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We incorporate the microscopic assumptions that lead to a certain generalization of the Lieb-Schultz-Mattis
(LSM) theorem for one-dimensional spin chains into the conformal bootstrap. Our approach accounts for the
“LSM anomaly” possessed by these spin chains through a combination of modular bootstrap and correlator
bootstrap of symmetry defect operators. Specifically, we obtain universal bounds on the local operator content of
(1 + 1)d conformal field theories (CFTs) that could describe translationally invariant lattice Hamiltonians with
a ZN×ZN symmetry realized projectively at each site. We assume, for such models, that in the CFT the lattice
translation symmetry is realized as an emanant internal ZN symmetry. We present bounds on local operators both
with and without refinement by their global symmetry representations. Interestingly, we can obtain nontrivial
bounds on charged operators when N is odd, which turns out to be impossible with modular bootstrap alone. Our
bounds exhibit distinctive kinks, some of which are approximately saturated by known theories and others that
are unexplained. We discuss additional scenarios with the properties necessary for our bounds to apply, including
certain multicritical points between (1 + 1)d symmetry protected topological phases, where we argue that the
anomaly studied in our bootstrap calculations should emerge.

DOI: 10.1103/PhysRevB.107.205137

I. INTRODUCTION

A. Overview

Identifying the low-energy spectrum of a given lattice
Hamiltonian is an important goal of quantum many-body
theory. In certain cases, depending on the symmetries of the
model, the qualitative nature of its spectrum can be con-
strained, thus restricting the potential quantum field theory
(QFT) descriptions. A famous and powerful result of this
kind, known as the Lieb-Schultz-Mattis (LSM) theorem, is
that half-odd-integer spin Heisenberg chains are gapless [1].
This is to be contrasted with the Haldane gap for the case of
integer spin [2,3]. Following these results, various generaliza-
tions in similar spirit have been made: in higher dimensions
[4,5], with more generic spatial symmetries [6–9], including
the magnetic translation group [10–12], and with higher form
symmetries [13]. In this paper, we will be concerned with
an extension of the LSM theorem involving translations to
general global symmetry groups, where it is expected that
a translationally invariant local spin chain with an on-site
global symmetry represented projectively at each site cannot
be trivially gapped [14–17]. This leaves gaplessness or spon-
taneous symmetry breaking (SSB) as the only possibilities in
one spatial dimension.

The modern formulation of LSM-type theorems is in terms
of ’t Hooft anomalies [18–22], which can be viewed as ob-
structions to gauging a global symmetry. For a lattice model
subject to the generalized translation LSM theorem with an in-
ternal symmetry G, what we will refer to as the LSM anomaly
is a mixed anomaly between lattice translation symmetry and
G. This anomaly arises due to the fact that inserting a defect
of translation symmetry amounts to adding one site, which
carries a projective representation of G. Thus, in the presence
of such translation symmetry defects, it is not possible to

gauge G. This ’t Hooft anomaly must be matched by both
the lattice and continuum QFT descriptions [23], making it
a powerful nonperturbative tool to aid in identifying candi-
date low-energy theories—typically a complicated task. More
general anomalies in bosonic lattice models have been studied
throughout the literature, see e.g., [24–27].

Field theory descriptions of lattice models will generally
possess a different set of symmetries, whose relation to the
lattice symmetries is constrained by requiring the existence
of a group homomorphism relation γ : GUV → GIR that spec-
ifies how the lattice symmetries are realized at low energy.
The homomorphism γ must also be compatible with anomaly
matching, in a sense that we will describe. In this paper, we
will consider GUV = Ztrans×Z2

N on an infinite lattice, which
describes systems with translation symmetry and an internal
Z2

N symmetry. In the context of LSM, we assume that the
lattice translation symmetry is realized as an emanant (in the
sense of [28]) ZN internal symmetry in the CFT description of
the system, leading the CFTs we consider to have a minimal,
internal symmetry group G = Z3

N . An emanant symmetry of
a low-energy theory is one for which any operator that breaks
it also breaks the microscopic symmetry from which it em-
anates. We note that ZN is not the only possible such emanant
symmetry, as we will discuss briefly later on, but we restrict
our study to this case for simplicity and since it is realized in
various relevant microscopic models and their field-theoretic
descriptions [18,29]. Note that for the remainder of the paper
we will refer to the particular continuum manifestations of
these anomalies that we study as LSM anomalies, although in
the continuum context they are anomalies of purely internal
symmetries and do not have to arise out of lattice models with
mixed anomalies between spatial and internal symmetries.
Indeed, we will also discuss a scenario where the same Z3

N
mixed anomalies in the field theory description are emergent
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(that is, a microscopic Z2
N internal symmetry is assumed and

the third ZN is emergent and has a mixed anomaly with the
microscopic symmetry), in the context multicritical points of
symmetry protected topological (SPT) phases, where no LSM
constraint is expected.

Within the realm of QFT, another set of nonperturbative
techniques are those related to conformal field theory (CFT),
among them being the numerical conformal bootstrap. Fol-
lowing recent work combining ZN symmetries and anomalies
with modular bootstrap [30,31], in this paper we will use
conformal bootstrap to bound the space of CFTs that pos-
sess the aforementioned continuum versions of certain LSM
anomalies arising in lattice models with global, internal sym-
metry Gint = Z2

N . Fully incorporating the signatures of these
LSM anomalies into bootstrap is somewhat subtle; to do
so, we introduce a technique that augments modular boot-
strap by incorporating additional numerical bounds that come
from imposing crossing symmetry on four-point functions of
certain symmetry defect operators. This approach allows us
to obtain universal bounds on the local operator content of
(1 + 1)d CFTs in a way that is refined by LSM anomalies.

B. Background, methods, and motivation

Lattice models with the kinds of symmetries and anoma-
lies we have mentioned have received some recent attention,
partially motivating this paper. Under the assumption of a
unique ground state, CFTs naturally describe gapless spin
chains satisfying LSM constraints, since any scale-invariant,
(1 + 1)d QFT is necessarily a CFT, under mild assumptions
[32–35]. Indeed, in some recent numerical simulation work it
was observed that entire stable, gapless phases of translation-
invariant spin chains, subject to LSM constraints with on-site
ZN×ZN symmetries, are effectively described by theories
within the conformal manifolds of N − 1 compact bosons for
N = 2, 3 [29]. It was argued in Ref. [29] that a similar com-
pact boson description should be valid for arbitrary, odd N .
Further, the authors of Ref. [29] suggest that the central charge
c = N − 1 of the compact boson theories may be the mini-
mum necessary to accommodate the LSM anomaly when the
only microscopically-imposed symmetry is Z3

N , assuming that
the Ztrans is realized as ZN in the low-energy global symmetry
group GIR. As noted by Ref. [36], which also contains some
discussion of the LSM anomalies studied in this paper, if one
imposes instead a larger PSU (N ) internal symmetry, which
is apparently emergent in a subset of the models studied by
Ref. [29], then this minimum central charge is indeed c =
N − 1 by the Sugawara construction [37]. However, as we will
point out, there are trivial counterexamples to this bound when
the minimum symmetry imposed at low energy is Z3

N and N
is a product of coprime integers. Nonetheless, with a suitable
quantitative modification to the possible central charge bound
in these cases, there persists the difficult problem of determin-
ing whether nontrivial counterexamples exist. Thus, one of the
goals of this paper will be to look for bootstrap signatures of
potential theories with a lower central charge that could have
the LSM anomalies.

One possible explanation for the lack of counterexamples
to the suggested central charge bound is that the space of
(1 + 1)d CFTs with c > 1 remains largely uncharted terri-

tory. Unlike for c < 1, where all unitary theories are known
[38,39], most explicit constructions of compact, unitary CFTs
with c > 1 are rational CFTs [40] (RCFTs) with enhanced
symmetry or coupled free bosons. Resurrecting ideas used
originally to exactly solve many of the known examples of
(1 + 1)d CFTs, in the past several years it was realized that
instead of attempting full solutions of specific CFTs, a still
powerful and more tractable goal is to attempt to rule out,
using numerical optimization techniques such as linear or
semidefinite programming, certain regions in the space of all
possible CFTs [41–43]—this represents the modern, numer-
ical conformal bootstrap program. This is possible due to
unitarity and other more stringent mathematical consistency
requirements inherent to CFTs. In general dimensions, the
main consistency requirement is the crossing symmetry of
four-point functions. Within numerical bootstrap, one can at-
tempt to show that certain assumptions about the spectrum of a
CFT can lead to incompatibility with crossing symmetry. This
approach, termed correlator bootstrap, has had much success,
and in some cases has gone so far as to produce numerical
solutions to certain theories, as has been done in the case of
the 3d Ising CFT [42,44,45]. These advances have especially
been made possible following the introduction of specialized
semidefinite programming packages for conformal bootstrap
applications such as SDPB [46].

In the setting of (1 + 1)d CFTs, the possible constraints
on the CFT data are more powerful than in d > 2 due to the
correspondence between the local primary operator spectrum
and the decomposition of the torus partition function into
Virasoro characters, which is subject to modular invariance.
Both analytically and numerically, it was shown that imposing
modular invariance of the partition function gives generic
bounds on the operator content of a unitary, compact, bosonic
(1 + 1)d CFT, guaranteeing, for instance, an upper bound on
the scaling dimension of the lightest primary field for any CFT
[47,48]. This should be contrasted with correlator bootstrap,
where to obtain any bounds one must typically make an addi-
tional assumption that the theory possesses some fields with
a particular scaling dimension [49]. This approach, termed
modular bootstrap, has also been generalized to bosonic,
(1 + 1)d CFTs with anomalous and nonanomalous ZN global
symmetries by imposing modular covariance of the torus par-
tition function twisted by symmetry defects [30,31], as we
mentioned. Additional progress in a similar vein has been
made for fermionic CFTs with nonanomalous and anomalous
global symmetries [50–52], but in this paper we will focus on
bosonic theories.

The ZN anomalies studied in previous modular bootstrap
works are characterized by anomalous spin selection rules for
so-called defect operators hosted at the end of topological
defect lines (TDLs) implementing the ZN symmetry [53].
These spin constraints lead to stronger unitarity bounds on
the scaling dimensions for such operators. From these inputs
emerges the general result that anomalous ZN symmetries are
necessarily accompanied by charged degrees of freedom at
low energy. Further, the bounds on ZN -symmetric operators
depend strongly on the anomaly. However, more complicated
symmetry groups may have more complicated anomalies with
more subtle signatures, ones that even do not include anoma-
lous defect spin-selection rules. A Z3

N symmetry with the
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aforementioned LSM anomaly is one case where this scenario
can occur. As already alluded to, the main distinguishing sig-
nature of the LSM anomaly is that symmetry defect operators
of one ZN subgroup transform in a projective representation
of the remaining Z2

N subgroup. Crucially, when N is odd,
this is essentially the only signature of the LSM anomaly;
in these cases, there are no nontrivial defect spin selection
rules, so modular bootstrap by itself is insensitive to the LSM
anomaly and, thus, cannot give a bound on charged operators.
On the other hand, our approach gives rather tight bounds on
charged operators at low central charge and uncovers various
intriguing kinks.

To incorporate the LSM anomalies into bootstrap, we
augment modular bootstrap by incorporating certain bounds
coming from correlator bootstrap. Our approach exploits the
constraining power of both crossing symmetry of defect oper-
ators and modular covariance of the twisted partition function
as follows. Suppose we are trying to rule out some gap in the
spectrum of scaling dimensions of local operators for CFTs
with a particular central charge. In the case of the ZN modular
bootstrap, the presence of an anomaly sets universal lower
bounds on the scaling dimension of any ZN symmetry defect
operator; for the LSM anomaly, we derive a nonuniversal
lower bound that depends on the assumed gap in the local
operator spectrum and, in some cases, the central charge. The
reason for this lower bound is that taking the operator product
expansion (OPE) of light defect operators can produce light
local operators; precisely how light the defect operators can be
without necessarily producing a local operator whose scaling
dimension violates the assumed gap in the local operator spec-
trum is quantified using correlator bootstrap. Additionally,
in some cases the gaps in the spectrum of local and defect
operators further lead to a lower bound on the central charge.
This provides yet another route to improve our lower bound
on the scaling dimension of the lightest defect operator, since
the lower bound on the central charge must not be higher than
the assumed central charge. On the other hand, for modular
covariance of the twisted partition function to be obeyed, the
lightest local operator and the lightest defect operator typi-
cally cannot both be too heavy; in particular, if the gap in
the spectrum of local operators is large—for instance, a gap
that we are trying to rule out—there often exists an upper
bound on the gap in the spectrum of defect operators. This
reasoning applies even when the gap among local operators
is assumed to exist only in the charged sector, or only in the
neutral sector. Modular bootstrap thus has the potential to rule
out the combined gaps in the local and defect operator spectra,
where the latter gap is implied by the former, leading to a
contradiction and allowing us to rule out the assumed gap in
the local operator spectrum.

Our main results, shown in Figs. 1 and 2, are upper bounds,
as a function of central charge c, on the lightest local operators
with various symmetry properties for CFTs saturating the
Z3

N LSM anomaly for N = 2, 3, 4, 5, 6. These bounds can be
thought of as a refinement of the more qualitative LSM-type
theorems, which only exclude a nondegenerate gapped ground
state. Our results, by contrast, state that, for CFTs saturat-
ing the LSM anomalies, not only must there exist charged
states with energies O(1/L) (in a ring geometry with periodic
boundary conditions with L the circumference and under the

FIG. 1. Upper bounds on the scaling dimension of the lightest
Z3

N -symmetric scalar operator in a theory with the LSM anomaly,
as a function of central charge, for N = 2, 3. The shaded region in
each plot is thus the allowed region for the lightest symmetric, scalar
operator. In obtaining these bounds, we did not make use of the
additional improvements to standard modular bootstrap with global
symmetry that we introduce in this paper. The bounds were computed
with �mod = 25 and Smod

max = 50 (see Sec. IV for implementation
details).

assumption of a unique ground state), but there is also a pre-
cise upper bound ∼�(c)/L on the energy of such states when
the lattice model is described at low energy by a CFT with
central charge c. There are various additional microscopic re-
alizations of lattice models that can be described by the kinds
of CFTs we put bounds on. These include certain multicrit-
cal points of (1 + 1)d symmetry protected topological (SPT)
phases and edge theories of certain (2 + 1)d SPT phases.

C. Organization

The structure of the remainder of this paper is as follows.
In Sec. II we will present our universal bootstrap bounds
on the local operator spectrum of (1 + 1)d CFTs with the
Z3

N LSM anomalies for various N , and further discuss the
implications of our bounds to the theory of multicritical points
of SPT phase transitions. In Sec. III we will provide technical
background regarding symmetries and anomalies in (1 + 1)d
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FIG. 2. Two kinds of universal upper bounds on the scaling dimension of local operators. For N = 2, . . . , 6, we find an upper bound on the
scaling dimension of the lightest charged, scalar operator, where a charged operator is any operator transforming in a nontrivial representation
of Z3

N . For N = 3, 5, we additionally obtain a stronger bound on the lightest local operator, irrespective of its symmetry properties. The shaded
regions represent the allowed regions for the scaling dimensions of such operators in each of the aforementioned cases. The bounds shown
here make full use of our improvements to modular bootstrap with global symmetries and anomalies and were computed with �mod = 25 and
Smod

max = 50 (see Sec. IV for implementation details).
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CFT, including details about the TDL formalism and how the
LSM anomalies manifest within it. Then in Sec. IV we will
explain aspects of our numerical bootstrap approach and ad-
ditionally present some of the other numerical bounds (Figs. 9
and 10, see below) that went into our final calculations. Fi-
nally, in Sec. V we will make closing remarks and discuss
potential future avenues for research. We provide additionally
an Appendix with details about our modular bootstrap calcu-
lations.

II. MAIN RESULTS

Here we present our main results, which include universal
numerical bootstrap bounds on the local primary operator
spectrum of unitary, compact (1 + 1)d CFTs with a Z3

N sym-
metry and LSM anomaly. We further discuss an application
of our numerical bounds to the theory of phase transitions
between symmetry protected topological (SPT) phases. The
precise details of the LSM anomaly and its implications
on the structure of the theories that saturate it will be dis-
cussed later. We do not study theories with c < 1 since it
is known that the unitary models cannot possess the kinds
of symmetries, let alone anomalies, that we study in this
paper [54].

We obtain three types of numerical bounds, each of which
will be an upper bound on the scaling dimension of the lightest
scalar primary field transforming in some representation of
Z3

N . The three possibilities we consider for the representations
of operators are the trivial representation, any nontrivial rep-
resentation, or any representation. The first two cases then are
upper bounds on the scaling dimension of the lightest symmet-
ric or charged scalar local primary, respectively, and the last
case represents an upper bound on the lightest local, scalar op-
erator. We only present bounds on the lightest Z3

N -symmetric
operator for N = 2, 3, since for larger N the bounds converge
very slowly, and the improvements introduced in this paper
do not improve our ability to guarantee relevant, symmetric,
scalar operators.

Before discussing our bounds, we mention that exam-
ples of CFTs with the properties necessary for our bootstrap
bounds to apply have been discussed, with emphasis on their
LSM anomalies, in Ref. [29]. As mentioned, the main class
of examples for theories with the Z3

N LSM anomalies may
be found within the conformal manifolds of N − 1 compact
bosons with certain symmetry constraints. However, we also
remark that it is possible to find examples of theories with
these LSM anomalies with lower central charge than what
is suggested in Ref. [29]. When N = ∏

i ni with ni all co-
prime integers, CFTs with the N = ∏

i ni LSM anomaly can
be constructed by taking the tensor product of theories with
the LSM anomaly corresponding to each ni. The reason for
this is that in this situation ZN = ⊕

i Zni . It can be checked
straightforwardly that projective representations of Z2

N can be
decomposed into tensor products of the projective representa-
tions of Z2

ni
and further that the other properties implied by the

LSM anomaly corresponding to N , such as the spin selection
rules of defect operators (see Sec. III and Table I), are the
same. Using, for instance, the WZW models su(ni )1, we can
thus construct theories with the N = ∏

i ni LSM anomaly that
have central charge c = ∑

i(ni − 1) < N − 1.

TABLE I. The values k of ZM anomalies appearing in (11) for
elements of the groups Z3

N for theories with the LSM anomaly, i.e.,
when the full cocycle is given by (14). The columns are organized by
the order of the elements g = (g1, g2, g3) ∈ Z3

N , and the rows each
correspond to a different choice of N .

Order of g ∈ G

N 2 3 4 5 6

2 1 if g = (1, 1, 1)
0 else

3 0
4 0 2 if gi odd

0 else
5 0
6 1 if g = (3, 3, 3) 0 3 if gi odd

0 else 0 else

A. Universal bounds on lightest Z3
N-symmetric scalar

Here we discuss our bounds on the lightest Z3
N -symmetric

scalar operator for N = 2, 3, which are shown in Fig. 1.
Bounds on symmetric, scalar operators are interesting pri-
marily to determine whether theories whose central charge is
within a certain range cannot describe stable gapless phases
where the microscopically-imposed symmetry is Z3

N . In the
presence of such a symmetry-preserving relevant operator, an
RG flow may be triggered to a nearby phase with the same
symmetry, but due to the anomaly this flow will generally lead
either to a phase where the symmetry is spontaneously broken,
or perhaps the flow will end at a nontrivial CFT fixed point. In
either case, the initial CFT is thus unstable. The calculations
performed in this section involve only the standard modular
bootstrap setup with global symmetries and ZN anomalies of
Refs. [30,31], with slight modification to include the larger
symmetry group. It turns out that our improvements to this
setup, which we use in the remainder of our calculations, do
not lead to an enlargement of the range of values of central
charge where a relevant symmetric scalar is guaranteed. This
trend continues for larger N , where our methods do not lead to
any nontrivial range of values of the central charge for which
a relevant, Z3

N -symmetric operator is guaranteed.

1. N = 2

For N = 2, modular bootstrap is somewhat sensitive to
the LSM anomaly since it sees that one of the Z2 TDLs is
anomalous (see Table I). Our bound leads to a range of values
of central charge such that any theory in the range with the
N = 2 LSM anomaly must contain a relevant, Z3

2-symmetric
scalar operator. The range is approximately

1 < c < 3.5565.

Our bound is saturated at c = 1 by su(2)1, whose lightest
operator symmetric under Z3

2 is exactly marginal with � = 2.

2. N = 3

In this case, we see that any CFT with a nonanomalous
Z3

3 symmetry (or, equivalently for the calculations presented
here, a Z3

3 symmetry with the LSM anomaly) must have a
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relevant symmetric scalar if its central charge is c < 2. The
WZW model su(3)1 nearly saturates our bound at c = 2,
whose lightest operator Z3

3-symmetric is exactly marginal. In
Ref. [31], it was shown also that when c < 2 a Z3-symmetric,
relevant, scalar operator must be present. The analogous
bounds for Z3

3 cannot be stronger than this bound, since im-
posing more symmetry can only make it harder for a given
operator to remain symmetric, so it is interesting that our Z3

3
bound is still powerful enough to guarantee relevant operators
in this range of central charge.

B. Universal bounds on lightest Z3
N-charged scalar

We now discuss our bounds on the lightest Z3
N charged

operator, which are shown in Fig. 2. We define a Z3
N -charged

operator as a local operator transforming in any nontrivial
representation of Z3

N . For odd, prime N , this choice loses no
generality since all nontrivial representations are equivalent in
the sense that they are related by outer automorphisms, i.e., a
relabeling of the group elements. This relabeling is allowed
since each ZN TDL for a given N has the same spin-selection
rule (see Sec. III and Appendix). For even N , there are dif-
ferent classes of representations, so in principle more refined
bounds could be obtained by bounding the lightest operator in
each class separately but, for simplicity, we will not present
such bounds.

1. N = 2

Our N = 2 bound does not contain many features. The
known theories with minimal central charge and the N = 2
LSM anomaly are the c = 1 compact boson theories on the
circle branch. The theory that maximizes the gap in the
Z3

2-charged operator spectrum is the WZW model su(2)1,
whose lightest charged, scalar operator has scaling dimension
� = 1

2 .

2. N = 3

Our bound on the lightest charged operator for N = 3 has
various interesting features. First of all, the bound approaches
�=0 as c → 1, which is in agreement with the analytical
analysis of c = 1 theories that no such theory can have the
LSM anomaly for N=3. This is quite striking in modular boot-
strap calculations, which typically are not quite so strong, and
is a feature shared by our bounds for other choices of N>2.
The most obvious feature is that the su(3)1 WZW CFT, which
is the principal example of a WZW CFT with the N = 3 LSM
anomaly, sits at a prominent kink of our upper bound. The
su(3)1 theory has c = 2 and its lightest charged scalar has
scaling dimension � = 2

3 .
We stress that in this case, since N is odd, modular boot-

strap alone does not give a bound at all on the lightest charged
operator since all Z3 subgroups, in this case, have no Z3

anomaly.

3. N = 4

This bound displays a few kink-like features at low val-
ues of the central charge that we cannot, at present, explain.
The c = 3 compact boson theories are the only theories we
know of with the N = 4 LSM anomaly, among which is the

WZW model su(4)1. It is expected that su(4)1 maximizes
the scalar gap among the toroidal compactification CFTs at
c = 3 [55,56]. (Maximizing the scalar gap in the moduli space
of such theories at generic integral c is a difficult problem.
See additionally Ref. [57] for interesting work related to
this.) However, the question of which CFT absolutely maxi-
mizes the scalar gap at c = 3 remains an interesting puzzle;
the universal upper bound on the scalar gap calculated in
Ref. [48] is not saturated by su(4)1 at c = 3. Consequently,
we do not know whether there is any c = 3 theory that satu-
rates our even larger upper bound on the lightest Z3

4 charged
operator for theories with the N = 4 LSM anomaly.

4. N = 5

This bound is similar to the bound for N = 3 since again
modular bootstrap alone gives no bound. Below c = 4, which
is the minimal central charge we know of where theories with
the N = 5 LSM anomaly are known to exist, we see two
features that resemble kinks. The first occurs at c ≈ 2 and is
somewhat soft. Our upper bound at c = 2 is approximately
equal to � = 0.462. At this time we are not aware of any ev-
idence to suggest that this corresponds to an actual theory, so
it will be interesting to study this feature in future work. The
second kink is more sharply defined and is somewhat more
intriguing. The location of this kink, according to our plot in
Fig. 2, which was computed with derivative orders �mod =
�cor = 25 (for an explanation of the parameters describing
our computational setup, see Sec. IV), is almost exactly at
c = 14

5 , where our upper bound is equal to � = 0.8006. This
puts the WZW model (g2)1 essentially right at the location
of this kink. However, as we discuss in the next subsection,
we were able to rule out (g2)1 from having the N = 5 LSM
anomaly with a more intensive calculation, so the origin of
this kink remains a mystery.

At c = 4, the WZW CFT su(5)1 is well within the allowed
region, but as was the case with N = 4 we are not sure of a
systematic way to maximize the scalar gap among the c = 4
compact boson theories, subject to the appropriate symmetry
requirements, let alone among all CFTs, to see whether ul-
timately our bound is saturated by an actual CFT. Using the
formalism developed in Refs. [56,58] seems like a promising
approach, but we leave this interesting exercise to future work.

5. N = 6

This bound resembles closely our bound for N = 4, where
we see some unexplained features at relatively low central
charge. This is the first case where N is a product of co-
prime integers, so we can realize theories with the N = 6
LSM anomaly by taking the tensor product of any N = 2
theory with a N = 3 theory. Thus, using our currently known
examples, we can produce theories with central charge equal
to either c = 3 or c = 5 by taking the corresponding number
of compact bosons and imposing the appropriate symmetries.
Examples of WZW models (or tensor products thereof) in this
category include su(2)1 ⊗ su(3)1 and su(6)1. Our analysis
here is limited again by the issues we mentioned for N = 4, 5,
and the WZW models we mentioned are even farther from
achieving saturation with our bounds.
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C. Universal bounds on lightest local scalar

As we are especially interested in finding numerical evi-
dence for CFTs with the Z3

N LSM anomaly with c < N − 1
for odd N , to which the suggested lower bound in Ref. [29]
applies, we additionally obtain bounds on the lightest local
operator transforming in any representation of Z3

N . This is
the strongest gap assumption we can make, while still being
universal, and thus gives, numerically, the strongest bounds.
We thus expect any features corresponding to actual theories
to have the most clarity within these bounds. To obtain these
bounds, we incorporate the correlator bootstrap lower bounds
on central charge from Fig. 10 in addition to the bounds
on scaling dimension from Fig. 9. This leads to a notable
improvement of our bounds at relatively low central charge;
we note that the stronger gap assumption within modular
bootstrap alone did not lead to a significant difference in the
resulting bounds.

1. N = 3

As expected, the theory su(3)1 continues to lie at the c = 2
kink of this bound, which is sharpened further by the stronger
assumptions placed on the operator content. Interestingly, at
c ≈ 1.7 it appears that another feature emerges. However,
this feature does not take a sharper shape upon using more
derivatives in the linear functional within modular bootstrap,
as our bounds are very close to saturation in this range of
central charge. The question of whether or not this feature is
due to an actual CFT is left open. Above c = 2, our bound
converges to the bound on the lightest scalar operator in any
CFT obtained in Ref. [48].

2. N = 5

The feature present at c ≈ 2 in the bound on the lightest
charged scalar did not survive the stronger assumptions used
to obtain this bound. Thus, if that feature is due to an operator
in an actual CFT with the N = 5 LSM anomaly, this operator
would have to be symmetric under the Z3

5 symmetry that
carries the anomaly.

Similarly to the N = 3 case, the stronger assumptions used
to obtain this bound sharpen the kink near c = 2.8 and, for
the size of the functional used in making the N = 5 plot of
Fig. 2, the theory (g2)1 is not yet ruled out. However, we also
did a calculation where we improved some of our parameters
to �mod = 41 and Smod

max = 80. Our bound at �mod = 25 is
very close to saturation in this range of central charge, but
nonetheless we obtained an upper bound of � = 0.79990 at
c = 2.8, thus ruling out (g2)1. Studying this kink further is
an interesting task we leave to future work. Even though we
have not yet exactly pinned down the location of the kink, it
seems a strong possibility that, in this case, we have uncovered
evidence for a nontrivial example of some theory with the
N = 5 LSM anomaly that has c < 4.

D. Application to multicritical points of (1 + 1)d symmetry
protected topological phases

Symmetry protected topological (SPT) phases are a special
class of gapped Hamiltonians with a global symmetry G.
When placed on a manifold without boundary, SPT phases

possess a unique, G-symmetric ground state that cannot be
connected to a trivial product state by applying a finite depth
local unitary circuit (FDLUC), where the local unitaries in the
circuit individually preserve the global symmetry [59]. In one
spatial dimension, SPT phases protected by a symmetry group
G are classified by the group cohomology group H2(G,U (1)).
The group cohomology group encodes the algebraic structure
of the phases under stacking, which is determined by its group
multiplication [60]. Further, the class [α] ∈ H2(G,U (1))
labeling each phase determines the projective representa-
tion carried at each boundary endpoint when a Hamiltonian
in a nontrivial SPT phase is placed on a lattice with a
boundary.

An interesting area of study is that of the nature of second-
order phase transitions between SPTs [61–64]. It has been
argued by Bultinck [65] that for any SPT phase [α] sat-
isfying the property that two copies of it is in the trivial
SPT phase, i.e., [α]2 = [1], any critical point describing a
second-order phase transition between [1] and [α] will have
an emergent Z2 symmetry having a mixed anomaly with
the internal symmetry G of the neighboring SPT phases.
The mixed anomaly is given by a type-III cocycle ω ∈
H1[Z2, H2(G,U (1))] ⊂ H3(Z2×G,U (1)), which has the in-
terpretation, in CFT language, that a defect operator of the
emergent Z2 symmetry carries a projective representation
of G.

We can roughly sketch the argument for the emergent
symmetry and anomaly as follows. A key feature of an SPT
Hamiltonian is that there is a FDLUC U building its ground
state from a trivial product state. Importantly, a FDLUC pre-
serves the correlation length.

Now, consider a one-parameter path of Hamiltonians that
passes through a critical point separating the phases [1] and
[α] where [α]2 = [1]. We assume that this critical point is a
CFT, and we restrict the path of Hamiltonians to lie in the
vicinity of the critical point such that the low-energy spectrum
everywhere along the path is reproduced by a Hamiltonian of
the form

H (δ) = HCFT + δ� (1)

where � is a perturbation by a relevant operator in the CFT.
We expect this scenario, since, generically, the perturbation �

will open a gap and SPT phases are gapped. Without loss of
generality, we assume that H (δ) is in the trivial phase when
δ < 0 and in the nontrivial phase when δ > 0. Next, note that
given any Hamiltonian in the trivial SPT phase H0, there exists
a G-symmetric FDLUC U for which Hα ≡ UH0U† is in the
nontrivial SPT phase and, additionally, has an identical corre-
lation length. It is argued that U becomes a symmetry at the
critical point. At a minimum, we can conclude that U is a Z2

symmetry, but in some cases it is possible to argue for an even
larger emergent symmetry at similar critical points [66,67].
Thus U (really, the restriction of U to the low-energy Hilbert
space) must precisely be the unitary that changes the sign of
the perturbation, i.e., U�U† = −�. Further, by the properties
of SPT states, we would expect that upon truncating U to an
interval, U would no longer commute with the global symme-
try; instead, the parts of U deep in the bulk would commute,
but the boundary would host a projective representation of G
[68]. This should be reflected in the CFT through the ’t Hooft
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[1] [α]

[α2]

FIG. 3. A hypothetical phase diagram where all N of the ZN×ZN

SPT phases, where each phase is labeled by its respective class [i] ∈
H 2(ZN×ZN ,U (1)) = ZN , meet at a multicritical point (marked in
red), illustrated in particular for the case N = 3. The dimension of
such a phase diagram increases with N . We expect the multicritical
point to possess a mixed anomaly of the kind studied in this paper,
and our numerical bounds restrict the properties of CFTs that can
describe such multicritical points.

anomaly of the full Z2×G symmetry, which is captured by a
3-cocycle ω ∈ H1[Z2, H2(G,U (1))] ⊂ H3(Z2×G,U (1)). In
total, at the critical point U is an internal symmetry having a
mixed anomaly with G, and there exists a relevant operator
charged under U ,which drives the transition.

We may now produce a simple generalization of this re-
sult to the case of a multicritical point between SPT phases
generated by a phase [α] such that [α]N = [1]. Such a family
of phases is given, for example, by SPT phases protected by
G = ZN×ZN for which H2(G,U (1)) = ZN , which is relevant
to this paper.

In this setting, we may now consider an (N − 1)-parameter
family of Hamiltonians

H (δ1, . . . , δN−1) = HCFT +
∑

i

δi�i (2)

and essentially repeat the argument above with minimal mod-
ification. The main difference between the previous case and
this case is that the FDLUC U will cyclically permute the
N different phases leading to a ZN action among the fields
that perturb the CFT into the different SPT phases, i.e.,
U�iU† = ∑

j Ui j� j with U N = I . We have presented an il-
lustration of such a hypothetical critical point in Fig. 3 for the
case N = 3.

The transition to the neighboring SPT phases for such
a multicritical point would be driven by relevant perturba-
tions that are charged under the emergent ZN but preserve
the microscopic ZN×ZN . An interesting class of theories
to consider are ones where there are no relevant operators
that are symmetric under the full Z3

N symmetry. This is the
generic case that is expected without additional fine-tuning.
For N = 3, we see that such critical points, which do not
contain Z3

3-symmetric relevant operators, must have c � 2
using Fig. 1. On the contrary, with a symmetry-preserving
relevant perturbation there could be neighboring phases where
U is an exact lattice symmetry (but, generically, it will not
necessarily be a ZN symmetry). Due to the anomaly, these
phases cannot be trivially gapped and therefore must be SSB
or gapless.

III. LSM ANOMALIES ON THE LATTICE
AND IN THE CONTINUUM

The microscopic assumptions leading to the generalized
LSM theorem manifest in a CFT as a particular set of prop-
erties possessed by so-called topological defect lines (TDLs)
that implement the symmetries. In this section we first de-
scribe the lattice symmetries and anomalies and their relation
to those in the continuum field theory. Then, we discuss the
continuum description of these symmetries and anomalies
using the TDL formalism with emphasis on aspects that enter
in bootstrap calculations.

A. Lattice symmetries and anomaly matching

Consider a local lattice system defined on a spatial ring
with L sites and a tensor product Hilbert space H = ⊗L

i=1 Hi,
where the Hilbert space at each site is finite dimensional.
We will consider nearest-neighbor Hamiltonians for such a
system of the form

H =
∑

i

Hi,i+1 (3)

where Hi,i+1 acts on at most the sites i, i + 1. The assump-
tion of a nearest-neighbor Hamiltonian is generic under the
assumptions of spatial locality and finite on-site Hilbert space
dimension, since we may group finitely many sites together
for a non-nearest-neighbor Hamiltonian while preserving
these assumptions to obtain nearest-neighbor interactions.

As already stated, we will be interested in considering
Hamiltonians with symmetry GUV = Ztrans×Z2

N . We will de-
note the operator generating unit translations for the system,
in the presence of periodic boundary conditions, by T , i.e.,
for any operator Oi acting at a single site i we have TOiT † =
Oi+1. We will also assume that the internal Z2

N is generated
by unitary operators of the following form:

X =
L⊗

i=1

Xi, Z =
L⊗

i=1

Zi,

X 2 = Z2 = 1, [X, Z] = 0.

The key microscopic assumption leading to the LSM anomaly,
together with translation symmetry, is that

XiZi = e2π ip/N ZiXi. (4)

That is, when the symmetry generators are restricted to a
single site they form a projective representation of Z2

N charac-
terized by αp ∈ H2(Z2

N ,U (1)) with

αp(g, h) = exp

(
2π i

N
ηp(g, h)

)
= exp

(
2π ip

N
g1h2

)
. (5)

Note that the multiplication in the product g1h2 should be
viewed as multiplication of real numbers, not the group mul-
tiplication for ZN elements. Of course, all of the aforemen-
tioned symmetry generators commute with the Hamiltonian,
but in light of (4) the assumed Ztrans×Z2

N group structure
further requires L = 0 mod N .

To diagnose the anomaly of the system, we may follow,
e.g., [9,69,70], identifying the anomaly of our (1 + 1)d sys-
tem as being related to a (2 + 1)d SPT protected by an internal
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symmetry. The idea is to consider the degrees of freedom of
our original (1 + 1)d system as being built from a stack of
(1 + 1)d SPTs that terminate at each site of our lattice. The
(1 + 1)d SPT assigned to each lattice site is determined by
the projective representation carried by each site, which is
uniform in our case and given by (5).

LSM constraints for translation symmetry in (1 + 1)d ,
related to a (1 + 1)d SPT class such as αp as previously
discussed, are associated with anomaly 3-cocycles of the form
[70]

�UV(g, h, k) = exp(iτ (g)αp(h, k)) (6)

where αp ∈ H2(Z2
N ,ZN ) and τ ∈ H1(Z,Z) = Z. Note that

τ may be pulled back to a Z gauge field whose holonomy
around all of space measures the number of lattice sites [69].

At low energy, lattice models of this kind are described
by CFTs. CFTs with internal, discrete symmetry G have
anomalies valued in H3(G,U (1)) [59]. As stated, in this paper
we consider lattice models that flow to CFTs with minimal
internal symmetry G = Z3

N , which comes from the Z lat-
tice translation symmetry becoming an emanant ZN , whose
anomaly is given by

ωIR(g, h, k) = exp

(
2π i

N
g1h2k3

)
. (7)

We will refer to ωIR as an “LSM anomaly” in the remainder
of this paper, even though as we emphasized previously its
interpretation as an LSM anomaly only truly holds at the
lattice level in reference to mixed anomalies between spatial
and internal lattice symmetries.

The remaining task of this section is to show that the as-
sumed symmetry and anomaly of the CFT is compatible with
the anomaly matching constraint of the lattice model. To do
this, we must specify a group homomorphism γ from the UV
to the IR symmetry groups, and show that the pullback of the
IR anomaly cocycle through γ reproduces the UV anomaly
cocycle. Denoting an element g ∈ GUV by g = (g1, g2, g3) we
use the homomorphism γ : Ztrans×Z2

N → Z3
N ,

γ (g1, g2, g3) = (g1 mod N, g2, g3).

It is easily seen that �UV = γ ∗ωIR since �UV is only sensitive
to g ∈ Ztrans mod N anyway, and γ is merely the map sending
such g to its mod N value. Finally, γ is surjective onto the sub-
group Z3

N ⊂ GIR, so we conclude that the proposed symmetry
and anomaly is able to match the symmetry and anomaly of
the lattice.

We finally remark that there are other emanant symmetries
that could match the anomaly of the lattice. In particular,
any cyclic group of the form ZkN with k a positive integer
would suffice, consistent with the mod N periodicity of the
translation-twisted boundary conditions. For simplicity, we
will not explore these other possibilities further.

B. Topological defect lines

To describe discrete, possibly anomalous, 0-form sym-
metries in (1 + 1)d we will follow the TDL formalism as
described in Ref. [53], which draws on various earlier works
in both physics and mathematics (see [71–76] and other ref-

erences contained therein). In this section, we will review the
salient features of the TDL formalism for our paper, but for a
more detailed account see Ref. [53].

In modern language, symmetries are implemented by topo-
logical operators inserted along subdimensional manifolds of
spacetime [53,77]. Invertible 0-form symmetries in (1 + 1)d
are implemented via TDLs, which are associated with ori-
ented, closed curves labeled by elements of a group G. The
TDLs are topological, in the sense that their support may
be moved freely inside correlation functions so long as the
change does not sweep the TDL past a charged operator. An
important feature of TDLs is that they commute with the stress
tensor. Thus, two operators that are related to each other by
action by a TDL must have the same conformal dimensions.
The mathematical structure underlying the TDL formalism is
that of a fusion category [53,78]. In this paper we will focus on
fusion categories C = Vecω

G [78], i.e., G-graded vector spaces
twisted by a 3-cocycle ω ∈ H3(G,U (1)), which describe an
anomalous group G symmetry with anomaly ω.

Suppose we have a CFT with an internal symmetry G. To
each group element g ∈ G, we associate an extended, oriented
topological line operator Lg, which acts on the primary fields
of the theory. Two TDLs Lg and Lh supported on topologically
equivalent lines may be fused together to create the line Lgh,
so the fusion of TDLs obeys the group multiplication law of
G. For a given TDL L, we will denote its orientation reversal
(which corresponds to the inverse line when L is invertible)
by L̄. We will denote a unitary operator acting on the Hilbert
space H of local operators, i.e., a TDL Lg supported on a time
slice, by L̂g, and we will denote the action of such operators
on a field φ as L̂g · φ. TDLs have more explicit constructions
as well in terms of topological interfaces between a given CFT
and itself, which may be studied via the folding trick [71,79].

A given TDL Lg may terminate at a point, and at this
point will live a defect operator [53,72,80]. Such an operator
may be constructed through the operator state mapping, since
quantizing the theory in a cylinder geometry with a boundary
condition twisted by Lg is equivalent to the theory in radial
quantization with a primary field at the origin attached to a
TDL. The possible Lg defect operators, which we will refer
to as φg, live in the defect Hilbert space HLg (sometimes
we will refer to the defect Hilbert spaces as twisted sectors).
More generally, multiple TDLs Lg1 , . . . ,Lgn may terminate
at a n-way junction and correspondingly there will be a junc-
tion Hilbert space HLg1 ,...,Lgn

, defined similarly. Due to the
fusion properties of the lines, there is an isomorphism between
HLg1 ,...,gn

and HLg1 ,...,Lgn
. The junction Hilbert space may con-

tain a state, which is proportional to the vacuum of the bulk
theory with conformal dimensions (0,0), which is unique for
the CFTs we consider in this paper. We denote the space of
such states in HLg1 ,...,Lgn

by VLg1 ,...,Lgn
and refer to it as the

junction vector space. Since the TDLs we consider are all
invertible, their fusion does not involve direct summation so
each VLg1 ,...,Lgn

is either one or zero dimensional depending on
whether the TDLs forming the junction fuse to the trivial line
or not. Thus, there is a single junction vector v ∈ VLg1 ,...,Lgn

for each junction, which keeps track of the overall phase asso-
ciated with each junction, relative to the bulk vacuum state. In
Fig. 4 we illustrate a three-way junction, where the “×” keeps
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L̄g L̄h

Lgh

v

FIG. 4. A three-way junction with junction vector v ∈ VLgh,L̄g,L̄h
.

The convention for the junctions is that we label lines oriented
pointing outwards from the junction.

track of the cyclic ordering of the outward-pointing TDLs.
The consequences of ’t Hooft anomalies may be derived in the
TDL formalism using the F -symbol, shown in Fig. 5, which is
a map between tensor products of junction vector spaces. The
effect of ’t Hooft anomalies in this context is to extend the pos-
sible symmetry representations of defect operators to include
fractionalized and/or projective representations. Specifically,
we may construct unitary operators L̂g

h that implement the h
symmetry in Hg for any g, h ∈ G. Note that L̂g

h depends also
on a choice of junction vectors, but we will leave that depen-
dence implicit. The TDL configuration defining this unitary is
shown in Fig. 6, which we call the lasso action. To determine
aspects of the symmetry action in the defect Hilbert spaces,
one may perform a sequence of F-moves to compare L̂g

hL̂
g
k

with L̂g
hk , which will be equal up to a phase, i.e.,

L̂g
hL̂

g
k = χg(h, k)L̂g

hk . (8)

The phases χg(h, k) are related to the slant products of [ω],
which are topological invariants of the twisted quantum dou-
ble Z (Vecω

G) of Vecω
G [81,82]. Using the TDL formalism, the

slant product takes the form

χg(h, k) = ω(g, h, k)ω(h̄, gh, k)ω(h, k, hk)

ω(k̄, h̄, ghk)ω(k, k̄, h̄)
. (9)

The derivation of (9) is shown in Fig. 7. For each junction vec-
tor v ∈ VLg,Lh,Lgh

, performing a change of basis v → β(g, h)v
for a U (1) rotation by the 2-cochain β(g, h) leads to a change

=
L̄gh

Lg

h k

L̄ghk Lg

h k

L̄ghk

u
v

w

z

L̄hkω(g, h, k)

FIG. 5. For any configuration of invertible TDLs involving ex-
ternal TDLs g, h, k and (ghk)−1, there are two ways to resolve the
configuration into one involving only three-way junctions. The two
decompositions differ by a 3-cocycle phase ω. We leave implicit the
dependence of ω on the junction vectors appearing in the diagram.

Og

Lg

h

=

L̂g
h ·Og

Lg

FIG. 6. In each defect Hilbert space Hg the unitary L̂g
h imple-

menting the action of an element h ∈ G can be defined by wrapping
an h-TDL counterclockwise around a defect operator Og inserted at
the origin (in radial quantization) and collapsing the loop down to a
point, as shown. This defines the action L̂g

h|Og〉 on states in Hg. We
will take U · O ≡ UOU † to mean conjugation of O by the unitary
U . One can also perform an F move on this configuration to obtain a
different convention for resolving the symmetry action, which would
differ possibly from this one by a phase for invertible TDLs. Note
that if g is the trivial line this reduces to the usual way that symmetry
acts on local operators.

in ω [53]

ω(g, h, k) → ω(g, h, k)
β(h, k)β(g, hk)

β(g, h)β(gh, k)
. (10)

One may easily verify that the following quantity [36]

ιg(h, k) = χg(h, k)

χg(k, h)

is an invariant of [ω] under an arbitrary change of basis
in the junction vector spaces. When ιg(h, k) is nontrivial
the symmetry generators do not commute in the defect
Hilbert space, signifying a nontrivial projective representation
since the symmetry generators commute when acting on the
Hilbert space of local operators. The symmetry properties
of defect operators under the full internal symmetry group
of the theory can be thought of as topological invariants,
which lead to a finer classification of CFTs enriched by
symmetries. For recent explorations of this idea, see e.g.,
Ref. [83].

One class of ‘t Hooft anomalies that have been studied in
recent modular bootstrap work involve a single ZN . These so-
called type-I anomalies manifest as anomalous spin-selection
rules in the defect Hilbert spaces, which can be directly
used as input into the modular bootstrap [30,31]. In contrast,
we will be mostly interested in type-III anomalies [84,85],
of which the continuum LSM anomaly is a particular case,
whose signatures are more subtle, involving defect operators
in the defect Hilbert spaces of one ZN subgroup transforming
in a nontrivial projective representation of the remaining Z2

N
subgroup.

We will now summarize the consequences of each of these
two classes of anomalies on the operator content of CFTs,
each of which generally appears in the theories we consider.
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ω(h̄, gh, k)=

ω(h̄,gh,k)ω(g,h,k)

ω(k̄,h̄,ghk)
=

ω(g, h, k)ω(h̄, gh, k)ω(h, k, hk)
ω(k̄, h̄, ghk)ω(k, k̄, h̄)

︸ ︷︷ ︸

χg(h,k)

=

Lh Lh

h hk

Lh̄ Lh̄

Lh̄ Lhk

k

LkLk

Lk̄Lk̄

Lk̄

FIG. 7. The graphical derivation of the slant product formula for χg(h, k). This diagram should be considered as part of a larger diagram
in which the Lh and Lk TDLs are connected and each encircle a defect operator Og, as in the lasso diagram of Fig. 6. The final step in the
derivation involves the phase factor associated with shrinking the bubble of the composite line Lgh. This factor is determined by using the
single bubble to create a second identical bubble using a sequence of F moves, which allows the phase associated with a single bubble to be
determined.

1. Type-I anomalies

In the case that G has a ZM subgroup, the subgroup may
have a ZM or “type-I” anomaly [84]. In particular, the restric-
tion of the full cocycle, which encodes the full anomaly of G,
to this subgroup may be cohomologous to [84]

ω(a, b, c) = exp

(
2π i

ka

M2
(b + c − [b + c]M )

)
(11)

where a, b, c ∈ ZM and [k] ∈ ZM = H3(ZM ,U (1)) labels the
anomaly. Note that [a + b]M ≡ a + b mod M. The main sig-
nature of a TDL Lg generating a ZM symmetry with anomaly
[k] is that that the defect Hilbert space Hg will contain states
whose spins are in [53]

s ∈ k/M2 + Z/M. (12)

Nonzero k thus corresponds to an anomalous spin selec-
tion rule for the defect operators. We will refer to a TDL
generating a ZM subgroup as nonanomalous if k = 0 and
anomalous otherwise. The anomaly forces the minimum pos-
sible scaling dimension for a defect operator on such a
TDL to be � = min( |k|

M2 ,
|k−M|

M2 ) as opposed to � = 0 for a
nonanomalous TDL.

A ZM anomaly can be detected by, for instance, studying
the torus partition function of the theory twisted by symmetry
defects and imposing covariance of the partition function un-
der the modular S transformation, see e.g., Refs. [30,31]. To
deduce the spin selection rule of a TDL Lg, with g generating a
ZM subgroup, given any 3-cocycle ω, we can use the formula

e2π iMs =
M−1∏
i=1

ω(g−1, gi, g) (13)

given in Ref. [86] and solve for the allowed values of s. The
ZM anomalies possessed by theories with the LSM anomalies
that we study are listed in Table I.

2. Type-III anomalies

The LSM anomalies (7) we consider, reproduced be-
low for convenience with p = 1 and henceforth referred to
as ω,

ω(g, h, k) = exp

(
2π i

N
g1h2k3

)
(14)

are examples of “type-III” anomalies. The signature of this
anomaly in CFT is that defect operators of one ZN subgroup
transform in a projective representation of the remaining
ZN×ZN subgroup.

More specifically, let g1, g2, and g3 be the generators of
the three ZN subgroups in Z3

N . Let us now consider a defect
operator that lives at the end of a TDL Lg1 . One can show
using χg1 (g2, g3) that, in the presence of Lg1 , the TDLs Lg2

and Lg3 no longer commute when the Z3
N symmetry has the

anomaly (14). For illustrative purposes, the unitaries L̂g1
g2 and

L̂g1
g3 may be taken to satisfy

L̂g1
g2
L̂g1

g3
= e2π i/N L̂g1

g3
L̂g1

g2
(15)

[i.e., χg1 (g2, g3) = e2π i/N ] meaning g2, g3 are realized projec-
tively. Thus, the entire g1 defect Hilbert space decomposes
as a direct sum of such projective representations since the
choice of defect operator is arbitrary.

A convenient basis for such ZN×ZN projective repre-
sentations is the clock and shift basis. In this basis, g2 is
diagonalized so that states in Hg1 carry definite g2 charge.
Then, g3 acts as a shift operator, which increases g2 charge
by one modulo N . That is, we can choose primary fields
φ

g1
0 , . . . , φ

g1
N−1 in Hg1 , all with identical conformal dimen-

sions, such that

L̂g1
g2

· φ
g1
I = e2π iI/Nφ

g1
I , (16)

L̂g1
g3

· φ
g1
I = φ

g1
[I+1]N

. (17)
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From this, we see that given a single primary field in
Hg1 we can infer the existence of N − 1 more fields of the
same conformal dimensions. Additionally, since a unitary
CFT has a well-defined Hermitian conjugate, when g1 �= g−1

1
there also must exist N more fields living in Hg−1

1
. Thus, we

see that a feature of theories with the Z3
N LSM anomaly is

that the degeneracy of Virasoro defect primary fields with
fixed conformal dimensions is a multiple of N when the defect
corresponds to an order N element of G.

C. Gauging nonanomalous TDLs

A CFT with G = Z3
N and the LSM anomaly described

above contains various nonanomalous TDLs, which, conse-
quently, may be gauged (in CFT terminology, orbifolded). For
the parts of our calculations involving correlation functions of
defect operators, it will be somewhat simpler to view things
from the point of view of the gauged theory since, from this
perspective, many of the technicalities one needs to be aware
of when working with defect operators can be avoided [87].

Let H = ZN be such a nonanomalous ZN subgroup. Given
some CFT TLSM with the LSM anomaly, when we gauge H we
end up with a new theory T̃LSM = TLSM/H , which generally
will have a different spectrum of local operators. The gauging
procedure amounts to first throwing away all local operators
that are charged under H , leaving only the H-invariant opera-
tors. This theory, keeping just symmetric local operators, will
generically not be modular invariant, so in addition to the H-
invariant local operators we must also bring down H-invariant
defect operators from the H-twisted sectors [80,88–90]. Due
to the spin-charge relation for defect operators [30,31], this
amounts to adding all integer spin defect operators from the
H-twisted sectors. Since H2(ZN ,U (1)) is trivial, we do not
additionally need to specify a discrete torsion class as another
ingredient to this gauging procedure [80,88].

When a set of TDLs is gauged, the gauged theory will, in
general, possess a different set of TDLs from the ungauged
theory. We may conclude various facts about the TDLs of
T̃LSM with the help of some results contained, for instance,
in Ref. [90] and also Ref. [91]. The key thing to note is
that local operators must transform in linear representations,
but, at first sight, the defect operators coming from TLSM,
which are promoted to local operators of T̃LSM, transform in
projective representations of the G/H = Z2

N symmetry. Thus,
to restore a linear representation of this symmetry in T̃LSM,
the projective phases χg(h, k) for g ∈ H , h, k ∈ G/H are pro-
moted into central elements of the symmetry group G̃ of T̃LSM,
so we can identify G̃ as a central extension of G/H by H with
presentation

〈a, b, c|aN , bN , cN , aba−1b−1c−1, aca−1c−1, bcb−1c−1〉.
(18)

In T̃LSM, the operators transforming in one-dimensional irre-
ducible representations (irreps) of G̃ were local operators in
TLSM, and operators transforming in higher dimensional irreps
were defect operators of TLSM.

When N is prime, the groups with presentation given
by (18) are known as Heisenberg groups He(3,ZN ). When
N = 2, we can also identify He(3,Z2) ∼= D8 where D8 is
the square dihedral group. This particular case of gauging

was studied in a rather different context in Ref. [92]. When
N is not prime, the representation theory of the groups that
we might still call He(3,ZN ) differs from the prime case. In
mathematics literature such groups have a different naming
convention, but we will still refer to groups with presentation
(18) as He(3, N ).

We imported information about the representation theory
of the groups He(3, N ) with the help of GAP [93]. For each N
we consider, the information about the corresponding group
is contained in the SmallGroups library. The SmallGroups
identification numbers for the groups are (8,3), (27,3), (64,18),
(125,3), and (216,77) for N = 2, . . . , 6. We will label rep-
resentations of He(3, N ) by Rn where n is the index of the
representation in GAP.

D. Comments on correlation functions of defect operators

The OPE is a mapping between two separated local fields
φa, φb and linear combinations of local fields at a single point,
schematically expressed as

φa×φb ∼
∑
O

λφaφbŌO

where the (possibly complex) numbers λφaφbŌ are called
the OPE coefficients, and Ō denotes the Hermitian
conjugate of O.

The OPE can also be taken between defect operators, but
it has a slightly different interpretation, since in general the
inputs and outputs of the defect OPE will live in different
defect Hilbert spaces. Again schematically, if we take defect
operators living at the ends of TDLs Lg and Lh, their OPE can
be written as follows:

φg
a×φh

b ∼
∑
Ogh

λv

φ
g
aφ

h
bŌghOgh

where we use the notation ḡ ≡ g−1. It is important to note that
OPE coefficients of defect operators depend, up to a phase,
on a junction vector v. This is because in order to calculate
the OPE coefficient, one constructs a four-point function con-
taining three defect operators together with a junction vector
connecting the TDLs of the defect operators in a configuration
such as that of Fig. 4, with defect operators added to ends of
the TDLs. Further, since there are three different junction vec-
tors for a given three-way junction (when the TDLs forming
the junction are all invertible), there is freedom to choose a
junction vector when writing down OPE coefficients. Thus,
there is a separate OPE coefficient for each junction vector,
but all choices are related to each other in a fixed way via
the cyclic permutation map between junction vector spaces
[53], which results in an overall phase difference. Strictly
speaking, the OPE coefficient for defect operators may also
depend on the angle of the TDL leaving the defect operators,
but since we deal only with scalar defect operators, which
transform trivially under rotations, we do not encounter this
complication.

In the most general setting, there are a few differences
that must be accounted for when considering correlation func-
tions of defect operators. First of all, the nonlocal nature of
the defect operators leads, in some cases, certain correlation
functions of defect operators to be multivalued maps of the
positions of the operators in the correlation function. This
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is because winding an operator charged under the TDL at-
tached to a defect operator must involve acting on the charged
operator with the TDL. Additionally, defect operators obey a
modified version of crossing symmetry. A correlation function
of four defect operators is really a six-point function of the
defect operators along with two junction vectors, which can
be represented graphically by attaching defect operators to the
TDLs in the left-hand side of the graphical equation in Fig. 5.
Crossing symmetry is then modified since there may be a
phase ω(g, h, k) accrued when relating the two OPE channels
of the four external operators. Further, the intermediate opera-
tors will live in potentially different defect Hilbert spaces. For
more discussion on correlation functions of defect operators,
see Refs. [94,95].

Appealing to the gauging argument from the previous
subsection, we will now argue that the version of crossing
symmetry obeyed by the scalar defect operators we consider
in this paper is identical to certain local operators. Again,
let TLSM be defined as before and H = ZN be a nonanoma-
lous subgroup of G = Z3

N . Consider external defect operators
φ

g
I , φ̄

ḡ
Ī
, for I = 1..., N , where we take g to generate H . Since

scalar defect operators are neutral under H , upon gauging H
they are promoted to local operators in T̃LSM that, without
loss of generality, can be taken to transform in representations
RN2+1, R̄N2+1 of He(3, N ), which are N-dimensional irreps.
Since all operators appearing in OPEs of the defect operators
φ

g
I , φ̄

ḡ
Ī

will also be neutral under H by ZN charge conserva-
tion, gauging does not modify the values of the correlation
functions that they generate. In particular, this means that it
must be possible to set the extra phase that could appear in
Fig. 5 equal to 1 since we can exactly relate the value of the
defect operator correlation function to a correlation function
involving only local operators via gauging. Thus, for the pur-
pose of bootstrap, the crossing equations we generate from
viewing the external operators as defect operators in TLSM or
local operators in T̃LSM will be identical. We should note, how-
ever, that if one wants to strictly think of everything in terms of
defect operators, an analogous statement is that all the phases
ω(ḡ, h̄, k̄) can be set equal to 1 for the four-point functions we
consider, which only involve TDLs corresponding to elements
of H , by a careful choice of junction vectors, which is done
partially in Appendix A of Ref. [53]. We note that, for these
reasons, we may drop all dependence on junction vectors from
the diagrams we draw and formulas we write down. This is
reflected in the diagrams representing the four-point functions
we consider, as in Fig. 8.

IV. NUMERICAL BOOTSTRAP APPROACH

The bounds presented in the main results section are ob-
tained via an approach that uses correlator bootstrap bounds
as additional input to modular bootstrap, thereby augmenting
the usual procedure to incorporate global symmetries into
modular bootstrap. Here we outline the details of how our
bounds are obtained.

A. Correlator bootstrap with defect operators

We first will show both how the local operator spectrum
and central charge of unitary CFTs with a G = Z3

N internal

φg
I

φ̄ḡ

J̄
φg

K

φ̄ḡ

L̄ φg
I φ̄ḡ

L̄

φg
Kφ̄ḡ

J̄

=

φg
I

φg
J φ̄ḡ

K̄

φ̄ḡ

L̄ φg
I φ̄ḡ

L̄

φ̄ḡ

K̄
φg

J

=

φg
I

φg
J φg

K

φg
L φg

I φg
L

φg
Kφg

J

=

FIG. 8. A pictorial representation of the four-point functions of
defect operators that we impose crossing symmetry on in our boot-
strap calculations. In these configurations, all the external TDLs
are either Lg or L̄g. The internal TDL marked by a double arrow
represents Lg2 , but when Lg2 squares to the trivial line, like when
N = 4, we denote it by an orientationless TDL such as in the bot-
tom diagram. When N = 2 all diagrams are equivalent. For general
N > 2, only the top and middle diagrams are consistent with the
group multiplication except when N = 4 where the bottom diagram
is consistent as well. Due to the gauging argument, we can neglect the
dependence on the junction vectors since there is a canonical choice
that removes the phase ω(g, h, k) in our cases, which involve only
external defect operators hosted on a single ZN TDL or its inverse.
We could also even consider these to be correlation functions of local
operators, but to emphasize the more generic scenario we stick to
drawing defect operators.

symmetry and LSM anomaly are constrained when there is an
additional assumption that the theory possesses certain light
defect operators hosted on TDLs of the theory. To obtain
central charge bounds, we additionally assume a nongeneric
gap, the value of which we scan over, to the scaling dimension
of any local operator appearing in the OPEs of the defect
operators.

To do correlator bootstrap, one must first derive the cross-
ing symmetry constraints arising from all possible four-point
functions involving the external operators under considera-
tion. Deriving these constraints by hand is rather cumbersome.
Since we know the bootstrap equations for the defect op-
erators of interest are equivalent to those of local operators
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transforming in N-dimensional irreps of He(3, N ), we use
the autoboot package by Go and Tachikawa to generate the
semidefinite constraints [96]. autoboot is a tool specially
designed for producing the crossing symmetry constraints
for fields transforming in arbitrary global symmetry repre-
sentations [97]. Here we simply summarize the constraints
we impose in an abstract form and list the spectrum as-
sumptions used for semidefinite programming; the constraints
themselves are generally too unwieldy to report here, but
can be made available upon request or simply obtained via
autoboot.

The output of autoboot is a set of vector-matrix-valued
functions of the conformal cross-ratios V�D

R,�,s(x, x̄) (i.e.,
vectors whose components are matrices, with the matrix en-
tries being functions of the conformal cross ratios), each of
which represents the crossing symmetry constraint due to
external fields with scaling dimension �D transforming in
N-dimensional irreps of He(3, N ) and internal fields trans-
forming in a representation R with scaling dimension � and
spin s. We take the functions V�D

R,�,s(x, x̄) to have compo-
nents expressed in terms of the global conformal blocks for
(1 + 1)d CFTs, given by [98,99]

g�,s(x, x̄) = (−2)−s

1 + δs,0
(k�+s(x)k�−s(x̄) + k�−s(x)k�+s(x̄))

(19)

where

kβ (x) = xβ/2
2F1

(
β

2
,
β

2
, β, x

)
. (20)

Each component of the vectors V�D
R,�,s(x, x̄) corresponds

roughly to a distinct four-point function, although the actual
implementation in autoboot combines different four-point
functions using certain invariant tensors of the symmetry
group. If we denote all distinct OPE coefficients, where the
internal field is OR and where we use I, J to label different
choices of external fields, by λIOR (i.e., I labels a pair of
fields here), we can compactly express the crossing symmetry
constraints as∑

I,J

∑
R

∑
OR

λIORλJOR

[
V�D

R,�OR ,sOR

]kIJ = 0 (21)

for each k, indexing the different individual crossing symme-
try constraints. Note that the OPE coefficients in (21) can be
chosen to be real [96].

We now proceed with the usual bootstrap algorithm: We
make some assumptions about the spectrum of operators of a
given theory and see if our assumptions leads to a violation of
(21) using semidefinite programming.

To do the semidefinite programming, we will use SDPB [46]
to search for a (matrix-valued) linear functional acting on the
space of vector-matrix-valued functions of x, x̄ that obeys a
number of semi-definiteness properties. For our purposes α

may be expressed in a basis of derivatives of the cross ratios
evaluated at the crossing-symmetric point x, x̄ = 1

2 ,

α[V(x, x̄)] =
∑

k

�cor∑
m,n=0

m+n��cor

ak
mn∂

m
x ∂n

x̄ [V(x, x̄)]k
∣∣
x=x̄= 1

2
(22)

where �cor is the correlator bootstrap derivative order. The
properties we need α to obey will depend on whether we
are obtaining upper bounds on scaling dimensions or lower
bounds on central charge. In the remaining part of this sec-
tion we explain the constraints on the linear functional in each
of these contexts.

1. Upper bounds on scaling dimension

In order to obtain upper bounds on the scaling dimen-
sion of local operators, we will assume that there exist some
scalar defect operators φ

g
I , φ̄

ḡ
Ī
, which have the lowest scaling

dimension, equal to �D, among all defect operators in the
defect Hilbert spaces corresponding to nonanomalous, order
N TDLs. Recall that we label irreps of He(3, N ) as Ri ac-
cording to their index in GAP. For the purposes of bootstrap,
we may take these defect operators as transforming in the
representation RN2+1, R̄N2+1 of He(3, N ) when N is prime
or, when N = 4, 6, transforming in R21, R54 respectively—all
such irreps are N dimensional. For brevity later, we will de-
note the set of all N-dimensional irreps by [N]. Taking OPEs
of these defect operators may produce either local operators
or defect operators. This can be seen in the gauged language
by observing first that

RN2+1 ⊗ R̄N2+1 =
N2⊕
i=1

Ri

where on the right-hand side all direct summands are one-
dimensional irreps. Note that this is the only possibility for
N = 2 since in this case R5 is a real representation. The one-
dimensional irreps can be viewed as representations of Z3

N ,
and thus we see that the anomaly forces the OPE of the defect
operators to contain Z3

N -charged operators. For N > 2 we also
have

N prime: RN2+1 ⊗ RN2+1 = NRN2+2

N = 4: R21 ⊗ R21 =
20⊕

i=17

2Ri

N = 6: R54 ⊗ R54 = 3R47 ⊕ 3R49 ⊕ 3R51 ⊕ 3R53.

When N is prime, the above tensor products decompose into
a direct sum of N copies of another N dimensional irrep,
and when N = 4, 6 the decomposition is achieved by a com-
bination of irreps of dimension N/2. These tensor product
decompositions reflect, in the TDL language, that, for prime
N , taking the OPE of identical defect operators living on
a nonanomalous, order N TDL produces defect operators,
which also live on order N , nonanomalous TDLs. Thus, the
scaling dimensions of such operators, when they are scalar,
are bounded from below by �D. For our cases N = 4, 6 this is
not the case; instead, two such defect operators create defect
operators living on an order N/2 nonanomalous TDL, and we
make no assumption about the spectrum of such operators
beyond what is guaranteed by unitarity.

We now describe how to rule out various assumptions on
the scaling dimension of the lightest operators appearing in
the OPE of defect operators with the above listed proper-
ties. For all N we refer to an operator transforming in any
nontrivial one-dimensional representation of He(3, N ), which
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can be interpreted as an operator transforming in a nontrivial
representation of Z3

N , as a charged operator, and refer to an
operator transforming in the trivial representation as a sym-
metric operator. We will denote the assumed minimum scaling
dimensions of any scalar symmetric/charged local operator
appearing in the OPE of the defect operators by �min

0 ,�min
Q

respectively. We will use [0] and [Q] to denote, respectively,
the set of trivial and nontrivial one-dimensional irreps. We
will refer to these minimum scaling dimensions �min

0 ,�min
Q

as the gaps. To attempt to rule out these gaps, we seek a linear
functional α of the form (22), satisfying

α
[
V�D

R1,0,0

] = 1

α
[
V�D

Ri,�,s

] � 0 ∀� �

⎧⎪⎪⎨
⎪⎪⎩

�min
0 Ri ∈ [0], s = 0

�min
Q Ri ∈ [Q], s = 0

�D Ri ∈ [N], s = 0, N odd
|s| else

where M � 0 for a real, symmetric matrix M means that M
is positive semidefinite. It is necessary to truncate the values
of spin for which we impose the above constraints to only
include |s| � Scor

max, which we choose to be sufficiently large
so that our bounds at fixed �cor are stable to an increase
in Scor

max. Upon finding such a linear functional, we would
conclude that the given assumptions are inconsistent with
crossing symmetry of the defect operators. If �min

0 = 0, we
would conclude that �min

Q is an upper bound on the lightest
charged operator appearing in the OPE of the defect operators.
If �min

0 = �min
Q = �min, we conclude that �min is an upper

bound on the lightest operator of any charge.
Finally, we will denote by �∗

Q(N,�D) the optimal, to
within some small numerical tolerance, upper bound on the
scaling dimension of the lightest charged, local, scalar, op-
erator, which appears in the OPE of scalar defect operators
transforming in the RN2+1, R̄N2+1 representations of He(3, N )
with scaling dimension �D. These bounds are shown in Fig. 9.
We note that we found the bounds to remain unchanged upon
doing similar calculations with �min

0 = �min
Q , i.e., the result-

ing bound is on the lightest local operator. We do not present
bounds on the lightest symmetric operator since our bounds
could not guarantee that the OPE of defect operators must
produce a relevant symmetric scalar for any choice of �D, so
we do not consider such bounds to be particularly interesting.

2. Lower bounds on central charge

For the central charge bounds, we will assume N is odd
and prime since these are the cases for which we are most
interested in refining our bounds.

Every unitary, (1 + 1)d CFT possesses conserved, spin-2,
quasiprimary fields, which are the holomoprhic and antiholo-
morphic stress tensor fields T (z), T̄ (z̄). With the appropriate
normalization [43], the OPE coefficient of a primary field φ

with scaling dimension �, its conjugate, and the stress tensor
is given in (1 + 1)d by [100]

λφφ̄T = 2
√

dim R�√
c

,

0.0 0.2 0.4 0.6 0.8 1.0
ΔD

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Δ

N = 2

N = 3

N = 4

N = 5

N = 6

FIG. 9. Upper bounds on the scaling dimension of the lightest
Z3

N charged, scalar operator appearing in the OPE of scalar defect
operators with scaling dimension �D living on a nonanomalous
ZN TDL in theories with the LSM anomaly for N = 2, . . . , 6. The
bound is not noticeably changed if the bound is calculated instead
for the lightest local operator transforming in any representation of
Z3

N . For each N we assign different colors. The matching colored
dots indicate, for each N , points corresponding to the scaling di-
mension of the lightest Z3

N -charged local operator appearing in the
OPE of the lightest scalar ZN defect operator living on a nonanoma-
lous ZN TDL for su(N )1. The su(N )1 points for N = 2, . . . , 6 are
( 1

8 , 1
2 ), ( 2

9 , 2
3 ), ( 5

16 , 3
4 ), ( 2

5 , 4
5 ), and ( 35

72 , 5
6 ). These bounds were com-

puted with �cor = 25 and Scor
max = 50.

where R is the representation of the internal symmetry group
that φ transforms in. In the following we will take dim R = N ,
applicable to the cases that we consider.

To bound the central charge, we again consider some defect
operators φ

g
I , φ̄

ḡ
Ī

whose scaling dimension is �D. We then
expand (21) as

0 = [
V�D

R1,0,0

]k + λ2
φgφ̄ḡT

[
V�D

R1,2,2

]k

+
∑
I,J

∑
R

∑
OR �=T,T̄
�OR >0

λIORλJOR

[
V�D

R,�OR ,sOR

]kIJ
. (23)

We now act on (23) with a linear functional of the form (22)

α
[
V�D

R1,2,2

] = 1

α
[
V�D

Ri,�,s

] � 0 ∀� �

⎧⎨
⎩

�min if Ri ∈ [0] ∪ [Q], s = 0
�D if Ri ∈ [N], s = 0
|s| otherwise

.

Note that here we have assumed that the scaling dimension of
any scalar, local operator appearing in the OPE of the external
defect operators has scaling dimension at least �min. It is
necessary to impose some gap in the spectrum of symmetric,
scalar operators in order to obtain any central charge bounds,
since otherwise we would not be able to have α[V�D

R1,0,0] < 0.
Acting with such a functional and rearranging terms allows us
to conclude

λ2
φgφ̄ḡT = 4N�2

D

c
� −α

[
V�D

R1,0,0

]
,
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FIG. 10. Lower bounds on central charge for N = 3 (left) and N = 5 (right) as a function of the scaling dimension of the lightest scalar
defect operator living on an order N nonanomalous TDL in a theory with the LSM anomaly. Each solid curve represents a different value of
the minimum scaling dimension for the lightest scalar, local operator appearing in the OPE of the external defect operators. For N = 3 we
compute the curves for values where the gap to the minimum value of the scaling dimension for such operators is � = 0.01, . . . , 0.75 and, for
N = 5, � = 0.01, . . . , 1.05, each with spacing 0.01 between successive values. The darkness of the curve indicates the value of the gap from
low to high with increasing darkness. For N = 3, the computed values of the central charge lower bound are less than c = 2, and for N = 5 all
computed values are less than c = 4, in agreement with known theories. To obtain these bounds we used �cor = 15 with Scor

max = 30.

which means, assuming −α[V�D
R1,0,0] > 0 consistent with a gap

�min not being ruled out,

c � 4N�2
D

−α
[
V�D

R1,0,0

] . (24)

Thus, we want to minimize −α[V�D
R1,0,0] consistent with the

previously stated constraints to find the strongest lower bound
on c, which is again done using SDPB. We will denote our
lower bounds obtained in this way, which are presented
in Fig. 10, by c∗(N,�D,�min). Central charge bounds in
(1 + 1)d CFT have been obtained in other papers, e.g., in
Ref. [101], so in order to verify the correctness of our setup,
we reproduced some of the central charge bounds contained
therein.

B. Modular bootstrap

1. Twisted partition functions

The partition function of a unitary, compact, (1 + 1)d CFT
on a spacetime torus encodes the spectrum of scaling dimen-
sions and spins of each primary field of the theory. When
the theory has a global, internal symmetry G, we can assign
additional quantum numbers accounting for the particular rep-
resentations ρ of G that states in the Hilbert space of the
theory transform in. The torus partition function (which will
be denoted pictorially by an empty square with opposite edges
identified, i.e., either diagram in Fig. 11 with the trivial TDL
in place of Lg) with modular parameters τ, τ̄ takes the form
(when c > 1)

Z (τ, τ̄ ) = Tr(qL0− c
24 q̄L̄0− c

24 ) (25)

=
∑
h,h̄

∑
ρ

nρ

h,h̄
χh,h̄(τ, τ̄ ) (26)

where q = e2π iτ , q̄ = e−2π iτ̄ , χh,h̄(τ, τ̄ ) = χh(τ )χ̄h̄(τ̄ ), and χh

are the Virasoro characters

χ0(τ ) = (1 − q)

η(τ )
q− c−1

24 , χh(τ ) = 1

η(τ )
qh− c−1

24 ,

where η(τ ) is the Dedekind eta function. Note that to do
modular bootstrap calculations, we use so-called reduced
characters, defined by replacing χh(τ ) → τ 1/4η(q)χh(τ ).
Henceforth, when we write χh(τ ) etc., we will always be
referring to these reduced Virasoro characters. In (26), nρ

h,h̄
are positive integers equal to the dimension of the irreducible
representation ρ times its multiplicity within each Verma
module for conformal dimensions h, h̄. The assumption of
compactness ensures that there is a unique ground state and
a discrete spectrum when the spatial extent of spacetime is
finite. The partition function is constrained to be invariant un-
der SL(2,Z) modular transformations. Such transformations
relate descriptions of the same tori with different values of the
modular parameters and are generated by the modular S and

L̂g

Lg

FIG. 11. Each square represents a torus, since opposite edges are
identified, where we quantize the theory on horizontal spatial slices.
On left is the torus partition with a horizontal twist, corresponding
to acting with symmetry across one period of imaginary time evo-
lution. On right is the torus partition function with a vertical twist,
corresponding to the partition function of the theory subject to a
Lg-twisted boundary condition.
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T transformations

S : τ → −1/τ T : τ → τ + 1.

Imposing equivalence of the torus partition function under
such transformations leads to the modular invariance con-
straints

Z (τ, τ̄ ) = Z (−1/τ,−1/τ̄ ) = Z (τ + 1, τ̄ + 1).

We can also use TDLs to construct other partition function-
like objects that probe aspects of the G global symmetry,
which we will call twisted partition functions. These are
constructed by considering the theory on a spacetime torus
in the presence of TDLs wrapped around the cycles of the
torus. When a TDL corresponding to the group element g is
wrapped around a spatial cycle, illustrated in the left diagram
within Fig. 11, this corresponds to acting with L̂g across one
period of imaginary time evolution. Specializing to G = Z3

N ,
let us denote the group elements of Z3

N by three-component
ZN -valued vectors, i.e., g = (i, j, k) for some i, j, k ∈ ZN .
Similarly, let us denote representations of G, which are all
one dimensional, in a similar way but, for differentiation, with
square brackets ρ = [i, j, k]. Then, a state transforming in a
representation ρ of G transforms under g as

L̂g|ρ〉 = e2π i〈ρ,g〉/N |ρ〉
where 〈ρ, g〉 = ii′ + j j′ + kk′ for g = (i, j, k), ρ = [i′, j′, k′].
With this, we may express the torus partition function with a
horizontal twist as

Zg(τ, τ̄ ) = TrH(L̂gqL0− c
24 q̄L̄0.− c

24 )

=
∑
h,h̄

∑
ρ∈Rep(G)

nρ

h,h̄
e2π i〈ρ,g〉/Nχh(τ )χ̄h̄(τ̄ ).

Likewise, if a g-TDL is wrapped around a cycle in the time
direction, illustrated within Fig. 11 on the right, then the
resulting twisted partition function represents the partition
function of the theory where the trace is taken over the defect
Hilbert space Hg,

Zg(τ, τ̄ ) = TrHg (qL0− c
24 q̄L̄0− c

24 ) =
∑
h,h̄

ng
h,h̄

χh,h̄(τ, τ̄ ).

The coefficients of the above twisted partition function ng
h,h̄

are again positive integers representing the degeneracy of each
defect operator with conformal dimensions h, h̄. Of course,
as we explained previously, the states in the defect Hilbert
space may be dressed with (fractionalized) global symmetry
quantum numbers as well, but this fact will not be important
for our modular bootstrap calculations.

The twisted partition functions are also subject to modular
transformation relations. Covariance under T leads to the spin
selection rule (12) [30,31,53]. Since a modular S transforma-
tion swaps the two cycles of the torus it interchanges the space
and time directions. Thus, we see that

Zg(−1/τ,−1/τ̄ ) = Zg(τ, τ̄ ), (27)

Zg(−1/τ,−1/τ̄ ) = Zḡ(τ, τ̄ ). (28)

The defect Hilbert space spectrum is thus completely deter-
mined by the local operators of the theory and their symmetry

representations. Now, we can construct a 2|G| − 1 dimen-
sional vector of twisted partition functions

Z(τ, τ̄ ) =

⎛
⎜⎜⎜⎜⎜⎝

Z (τ, τ̄ )
Zg(τ, τ̄ )

...

Zg(τ, τ̄ )
...

⎞
⎟⎟⎟⎟⎟⎠

.

This allows us to compactly express the modular transforma-
tion relations amongst the twisted partition functions

Z(−1/τ,−1/τ̄ ) = PZ(τ, τ̄ ) (29)

where P is a permutation matrix implementing the relations
(27,28) between the components of Z.

Borrowing terminology from Refs. [30,31], Z is currently
expressed in the twist basis, but in order to do bootstrap
calculations to obtain bounds, which depend on the symmetry
representations it is necessary to write Z in the charge basis,
in which positivity is manifest. This is done by performing a
discrete Fourier transformation on the partition functions Zg,
leading to partition functions counting the contributions from
states transforming in a single representation ρ,

Zρ (τ, τ̄ ) = 1

|G|
∑
g∈G

e−2π i〈ρ,g〉/N Zg(τ, τ̄ )

=
∑
h,h̄

nρ

h,h̄
χh(τ )χ̄h̄(τ̄ ).

We remind the reader again that the vertically twisted parti-
tion functions Zg already have a decomposition into Virasoro
characters with positive coefficients, so no additional change
of basis is needed in those instances. Writing Z(τ, τ̄ ) =
CZ̃(τ, τ̄ ), where Z̃ is the twisted partition function in
the charge basis and C is a matrix implementing the discrete
Fourier transformation, we see that Z̃ transforms under the
modular S transformation as

Z̃(−1/τ,−1/τ̄ ) = F Z̃(τ, τ̄ )

where F = C−1PC.
There is an additional step that we perform that greatly

simplifies our calculations, which is a generalization of the
procedure outlined in Ref. [31] for reducing the dimension
of the vector of twisted partition functions Z̃. Given some
group G, each outer automorphism γ ∈ Out(G) will generate
a reduced vector partition function where the components
consist of summing over the twisted partition functions, in the
twist basis, corresponding to TDLs, which lie in equivalence
classes under γ . The simplest nontrivial example of this is
when γ (g) = g−1, which pairs each TDL with its orientation
reversal, which generates the reduction employed in Ref. [31].
In general, to lose no generality in the bootstrap calculations,
one finds the largest subgroup of outer automorphisms, which
we will denote � ⊆ Out(G), that does not mix TDLs with
different ZN anomalies and performs the reduction with the
outer automorphisms in this subgroup. We will denote the
equivalence classes of TDLs that are related to each other by
group automorphisms in � by [1], . . . , [n�]. That is, denoting
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elements of G by gn, one finds a reduction matrix

rmn =
{

1 gn ∈ [m]
0 else . (30)

The full reduction matrix, in the twist basis, is then given by
taking two copies of rmn, where each copy reduces the hor-
izontally/vertically twisted partition functions (note that the
copy for the vertically twisted partition functions excludes the
redundant first row of r representing the untwisted partition
function)

Rmn =

⎧⎪⎨
⎪⎩

rmn 1 � m � n�, 1 � n � |G|
r(m−n�+1)(n−|G|+1)

n�+1�m�2n�−1
|G|+1�n�2|G|−1

0 else

.

(31)

Finally, in the charge basis we write R̃ = RC. Then, defining
Z̃red = R̃Z̃ we may write the simplified modular covariance
equation

Z̃red(−1/τ,−1/τ̄ ) = FredZ̃red(τ, τ̄ ) (32)

where Fred = R̃FR̃T (R̃R̃T )−1. We present Fred for the groups
Z3

N we consider in this paper in Appendix. Finally, we define
the vectors[

M j
h,h̄

(τ, τ̄ )
]

i = δi jχh,h̄(−1/τ,−1/τ̄ ) − [Fred]i jχh,h̄(τ, τ̄ ).

(33)

Then the statement of modular covariance of the twisted par-
tition function may be expressed as∑

j,h,h̄

n j
h,h̄

M j
h,h̄

(τ, τ̄ ) = 0. (34)

2. Bounding the local operator spectrum

To put upper bounds on the scaling dimension of local
operators, similarly to correlator bootstrap we aim to show
via semidefinite programming that certain assumptions about
the spectrum of local and defect operators in a CFT with
some global symmetry and anomaly, encoded in the twisted
partition functions, lead to a violation of (34). The new in-
gredients to the standard modular bootstrap program with
global symmetries that we introduce are our bounds coming
from correlator bootstrap, which allow the more subtle LSM
anomaly to enter our final modular bootstrap calculations. We
will explain how those bounds lead to nontrivial lower bounds
on the scaling dimension of the lightest defect operators, un-
der the assumption of gaps in the spectrum of local operators,
and how this can be used to generate universal upper bounds
on the scaling dimension of the lightest local operators with
various symmetry properties. Incorporating the bounds from
correlator bootstrap gives strictly stronger bounds than mod-
ular bootstrap alone, and is essential for finding any bound at
all on the lightest charged operator when N is odd.

We can make stronger assumptions about the defect
operator spectrum due to our previously obtained bounds
�∗(N,�D) and c∗(N,�D,�min), for reasons we now explain.

As before, let �min
0 and �min

Q denote the assumed lower
bounds on the scaling dimension of any scalar, local operator
that is, respectively, symmetric or charged under Z3

N . Next

define

�̃scal
D

(
�min

0 ,�min
Q

) ≡ min
{
�D : �∗(N,�D)

� max
(
�min

0 ,�min
Q

)}
.

This represents the minimum scaling dimension of a defect
operator living on a nonanomalous, order N TDL whose OPE
does not necessarily contain local operators whose scaling
dimensions violate the assumed gaps. Thus, �̃scal

D (�min
0 ,�min

Q )
is a lower bound on the scaling dimension of any such de-
fect operator. To incorporate the central charge lower bounds,
when �min

0 = �min
Q = �min, we define

�̃cent
D (�min, c) ≡ min{�D : c∗(N,�D,�min) � c},

which represents the minimum defect operator scaling di-
mension consistent with gaps �min

0 ,�min
Q and central charge

c. Note that, in practice, we can only compute the curves
c∗(N,�D,�min) for a finite list of values {�(i)} for the gap in
the local operator spectrum �min. Consequently, we perform
an interpolation between the central charge curves to achieve
the corresponding curve for values of �min between some �(i)

and �(i+1). Given functions fi(�D), fi+1(�D) representing
such neighboring curves, we use the interpolation f̃i,i+1(�D)
given by

f̃i,i+1(�D) ≡ f −1
i,i+1(�D)

fi,i+1(c) ≡ (1 − x) f −1
i (c) + x f −1

i+1(c)

x ≡ �min − �(i)

�(i+1) − �(i)
.

This has the effect of smoothing out our bounds but intro-
duces a small degree of nonrigorousness. Our focus in this
paper is primarily on showing the existence of a bound and
its general, qualitative features, so consequently we do not
attempt to quantify the error introduced in this way. However,
we should certainly discuss this effect in relation to our claim
that (g2)1 is outside the allowed region in our N = 5 bound
on the lightest local scalar. We can safely rule out c = 14

5 and
�min = 4

5 since the curve c∗(5,�D, 4
5 ) is computed exactly,

up to discretization effects in �D that should be very small as
the curves are quite smooth.

At this point we see that there are two, independent lower
bounds on the defect operator scaling dimension that are con-
sistent with either the gaps �min

0 ,�min
Q or the central charge c;

a theory with a defect operator of a lower scaling dimension
than the maximum of the two would thus be inconsistent.
Finally we define

�min
D

(
�min

0 ,�min
Q , c

) ≡ max
{
�̃scal

D , �̃cent
D

}
and conclude that this is the lowest possible value of the
defect operator scaling dimension consistent with the gaps
�min

0 ,�min
Q , and c.

The final step is to do a standard modular bootstrap cal-
culation to determine whether the gaps in the local operator
spectrum and the gap in the defect operator spectrum are
inconsistent with modular covariance of the twisted partition
function. To do this, we seek a linear functional, which acts
on vector-valued functions of the modular parameters, of the
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form

α[M(τ, τ̄ )] =
∑

j

�mod∑
m,n=0

m+n��mod

a j
mn∂

n
τ ∂m

τ̄ [M(τ, τ̄ )] j

∣∣
τ=i,τ̄=−i

(35)

where �mod is the modular bootstrap derivative order. In our
setup, we will allow primary operators of three different types
to enter the spectrum of the theories we consider: the vacuum
primary with h = h̄ = 0, degenerate primaries with either h or
h̄ being equal to 0, and nondegenerate primaries with h, h̄ >

0. For the case of degenerate primaries and the vacuum, the
degenerate Virasoro character of weight 0 enters, while in the
nondegenerate case only the nondegenerate characters enter.
Further, we will assume that the spectrum of the theories we
consider is parity invariant, meaning n j

h,h̄
= n j

h̄,h
without loss

of generality, since the anomalies considered in this paper are
compatible with such an assumption [30,31,102]. We thus will
define

M j
�,s(τ, τ̄ ) ≡ M j

h,h̄
(τ, τ̄ ) + M j

h̄,h
(τ, τ̄ )

where � = h + h̄, s = h − h̄ and we assume s � 0. Note that,
in this notation, we can denote the contribution from degen-
erate Virasoro primaries (including that of the vacuum) by
M j

s,s(τ, τ̄ ) for s > 0. The linear functional (35) that we search
for will be constrained to have the following properties:

α
[
M1

0,0

] = 1

α
[
Mi

�,s

]
� 0 ∀� �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�min
0 i = 1, s = 0

�min
Q 2 � i � nγ , s = 0

�min
D i = 2nγ − 1, s = 0

|s| else, s � Smod
max ∈ Si

α
[
Mi

s,s

]
� 0 ∀s � Smod

max ∈ Si

where we use Si to denote the spins allowed by the spin selec-
tion rule for the local operators, which are just any integer, and
defect operators, given in Table I, for the ith composite sector.
Note that 2nγ − 1 is the index denoting the composite defect
sector corresponding to nonanomalous, order N TDLs. Fur-
ther we denote our spin truncation parameter for our modular
bootstrap calculations by Smod

max .
Upon finding such a linear functional α, we conclude

that the assumed gaps �min
0 and �min

Q are inconsistent with
both modular covariance of the twisted partition function and
crossing symmetry of defect operators. When we successfully
find a linear functional obeying the constraints when �min

0 = 0
this represents an upper bound on the lightest charged op-
erator, and similarly when �min

0 = �min
Q we get a bound on

the lightest local operator. Either of these bounds may be
optimized, to within a small numerical tolerance, to obtain
the final bounds, which are shown in Fig. 2. This concludes
our description of our modifications to the usual modular
bootstrap procedure.

V. CONCLUSIONS

In this paper, we take an additional step towards constrain-
ing the space of (1 + 1)d bosonic CFTs with finite global

symmetries and anomalies. To this end, we incorporate a
more complete picture of the symmetry properties of defect
operators into the modular bootstrap, exploiting the delicate
balance between the spectrum of defect operators and local
operators. We make the relationship between the spectra of
defect and local operators quantitatively precise using con-
formal bootstrap techniques, and in the end obtain universal
bounds on the spectrum of local operators. Our primary result
is a generalization of the main results of Refs. [30,31] that ZN

anomalies imply the presence of light, charged operators in a
CFT. What we show is that this statement continues to hold
for a class of Z3

N anomalies that, in some cases, do not lead to
any nontrivial spin selection rule for certain defect operators.
The particular symmetries and anomalies that we study occur
in physically relevant situations such as spin chains obeying
LSM-type constraints, and in somewhat more fine-tuned sit-
uations such as multicritical points of (1 + 1)d SPT phases.
Of course, our bounds also apply to the gapless boundary
theories of in-cohomology (2 + 1)d SPT phases protected by
Z3

N symmetry with 3-cocycle ω given by (14).
A question that motivated this paper is how, if at all, the

central charge of a (1 + 1)d CFT is bounded from below by its
discrete symmetries and anomalies. As far as symmetry goes,
it is known that a CFT with a finite global symmetry whose
faithfully realized part is a group larger than Z2 or S3 must
have c � 1 [54]. Further, the Sugawara construction provides
a formula for the minimum central charge needed to ac-
commodate continuous global symmetries, which is generally
even larger than c = 1 [37]. Thus, restricting to general finite
symmetries, we are interested in the question of whether any
lower bound c > 1 can be proven when the symmetry is
anomalous.

Consequently, another goal of our paper was to search for
numerical bootstrap evidence that could test whether certain
suggested lower bounds are reasonable. Some of our calcu-
lations seem to suggest that existing, proposed bounds are
not quantitatively correct. Specifically, in the case N = 5 that
we study, there is a prominent kink in our plot, but it does
not obviously correspond to any known theory. The location
of the kink is nearly coincident with the WZW CFT (g2)1,
which has central charge c = 14/5, but upon doing more
careful numerics we were able to place this theory outside
of the allowed region. Since bootstrap calculations can only
rigorously show what is disallowed, it is difficult to make any
statements about features in the allowed region when they do
not appear to correspond to known theories. In the future, it
will be interesting to explore more carefully the region near
this kink to look for other signatures that can explain the kink
as an actual theory. We expect that using a mixed correlator
bootstrap setup will especially help in this direction, which
we are actively investigating. More generally, we are hopeful
that future analysis, guided by the evidence provided here,
together with additional analytic or numerical calculations,
will produce the types of central charge bounds that we desire.

There are various exciting avenues for future study that
we would like to mention. First, we can consider technical
improvements to the calculations that were done in this paper.
Among them are, first, using Virasoro conformal blocks for
the correlator bootstrap constraints; this would quantitatively
improve the bounds and is also a way to directly incorporate
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the central charge into the correlator bootstrap calculations
without needing to assume a nongeneric gap in the spectrum
of symmetric local operators. Second, we think it would be
very interesting to consider the problem of bootstrapping
correlation functions of defect operators with fractional spin,
which could produce bootstrap bounds on defect operators in
the most general setting. The aforementioned improvements
would open up the possibility of obtaining current state-of-
the-art universal bounds for completely general finite global
symmetries and anomalies. This seems especially interesting
when the symmetry is described by a fusion category with
some noninvertible TDLs. There are countless examples of
interesting theories with such noninvertible symmetries, espe-
cially in the context of (1 + 1)d CFT, so exploring the space
of CFTs with such symmetries using bootstrap is a natural
future direction. This story has been initiated in [103], and we
expect more general cases to be improved by the techniques
introduced in this paper.

Generalizations of our story to CFTs in higher dimensions
seem especially interesting, albeit seemingly in the absence of
a useful analog of modular invariance [104]. Some progress
in this direction has been made already [105], but accounting
for the complete picture of symmetries [106] and anomalies
in higher dimensions within bootstrap remains a challenge.
There is significant condensed matter theory motivation to
incorporate anomalies into bootstrap, since, for instance, it
could provide another way to explore the properties of exotic
gapless states (see [107,108]).

How might such higher-dimensional generalizations be
achieved? In (1 + 1)d , there is a clear relationship between
defect operators and local operators since both sets of oper-
ators contribute to the twisted torus partition function, and
the OPE of defect operators may contain local operators.
In contrast, defect operators corresponding to 0-form global
symmetries in dimensions d + 1 >2 are extended objects,
given by conformal defects attached to codimension-1 topo-
logical hypersurfaces (for example, in the 3d Ising CFT an
example of this is the disorder operator, sometimes known as
the twist defect). Such conformal defects host localized oper-
ators that have reduced conformal symmetry. Perhaps, then,
the implications of anomalies can be reduced to some prop-
erties of these operators. There has been much study of such
extended objects using a wide range of techniques [109,110],
including via conformal field theory techniques and bootstrap
[111–113], so including anomalies into the story seems like
a natural next step. There are, however, some technical issues
that seem to prohibit the most direct generalizations of our
paper to cases involving extended defects—see Ref. [114].
Additionally, as already pointed out in Ref. [30], anomalies
of finite 0-form symmetries in bosonic CFTs in dimensions
d + 1 >2 can be saturated by gapped topological theories,
which have a unique ground state on the spatial sphere. This
eliminates the possibility that such anomalies can lead to
refined bounds on the spectrum of local operators since any
CFT can be made to have any anomaly in this class via
stacking gapped degrees of freedom. For such anomalies, it
then seems that the questions that bootstrap may be able to
answer are those concerning the properties of the extended
defects. However, there are several classes of anomalies that
ensure gaplessness in higher dimensions, including anomalies

for continuous symmetries and even cases involving discrete
symmetries [22,115]. It thus seems promising to continue
to develop new ways to incorporate the constraints of such
symmetries and anomalies into bootstrap.
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APPENDIX: MODULAR BOOTSTRAP EQUATIONS

The reduced modular covariance equation reads

Z̃red(−1/τ,−1/τ̄ ) = FredZ̃red(τ, τ̄ ).

Here we list Fref for each N along with the corresponding
reduced partition function components.

1. N ∈ 2Z + 1

As discussed, when N is odd the LSM anomaly does not
lead any ZN subgroup to have a ZN anomaly. When N is
prime, such as in the cases we consider, the full orbit of the
automorphism group of any nontrivial g ∈ Z3

N contains all
other nontrivial TDLs. Consequently, we may perform the
maximal reduction and lose no generality. If we denote the
trivial representation by ρ1 and the trivial element of G by g1

then

Fred =

⎛
⎜⎜⎝

1
|G|

1
|G|

1
|G|

|G|−1
|G|

|G|−1
|G| − 1

|G|
|G| − 1 −1 0

⎞
⎟⎟⎠,

Z̃red =

⎛
⎜⎜⎝

Zρ1∑
ρ1 �=ρ∈Rep(G) Zρ

∑
g1 �=g∈G Zg

⎞
⎟⎟⎠.

2. N ∈ 2Z

In the case of even N , the full reduction is no longer pos-
sible. However, by grouping together all TDLs with identical
ZM anomalies according to Table I we still may perform a
nontrivial reduction.

a. N = 2

According to Table I there are two types of TDLs, both
with order 2: nonanomalous or anomalous with k = 1. Denote
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the subset of G corresponding to the former as [2N] and the
latter as [2A].

Next, denote representations of Z3
N as vectors ρ = [i, j, k].

There are then two automorphism classes of representations
induced by automorphisms preserving the spin selection rules
of the LSM anomaly: a class [O] where an odd number of
components of ρ is nontrivial and a class [E] where an even
number is nontrivial. Then

Fred =

⎛
⎜⎜⎜⎜⎜⎝

1
8

1
8

1
8

1
8

1
8

3
8

3
8

3
8

3
8 − 1

8
1
2

1
2

1
2 − 1

2 0
1 1 −1 0 0
6 −2 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

, Z̃red =

⎛
⎜⎜⎜⎜⎜⎝

Zρ1∑
ρ∈[E] Zρ∑
ρ∈[O] Zρ∑
g∈[2A] Zg∑
g∈[2N] Zg

⎞
⎟⎟⎟⎟⎟⎠

.

b. N = 4

Table I indicates that there are three classes of TDLs. All
order 2 TDLs are nonanomalous and we will denote the class
of such TDLs by [2N]. Order 4 TDLs are either anomalous
with k = 2 or nonanomalous, respectively denoted by [4A]
and [4N]. There are also three classes of nontrivial repre-
sentations. The first, denoted [2E], are representation vectors
where an even number of components is equal to 2 and the
rest are equal to 0. Then [2O] denotes the representation
vectors where an odd number of components are equal to 2
and the rest are 0. Finally, [4] denotes all remaining, nontrivial
representation vectors. These give

Fred =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
64

1
64

1
64

1
64

1
64

1
64

1
64

3
64

3
64

3
64

3
64

3
64

3
64 − 1

64
1

16
1

16
1

16
1

16
1
16 − 1

16 0
7
8

7
8

7
8

7
8 − 1

8 0 0

7 7 7 −1 0 0 0

8 8 −8 0 0 0 0

48 −16 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Z̃red =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Zρ1∑
ρ∈[2E] Zρ∑
ρ∈[2O] Zρ∑
ρ∈[4] Zρ∑
g∈[2N] Zg∑
g∈[4A] Zg∑
g∈[4N] Zg

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

c. N = 6

Following a similar pattern as before, we label the classes of TDLs as [2N], [2A], [3N], [6N], [6A] where the order 2
anomalous TDLs have k = 1 and the order 6 anomalous TDLs have k = 3. There are five classes of nontrivial representations.
We denote the classes containing an even/odd number of components being equal to 3 as [3E]/[3O]. There is a class where
each component is an even number, which we denote by [E]. There is a class containing only odd numbers with at least one
component not equal to 3, denoted [O]. Finally, there is a class where the components are a mix of even and odd numbers,
denoted [EO]. These give

Fred =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
216

1
216

1
216

1
216

1
216

1
216

1
216

1
216

1
216

1
216

1
216

1
72

1
72

1
72

1
72

1
72

1
72

1
72 − 1

216
1

72
1

72 − 1
216

1
54

1
54

1
54

1
54

1
54

1
54 − 1

54 0 1
54 − 1

54 0
13

108
13

108
13

108
13

108
13

108
13
108

13
108

13
108 − 1

216 − 1
216 − 1

216
13
36

13
36

13
36

13
36

13
36

13
36

13
36 − 13

108 − 1
72 − 1

72
1

216
13
27

13
27

13
27

13
27

13
27

13
27 − 13

27 0 − 1
54 − 1

54 0
1 1 −1 1 1 −1 0 0 0 0 0
6 −2 0 6 −2 0 0 0 0 0 0

26 26 26 −1 −1 −1 0 0 0 0 0
26 26 −26 −1 −1 1 0 0 0 0 0

156 −52 0 −6 2 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Z̃red =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Zρ1∑
ρ∈[3E] Zρ∑
ρ∈[3O] Zρ∑
ρ∈[E] Zρ∑
ρ∈[O] Zρ∑
ρ∈[EO] Zρ∑
g∈[2A] Zg∑
g∈[2N] Zg∑
g∈[3N] Zg∑
g∈[6A] Zg∑
g∈[6N] Zg

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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