into the model
in Eq. (1). Indeed, in Sec. IIl, we demonstrate the system
partially localizes when introducing sufficiently strong disor-
der via these operators. The third operator ﬁz‘;dd represents an
interaction between every odd site and its right neighbor with
equal interaction strength. The fourth and fifth operators ﬁj‘;‘
and I-AI;,‘Zlt flip spins with the sign of the term determined by the
nearest neighbors.

Using the numerical method, we rediscover the one- and
two-body terms of the model in Eq. (1) by starting from
the scar states. As noted above, the operator H, was already
present in the original model. Furthermore, the third term in
Eq. (1) is a linear combination of the operators in Table I:
> 6767, = > D; — 2H,. Hence, the operators in Ta-
ble I only represent L + 2 non-trivial extensions to the initial
model.

The numerical method presented in Sec. II B finds all op-
erators in the operator subspace span(3,) hosting the tower of
scars for finite L (up to length L = 14 in our case). However,
in principle, the scar states may not be eigenstates of these
operators at larger L. Therefore, in the Appendix we prove an-
alytically for all even L that the scar states remain eigenstates
with equal energy spacing for all operators in Table I.

The method from Sec. II B can be extended by including all
three-body terms to the basis B3 = B, U {66 A1+1 fola, b, c €
{x,y,z}, i€ Z,}. This results in a myriad of new operators,
including the first term from Eq. (1). Hence, with a large
enough operator basis, the numerical method fully recovers
the original model. Since long-ranged many-body interactions
are less relevant experimentally, we will not explore this pos-
sibility any further.

In addition to hosting the tower of scar states {|S,)}, the
model from Eq. (1) also hosts another tower of scar states
{IS))} [53]. However, by construction, the numerical method
from Sec. IIB is only guaranteed to preserve {|S,)}. There-
fore, the second tower of scar states may be destroyed when
extending the model with operators from Table I. All scar
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states in the second tower {|S))} are, e.g., not eigenstates
of the Hamiltonian Hy + Zi d:D; for general choices of the
coefficients d;.

Finally, we remark that the effectiveness of this approach is
highly nontrivial. For an eigenstate of a generic local Hamil-
tonian, it is unlikely for another local Hamiltonian to exist
that shares the same eigenstate [75]. Contrary to this, we find
a large subspace of local Hamiltonians sharing a full tower
of scar states. We attribute the effectiveness of our study to
the analytical structure of the scar states, i.e., Eqs. (2) and
(3). Our methods are not expected to be valuable starting
from generic eigenstates but may be equally effective in other
scarred models with similar amount of structure.

III. MANY-BODY LOCALIZATION

In the last section, we determined a subspace of Hamilto-
nians with the scar states |S,) as eigenstates equally spaced
in energy. Now, we study a concrete Hamiltonian from this
subspace

L
A=H+ )Y db; (13)
i=1
with d; chosen randomly from the uniform probability distri-
bution d; € [-W, W] where W > 0 is the disorder strength.
The action of D; is given by

D,' |S1 e SiSitl .. .SL)

ifs; =si11 =1

. 3|S|...SiS,'+]...SL), (14)
otherwise.

—|S1. .. SiSig1 ... 8L)

The operator D; is related to the projection operators through
D =4P'P!  —1 with P! = (1 +67)/2. We remark that
Ref. [53] also observes that the operator ETIA),.LI preserves the
scar states.

This Hamiltonian is described by L + 3 parameters: A, A,
J, and {d;}%_|. The results presented in the following sec-
tions rely on numerical simulations for concrete values of
A, A, and J. While the results are calculated for specific
values of these parameters, e.g., A = A = J = 1, one obtains
qualitatively similar results for other values, e.g., A #= A # J.

The model conserves the number of domain walls. The
dimension of the symmetry sector containing Ny, domain
walls is given by the binomial coefficient 2(Nﬁw). We gener-
ally consider the largest symmetry sector with Ngy, = 2| L/4]

domain walls where || is the function rounding down to the
nearest integer.

A. Partial many-body localization

A physical system may transition to the MBL phase when
disorder is introduced. MBL is usually realized with the dis-
order term in the Hamiltonian acting uniquely on each basis
state. Consequently, a complete set of LIOMs emerge and all
energy eigenstates are fully described by their eigenvalues of
the LIOMs.

The situation is slightly different in our model because the
disorder term Zi d;D; treats some basis states the same. The
operator D; is only sensitive to whether spins i and i + 1 are

both up (it acts identically on states where spins i and i + 1
are ||, |1, or 1]). Therefore, the operator ), d;D; has the
same action on product states with all consecutive spin ups
placed identically. We do not expect these to localize in the
usual sense. Instead, we anticipate the spectrum to separate
into fully MBL eigenstates and partially localized eigenstates.

This structure is most easily described when the prod-
uct states |s;sp...s.) are relabeled to reflect the action of
Zi d;D;. In this spirit, we define |Ngy, D, 1) as a simultaneous
eigenstate of the D;’s with eigenvalues D = (D, D,,...Dy)
where D; € {—1, 3}. We will refer to D as the disorder in-
dices. As discussed above, the state |s;s,...sz) is not fully
described by D since multiple states can have the same
eigenvalues. Therefore, we further label the states by their
number of domain walls Ny, and introduce a dummy index
n=12,..., NL(,N“W) to distinguish states with identical Ny
and D. For instance, if two states |s1s ...s.) and |s]s5 ...s7)
have the same number of domain walls Ny, and disorder
indices D, then they are relabeled as |Ngy, D, n) forn =1, 2.
Note that some labelings are invalid. Consider the vector of
eigenvalues D = (3, —1, 3, 3) for a small system L = 4. The
“3”s imply all spins are up, while the “—1” entail at least one
spin is down. In the following, we study a single symmetry
sector and hence omit the Ng,, index for clarity but reintroduce
itin Secs. V and VI when studying multiple symmetry sectors
at once.

Upon introducing strong disorder, we expect LIOMs to
emerge which are localized on the operators D; and energy
eigenstates are characterized by their eigenvalues of the LI-
OMs. Therefore, we expect the energy eigenstates to be close
to linear combinations of product states with the same disorder
indices

Np
Ep.m) %Y ctyn ID, 1) (15)
n=1

with &, € R and m = 1,2, ..., Np. This expression is an
approximation rather than an equality due to an exponentially
small overlap with states |D’, n) with different disorder in-
dices D’ # D. The special case Np = 1 corresponds to the
disorder term acting uniquely on the basis state |D, 1). We
expect the corresponding energy eigenstate |Ep ;) = |D, 1) to
be MBL. For Np > 1, the states {|Ep ) |m=1,2,..., Np}
are only partially MBL since the LIOMs do not fully describe
each state and all additional structure is captured by the extra
index m.

The above considerations are verified in numerical simula-
tions by considering a system of size L = 8 at strong disorder
W = 10. Figure 1 illustrates the norm-squared overlap of all
energy eigenstates |Ep ,,) with the product states |D, n). The
(i, j)th pixel displays the norm-squared overlap between the
ith product state and jth energy eigenstate. The product states
on the second axis are sorted according to Np. The energy
eigenstates are reordered to allow the diagonal shape in Fig. 1.
In the upper left corner of Fig. 1, each eigenstate has high
overlap with a single product state. Numerical analysis reveals
that these product states exactly coincide with those being
fully described by their disorder indices, i.e., Np = 1. These
results support the claim that such eigenstates fully localize.
The next eigenstates shown in Fig. 1(a) each has significant
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FIG. 1. The norm-squared overlap of the energy eigenstates with
the product states | (D, n|Ep,,) |> for system size L = 8, disorder
strength W = 10, and parameters A = A = J = 1. The color of pixel
(i, j) displays the overlap between the ith product state and the
jth eigenstate. The product states are sorted into ascending order
according to Np. The second axis on the right-hand side groups the
product states according to Np. The insets show eigenstates with sig-
nificant weight on (a) two, (b) three, and (c) four product states. The
figure verifies that all energy eigenstates are approximately linear
combinations of product states with the same disorder indices.

overlap with exactly two product states of the same disorder
indices. The pattern continues: we find eigenstates that are
linear combinations of Fig. 1(b) three, Fig. 1(c) four, and
(bottom right corner) 20 product states. In each case, the
product states have the same disorder indices and hence corre-
spond to {|D,n) |n=1,2,..., Np} for Np = 3, 4, 20. These
observations are not restricted to L = 8, but seem universal
at all system sizes. For larger system sizes, the number and
sizes of the blocks increase. Finally, we note that the scar state
within the considered symmetry sector is located in the block
Np = 201in Fig. 1. The scar state is generally an equal weight
linear combination of product states with the maximum Np.
This fact will play an important role when we explore the
system dynamics in Sec. V.

Next, we discuss how the eigenstates are distributed in en-
ergy. The magnetization Mp = ), o7 of a product state |D, n)
is fixed by the symmetry sector Ny, and disorder indices D.
Likewise, the number Nl()TM“ of adjacent spins pointing in

the same direction (11 or | | ) and the number N, l()N’”) of ad-
jacent spins pointing in opposite directions (1 or | 1) are also
fully determined. Therefore, the terms A Y .87, J ), G765,
and Zi d:D; have the same action on all product states with
the same number of domain walls and disorder indices:
{ID,n)|n=1,2,..., Np}. At strong disorder, the energy of
an eigenstate is approximately Ep ,, =~ AMp +J (./\fl()M’“) —
N,EN’W)) + Zi d;D; with a small correction that depends on
the value of the m index. The slight additional contribution

E

Thermal Partial MBL

p— = ‘ED2,3>
— ’ |ED, 2)
- — |EDym

— ‘ D3, s) ‘E‘D2,1>
— =

—_— - ‘EDland)

FIG. 2. Sketch of the spectrum in the thermal phase (left) and
in the partially localized phase (right). In the thermal phase, the
energy levels follow the Wigner-Dyson surmise. As disorder is in-
troduced, the spectrum experiences partial localization. Eigenstates
with similar indices D are near degenerate and the spectrum forms
clusters of such eigenstates. The scar state lies in the largest of these
clusters.

AXAZ

originates from the term ), A(6 — 65 676 ‘1) and scales
with A. Consequently, at large disorder, the set of eigenstates
{lEpm)Im =1,2,..., Np} are near degenerate and form clus-
ters. A scar state resides in the largest of these clusters in all
symmetry sectors. Figure 2 illustrates the spectral structure.
Note that Fig. 2 is highly idealized to highlight the structure
described above. In practice, it is highly likely for two or more

clusters to overlap making the structure less apparent.

B. Spectral statistics

The distribution of energy gaps distinguishes the thermal
and MBL phases. Let E; be the energies of the Hamiltonian
in ascending order and §; = E;;1 — E; > 0 the ith energy gap.
In the thermal phase, the number of energy levels in an in-
terval [E, E 4+ AE] is known to follow the Wigner-surmise
[76,77]. In particular, it follows the Gaussian orthogonal en-
semble (GOE) since the model in Eq. (13) is time-reversal
invariant. On the other hand, the number of energy levels
in an interval follows the Poisson distribution in the MBL
phase. Since our model only partially localizes, we review
how the Poisson distribution accurately describes the MBL
phase and investigate the validity of these arguments in our
model. Consider two adjacent eigenstates with energies E; and
E;.. Atlarge disorder, the energy of these states is dominated
by the disorder term ), d;D;. If the states have different dis-
order indices |Ep ,,) and |Epy ), then their energies originate
from different linear combinations of the random numbers d;:
Y ;diD; = Y. d;D; with D; # D] for some i’s. Consequently,
the eigenstates “arrive” at this energy independently of each
other and hence follow the Poisson distribution. These argu-
ments are no longer valid when two adjacent eigenstates have
the same disorder indices and different m indices. In this case,
we expect the level spacing distribution to follow GOE. Thus,
the distribution of energy levels still identifies the transition to
partial localization if we only consider level spacings between
eigenstates of different disorder indices.

Instead of working directly with the level spacing distribu-
tion, it is convenient to analyze the adjacent gap ratio since
it removes the need for unfolding the spectrum [77,78]. The

205140-5



MICHAEL IVERSEN AND ANNE E. B. NIELSEN PHYSICAL REVIEW B 107, 205140 (2023)

— L =28 — 10 — 12 — 14 16
T e EEEE R EEEREEE Tr-.. Poisson (b)
S| anmmanas.
0.50 4 S GOoE e
s ©
- = S ——
= = AT -~
0.45 4 Q“ /’ ..........
/
N @
& BT T T =~
m e 2 e, Dk
OO Poisson Tt Rl
0 1 2 3 4 5 6 0.0 0.5 1.0
w 7

FIG. 3. (a) Mean adjacent gap ratio (r) (solid line) as a function of disorder strength W for different system sizes L with parameters
A=A =J = 1. The shaded areas display two standard deviations on the estimate of (r) when assuming a Gaussian distribution of data.
For L = 8, the adjacent gap ratio is averaged over 2 x 10° disorder realizations, for L = 10, 12, 14 we use 103 disorder realizations and for
L = 16 we use 500 disorder realizations. For system sizes L = 8, 10, 12, 14, we average over all energies E; € [E=!/3 E@=2/9] where E@
is the gth quantile. For system size L = 16, we average over the 10° energies closest to (Epin + Emax)/2 Where Eyi, and Ep,, are the smallest
and largest energies in the spectrum. At low disorder 0 < W < 1, the system is thermal and (r) coincides with the Gaussian orthogonal
ensemble (r)gop ~ 0.536 (upper dashed line). At strong disorder 5 < W, the mean adjacent gap ratio agrees with the Poisson distribution
(") poisson =~ 0.386 (lower dotted line). The agreement between data and the GOE and Poisson values improves with system size. Additionally,
the transition from the thermal phase to partial localization happens more rapidly as a function of disorder strength for larger system sizes.
The figure also illustrates the mean adjacent gap ratio when only averaging over neighboring energy eigenstates with different disorder indices
(dots). The error bars show two standard deviations on the estimate of the mean. This average coincides with the naive calculation at large
system sizes. The figure also shows the adjacent gap ratio distribution for L = 16 at (b) weak disorder W = 0.46, (c) intermediate disorder
strength W = 2.27, and (d) strong disorder W = 6. These plots include the distributions (17a) (dashed curve) and (17b) (dotted curve). The
data agree with Eq. (17a) at weak disorder and transitions to the distribution (17b) at strong disorder.

W = 6.0. This figure illustrates that the energies in the interval
[E@=1/3 E@=2/3] and closest t0 (Epin + Emax)/2 generally
correspond to high density of states.

As discussed above, the distribution of adjacent gap ratios
only converges to Eq. (17b) if the analysis is restricted to
adjacent energy levels with different disorder indices. In prac-

adjacent gap ratio is defined by [16]

in(8;, 6;
r = M (16)
max(d;, di+1)
This quantity is bounded by the interval r; € [0, 1] and fol-
lows the distributions below in the thermal and MBL phases,

respectively [79]:

P B 27 r(1+r) 17
Goe(r) = T A rr e (17a)
2
Proisson (1) = m (17b)

The mean values of the distributions in Eq. (17) are given by
(Mgoe =22 —/3)~0.536 and (r)pojsson =2 In2 — 1 &~
0.386.

Figure 3(a) illustrates the mean adjacent gap ratio as a
function of disorder strength for different system sizes. We
average the adjacent gap ratio over 2 x 103 disorder realiza-
tions for L = 8, 103 disorder realizations for L = 10, 12, 14,
and 500 disorder realizations for L = 16. For each disor-
der realization, we average over all energies in the interval
E; € [E@=1/3 E@=2/3] where E is the gth quantile of the
energy distribution for the current disorder realization. For
system size L = 16, we average over the 103 energies clos-
est to (Emin + Emax)/2 where Eni, and Ey.x are the smallest
and largest energies in the spectrum. The error bars indi-
cate two standard deviations of the average when assuming a
Gaussian distribution. The disorder-averaged density of states
(DOS) is illustrated in Fig. 4 as a function of normalized
energy € for weak disorder W = 0.5 and strong disorder

tice, however, it is unlikely for two neighboring eigenstates to
have the same disorder indices. Furthermore, the likelihood
of neighboring eigenstates having the same disorder indices
decreases rapidly with system size. With this in mind, we
study the mean adjacent gap ratio using all eigenstates in the
central third of the spectrum. We verify the considerations
above by also computing the mean adjacent gap ratio using
only adjacent eigenstates with different disorder indices at

— W =05 — W =6.0

0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

€

FIG. 4. Disorder-averaged density of states (DOS) as a function
of normalized energy € for system size L = 14 at weak disorder W =
0.5 and strong disorder W = 6.0. We average the density of states
over 10° disorder realizations.
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large disorder. For each energy gap 6; = E;+1 — E;, we in-
spect the eigenstates |Ep ,,) and |Ep ) corresponding to the
energies E; and E; ;. At large disorder, the disorder indices
D are accurately determined by computing which D yields
ZnNil (D, n|Ep ) |> ~ 1. The mean of the adjacent gap ratio
is then restricted to energy gaps with D # D’. For small sys-
tem sizes, there is a large difference between the two methods,
but the difference is seen to be small for large systems.

The mean adjacent gap ratio agrees well with the GOE
value at weak disorder 0 < W < 1. The discrepancy between
the GOE value and data for small system sizes L and small
nonzero W is caused by the model possessing additional sym-
metries at W = 0, i.e., translational and inversion symmetries.
The proximity to a model with further symmetries causes
the adjacent gap ratio to differ from (r)gog. This deviation
decreases with increasing system size.

As the disorder strength is increased, the mean adjacent gap
ratio decreases and ultimately approaches the Poisson value
at 5 < W. The agreement of data with the GOE and Poisson
values improves with increasing system size and the transition
between the thermal and localized phases becomes steeper for
larger systems.

Figures 3(b)-3(d) illustrate the adjacent gap ratio distribu-
tion at (b) weak disorder W = 0.46, (c) intermediate disorder
strength W = 2.27, and (d) strong disorder W = 6. The fig-
ures display the distributions in Eq. (17) for comparison. As
expected, the data agree with Eq. (17a) at weak disorder
and (17b) at strong disorder. Figure 3 indicates the system
transitions from the thermal phase to being partially localized
as disorder is introduced.

C. Bipartite entanglement entropy

In this section, we further verify the transition from the
thermal phase to partial localization by studying the bipartite
entanglement entropy. We separate the system into a left part
L containing the first L/2 sites and a right part R containing
the remaining sites. The reduced density matrix of the left part
is obtained by tracing out the right part

pc =Trr(p), (18)

where p is the density matrix of the full system and Trg (-) is
the partial trace over R. The entanglement entropy between
the left and right halves is given by

S = —TrzlpcIn(oc)] 19)

In the thermal phase, we expect eigenstates near the center
of the spectrum to display volume-law scaling with system
size. Specifically, the entropy is approximately described by
the Page value Spuee = [L In(2) — 1]/2 [80]. On the other
hand, the entanglement entropy displays area-law scaling for
MBL eigenstates [81]. While some eigenstates in our model
are fully MBL, others are only partially localized. Hence, the
precise scaling behavior of the entanglement entropy is not
clear. Nonetheless, we expect the entropy of partially local-
ized eigenstates to grow slower with system size than thermal
eigenstates and we use the entropy to identify the onset of
partial localization.

Figure 5(a) shows the entropy of the eigenstate with energy
closest to (Emin + Emax)/2 as a function of disorder strength

= b
@/ 14 09g%0%000y, ( )
g “..‘:0000000.....:. :”“'v%ou..w_ .
- 0 o atheesestsessessarssiiiiatenisiineenettiaters
0 2 4 6
W

FIG. 5. (a) Average bipartite entanglement entropy of the eigen-
state closest to the center of the spectrum (S) as a function of disorder
strength W for different system sizes L. The entropy is averaged over
10° disorder realizations with system parameters A = A =J = 1.
Error bars display two standard deviations on the estimate of average
entropy assuming a Gaussian distribution. At low disorder, the en-
tropy displays volume-law scaling with system size and approaches
the Page value (dashed lines) as expected in the thermal phase. At
large disorder, the entropy follows area-law scaling with system
size. (b) Variance of bipartite entanglement entropy of the eigenstate
closest to the center of the spectrum. The variance is computed from
10? disorder realizations. As the disorder strength is increased, the
variance displays a sudden peak. This indicates a transition from the
thermal phase to partial localization. The peak becomes higher at
larger system sizes.

W for different system sizes L. Each data point represents
the average entropy over 10° disorder realizations with error
bars displaying two standard deviations of the mean when
assuming a Gaussian distribution. For low disorder, the entan-
glement entropy scales linearly with the system size and hence
agrees with the expected volume-law scaling in the thermal
phase. Additionally, the entropy approaches the Page value
with increasing system size. At large disorder, the entropy
seems to be roughly independent of system size. Thus, the
scaling of entropy is consistent with area law for partially
localized eigenstates.

The sudden shift in scaling behavior of the entropy verifies
the transition from the thermal phase to partial localization
at strong disorder. The transition point is identified by an-
alyzing the variance of entanglement entropy. Figure 5(b)
illustrates the sample variance of the entropy over 10? disorder
realizations. The variance displays a peak when the system
transitions from volume-law to area-law scaling.

IV. DISTINGUISHABLE FEATURES OF SCAR STATES
IN A PARTIALLY LOCALIZED BACKGROUND

Scar states are commonly distinguished from a thermal
background by their low entanglement and oscillatory dynam-
ics. In this section, we show that oscillatory dynamics can also
be utilized to distinguish scar states from a partially localized
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FIG. 6. The entanglement entropy S as a function of normal-
ized energy € = (E — Enin)/(Emax — Emin) Where Eqy, and Eq,, are
the smallest and largest energies in the spectrum. Lighter (darker)
colors indicate lower (higher) density of points. (a) We consider
a thermal system of size L = 14, disorder strength W = 0.5, and
system parameters A = A = J = 1. In the thermal phase, the energy
eigenstates form a narrow band with maximum at the center of the
spectrum. The scar state (inside the green ring) is easily identified
since it appears isolated below the curve. (b) We consider a partially
localized system at strong disorder W = 6. The energy eigenstates
are spread out at low entropy with the scar state embedded among
them. The entanglement entropy is hence not an effective tool to
distinguish the scar state from a partially localized background.

background, while entanglement entropy turns out not to be
an effective tool to identify the scar states. We also find that
although the Schmidt gap can distinguish the scar states from
fully MBL states, it does not distinguish the scar states from
partial MBL states.

A. Entanglement entropy

The entanglement entropy of the scar states scales loga-
rithmically with system size [53], while thermal states display
volume-law scaling. Therefore, the entanglement entropy pro-
vides a way to identify the scar states in a thermal background.
Figure 6(a) illustrates the entropy as a function of energy
of a thermal system with size L = 14 and disorder strength
W = 0.5. The thermal states form a narrow arc with max-
imum in the middle of the spectrum while the scar state
appears as an outlier at much lower entropy. The situation
is different in a partially localized background. Figure 6(b)
illustrates the entropy as a function of energy at strong disor-
der W = 6. As discussed above, partially localized eigenstates
are weakly entangled, making it difficult to identify the scar
state. We conclude that entanglement entropy is an ineffective
tool for distinguishing scar states from a partially localized
background.

B. Schmidt gap

The Schmidt gap effectively distinguishes thermal eigen-
states from MBL eigenstates [82]. Here we find that the
Schmidt gab distinguishes the scar states from MBL states,
but not from thermal or partial MBL states. Similar to
Sec. III C, we consider the reduced density matrix of the first
L/2 sites pr. Let {A;} be the eigenvalues of p, in descending
order. The Schmidt gap is given by

Asg = Aj — Ay (20)

and is bounded by the interval 0 < Agg < 1.

1.0 A b
(a) (1) TR
2nc= i
4 0.5
0.0 A . 1 a
0.0 0.5 1.00.0 0.5 1.0
€ €

FIG. 7. The Schmidt gap Agg for a single disorder realization
with system size L = 14 as a function of normalized energy € at
(a) weak disorder W = 0.5 and (b) strong disorder W = 6. The color
illustrates the density of points with darker (lighter) colors signifying
higher (lower) density of points. (a) Thermal eigenstates close to
the middle of the spectrum are highly entangled and the Schmidt
gap vanishes. The Schmidt gap of the scar state (inside green circle)
is also close to zero, and the scar state is hence indistinguishable
from the thermal background. (b) The Schmidt gap of fully MBL
eigenstates are close to one and the Schmidt gap of partial MBL
eigenstates can take any value between zero and one. The scar state is
hence distinguishable from fully MBL eigenstates but indistinguish-
able from partial MBL eigenstates.

Figure 7 illustrates the Schmidt gap for each energy eigen-
state in a single disorder realization at (a) weak disorder
W = 0.5 and (b) strong disorder W = 6. In the thermal phase,
an eigenstate in the middle of the spectrum is highly entangled
and the eigenvalues {A;} have similar magnitude. Conse-
quently, the Schmidt gap is expected to vanish in accordance
with Fig. 7(a). The Schmidt gap of the scar state is close
to zero and hence cannot be distinguished from the thermal
background. Fully MBL eigenstates are localized on a single
product state and the Schmidt gap is close to one. These
eigenstates are visible in Fig. 7(b) as the high density of points
close to one. Partial MBL eigenstates are localized on multiple
product states and no predictions can be made about the value
of the Schmidt gap. In Fig. 7(b), these eigenstates are scattered
across all values Agg € [0, 1]. Since the Schmidt gap of the
scar state is close to zero, it is easily distinguished from fully
MBL eigenstates. However, it is not possible to distinguish the
scar state from partial MBL eigenstates since they may have a
Schmidt gap close to zero.

C. Fidelity

States initialized in the scar subspace distinguish them-
selves from a thermal background by displaying persistent
dynamic revivals. We now show that this behavior also en-
ables the identification of scar states from a partially localized
background. We quantify the dynamics of quantum systems
by the ﬁdeli}y F(t). Let |¥(0)) be the initial state and
[ (t)) = e " |y (0)) the time-evolved state. The fidelity is
given by

F@t) =[Oy @) . 2

The time evolution of fidelity is most clearly understood by
considering the overlap of the initial state with all energy
eigenstates. Let |¢;) be the ith energy eigenstate with corre-
sponding energy E; and let ¢; be the inner product between
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FIG. 8. (a) The average fidelity of a random product state in a
thermal system at disorder strength W = 0.5. (b) The average fidelity
in a partially localized system at disorder strength W = 10. The
system 1is initialized in a product state which fully localizes (solid
line). For comparison, the system is initialized in a random product
state which only partially localizes |y (0)) = |D, n) with Np =5
(dashed line), 10 (dashed dotted line), and 35 (dotted line). (c) The
system is initialized in the scar subspace at any disorder strength.
The average fidelity is in all cases calculated over 10* disorder
realizations. The bottom panel displays the distribution of expan-
sion coefficients |c;|?> across energy in a single disorder realization.
(d) For the thermal phase W = 0.5. (e) For partial MBL W = 10
with initial state |4 (0)) = |D, n) for Np = 5. (f) For the initial state
[¥(0)) = |¥sear) residing in the scar subspace.

the ith energy eigenstate and the initial state ¢; = (¢;|1(0)).
The relation between fidelity and the expansion coefficients c;
is highlighted by rewriting the fidelity according to

Fe)y=Y_leil* + > leilPlejPe ™5 (22)
i i#]

It is clear from this expression that the dynamics of fidelity is
sensitive to the distribution of |c;|>. We generally display this
distribution along with the fidelity for clarity.

We demonstrate the different dynamical behavior of the
thermal and partial MBL phases by initializing a system of
size L = 14 in a product state. First, we consider a thermal
system at disorder strength W = 0.5. The initial state is cho-
sen as a random product state with all product states having
the same probability of being drawn. We ensure the initial
state resides outside the scar subspace by drawing a new
product state if the first has nonzero overlap with a scar state.
We consider 10° disorder realizations and draw a random
product state in each realization. In the ith realization, the
fidelity is computed as a function of time F;(¢) and Fig. 8(a)
shows the average fidelity (F (1)) = 1073 2,1231 F;(t) over all
realizations. Figure 8(d) shows the expansion coefficients
lci|? of a single disorder realization following the Gaussian

distribution as expected [83,84]. Since the initial state has
large overlap with many different eigenstates, the second sum
in Eq. (22) rapidly vanishes due to cancellation between terms
with different phase factors. As a consequence, the fidelity
quickly decreases and saturates at Fi(r) ~ ), |c; |* ~ 0 at long
times Ty < t for all disorder realizations. These considera-
tions agree with the observed time evolution of the average
fidelity in Fig. 8(a) which rapidly decreases to a value near
Zero.

Next, we consider the same setup when the system is
partially localized at large disorder W = 10. As discussed in
Sec. IIT A, the spectrum separates into fully MBL eigenstates
and partially localized eigenstates. Consequently, the dynam-
ics depend greatly on the initial state. The solid blue line in
Fig. 8(b) is the average fidelity over 10° disorder realizations
when initialing the system in a random product state which
fully localizes, i.e., | (0)) = |D, n) with Np = 1. Fully MBL
eigenstates have significant overlap with only one product
state, and the average fidelity remains far from zero at all
times as observed in Fig. 8(b). We note that a stronger disorder
strength is needed to achieve MBL in larger systems. There-
fore, the average fidelity saturates significantly below unity in
Fig. 8(b) even though all product states with Np = 1 in Fig. 1
are near identical to an energy eigenstate. The average fidelity
saturates closer to unity at larger disorder strengths.

When the initial state is chosen as a product state that
only partially localizes, it has significant overlap with multiple
eigenstates. Consequently, the average fidelity drops closer to
zero as illustrated by the dashed and dotted curves in Fig. 8(b).
For these curves, we choose the initial state randomly as
¥ (0)) = |D, n) with Np = 5, 10, and 35. These initial states
have significant support on up to Np eigenstates causing the
average fidelity to decrease with increasing Np. Figure 8(e)
illustrates the distribution of |c;|? for a single disorder realiza-
tion for a random initial state |y (0)) = |D, n) with Np = 5.
The distribution is more sparse than the thermal case.

Finally, we consider the initial state being a linear combina-
tion of scar states. For a complex number & € C, we consider
the state

1 & . R
&) = N [T+ 0Ep 6P . L), (@3)
i=1

where N; is a normalization constant. This special state is
area-law entangled and the ground state of a simple Hamilto-
nian [53]. We choose the initial state |{s.,;) = |€ = 1) which
fully resides in the scar subspace. When the initial state is
chosen within the scar subspace, the equal energy spacing
causes the fidelity to display persistent periodic revivals. Re-
vivals occur at times #; = Tyearl = 2714/ AEsor Where £ € N
and AE, is the energy spacing between consecutive scar
states. Figure 8(c) illustrates the fidelity of this initial state and
Fig. 8(f) shows the distribution of the expansion coefficients.
In the thermal phase, states initialized respectively inside
and outside the scar subspace behave differently. The fidelity
of states outside the scar subspace quickly drops to zero,
while any linear combination of scar states displays persistent
revivals. In our analysis, we specifically initialized the system
as a product state, but the same conclusions hold for generic
linear combinations of product states. In a partially localized

205140-9



MICHAEL IVERSEN AND ANNE E. B. NIELSEN

PHYSICAL REVIEW B 107, 205140 (2023)

1.00

10°

(®) — W=10 |20 ] ()
0.75 W=05 |
1074 B
& 0.50 - .

; 10 ©

~ C
0.20-\ A A A 51072
0.00 A ALAA ! AAJ LAALA l AAAAJ LAAAA ! AAAA.) LAAAA ! 10-4

0 2 4 6 8 =50 0 50
t/T‘scar E

FIG. 9. A system of size L = 14 with parameters A =1,/ =5, =

1 is initialized according to Eq. (24) in the thermal phase at disorder

strength W = 0.5 and the partial MBL phase at disorder strength W = 10. (a) The average fidelity over 103 disorder realizations when the
system is thermal and partially MBL. The interquartile range (middle 50%) of the disorder realizations are shown by the shaded areas. The
disorder protects the scar revivals and the fidelity amplitude decays much slower compared to the thermal case. The right panels illustrate

the distribution of expansion coefficients |c;|?

over energy E; for a single disorder realization at disorder strength (b) W = 0.5 and (c) W = 10.

The distribution of the expansion coefficients is wide in the thermal phase and consists of narrow peaks near the scar states in the localized

phase.

background, the average fidelity distinguishes between states
with support inside and outside the scar subspace. The average
fidelity of partially localized states saturates while scar states
display revivals. Again, our analysis concerns the special case
of initializing the system as a random product state. If instead
the initial state is a generic linear combination of a large
number of product states, the second term of Eq. (22) will
generally vanish due to phase cancellation, and the average
fidelity saturates near zero. While this is true for generic
linear combinations, there exist particular states where the
phase cancellation happens exceptionally slowly. We discuss
these special initial states in Sec. VI and how to distinguish
them from the scar states. Summing up, the average fidelity
represents an effective tool for identifying scar states in both
a thermal and localized background.

Finally, we remark that the fidelity of individual disorder
realizations is enough to distinguish initial states with support
inside and outside the scar subspace. This statement is sim-
ple in the thermal phase where initial states outside the scar
subspace rapidly converge to zero. At large disorder, the fi-
delity of individual disorder realizations may oscillate rapidly,
contrary to the average fidelity. However, these oscillations
are generally composed of frequencies different from the scar
revivals. The amplitude of the oscillations is also typically
different from the scar revivals. Thus, the scar states can be
distinguished from a partially localized background.

V. DISORDER STABILIZATION OF SCAR REVIVALS

We study the dynamics of initial states with support both
inside and outside the scar subspace across all symmetry
sectors. In this case, we generally expect the scar revivals
to diminish. The scar revivals are stabilized when the initial
state only has support on product states with the same disorder
indices as the scar states Dy = (—1, —1, ..., —1). We demon-
strate this behavior by initializing the system in a generic state
only having support on product states with disorder indices
Dy,

1
[Vstable) = Af—bl ( [Vscar) + Z ﬁr(szW) |Naw, Do, n) > ,
stable

Naw,n

(24)

where Nuable 1S @ normalization constant and ﬂ,ﬁNﬂw) are drawn

randomly from the interval BN) € [0, 1/+/ NDCUde]. We rein-
troduce the index Ny to describe product states with the
same disorder indices in different symmetry sectors. The time
evolution of fidelity is investigated at weak and strong dis-
order in 10° realizations. The coefficients B*) are redrawn
in each disorder realization. Figure 9(a) displays the disorder-
averaged fidelity for a thermal system and a partially localized
system. In both cases, the average fidelity displays persistent
revivals with the revival amplitude decaying and eventually
saturating at a value around 0.5.

The fidelity amplitude quickly decays for a thermal sys-
tem. The explanation can be found by studying the expansion
coefficients |c;|? as illustrated in Fig. 9(b). Because the sys-
tem is thermal, the initial state has support on many energy
eigenstates. Consequently, terms with different phases quickly
cancel, causing the fidelity amplitude to saturate almost
immediately.

At large disorder, the fidelity amplitude decays at a much
slower rate and only saturates alongside the thermal graph
after many revivals ¢ ~ 7T,,. We understand this behavior by
recalling the spectral structure at large disorder. First, recall
that the energy eigenstates {|Ep, ) |m =1,2,..., Np,} are
near degenerate and only have significant overlap with prod-
uct states of the same disorder indices as described in Eq. (15).
Therefore, the second term in Eq. (24) can be rewritten as a
sum of near degenerate eigenstates,

NDO ND(J

Naw ~ Naw
> BN |Naw, Do, m) &= Yy N

n=1 m=1

EnyDom),  (25)

with y M) =3 BWNa) (Ey 1y 0| Naw, Do, n). Furthermore,
the scar states themselves are described by the disorder in-
dices Dy, so the eigenstates |Ey,, p,.m) are close in energy
to a scar state. Consequently, the eigenstates outside the scar
subspace having large overlap with |ap) are always close
in energy to a scar state. We sketch this structure in Fig. 10
where the eigenstates |Ey,, p,m) have similar energy to the
scar states for all Nyy. These considerations agree with the
observed distribution of |c;|? for a single disorder realization
illustrated in Fig. 9(c). The expansion coefficients are sharply
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FIG. 10. At large disorder, the initial state (24) has significant
overlap with a small number of energy eigenstates (black lines) as
sketched in the figure. These eigenstates appear in clusters around the
energy of the scar states (green lines). A single cluster exists in every
symmetry sector and the energy gap between two adjacent clusters
equals the energy gap between scar states AEg,;.

peaked around the scar states and consequently the cancella-
tion of terms with different phases takes place at much larger
times.

In this way, the partially localized background stabilizes
the scar revivals by rearranging the support outside the scar
subspace. The stabilization takes place whenever the initial
state is predominantly a linear combination of product states
with the same disorder indices as the scar states D. If product
states with other disorder indices D' # Dy are included, the
stabilization will be less pronounced.

VI. DISORDER-INDUCED REVIVALS

Revivals appear when the system is initialized in the scar
subspace. However, revivals can also be observed from initial
states with no support in the scar subspace. This dynamical
behavior is caused by different symmetry sectors containing
energy eigenstates with the same disorder indices. For in-
stance, the eigenstates |Ey p1) ~ [P {)) and |Esp ) =
At [P + amz [T2L 1) for m = 1,2 have the same
disorder indices D = (3, —1, —1, —1, —1, —1) but different
number of domain walls Ng,. Recall from Sec. III A that
the energy of an eigenstate at large disorder is approximately
given by

Exypm ~ MMy, p + I (N 15" = MIBY) + ) diDs.
i

(26)

If an eigenstate |En,, p,m») is described by the values My, p,

/\/(TT 4 and ./\f(N D , then another eigenstate |Ey,,+2.p.m)
Wlth Ndw +2 domaln Walls and identical disorder indices D is
described by

My, +2.0 = My,,p + 2, (27a)
NLED = NIIgY =2, (27b)
N = My, (” sl +2. 27¢)

Using Egs. (26) and (27), one can show the energy dif-
ference between two eigenstates with the same disorder
indices D and number of domain walls Np and Np + 2 is
approximately

ENdW+2,D,m - ENdW,D,m ~ AEscar» (28)

where AE, = 2(A —2J) is the energy gap between the
scar states. This calculation demonstrates that the spectrum
contains eigenstates outside the scar subspace with an ap-
proximate energy separation AEg,, at large disorder. Hence,
approximate towers of eigenstates appear as disorder is intro-
duced.

We demonstrate how the appearance of approximate tow-
ers of eigenstates generates nontrivial dynamics. The system
is initialized in a generic linear combination of product states
with disorder indices D; = (3, —1, —1, ..., —1):

| 1nduced> Z {;Nd‘”) |Naw, D1, n) . (29)

Mnduced Naw .t

The coefficients are chosen randomly from the interval
;,EN““) € [0, 1] and MNinduced 1S @ normalization constant. We
study this initial state because, at large disorder, it is a linear
combination of eigenstates in an approximate tower. We con-
sider 10° disorder realizations at different disorder strengths
and the fidelity is computed for each realization. Figure 11(a)
displays the average fidelity of a thermal system at weak
disorder W = 0.5. In this case, there is nothing special about
the initial state in Eq. (29) and it quickly decays to zero similar
to Fig. 8(a). The dynamical behavior changes remarkably as
the disorder strength is increased as illustrated in Figs. 11(b)
and 11(c). At stronger disorder, the initial state (29) has large
overlap with eigenstates that are approximately equidistant in
energy. Consequently, the average fidelity oscillates with a
period given by the energy gap Tycar = 27 / AEgc,:- The revival
amplitude increases with disorder strength. The shaded area
in Figs. 11(a)-11(c) displays the interquartile range of dis-
order realizations. Figures 11(d)-11(f) show the expansion
of the initial state in energy eigenstates at (d) weak dis-
order W = 0.5, (e) strong disorder W =35, and (f) very
strong disorder W = 10. As expected, the initial state is
distributed over a wide range of eigenstates in the ther-
mal phase similar to Fig. 8(d). As the disorder strength
increases, the initial state has higher and higher overlap
with eigenstates in an approximate tower of equidistant
states.

Figure 11 demonstrates that it is possible to observe
revivals from generic linear combinations of the states
{INaw, D, n) |[Ngw = 0,2,...;n=1,2,...} at large disorder.
However, the effects may be enhanced by choosing the ini-
tial state more carefully. The initial state in Eq. (29) is, in
some sense, the worst case scenario. When all product states
with disorder indices D are included in the sum, the initial
state generally has significant overlap with all relevant en-
ergy eigenstates {|Ey,, pm)|Naw =0,2,...;m=1,2,...}.
This causes a large spread in the distribution of |c;|? result-
ing in a faster decay of the average fidelity. If, instead, we
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FIG. 11. The average fidelity of the initial state (29) over 10* disorder realizations for system size L = 14 with parameters A = A = 1,
J = 5 atdisorder strength (a) W = 0.5, (b) W = 5, and (c) W = 10. The shaded areas show the interquartile range (middle 50%) of the disorder
realizations. The corresponding distribution of expansion coefficients |c;|> of a single disorder realization at disorder strength (d) W = 0.5,
(e) W =5, and (f) W = 10. At weak disorder, the initial state has significant overlap with many energy eigenstates and the average fidelity
quickly decays to zero. As the disorder strength is increased, the initial state has significant overlap with a small number of energy eigenstates
with equal energy spacing. Consequently, the average fidelity shows persistent revivals.

consider an initial state with exactly one product state from
each symmetry sector, the spread of |c;|? is smaller:

“ﬁli;]duced>
1
= \/ZI(ITNHN eI )

FITHLTL D I,

[~

Figure 12(a) shows the average fidelity of this initial state
over 10® disorder realizations at strong disorder W = 10 and
Fig. 12(b) displays the distribution of |c;|? for a single realiza-
tion. As expected, the distribution of |¢;|? is narrower and the
revival amplitude larger compared to Fig. 11.

The initial states (29) and (30) display revivals similar to
the scar states. However, one may distinguish these initial
states from the scar subspace by noting that the average

1.0

(a) ‘c‘\‘ | 0
e 0.5 - ! S
/\ M
0.0 Loanl A — =
0 2 4
t/ncar
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01| |
0.0 T T T
—50 0 50
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FIG. 12. (a) Average fidelity of the initial state (30) over 10°
disorder realizations with system size L = 14 and parameters A =
A =1,J =5,and W = 10. The shaded area displays the interquar-
tile range of the disorder realizations. The average fidelity displays
persistent revivals with larger amplitude compared to Fig. 9. (b) Ex-
pansion of the initial state across energy eigenstates. The coefficients
|c;]* are sharply peaked around certain energies which are approxi-
mately equally spaced.

fidelity in Figs. 11 and 12 decays to zero, while the amplitude
in Figs. 8(c) and 9 remains strictly larger than zero. The
different dynamical behavior is caused by Egs. (29) and (30)
being composed of eigenstates with approximately equal
energy spacing while the scar states |S,) are exactly equally
spaced in energy.

VII. CONCLUSION

Building on a known method to find parent Hamiltonians,
we proposed a way to determine Hamiltonians hosting a tower
of QMBS. Starting from the model by Iadecola and Schecter,
we used this method to identify all local one- and two-body
Hamiltonians of the scar tower |S,). Among these Hamilto-
nians, we found operators facilitating the implementation of
local disorder while preserving the scar states. When introduc-
ing disorder, the mean level spacing statistics shifts from the
GOE to the Poisson distribution and the entanglement entropy
goes from volume-law to area-law scaling with system size.
We conclude the system transitions from the thermal phase
to being partially localized. A theory describing the partially
localized eigenstates was developed and verified numerically.
In total, we determined a system hosting a tower of scar states
with the remaining spectrum being either thermal or partially
localized depending on the disorder strength.

We studied the properties of scar states embedded in a
localized spectrum and compared with the corresponding
features in a thermal spectrum. In contrast to thermal
systems, the bipartite entanglement entropy does not enable
the identification of scar states in a localized background.
The Schmidt gap distinguishes scar states from fully MBL
eigenstates, but is incapable of distinguishing scar states from
partial MBL eigenstates. The average fidelity, on the other
hand, effectively identifies the scar subspace in both a thermal
and partial MBL background.

We investigated the effect of localization on initial states
with support both inside and outside the scar subspace. For
a thermal system, the fidelity displays persistent revivals
with rapidly decreasing amplitude. In contrast, the revival
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amplitude decays slower for a partially localized system.
Hence, partial localization stabilizes the persistent revivals of
states initialized partly outside the scar subspace.

Finally, we demonstrated how additional approximate tow-
ers of eigenstates emerge as disorder is introduced. When
initializing the system as a superposition of these eigenstates,
the average fidelity displays revivals with the same period as
the scar states. While this effect does not rely on fine tuning
the initial state, the revivals are amplified by choosing the
initial state appropriately.
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APPENDIX: PROOF THAT |S,) ARE EIGENSTATES
OF ALL OPERATORS IN TABLE I
WITH EQUAL ENERGY SPACING

In Sec. IIC, we found L + 4 operators having the scar
states as eigenstates equidistantly spaced in energy. Since
this analysis was carried out for finite system sizes L =
8, 10, 12, 14, the validity of this statement is not guaranteed
for larger system sizes. In this Appendix, we rigorously prove
the scar states |S,) are equally spaced eigenstates of all opera-
tors in Table I. Since the scar states are constructed iteratively
by applying the operator Q', we generally prove this statement
using proof by induction.

First, we consider the operator H, = Y, 67. The lowest
scar state |So) = ||| ... ) is trivially an eigenstate of H.,.
A straightforward calculation shows that [H., 0T] = 20" and
by induction all other scar states are eigenstates because

H,|Sus1) < B0 1S,) = (E.,0" +20)S,)

= (Ezn +2) |Sut1) (AD)

where H. |S,) = E. . |S,). The scar states are also equally
spaced in energy E, ;| . — E, . = 2. A similar argument holds
for ﬁz‘fd since [HZOde, 0" = —40" where the energy gap be-
tween scar states is —4.

Next, we consider the operators D; = 67 + 67, + 6767,,.
Recall that D; is related to the pr0]ect10n operators
through D; = 4PTPT — 1 where PT d+67)/2 pI'O]eCtS
site i onto spin up. First note that D;|Sy) = (4PT Pl -
D ...y ==1l)...1). A simple calculation shows

that D; commutes with Q' by noting that Isl.TISii =0:
[D:, 0]

L
=4> (=1 (P}, 1P]. 61 P +P Py [P, 671P) )

J+H17 i+
j=1
=4(=1)'(PL, 6B Pl — BIBI6 L Bl =0 (AD)
Thus, for all scar states we have D; |S,) = — |S,,). Alterna-

tively, one may note that |S,,) by construction does not contain
a(.ij'flcent sites being spin up. Therefore, 131“31'11 naturally an-
nihilates the state.

Next, we consider the operator Hj‘zh Before studying the
action of I-? alt on the scar states, we prove by induction that

the commutator [H, O] annihilates |S,). The commutator

is given by
L
[ﬂ;zh QT] Z[2(P O'z+1°“z+2 6-i+6iilﬁiﬁ-2)
i=1
+i(B 61,61, +6)671, P,
+6; 6:-H&:—zpz-w Pi"i 67126 H-S)]’ (A3)
where Pf d —67)/2 is the local projection onto spin

down. By direct calculation, one can show the lowest scar
state is annihilated by this expression [H;‘Z“, 0'11S)) =0. A
lengthy, yet straightforward, calculation also shows the nested
commutator vanishes [[I-AI;Z“, QAT], Q’L] = 0. We now prove by
induction that the commutator annihilates all scar states. As-

sume [H2, 0™1|S,) = 0 and consider

[A2, 0]1Su41) o [AX, 0T]07 IS,
= (Q'[H, O] + [[AY. OT]. OT]) ISw)
=0. (A4)

Having shown this intermediate result, we prove by induction
that the operator A" annihilates the scar states. First we show
the operator Hj}‘ annihilates |Sp),

AXAZ

ﬁf“|s>—2< /(67671 + 6765, WL ... 1)

—ZH)’“ & +65 ) L. 1) =0, (A9)

where the second term cancels the first after changing sum-
mation index i + 1 — i. Next, we show by induction that the
nth scar state is annihilated by H'. Assume A" annihilates
|S,) and consider

AYM1S,41) oc HMQTS,) = (OTA™ + [A™, 01) 1S,) =
(A6)

The first term vanishes by assumption and the second term is
exactly what we considered in Eq. (A4). In total, we conclude
I-?fy“ has |S,) as eigenstates equidistantly separated in energy
(with zero-energy spacing).

Finally, we consider the operator Hy“zh One can prove this
operator annihilates the scar states using similar arguments to
above. The commutator is given by

L
[H;Zh’ QT] = iz [Z(P Gl+laz+2 + 6+6lill’5ii2)

i=1

AX A+ Pl A~
- 0; ‘71+1Pz+2 b z+laz+2
AZAX At
+ P GH—I 1+2 t+3 O—l Ul+lal+2Pl+3] (A7)

Using induction, one can prove the commutator annihilates
all scar states [H;,‘z“, 0"118,) = 0 and the operator annihilates

the lowest scar state H;h |So) = 0. Retracing the steps in
Eq. (A6), we find that Hy“gt annihilates all scar states.
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