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Mapping quantum geometry and quantum phase transitions to real space by a fidelity marker
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The quantum geometry in the momentum space of semiconductors and insulators, described by the quantum
metric of the valence-band Bloch state, has been an intriguing issue owing to its connection to various material
properties. Because the Brillouin zone is periodic, the integration of quantum metric over momentum space
represents an average distance between neighboring Bloch states, which we call the fidelity number. We show
that this number can further be expressed in real space as a fidelity marker, which is a local quantity that can
be calculated directly from diagonalizing the lattice Hamiltonian. A linear-response theory is further introduced
to generalize the fidelity number and marker to finite temperature and moreover demonstrates that they can
be measured from the global and local optical absorption power against linearly polarized light. In particular,
the fidelity number spectral function in two-dimensional systems can be easily measured from the opacity of
the material. Based on the divergence of quantum metric, a nonlocal fidelity marker is further introduced and
postulated as a universal indicator of any quantum phase transitions provided the crystalline momentum remains
a good quantum number, and it may be interpreted as a Wannier state correlation function. The ubiquity of these
concepts is demonstrated for a variety of topological insulators and topological phase transitions in different
dimensions.

DOI: 10.1103/PhysRevB.107.205133

I. INTRODUCTION

For materials with a band gap like insulators or semi-
conductors, the completely filled valence bands at zero
temperature define a compact manifold parametrized by the
crystalline momentum k owing to the periodicity of the
Brillouin zone (BZ). Recently, the notion of quantum ge-
ometry [1] of the valence-band Bloch states |ψ (k)〉 on this
compact manifold emerges as an important issue that has
been linked to various materials properties [2–20]. As in
differential geometry and general relativity, the discussion of
quantum geometry starts by equipping the manifold with a
quantum metric gμν (k) defined from the overlap of neigh-
boring Bloch states |〈ψ (k)|ψ (k + δk)〉| = 1 − gμνδkμδkν/2,
which can also be viewed as a fidelity susceptibility defined
with respect to momentum k [21–27]. Once the metric is
defined, one can proceed to introduce various geometrical
quantities like Ricci scalars, Riemann tensors, geodesics, etc.
and discuss their physical interpretations. For instance, the
geodesics have the physical interpretation as the trajectories
in the momentum space along which the Bloch state |ψ (k)〉
as a unit vector rotates the least in the Hilbert space.

From a differential geometrical point of view, the
D-dimensional BZ manifold is special in the sense that it
is a T D torus, and hence it is possible to lay a single co-
ordinate chart k = (k1, k2 . . . kD) for the entire manifold. It
then follows that the momentum integration of the quan-
tum metric

∫
dDk gμν (k) over the T D torus represents an

average distance between neighboring Bloch states |ψ (k)〉
and |ψ (k + δk)〉, thereby serving as a characteristic dif-
ferential geometrical property of the manifold, which has
been related to the spread of Wannier functions [28–30].
In this paper, we call this momentum integration the fi-

delity number, in a way completely analogous to the Chern
number as a momentum integration of the Berry curva-
ture, except the fidelity number needs not be quantized.
We first use the linear-response theory recently developed
for the Chern number [31] and spin Chern number [32] to
generalize the fidelity number to finite temperature, which
also recognizes it as the absorption power of the mate-
rial against linearly polarized light, whose dependence on
the frequency of the light is described by a spectral func-
tion. This indicates that the optical absorption measurements,
which have been performed in semiconductors for decades,
can actually be used to reveal the quantum geometrical
properties of the material. Particularly for two-dimensional
(2D) materials, we will elaborate that this spectral func-
tion can be easily measured from the opacity of the
material [33].

We then proceed to convert the fidelity number into a
real-space object that we call the fidelity marker. This marker
is introduced through drawing analogy with the theory of
Chern marker [34–36], which maps the Chern number of
2D materials into a real-space quantity through a projector
formalism and has been recently generalized to topological
materials in any dimension and symmetry class [37]. In fact,
this projector formalism has been applied to the spread of
Wannier functions, yielding a localization marker that can
be used to distinguish metals and insulators [38]. In con-
trast, we will apply this projector formalism directly to the
fidelity number to obtain what we call the fidelity marker,
which is equivalently to a symmetrized localization marker
that is experimentally measurable. Moreover, we introduce
a nonlocal fidelity marker from the Fourier transform of
the quantum metric, which has the physical meaning of a
Wannier state correlation function, and is suggested to be a
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universal indicator for quantum phase transitions owing to the
divergence of quantum metric, provided the crystalline mo-
mentum k remains a good quantum number.

To demonstrate the applications of the local and nonlocal
fidelity markers, we turn to generic topological insulators
(TIs) and topological phase transitions (TPTs) from one-
dimensional (1D) to three-dimensional (3D). Our survey is
motivated by a recently discovered connection between the
topological order and quantum metric, namely, the module
of the curvature functions that integrates to the topological
invariant is equal to the determinant of the quantum metric
[2,4–6,39,40], a relation that has been called the metric-
curvature correspondence [41]. This correspondence holds for
Dirac models in any dimension and symmetry class [42–45],
as can be derived from a universal topological invariant [46].
In addition, because the curvature function generally diverges
at the gap-closing high-symmetry points (HSPs) in the BZ
as the material approaches a TPT [47–52], the quantum met-
ric must diverge accordingly. As a consequence, the optical
absorption of the whole lattice, i.e., the fidelity number, is
predicted to show some anomaly near TPTs.

The structure of the paper is organized in the following
manner. In Sec. II, we first introduce the fidelity number and
marker from a projector formalism, and then use a linear-
response theory to generalize them to finite temperature and
relate them to optical absorption power. A nonlocal fidelity
marker is subsequently introduced from Fourier transform
of the quantum metric. Section III gives concrete results for
generic TIs in 1D, 2D, and 3D, with a clear demonstration
of the singular behavior near TPTs. Finally, we summarize
our results in Sec. IV, and give an outlook on other possible
applications of the fidelity marker.

II. MAPPING QUANTUM GEOMETRY AND QUANTUM
PHASE TRANSITIONS TO REAL SPACE

A. Local fidelity marker at zero temperature

Our aim is to elaborate that the momentum-integrated
quantum metric serves as a characteristic quantum geometri-
cal property that can be defined on lattice sites and to construct
a linear-response theory to connect it to experimental measur-
ables. Focusing on insulating materials with a band gap, we
will reserve the index n for valence bands, m for conduction
bands, � for all the bands, and likewise for the summations
{∑n,

∑
m,

∑
�}. The 〈r|�k〉 = �k(r) = e−ik·rψk

� (r) is the pe-
riodic part of the Bloch state satisfying �k(r) = �k(r + R),
where r and R are Bravais lattice vectors. The Bloch state
of each band |�k〉 corresponds to a Wannier state |R�〉
according to

|�k〉 =
∑

R

e−ik·(r̂−R)|R�〉, |R�〉 =
∑

k

eik·(r̂−R)|�k〉, (1)

where the corresponding Wannier function 〈r|Rn〉 =
Wn(r − R) is highly localized around the home cell R.

For a system of N− valence bands, the fully antisymmetric
valence-band Bloch state at momentum k is given by

|uval(k)〉 = 1√
N−!

εn1n2...nN−
∣∣nk

1

〉∣∣nk
2

〉
. . .

∣∣nk
N−

〉
, (2)

Our interest is the quantum metric of this state defined
from [1]

|〈uval(k)|uval(k + δk)〉| = 1 − 1
2 gμν (k)δkμδkν, (3)

which amounts to the expression [41]

gμν (k) = 1

2
〈∂μuval|∂νuval〉 + 1

2
〈∂νuval|∂μuval〉

− 〈∂μuval|uval〉〈uval|∂νuval〉

= 1

2

∑
nm

[〈∂μn|m〉〈m|∂νn〉 + 〈∂νn|m〉〈m|∂μn〉]. (4)

The key aspect of the present work is the fidelity number
calculated from momentum integration of the quantum met-
ric, which can further be expressed as overlap of Wannier
states [31]:

Gμν =
∫

dDk

(2π )D gμν (k)

= 1

2h̄2

∫
dDk

(2π )D

∑
nm

〈
ψk

n

∣∣μ̂∣∣ψk
m

〉〈
ψk

m

∣∣ν̂∣∣ψk
n

〉 + (μ ↔ ν)

= h̄D−2

2aD

∫
dDk

(2π h̄/a)D

∫
dDk′

(2π h̄/a)D

×
∑
nm

〈
ψk

n

∣∣μ̂∣∣ψk′
m

〉〈
ψk′

m

∣∣ν̂∣∣ψk
n

〉 + (μ ↔ ν)

=
∑
nm

∑
R

1

2
〈0n|μ̂|Rm〉〈Rm|ν̂|0n〉 + (μ ↔ ν)

=
∑
nm

∑
R

1

2

∫
dr

∫
dr′μrW

∗
n (r)Wm(r − R)νr′

×W ∗
m

(
r′ − R

)
Wn

(
r′) + (μ ↔ ν), (5)

where the third line is valid due to the fact that the matrix
elements vanish if k �= k′. In deriving the above expression
we have used the identity [29,30,36,49,50,53]

i〈m|∂μn〉 = 1

h̄

〈
ψk

m

∣∣μ̂∣∣ψk
n

〉
=

∑
R

eik·R

h̄
〈0m|μ̂|Rn〉 =

∑
R

e−ik·R

h̄
〈Rm|μ̂|0n〉,

(6)

for m �= n. Within the context of differential geometry, Gμν in
Eq. (5) measures the average distance between neighboring
points on the BZ torus T D, as can be understood from the
definition in Eq. (3). Note that in systems with a zero-energy
flat band, the momentum-integration of quantum metric of
the flat band alone has been related to the superfluid weight
[54–57], which may be relevant to the superconductivity in
twisted bilayer graphene [58]. In contrast, here we consider
insulators or semiconductors, and the appropriate quantum
metric is that of the fully antisymmetric state described by
Eq. (2) that includes the contribution from all the valence
bands.

Now suppose we have a tight-binding Hamiltonian
H = ∑

rr′σσ ′ trr′σσ ′c†
rσ cr′σ ′ , where r labels the lattice sites

on a D-dimensional lattice, which has been diagonalized
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and the eigenstates are found via H |E�〉 = E�|E�〉. The
projectors to the filled and empty-lattice eigenstates can
be constructed analogously from the projectors to the va-
lence and conduction-band states integrated over momentum,
yielding [36]

P̂ =
∑

n

∫
dDk

(2π h̄/a)D

∣∣ψk
n

〉〈
ψk

n

∣∣ →
∑

n

|En〉〈En|,

Q̂ =
∑

m

∫
dDk′

(2π h̄/a)D

∣∣ψk′
m

〉〈
ψk′

m

∣∣ →
∑

m

|Em〉〈Em|. (7)

Using these projectors and following the same construction
for the local Chern marker [36], the fidelity number may be
written as

Gμν = h̄D−2

aDN
Tr

[
1

2
P̂μ̂Q̂ν̂ + (μ ↔ ν)

]

= h̄D−2

aDN
Tr

[
1

2
P̂μ̂Q̂ν̂P̂ + (μ ↔ ν)

]
= 1

N

∑
r

Gμν (r),

(8)

where N is the number of unit cells. The diagonal elements in
the trace yield what we call the local fidelity marker

Gμν (r) = h̄D−2

aD

∑
σ

〈r, σ |
[

1

2
P̂μ̂Q̂ν̂P̂ + (μ ↔ ν)

]
|r, σ 〉

≡ h̄D−2

aD
〈r|

[
1

2
P̂μ̂Q̂ν̂P̂ + (μ ↔ ν)

]
|r〉, (9)

where σ denotes any internal degrees of freedom within a
unit cell such as spin, orbit, sublattice, etc. We should call the
operator Ĝμν ≡ [P̂μ̂Q̂ν̂P̂ + P̂ν̂Q̂μ̂P̂]/2 in these equations the
fidelity operator. In Eq. (8), we have replaced the trace by
an equivalent Tr[P̂μ̂Q̂ν̂] = Tr[P̂μ̂Q̂ν̂P̂], which seems to be
redundant since P̂P̂ = P̂, but it is know that this step is
crucial to get the nonzero diagonal elements [36], i.e., the
fidelity marker in Eq. (9), as we also confirm numerically.
Interestingly, in contrast to the Chern marker that acts like the
commutator of the two operators P̂μ̂Q̂ν̂ and P̂ν̂Q̂μ̂ [34–36],
the quantum metric marker is constructed from the anticom-
mutator of the same two operators. Finally, we remark that
our fidelity marker is equivalent to the previously proposed
localization marker Lμν but symmetrized in the two indices μ

and ν, as elaborated in Appendix. This symmetrization stems
from the very definition of the quantum metric in Eq. (4) and
makes our marker experimentally measurable, as we shall see
in Sec. II C.

B. Detecting quantum phase transitions
by a nonlocal fidelity marker

Recent works suggest that in addition to using the diagonal
element of the fidelity operator at site r to define the local
topological marker, one may use the off-diagonal matrix ele-
ments corresponding to two different lattice sites r and r + R
of the same operator to define a nonlocal marker [31,32,37].
Such a nonlocal marker is equivalently a Wannier state cor-
relation function calculated from the Fourier transform of
the curvature function [49–51]. Here we demonstrate that a

similar formalism gives rises to a nonlocal fidelity marker that
can also be interpreted as a Wannier state correlation function,
as we shall see below.

Consider the Fourier transform of the quantum metric de-
noted by g̃μν (R), which can be expressed in terms of Wannier
states by [31]

g̃μν (R) =
∫

dDk

(2π )D gμν (k)eik·R

= h̄D−2

aD

∑
n

∑
m

∫
dDk

(2π h̄/a)D

∫
dDk′

(2π h̄/a)D

× 1

2

〈
ψk

n

∣∣μ̂∣∣ψk′
m

〉〈
ψk′

m

∣∣ν̂∣∣ψk
n

〉
eik·R + (μ ↔ ν)

=
∑
nm

∑
R1

1

2
〈0n|μ̂|R1m〉〈R1 + Rm|ν̂|0n〉 + (μ ↔ ν)

=
∑
nm

∑
R1

1

2

∫
dr

∫
dr′μrW

∗
n (r)Wm(r − R1)νr′

×W ∗
m (r′ − R1 − R)Wn(r′) + (μ ↔ ν), (10)

where we have used the fact that |ψk
n 〉eik·R projected to

〈r| is equal to |ψk
n 〉 projected to 〈r + R| due to the cell

periodicity n(r) = n(r + R). On the other hand, if in the
projector formalism we consider the (r + R, r)th off-diagonal
element of the matrix and call it the nonlocal fidelity marker
Gμν (r + R, r)

Gμν (r + R, r)

= h̄D−2

aD
Re

∑
σ

〈r + R, σ |
[

1

2
P̂μ̂Q̂ν̂P̂ + (μ ↔ ν)

]
|r, σ 〉

≡ h̄D−2

aD
Re

{
〈r + R|

[
1

2
P̂μ̂Q̂ν̂P̂ + (μ ↔ ν)

]
|r〉

}
, (11)

then it becomes clear that the Wannier state correlation func-
tion g̃μν (R) is the clean, thermodynamic limit of the nonlocal
fidelity marker limN→∞ Gμν (r + R, r) = g̃μν (R).

The objective of introducing this nonlocal fidelity marker is
to examine whether its spatial profile can serve as a universal
indicator for any kind of quantum phase transitions. This
postulate is made because the quantum metric is essentially
a fidelity susceptibility defined by treating momentum k as a
tuning parameter. Thus as the system approaches a quantum
phase transition, the quantum metric is expected to diverge at
some momentum provided that momentum remains a good
quantum number [21–27], and, consequently, the nonlocal
fidelity marker as the Fourier transform of the quantum metric
should become more long ranged. We shall use some concrete
examples in the following sections to support this conjecture.

C. Linear-response theory of finite-temperature fidelity number

We now generalize the fidelity number and marker to finite
temperature using the linear-response theory developed pre-
viously for the Chern marker and spin Chern marker [31,32],
and elaborate that it can be measured by optical absorption
of the material. Remarkably, our formalism implies that the
gauge-invariant part of the (symmetrized) spread of Wan-
nier functions can be measured by optical absorption power,
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which may help to experimentally verify the theoretical results
obtained from first-principle calculations [28–30]. We start
from a quantum metric spectral function derived from the
response of the system under an oscillating electric field [59],

gd
μν (k, ω) =

∑
�<�′

{
1

2
〈∂μ�|�′〉〈�′|∂ν�〉 + (μ ↔ ν)

}

× [
f
(
εk
�

) − f
(
εk
�′
)]

δ

(
ω + εk

�

h̄
− εk

�′

h̄

)
. (12)

The superscript d stands for “dressed” since the formal-
ism is valid at finite temperature (and potentially including
many-body interactions as well, although they will not be
addressed here).

Experimentally, gd
μν (ω) in Eq. (12) is related to the optical

response at momentum k. This can be seen by considering
the current operator in momentum space ĵμ = e∂μH , where
∂μ ≡ ∂/∂kμ and H = H (k) is the momentum space single-
particle Hamiltonian, and we will assume a D-dimensional
cubic lattice of unit-cell volume aD. The usual linear-response
theory for noninteracting system gives the finite-temperature
longitudinal optical conductivity at momentum k at frequency
of the light ω by [60]

σμμ(k, ω) =
∑
�<�′

π

aDh̄ω
〈�| ĵμ|�′〉〈�′| ĵμ|�〉

× [
f
(
εk
�

) − f
(
εk
�′
)]

δ

(
ω + εk

�

h̄
− εk

�′

h̄

)

= πe2

aD
h̄ω gd

μμ(k, ω), (13)

which can be used to extract the diagonal components of the
quantum metric spectral function gd

μμ(k, ω). Here |�〉 ≡ |�k〉
is the periodic part of the Block state, and the index � enu-
merates both the valence- and conduction-band states, since at
finite temperature both of them contribute to the conductivity.
The f (εk

� ) is the Fermi distribution of the eigenenergy εk
� .

Moreover, because the optical conductivity corresponds to the
optical absorption process, δ(ω + εk

� /h̄ − εk
�′/h̄) with ω > 0

ensures that εk
� < εk

�′ , as denoted by the summation
∑

�<�′ .
Many previous works [28,59,61–63] have already pointed out
that the frequency integration of this spectral function gives
the quantum metric gd

μμ(k) = ∫ ω

0 dω gd
μμ(k, ω) that in the

zero-temperature limit limT →0 gd
μν (k) = gμν (k) recovers the

expression in Eq. (4). In contrast, we will focus on the spectral
function gd

μμ(k, ω) itself for the purpose that will become
clear below.

The conductivity of the whole sample, which is also what is
measured in real space, is given by the momentum integration
of the above quantity:

σμμ(ω) =
∫

dDk

(2π h̄/a)D σμμ(k, ω)

= πe2

h̄D−1 ω

∫
dDk

(2π )D gd
μμ(k, ω) ≡ πe2

h̄D−1 ω Gd
μμ(ω),

(14)

which defines what we call the fidelity number spectral
function Gd

μμ(ω). On the other hand, in a D-dimension
material, if we denote the polarized oscillating field by

Eμ(ω, t ) = E0 cos ωt and the current that it induces by
jμ(ω, t ) = σμμ(ω)E0 cos ωt , where E0 is the strength of the
field, then the optical absorption power per unit cell at fre-
quency ω is

Wa(ω) = 〈 jμ(ω, t )Eμ(ω, t )〉t = 1

2
σμμ(ω)E2

0

= πe2

2h̄D−1 E2
0 ω Gd

μμ(ω), (15)

which can be used to extract the spectral function Gd
μμ(ω),

where 〈. . .〉t denotes the time average. Particularly in 2D
systems, the incident power of the light per unit area is
Wi = cε0E2

0 /2, and hence the opacity of the 2D system as the
incident light has frequency ω and polarization μ is [33]

O(ω) = Wa(ω)

Wi
= 4π2αω Gd

μμ(ω)|2D, (16)

where α = e2/4πε0 h̄c is the fine-structure constant. Thus the
fidelity number spectral function can be simply extracted ex-
perimentally from the opacity by

Gd
μμ(ω)|2D = 1

4πω

[O(ω)

πα

]
. (17)

In other words, it is simply the opacity at ω and polarization
μ measured in units of πα ≈ 2.3% and then divided by 4πω.
We expect that this simple protocol should be broadly appli-
cable to 2D systems, as has been elaborated recently for 2D
Dirac materials like graphene and silicene [64].

To extract the off-diagonal components of the fidelity
number spectral function, such as Gd

xy(ω), one may con-
sider linearly polarized light with a phase different [8]
E± = E0(x̂ ± ŷ), and the current operators ĵ± = ĵx ± ĵy and
conductivities σ±(k, ω) defined accordingly. Using the off-
diagonal component gd

xy(k, ω) in Eq. (12), the same analysis
leads to the conclusion that the difference of optical conduc-
tivity between the two polarizations gives

σ+(k, ω) − σ−(k, ω) = 4
πe2

aD
h̄ω gd

xy(k, ω), (18)

and after a momentum integration, the difference in absorp-
tion power gives

Wa(ω) = 〈 j+(ω, t )E+(ω, t ) − j−(ω, t )E−(ω, t )〉

= 2
πe2

h̄D−1 E2
0 ω Gd

xy(ω), (19)

which may be used to extract the off-diagonal component
Gd

xy(ω). For 2D systems, the incident power of the two po-
larizations we considered is W ±

i = cε0E2
0 |x̂ ± ŷ|2/2 = cε0E2

0 ,
and hence

Gd
xy(ω)|2D = 1

8πω

[O+(ω) − O−(ω)

πα

]
, (20)

indicating that one may use the difference in opacity under the
two polarizations to extract Gd

xy(ω).

D. Finite-temperature fidelity marker

After the spectral function as a function of frequency ω is
obtained, the dressed fidelity number can further be obtained
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via a frequency integration, which can be expressed in terms
of eigenstates |E�〉 of lattice models using the procedure out-
lined in Sec. II A, rendering

Gd
μν =

∫ ∞

0
dω Gd

μν (ω)

=
∫

dDk

(2π )D

∑
�<�′

[
1

2
〈∂μ�|�′〉〈�′|∂ν�〉 + (μ ↔ ν)

]

× [
f
(
εk
�

) − f
(
εk
�′
)]

= 1

h̄2

∫
dDk

(2π )D

∑
�<�′

[
1

2

〈
ψk

�

∣∣μ̂∣∣ψk
�′
〉〈
ψk

�′
∣∣ν̂∣∣ψk

�

〉+(μ↔ν)

]

× [
f
(
εk
�

) − f
(
εk
�′
)]

= h̄D−2

aD

∫
dDk

(2π h̄/a)D

∫
dDk′

(2π h̄/a)D

∑
�<�′

×
[

1

2

〈
ψk

�

∣∣μ̂∣∣ψk′
�′
〉〈
ψk′

�′
∣∣ν̂∣∣ψk

�

〉 + (μ ↔ ν)

]

× [
f
(
εk
�

) − f
(
εk′
�′
)]

= h̄D−2

NaD

∑
�<�′

[
1

2
〈E�|μ̂|E�′ 〉〈E�′ |ν̂|E�〉 + (μ ↔ ν)

]

× [ f (E�) − f (E�′ )]

= h̄D−2

NaD

∑
�<�′

Tr

[
1

2
μ̂S�′ ν̂S�+(μ↔ν)

]
[ f (E�)− f (E�′ )].

(21)

Here |ψk
� 〉 is the full Bloch state and |�〉 ≡ |�k〉 is the periodic

part of the Block state satisfying 〈r|ψk
� 〉 = eik·r〈r|�〉. The fi-

delity number is then expressed to the real-space version using
the projectors∫

dDk

(2π h̄/a)D

∣∣ψk
�

〉〈
ψk

�

∣∣ →
∑

�

|E�〉〈E�|

=
∑

�

S�,

∫
dDk

(2π h̄/a)D

∣∣ψk
�

〉〈
ψk

�

∣∣ f
(
εk
�

)

→
∑

�

|E�〉〈E�| f (E�)

=
∑

�

S� f (E�), (22)

where |E�〉 is a lattice eigenstate obtained from diagonaliz-
ing the lattice Hamiltonian H |E�〉 = E�|E�〉, and we denote
its projector by S� = |E�〉〈E�|. At zero temperature f (E�) =
θ (−E�), it is evident that the dressed fidelity number recovers
the zero-temperature one limT →0 Gd

μν = Gμν , as can be easily
seen by comparing Eqs. (21) and (8).

Our goal now is to construct a finite-temperature fidelity
marker that spatially sums to the fidelity number Gd

μμ =∑
r Gd

μμ(r)/N in Eq. (21). To achieve this, the issue now is that
according to what discussed after Eq. (9), one has to add an
extra projector P̂ to the last line of Eq. (21) in order to get the
correct fidelity marker. However, at finite temperature, ther-
mal broadening renders the notion of filled and empty states

rather ambiguous, let alone their projectors P̂ and Q̂ in Eq. (7).
To incorporate this extra projector at finite temperature, we
propose to first calculate the matrix

Mμ =
∑
�<�′

S�μ̂S�′
√

f��′, (23)

where f��′ ≡ f (E�) − f (E�′ ), and then define the fidelity
marker by

Gd
μν (r) = h̄D−2

2aD
Re{〈r|[MμM†

ν + MνM†
μ]|r〉}, (24)

which spatially sums to the fidelity number Gd
μν =∑

r Gd
μν (r)/N because

∑
r |r〉〈r| = I and S

�
′S�′ = δ

�
′
�′S�′ , and

moreover recovers the zero-temperature one limT →0 Gd
μν (r) =

Gμν (r) in Eq. (9), and therefore serves our purpose. Likewise,
the nonlocal fidelity marker can also be generalized to finite
temperature as the off-diagonal element of this operator

Gd
μν (r + R, r)

= h̄D−2

2aD
Re{〈r + R|[MμM†

ν + MνM†
μ]|r〉}, (25)

which represents the Fourier transform of the finite-
temperature quantum metric gd

μν = ∫ ∞
0 dω gd

μν (ω) [defined in
Eq. (13)] that may be used to examine the finite-temperature
behavior near quantum phase transitions.

It is also convenient to introduce a fidelity marker spectral
function from the frequency-dependent matrix

Mμ(ω) =
∑
�<�′

S�μ̂S�′
√

f��′δ(ω + E� − E�′ ), (26)

where the δ function is simulated by a Lorentzian δ(x) =
η/π (x2 + η2) in practice, so the interpretation of its square
root is straightforward. The fidelity marker spectral function
is then defined by

Gd
μν (r, ω)

= h̄D−2

2aD
Re{〈r|[Mμ(ω)M†

ν (ω) + Mν (ω)M†
μ(ω)]|r〉},

(27)

which spatially sums to the fidelity number spectral func-
tion Gd

μν (ω) = ∑
r Gd

μν (r, ω)/N in Eq. (14). Analogous to
Eq. (15), this spectral function corresponds to the local optical
absorption power of the unit cell at r:

Wa(r, ω) = πe2

2h̄D−1 E2
0 ω Gd

μμ(r, ω), (28)

and likewise the off-diagonal component Gd
xy(r, ω) corre-

sponds to the absorption power difference in Eq. (19) defined
locally at r. Given this connection to the absorption power,
we anticipate that thermal probes that can detect the heating
caused by the light down to atomic scale, such as scan-
ning thermal microscopy [65–68], may be able to detect the
local absorption power Wa(r, ω) and subsequently extract
Gd

μμ(r, ω).
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FIG. 1. Analytical results for homogeneous linear Dirac models of TIs in 1D (top row), 2D (middle row), and 3D (bottom row), where
in panels (a), (e), and (i) we show the momentum profile of the quantum metric [in panel (i) we plot the momentum surfaces at two constant
values), in panels (b), (f), (j) the fidelity number or marker spectral function, in panels (c), (g), (k) the fidelity number or marker near TPTs
at zero (solid lines) and a finite (dotted lines) temperatures, and in panels (d), (h), (l) the spatial profile of the nonlocal fidelity marker for a
parameter close to (blue) and far away from (yellow) the critical point.

III. APPLICATIONS TO TOPOLOGICAL INSULATORS
AND TOPOLOGICAL PHASE TRANSITIONS

As a concrete example, we investigate the generic
D-dimensional TIs in any symmetry class described by N × N
Dirac models H = ∑D

i=0 di�i, where �i are the Dirac matri-
ces, and di characterizes the momentum dependence of the
Hamiltonian [42,43,45]. In this case, it has been proved that
the fully antisymmetric valence band Bloch state of the TI
at momentum k, described by Eq. (2), gives the quantum
metric [41]

gμν (k) = N

8d2

{
D∑

i=0

∂μdi∂νdi − ∂μd∂νd

}
. (29)

Denoting d = (
∑

i d2
i )1/2, the model has N/2-fold degenerate

valence-band states of energy εn = −d and conduction-band
states of energy εm = d . The diagonal elements of fidelity
number of this model have been considered in a previous
work under the name of Marzari-Vanderbilt cumulant [69].
In contrast, we emphasize the frequency- and temperature-
dependence of the spectral function to draw relevance to the
optical absorption power. Because the model is homogeneous,
the fidelity number spectral function in Eq. (14) and fidelity
marker spectral function in Eq. (27) are the same

Gd
μν (ω) =

∫
dDk

(2π )D gμν[ f (εn) − f (εm)]

× δ(ω + εn/h̄ − εm/h̄). (30)

We first address the analytical results of linear Dirac models
and then investigate more realistic lattice models by numerical
calculations.

A. Continuous models of topological insulators

Analytical expression of Gd
μν (ω) can be given for linear

Dirac models parametrized by d0 = M and di �=0 = vki, where
v is the Fermi velocity. These models well describe the critical
behavior of TIs and TSCs near TPTs. Using Eq. (29), the
quantum metric of these models is [69]

gμν = N

8d2

(
v2δμν − v4kμkν

d2

)
. (31)

We will focus on the diagonal component gμμ, whose mo-
mentum profile is shown in Figs. 1(a), 1(e), and 1(i) for 1D,
2D, and 3D, respectively. In any dimension, the gμμ near the
gap-closing point k = 0 has a Lorentzian shape:

lim
k→0

gμμ = N

8

v2/M2

1 + 2 v2

M2 k2
, (32)

whose height diverges like gμμ(0) ∼ 1/M2 and width van-
ishes like 1/ξ∼|M| as the system approaches the TPT M→0,
manifesting the divergence behavior anticipated at the end
of Sec. II B, with a critical exponent ν = 1. The integration
over momentum gives the diagonal components of the fidelity
marker spectral function:

Gd
μμ(ω) = N�D

2D+3πDvD−2

⎧⎨
⎩ 1

ω

[
h̄2ω2

4
− M2

] D
2 −1

− 4

Dh̄2ω3

[
h̄2ω2

4
− M2

] D
2

⎫⎬
⎭

×
[

f

(
− h̄ω

2

)
− f

(
h̄ω

2

)]
ω�2|M|/h̄

, (33)
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where �D = 2π
D
2 /�( D

2 ) for D > 1, and �1 = 1. Explicitly
from 1D to 3D, it has the expressions

Gd
μμ(ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

NM2v

4π h̄2ω3
√

h̄2ω2/4−M2
Z (ω)|ω�2|M|/h̄ in 1D[

N
32πω

+ N
8π h̄2

M2

ω3

]
Z (ω)|ω�2|M|/h̄ in 2D{

NM2
√

h̄2ω2/4−M2

4π2vh̄2ω3 + N(h̄2ω2/4−M2 )3/2

6π2vh̄2ω3

}
×Z (ω)|ω�2|M|/h̄ in 3D,

(34)

where Z (ω) ≡ [ f (− h̄ω
2 ) − f ( h̄ω

2 )], and the off-diagonal com-
ponents μ �= ν vanish after the angular integration. The
frequency dependence of Gd

μμ(ω) at zero temperature is shown
in Figs. 1(b), 1(f), and 1(j) for the 1D, 2D, and 3D cases. The
spectral function is practically zero at frequency lower than
the band gap, as expected. Moreover, the frequency depen-
dence above the band gap highly depends on the dimension,
which gives a concrete prediction to the low-frequency behav-
ior of the optical absorption in Dirac models.

Particularly at zero temperature f (− h̄ω
2 ) − f ( h̄ω

2 ) =
1, after performing a frequency integration Gd

μμ =∫ ωcut

2|M|/h̄ d�,Gd
μμ(ω) of the spectral function from the band

gap 2|M|/h̄ to some cutoff frequency ωcut that represents the
bandwidth, we obtain

Gd
μμ ∼

⎧⎨
⎩

1/|M| in 1D
ln |M| in 2D
|M| + constant in 3D,

(35)

in agreement with the previous calculation of
Marzari-Vanderbilt cumulant [69]. In short, the fidelity
marker diverges in 1D and 2D as the system approaches the
critical point M → 0 of a TPT, while saturates to a constant in
3D, as indicated in Figs. 1(c), 1(g), and 1(k), which also show
that the effect of finite temperature is to smear out the anomaly
at the critical point. Finally, in Figs. 1(d), 1(h), and 1(l) we
show the nonlocal fidelity marker obtained from numerically
performing a Fourier transform on the quantum metric. In
any spatial dimension, one sees that the decay length of
the nonlocal marker increases as the system approaches the
critical point Mc = 0, consistent with the diverging quantum
metric discussed after Eq. (32). Note that, for the Lorentzian
shape in Eq. (32) with correlation length ξ = √

2|v/M|, its
Fourier transform in 1D at large R gives a simple exponential
decay g̃μμ(R) ∝ e−R/ξ , but in 3D the Fourier transform
g̃μμ(R) ∝ e−R/ξ /R has an extra factor of 1/R, making the
nonlocal marker in Fig. 1(l) look more short-ranged in
comparison with the exponential decay in Fig. 1(d).

B. Lattice models of topological insulators

In this section, we use prototype lattice models of TIs in
1D, 2D, and 3D to demonstrate the real-space profiles of
the local and nonlocal fidelity markers. We will adopt the
recipe in Sec. II to directly calculate the fidelity marker on
every lattice site by diagonalizing the lattice Hamiltonian in
the periodic boundary condition (PBC). Note that although
we only calculate the marker for some specific models, one
should keep in mind that the critical behavior of the marker

(a) (b)

FIG. 2. Numerical results of 1D SSH model, where we investi-
gate (a) the fidelity marker Gxx (r) at far from δt = −0.2 and close
to δt = −0.1 (in units of the uniform hopping t = 1) the critical
point, and at zero and finite temperatures, and (b) the nonlocal fidelity
marker at far from and close to the critical point.

for all the TIs in the same dimension should be the same
according to Eq. (35).

1. 1D Su-Schrieffer-Heeger model

A prototype example in 1D is the spinless Su-Shrieffer-
Heeger (SSH) model [70] described by the Hamiltonian

H =
∑

i

(t + δt )c†
AicBi + (t − δt )c†

Ai+1cBi + H.c., (36)

where cAi and cBi are fermion annihilation operators on the A
and B sublattices in the unit cell at i, and δt is the difference
between the hopping on the even and odd bonds that controls
the topological order. The numerical result for the fidelity
marker is shown in Fig. 2(a) for a lattice of 100 unit cells.
Deep inside the bulk, the marker remains a constant value
that agrees with the momentum-integration of quantum metric
in Eq. (5), and the value increases as the system approaches
the critical point δt → 0, in agreement with Eq. (35) and
that presented in Fig. 1(c) for the low-energy Dirac model.
Near the boundary sites, however, the marker starts to deviate
from the constant value even if PBCs are imposed, a problem
known for this type of projector formalism since the position
operator x̂ in Eq. (9) does not respect the translational invari-
ance [36]. In Fig. 2(b), we show that the nonlocal marker
decays with distance R, with a decay length that grows as
the system approaches the critical point δt → 0, in agreement
with that discussed at the end of Sec. II B. The maximal value
of the nonlocal marker at R = 0 recovers the local marker
[setting R = 0 in Eq. (11) recovers Eq. (9)], i.e., the maxima
of Fig. 2(b) are equal to the flat values in Fig. 2(a). In addition,
the nonlocal marker also oscillates with a wavelength of two
lattice constants, owing to the fact that the nonlocal marker
is the Fourier transform of the quantum metric that peaks at
k = π in this model.

2. 2D Chern insulator

We proceed to use the lattice model of Chern insula-
tor as a concrete example for 2D TIs, which is described
by the spinless basis (cks, ckp)T and the momentum space
Hamiltonian [71,72]

H (k) = A sin kxσ
x + A sin kyσ

y

+ (M + 4B − 2B cos kx − 2B cos ky)σ z. (37)
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(a) (b)

FIG. 3. Numerical results of the 2D Chern insulator, where we
show (a) the fidelity marker Gxx (r) along the x̂ direction at far from
(M = −2, blue lines) and close to (M = −1, black lines) the critical
point Mc = 0, and at zero and finite temperatures, and (b) the spatial
profile of the nonlocal fidelity marker.

The corresponding lattice model in real space is [73]

H =
∑

i

t{−ic†
isci+ap + ic†

i+ascip + H.c.}

+
∑

i

t{−c†
isci+bp + c†

i+bscip + H.c.}

+
∑

iδ

t ′{−c†
isci+δs + c†

ipci+δp + H.c.}

+
∑

i

(M + 4t ′){c†
iscis − c†

ipcip} −
∑

iI

μ c†
iI ciI , (38)

where we set the parameters to be t =A/2 = 1 and t ′ =B=1,
σ = {s, p} are the orbitals, and δ = {a, b} are the lattice con-
stants. We will focus on the Mc = 0 critical point where
the bulk gap closes at k = (0, 0), since the critical behavior
near other critical points are similar, and plot the marker
along the (1,0) crystalline direction. From Fig. 3(a) one sees
that the marker saturates to a constant value deep inside the
bulk that agrees with the momentum integration in Eq. (5),
and the value slightly decreases as temperature increases
owing to the thermal broadening. Interestingly, the fidelity
marker at M = −2 is higher than that at M = −1, even though
the latter is closer to the critical point Mc = 0, which seems to
contradict the continuous model in Sec. III A. We find that
this is because the real lattice models can exhibit a more
sophisticate momentum profile of the quantum metric beyond
the Lorentzian shape of Eq. (32), hence its momentum in-
tegration may not monotonically increase as M → Mc. The
divergence of fidelity number in this model only takes place
roughly in the range −0.2 < M < 0, which requires a much
larger lattice to capture. Nevertheless, the nonlocal marker in
Fig. 3(b) simulated on a 14×14 lattice already shows a clear
decay with distance R, with a decay length that increases
as M → 0, indicating that the nonlocal marker serves as a
faithful indicator for TPTs in this model even at such a small
lattice size.

3. 3D time-reversal-symmetric TIs

For 3D TIs, we consider a class AII model that preserves
time-reversal symmetry and is relevant to materials such as
Bi2Se3 and Bi2Te3, described by the � matrices and the

(a) (b)

FIG. 4. Numerical results of the 3D time-reversal symmetric TIs,
where we show (a) the fidelity marker Gxx (r) along the x̂ direction at
far from M = −2 and close to M = −1 the critical point Mc = 0
at zero temperature. (b) The spatial profile of the nonlocal fidelity
marker Gxx (r + R, r) along the same direction.

spinor [74,75],

�� = {σ x ⊗ τ x, σ y ⊗ τ x, σ z ⊗ τ x, Iσ ⊗ τ y, Iσ ⊗ τ z},
ψk = (ckP1+

−↑, ckP2−
+↑, ckP1+

−↓, ckP2−
+↓)T

≡ (cks↑, ckp↑, cks↓, ckp↓)T , (39)

where we use s and p to label the P1+
− and P2−

+ orbitals in real
materials. Keeping only lowest-order terms, the low-energy
Hamiltonian is given by

Ĥ = (
M + M1k2

z + M2k2
x + M2k2

y

)
�5

+ B0�
4kz + A0(�1ky − �2kx ). (40)

The regularization on the whole BZ and a Fourier transform
to real-space yields the lattice model [73]

H = −
∑
iIσ

μc†
iIσ ciIσ +

∑
i∈T I,σ

M̃{c†
isσ cisσ − c†

ipσ cipσ }

+
∑

i∈T I,I

t‖{c†
iI↑ci+aI↓ − c†

i+aI↑ciI↓ + H.c.}

+
∑

i∈T I,I

t‖{−ic†
iI↑ci+bI↓ + ic†

i+bI↑ciI↓ + H.c.}

+
∑

i∈T I,σ

t⊥{−c†
isσ ci+cpσ + c†

i+csσ cipσ + H.c.}

−
∑

i∈T I,σ

M1{c†
isσ ci+csσ − c†

ipσ ci+cpσ + H.c.}

−
∑

i∈T I,δ,σ

M2{c†
isσ ci+δsσ − c†

ipσ ci+δpσ + H.c.}, (41)

where M̃ = M + 2M1 + 4M2, t‖ = A0/2, t⊥ = B0/2, {I, I} =
{p, s}, σ = {↑,↓} is the spin index, and δ = {a, b, c} denotes
the lattice constants. We use the parameters μ = 0.5 and t‖ =
t⊥ = M1 = M2 = 1, and two values of M = −2 and M = −1
that are far from and close to the critical point Mc = 0, respec-
tively.

Figure 4(a) shows the numerical results of Gxx(r) simulated
on a Lx×Ly×Lz = 20×8×8 lattice plotted along the elongated
x̂ direction. Owing to the significant computational cost at
finite temperature, we focus on the zero-temperature limit
of this model. The results in Fig. 4(a) indicates that deep
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inside the bulk, Gxx(r) saturates to a constant value that agrees
with momentum-integration of the quantum metric gxx(k) in
Eq. (5), and again the value does not monotonically increase at
the system approaches the critical point M → 0 owing to the
complicated momentum profile of gxx(k) in the lattice model.
Nevertheless, the nonlocal marker Gxx(r + R, r) shown in
Fig. 4(b) becomes more long-ranged as M → 0, and hence
the nonlocal marker still serves as a faithful index to identify
the TPTs in this lattice model.

IV. CONCLUSIONS

In summary, we investigate the fidelity number Gμν defined
from momentum integration of the quantum metric gμν of the
fully antisymmetric valence-band state, which quantifies the
average distance between neighboring valence-band states in
the BZ torus. Using a linear-response theory, we generalize
the fidelity number to finite temperature denoted by Gd

μν and
suggest that they correspond to the optical absorption power
against linearly polarized light, whose frequency dependence
is described by a spectral function Gd

μν (ω). Especially for
2D systems, this spectral function can be simply extracted
from the frequency dependence of the opacity measured in
units of fine-structure constant. We then show that the fidelity
number can be mapped to real space as a fidelity marker
Gd

μν (r) defined locally on every unit cell, whose spectral
function Gd

μν (r, ω) corresponds to the local heating rate that
may be measured by atomic scale thermal probes, offering a
possibility to measure the gauge-invariant part of the spread
of Wannier functions. Moreover, in contrast to the diagonal
elements of the fidelity operator that give the local fidelity
marker, the off-diagonal elements of the same operator yield
a nonlocal fidelity marker Gμν (r + R, r) that is equivalent to
the Fourier transform of the quantum metric, and represents
an overlap between Wannier states. The relation between var-
ious quantities introduced in the present work is summarized
in Fig. 5.

Particularly for TIs, the quantum metric gμν diverges at the
gap-closing HSPs at the system approaches TPTs, rendering a
fidelity number Gd

μν that diverges at the critical point in 1D and
2D, while approaching a constant in 3D. The predicted fidelity
number spectral function Gd

μν (ω) also strongly depends on the
dimension of the system and is readily measurable in realistic
TIs by optical absorption. The nonlocal marker Gμν (r + R, r)
is found to decay with a correlation length ξ that diverges
near TPTs, with a critical exponent ν = 1 that is universal for
linear Dirac models in any dimension and symmetry class. We
then use prototype lattice models of TIs in 1D, 2D, and 3D to
investigate the behavior these markers near critical points in
realistic materials, suggesting the ubiquity of these markers in
characterizing the quantum geometry and quantum criticality
in topological materials.

These properties of fidelity number and marker immedi-
ately imply a great number of applications. First, because
the marker is locally defined, it may be used to explore the
influence of real-space inhomogeneity, such as impurities and
grain boundaries, on the quantum geometry of the material.
Second, because the nonlocal fidelity markers is equivalently
the Fourier transform of the quantum metric, we postulate
that it can detect any quantum phase transitions provided

FIG. 5. Schematics of the linear-response theory, measurement
protocols, and Wannier function interpretation of various quantities
related to the fidelity number and marker. The terminology is given
by the blue text, and the orange text indicates the corresponding
physical quantity in the proposed optical absorption experiment us-
ing linearly polarized light shown in the two figures, and the black
arrows indicate how to derive one quantity from another. We use
the abbreviations absor.= absorption, spec.= spectral, and fn. =
function.

momentum remains a good quantum number. This conjecture
is made because quantum metric gμν (k) is essentially the
fidelity susceptibility of the valence-band state defined with
respect to momentum k [21–27], which is expected to diverge
at quantum phase transitions, causing the decay length of the
nonlocal marker to diverge accordingly. Even if the transition
is driven by weak interactions, given the recent generalization
of quantum metric to interacting systems [59], it may still be
possible to define the fidelity marker perturbatively in terms
of Green’s function and investigate its critical behavior near
the transition. All of these intriguing questions await further
investigations to clarify, which may help to shed some new
insight on quantum geometry and quantum phase transitions.
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APPENDIX: COMPARISON WITH
THE LOCALIZATION MARKER

We now make a detailed comparison between our fidelity
marker and the localization marker proposed in Ref. [38].
Normalizing the spatial sum of localization marker Lμν to the
same unit as the fidelity number Gμν and use the notation in
the present work, the expression is

Lμν = 1

V
(〈μ̂ν̂〉 − 〈μ̂〉〈ν̂〉) = − h̄D−2

aDN
Tr{P̂[μ̂, P̂][ν̂, P̂]}

= h̄D−2

aDN
Tr[P̂μ̂Q̂ν̂P̂] = 1

N

∑
r

Lμν (r), (A1)

where 〈. . .〉 denotes the average over Wannier states, which
defines the localization marker Lμν (r). If we call L̂μν ≡
P̂μ̂Q̂ν̂P̂ the operator that renders the localization marker,
then a direct comparison with our fidelity operator Ĝμν ≡
[P̂μ̂Q̂ν̂P̂ + P̂ν̂Q̂μ̂P̂]/2 in Eq. (8) immediately suggests that
the diagonal components of them are equal Ĝμμ = L̂μμ, and
the off-diagonal components are related by Ĝμν |μ �=ν = (L̂μν +
L̂νμ)/2. As a result, the diagonal components of the fidelity
marker is exactly equal to that of the localization marker.
Moreover, shall one define a nonlocal localization marker by
Lμν (r + R, r) = 〈r + R|L̂μν |r〉, then it is clear that the di-
agonal components of it will be equal to our nonlocal fidelity

marker too. However, the off-diagonal components are not the
same, since our fidelity marker is symmetrized. In summary,

Gμμ(r) = Lμμ(r),

Gμμ(r + R, r) = Lμμ(r + R, r),

Gμν |μ �=ν (r) = [Lμν (r) + Lνμ(r)]/2,

Gμν |μ �=ν (r + R, r) = [Lμν (r + R, r) + Lνμ(r + R, r)]/2.

(A2)

We emphasize that our definition of the marker stems from
the consideration of experimental measurability, especially its
link to the optical absorption power in 3D and opacity in 2D,
as explained in Sec. II C. In particular, the off-diagonal ele-
ment Gμν |μ �=ν defined in our way corresponds to the difference
in absorption power or opacity of two specific polarizations,
as elaborated in Eqs. (19) and (20), which is readily mea-
surable. Moreover, the symmetrized form of Ĝμν is also a
natural consequence of the valence state quantum metric in
Eq. (4) that is symmetric in the two indices μ and ν. Finally,
through comparing with these previous works, one sees that
our experimental proposal can directly measure the so-called
gauge-invariant part of the spread of Wannier functions given
by the first line of Eq. (A1) and usually denoted by �I [28,29],
which may help to compare the first-principle calculation with
experimental results.
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