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Information scrambling and the correspondence of entanglement dynamics
and operator dynamics in systems with nonlocal interactions
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How fast quantum information scrambles such that it becomes inaccessible by local probes turns out to
be central to various fields. Motivated by recent works on spin systems with nonlocal interactions, we study
information scrambling in different variants of the Ising model. Our work reveals that nonlocal interactions can
induce operator dynamics not precisely captured by out-of-time-order correlators (OTOCs). In particular, the
operator size exhibits a slowdown in systems with generic power-law interactions despite a highly nonlinear
light cone. A recently proposed microscopic model for fast scrambling does not show this slowdown, which
uncovers a distinct analogy between a local operator under unitary evolution and the entanglement entropy
following a quantum quench. Our work gives new insights on scrambling properties of systems in reach of current
quantum simulation platforms and complements results on possibly observing features of quantum gravity in the
laboratory.
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I. INTRODUCTION

The dynamics of quantum information under unitary evo-
lution lies at the heart of numerous ongoing questions in
theoretical physics [1,2]. Due to significant improvements
on quantum simulation platforms [3–7], we are nowadays
able to probe information dynamics of simple quantum lattice
models in an experimental environment [8–13]. In particular,
in nonintegrable many-body systems, initial local quantum
information can spread under unitary evolution such that local
measurements are insufficient to reconstruct it at later times.
This scrambling of quantum information has received a great
deal of attention lately. It is inherently related to thermaliza-
tion [14,15] and its absence [16,17], as well as the simulability
of many-body systems [18], and even quantum gravity [19].

II. INFORMATION SCRAMBLING

One particular probe of scrambling relates to the growing
support and complexity of local operators under unitary evolu-
tion [20–22], known as operator spreading. We can diagnose
the spread of a local operator W via the squared commutator
with an auxiliary operator V at some distant site r

Cr (t ) = 1
2 〈[W (t ),Vr]†[W (t ),Vr]〉, (1)

where the expectation value is either evaluated in some pure
state |�〉, or a thermal state ρth ∼ e−βH. Once the operator
W (t ) has spread such that its support overlaps with V , Eq. (1)
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begins to grow and saturates afterwards at some finite value.
By varying r, one can track how the operator spreads over
the system’s degrees of freedom. If W and V are unitary, the
nontrivial part of Eq. (1) is determined by the OTOC, i.e.,
Fr (t ) = 〈W (t )VrW (t )Vr〉.

In a local quantum system, an emergent light cone
constrains information propagation in accordance with the
Lieb-Robinson bound [23]. However, today’s experimen-
tal platforms often entail nonlocal (power-law) interactions
∼1/rα , leading to Hamiltonians that do not necessarily com-
ply the assumption of locality. Seminal studies on systems
with power-law interactions and experiments with trapped
ions revealed vastly different nonequilibrium physics [24–28],
e.g., the breakdown of quasilocality. That is, information can
propagate faster than allowed by the Lieb-Robinson bound.
Since then, many works have focused on generalized bounds
for systems with power-law interactions [29–33], the akin
process of operator spreading [34–36] and improved proto-
cols for information processing tasks such as state transfer
[31,37,38]. In a nutshell, power-law interactions can induce
an emergent nonlinear “light cone,” i.e., information about a
local operator can spread superballistically over the system’s
degrees of freedom.

Surprisingly, power-law interactions typically lead to a
slowdown of entanglement growth [24]. It can be logarith-
mically slow for α < d , where d is the spatial dimension
[39,40]. The entanglement entropy of a region A regard-
ing a nonequilibrium state |�(t )〉 = e−iHt |�0〉 is given by
the Von Neumann entropy of its reduced density matrix
SA(|�(t )〉) = −Tr[ρA log2(ρA)]. Essentially, it probes how in-
formation about A becomes inaccessible by measurements on
A due to entanglement with an increasing number of degrees
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FIG. 1. Illustration of operator dynamics regarding the considered Hamiltonians. Depicted is the temporal evolution of the operator density
of an initially local operator. (a) The local Hamiltonian H∞ is associated with a ballistic propagation of the operator front determined
by a constant velocity vB. (b) For sufficiently small decay exponents α, the power-law Hamiltonian Hα is associated with a superballistic
propagation of the operator front. Behind the operator front the operator density decays considerably slower compared to the local Hamiltonian.
(c) Regarding the fast scrambling Hamiltonian HFS, the operator front propagates exponentially fast with a rapid decay of the operator density
behind the operator front.

of freedom and is thereby a complementary probe of scram-
bling. It appears then at a first sight operator spreading and
entanglement growth have opposite behavior in these systems,
which has also led to arguments saying that in general these
two are not related, as both reflect properties of different
spaces, i.e., state space and operator space [41].

III. FAST SCRAMBLING

Recently, systems with nonlocal interactions appeared in
connection to the correspondence of anti-de Sitter space
and conformal field theories (AdS/CFT), where information
scrambling has become a central topic [42–49]. The property
of fast scrambling, i.e., a system with N degrees of freedom,
where Cr (t ) ∼ O(1) ∀ r in a time t ∼ log2(N ) is believed to be
characteristic of black holes [43,44], and holographic duals
to theories of quantum gravity, e.g., the Sachdev-Ye-Kitaev
(SYK) model [50,51]. The highly complex structure of the
latter, however, renders an experimental probe of fast scram-
bling challenging, and several proposals for simpler models
with this property have appeared [52–55]. The proposals in
Refs. [53,54] follow a similar structure: a fine tuned combina-
tion of a local Hamiltonian and a nonlocal all-to-all interaction
∼1/r0. Noteworthy, a slowdown of entanglement growth is
absent in these models [53,54].

In addition, fast scrambling has been ruled out for systems
with generic power-law interactions if α > d , where light
cones are at most polynomial [56]. Whether or not this re-
mains true for α � d is an open question. However, from an
entanglement perspective, a system with (strong) power-law
interactions starkly differs from, for example, the fast scram-
bling proposal in Ref. [53].

If entanglement growth and operator spreading are both
probes of information scrambling, is there a quantitative
difference in operator dynamics in systems with unlike entan-
glement dynamics? In this work, we shed more light on this
question and provide evidence for a distinct relation between
entanglement growth and operator spreading. Our study is
focused on strongly chaotic models. The dynamics of such
systems is also of interest for studies on information dynamics
in black holes [45,57] and random unitary circuits [58–60],
motivated by the fact that identifying universal properties of
these extreme systems is a rich and important area of research.

Our main results are the following. First, we show that a
local operator under unitary evolution exhibits, in a sense we
make more precise, a growth that relates to the entanglement

entropy following a quantum quench. This implies that oper-
ator dynamics in a fast scrambling model is in sharp contrast
to that in systems with strong power-law interactions.

Furthermore, we demonstrate the importance of alternative
probes of operator dynamics, such as operator density and de-
rived quantities, instead of the more common OTOCs. These
other probes not only allow us to recognize known dynamical
processes in systems with power-law interactions, such as an
interplay of instantaneous growth of correlations combined
with a slower local growth [25,61,62], but it also give us
access to the structure of the operator within its support, which
is not as evident from an analysis of the light cone of the
OTOC.

Finally, our results motivate us to extent the qualitative
picture of operator dynamics in systems with local interac-
tions [58,59,63] to systems with nonlocal interactions. The
latter can lead to widely different dynamics depending on their
particular structure, which is pictorially illustrated in Fig. 1.

IV. SETUP

Let us consider the one-dimensional mixed-field Ising
model of N qubits with open boundary conditions

Hα = −
∑
m<n

Jα
mnZmZn − hx

∑
m

Xm − hz

∑
m

Zm, (2)

where Xm,Zm are Pauli X, Z operators acting on site m.
Interactions among the qubits decay with a power-law
Jα

mn = J/|m − n|α , where J is the nearest-neighbor interaction
strength, which we choose as our unit of energy, and we
fix hx/J = −1.05, hz/J = 0.5 throughout this work. More-
over, we consider the fast scrambling proposal from Ref. [53]
whose Hamiltonian is given by

HFS = H∞ − 1√
N

∑
m<n

ZmZn. (3)

The local version of Eq. (2), i.e., H∞ has been in-
tensively studied in the context of information scrambling
[45,46,48,64,65] as it is strongly chaotic and exhibits strong
thermalization [66].

We simulate the dynamics generated by Eqs. (2) and (3)
numerically. Our methods consist of exact diagonalization
(ED), a numerically exact method to obtain the action of the
evolution operator on an initial state (EXPM) [67], and a
matrix product state technique based on the time-dependent
variational principle (TDVP) [68]. Regarding the quench
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FIG. 2. Quantum information scrambling for different Ising
Hamiltonians. Local Hamiltonian H∞, power-law Hamiltonian Hα

with α = 0.4 and 0.25, respectively, and fast scrambling Hamilto-
nian HFS. Left panel: Spacetime contour tθ determined by Cr (tθ ) = θ .
Squared commutator is evaluated in the initial state |Y +〉, W,V =
Y , θ = 0.5, and N = 32 (TDVP). Right panel: Half-chain entangle-
ment entropy (normalized by the Page value, S̃A = SA(|�(t )〉)/SP)
following a quench from |Y +〉 for N = 26 (EXPM).

dynamics, we consider an initial state with zero energy expec-
tation value from the strong thermalization regime [66]. That
is, local density matrices approach the infinite temperature
ensemble, and the entanglement entropy saturates at a value
expected for a Haar random state, i.e., the Page value SP [69].
In particular, we consider a fully polarized state along the y di-
rection |�0〉 = |Y +〉, where |Y +〉 = ⊗

m |y+〉m. Our focus is
on early to intermediate times as the considered Hamiltonians
display substantially different dynamics there. The dynamics
at late times turns out to be uniform, see Appendix A. We
expect similar quench dynamics for different product states in
y-direction, which all have zero energy expectation value.

V. REGIMES

In local quantum many-body systems, the entanglement
entropy typically grows linear in time with an area-law growth
rate, i.e., SA(|�(t )〉) � |∂A|vEt , where vE is the entanglement
velocity. Moreover, local operators are expected to spread
ballistically with a characteristic velocity vB, known as the
butterfly velocity. Accordingly, Cr (t ) vanishes for t 	 r/vB,
increases sharply around t ∼ r/vB, and saturates afterwards.

A Hamiltonian like Eq. (2) will generally possess a regime
of α with effectively local dynamics [31,33,70], which we find
to hold at least for α > 2. In this regime, the respective veloc-
ities of entanglement growth and operator spreading show a
similar dependence on the exponent α, see Appendix B. This
is the first evidence of a connection between entanglement
growth and operator spreading, as they both diagnose a similar
slowdown of information scrambling. For smaller exponents,
the dynamics of Hα becomes nonlocal. Here, we particularly
focus on exponents α � 1, since fast scrambling might be
possible in this regime. Moreover, a logarithmic light cone
was proposed in Ref. [35] for α � 1/2. Thus, in the following,
we consider the local Hamiltonian H∞, Hα with α = 0.4, and
α = 0.25 respectively, and HFS from Eq. (3).

FIG. 3. Spatiotemporal profile of the squared commutator Cr (t ),
evaluated in the initial state |Y +〉 for W,V = Y . Marks show space-
time contours tθ determined by Cr (tθ ) = θ for θ = 0.15, 0.5, 0.85
respectively. Left panel refers to the local Hamiltonian H∞ and right
panel to the fast scrambler HFS. The system size is N = 22 (EXPM).

To illustrate the dynamics for these Hamiltonians, we dis-
play the spacetime contour tθ of the squared commutator in
the left panel of Fig. 2, where tθ is defined by Cr (tθ ) = θ . We
choose the Pauli Y operator for W , and V , and evaluate Cr (t )
in the initial state |�0〉. The left panel of Fig. 2 shows the
entanglement entropy following a quench from the initial state
|�0〉. As discussed earlier, both the system with power-law
interactions and the fast scrambler induce a highly nonlinear
light cone as opposed to the linear one associated with the
local system. Nevertheless, the slowdown of entropy growth
that one observes for systems with power-law interactions is
absent for the fast scrambler, hinting towards different dynam-
ics, as we will discuss in more detail later.

Let us further emphasize that the shape the light cone, i.e.,
the dependence of tθ on r, does not depend on the choice of θ .
This is demonstrated in Fig. 3, which displays the spatiotem-
poral profile of Cr (t ) with several spacetime contours for the
local Hamiltonian and the fast scrambler, respectively.

VI. OPERATOR STATE

To unveil the interplay between entanglement growth
and operator spreading, it is constructive to consider states
of the form

|�(t )〉 := W (t ) |�0〉 . (4)

If |�0〉 is a product state, the entropy SA(|�(t )〉) of a region
A that contains the initial position of W will vanish as long
as the support of W (t ) is confined to A, see Fig. 4(a). Once
the operator has spread beyond A, entropy will grow as in-
formation about the operator is leaking out, see Fig. 4(b).
Entanglement growth of Eq. (4) is therefore in direct corre-
spondence to the spread of W (t ).

In Fig. 5, we compare the entanglement entropy SA(|�(t )〉)
of the left block A with the squared commutator Cr (t ), where
r is chosen as either the leftmost or the rightmost site of the
right block B, see Fig. 4(c) for an illustration. We chose the
same initial state |�0〉 and operators W,V as in Fig. 2. For
the local model (upper left panel of Fig. 5), entanglement
growth agrees with the spatiotemporal structure of the squared
commutator. That is, the entropy of the left block A begins to
grow, once the squared commutator diagnoses that the support
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FIG. 4. Entanglement growth of the operator state |�(t )〉 from
Eq. (4). (a) As long as the support of W (t ) is confined to the region
A, its entropy will vanish. (b) As soon as the support of W (t ) exceeds
A, SA(|�(t )〉) will deviate from zero since not all information about
the operator is contained in A. (c) The specific setup we choose for
Fig. 5.

of W (t ) overlaps with the right block B. Shortly after the sup-
port has reached the rightmost site of B, entropy saturates in
line with the squared commutator. The fast scrambler exhibits
very different dynamics, i.e., highly nonlocal behavior as both
entanglement entropy and squared commutator begin to grow
immediately. However, both capture the same operator dy-
namics and behave similarly up to saturation, see the upper
right panel in Fig. 5.

On the contrary, this does not hold for power-law inter-
actions. Although the initial entropy growth agrees with the
squared commutator, we observe a slowdown at intermediate
times, similar to the ordinary quench scenario, see the lower
panels in Fig. 5. While the squared commutator grows rapidly
and reaches its saturation value Cr (t ) � 1 (up to oscillations
around it), the entropy SA(|�(t )〉) is still growing. Thus, in-
formation about W (t ) is still leaking out of the left block A,
although its support extends over the entire system for some
time. This indicates that some part of the operator dynamics
is not properly captured by the light cone of squared commu-
tator. Moreover, it suggests a slowdown of operator dynamics
in the presence of (strong) power-law interactions similar to
the entanglement entropy following a quantum quench.

VII. BEYOND THE QUENCH

So far, our focus was on the quench scenario, which is
biased towards the (highly excited) initial state |�0〉. This begs
the question of how much of these insights are due to this
choice. For a more general treatment, let us recall that any
operator can be expanded in terms of a complete orthonormal
operator basis, i.e.,

W (t ) =
∑
	

c	(t )S	, (5)

where S	 = ⊗
λ∈	 Pλ are Pauli strings, with P =

{1,X ,Y,Z}, and Tr(S†
	S� )/2N = δ	� . Considering an

operator W , initially supported on the leftmost site of the
system, a useful measure based on the expansion (5) is the

FIG. 5. Entanglement growth, S̃A = SA(|�(t )〉)/SP for N = 26
(EXPM), compared to the squared commutator Cr (t ), where the
operator W is located at the leftmost site of the system, and Vr at
the leftmost (r = 14) or rightmost (r = 26) site of the right block B.

operator density [58,59,71]

p
(t ) =
∑
|	|=


|c	(t )|2, (6)

where the sum runs over all strings whose rightmost non-
identity site is 
. Note that

∑

 p
(t ) = 1 ∀ t . Thus Eq. (6)

measures how much weight of the operator is in strings whose
support ranges from the first to the 
th site, i.e., strings of
size 
. The operator density is related to the squared com-
mutator evaluated in the infinite temperature ensemble, see
Appendix E.

The slow entanglement growth regarding the operator
state (4) for Hα suggests a slowdown of operator dynamics
despite the superballistic propagation of the operator front,
which is probed by the light cone of the squared com-
mutator. In the following, we investigate the decay of the
operator density behind the operator front. In particular, we
consider the total operator density in the left block A, i.e.,
PN/2 = ∑


�N/2 p
(t ), which we expect to become exponen-
tially small in the system size at late times [72].

In Fig. 6, we display the temporal evolution of PN/2 for
W = Y and a system size of N = 24 (TDVP), where we
consider Hα with α = 0.4, and HFS, respectively. For the
fast scrambler, PN/2 approaches an exponential decay (diag-
onal line) with increasing bond dimension. For the power-law
Hamiltonian, however, we observe a drastic slowdown of this
decay, which remains upon increasing bond dimension. We
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FIG. 6. Decay of operator density in the left half of the system
for W = Y , various bond dimensions χ , and a system size of N = 24
(TDVP). Left panel refers to the fast scrambler HFS and right panel
to Hα with α = 0.4. The value for χ = ∞ for HFS was obtained by
extrapolation. Error bars are smaller/similar than marker size.

observe a similar slowdown for other small values of α, see
Appendix D.

To summarize, we observe for the power-law system a
superballistic propagation of the operator front together with
a slower propagation of the tail of the operator, while for the
fast scrambler the whole operator spreads exponentially fast.
We can describe the dynamics of the former in terms of a fast
process, leading to propagation of the operator front and the
initial decay of operator density, and some remaining slow
dynamics at which the tail of the operator propagates [73].
Together with our observations of the entanglement dynamics
(Fig. 5), this suggests that the operator front leads only to
limited entanglement growth. This point is confirmed by the
fact that PN/2 can be recovered accurately with small bond
dimension for the power-law system (Fig. 6).

Let us further support this apparent slowdown of operator
dynamics in the following. With use of Eq. (6), one can define
the operator size as [49,71,74]

L[W (t )] =
∑





 p
(t ). (7)

Generally, one expects Eq. (7) to grow monotonically and
saturate at some value ∼N at late times. For random unitary
dynamics, the coefficients in (5) should be uniformly dis-
tributed (excluding the identity) [72]. Therefore, the operator
density p
 is on average determined by the number of strings
with size 
, i.e., p
 � 3 · 4
−1/(4N − 1). The operator size (7)
under random unitary dynamics then becomes

LHaar = N

(
1 + 1

4N − 1

)
− 1

3
≈ N − 1

3
. (8)

Equation (8) is the average operator size of a random unitary
of N qubits drawn from the Haar measure.

To evaluate Eq. (7), we compute the dynamics of W (t )
using exact diagonalization (ED). We present the results of
this calculation in the left panel of Fig. 7 for the same Hamil-
tonians as in Figs. 2 and 4, where we choose W = Y . In
all the cases, the value of the operator size approaches LHaar

from Eq. (8) at late times. At short to intermediate times, we

FIG. 7. (Left) Approach of operator size (L̃ = L[W (t )]/LHaar)
towards its saturation value (8), where W = Y and N = 16
(ED). (Right) Approach of half-chain entanglement entropy (S̃A =
SA(|�(t )〉)/SP) towards the Page value, where |�0〉 = |Y +〉 and N =
16 (ED).

observe a clear analogy between the operator size and the
entanglement entropy following a quench, where the latter is
shown in the right panel of Fig. 7 for the same system size.
In particular, the operator size exhibits a slowdown for the
power-law Hamiltonian Hα . In agreement with the observa-
tion in Fig. 6, this slowdown is absent for the fast scrambler
HFS. Through this analogy, we are establishing a nontrivial
correspondence between the dynamics in state- and operator
space, through the lens of entanglement entropy and operator
density/size. This correspondence is otherwise not evident
through the conventional study of the light cone of the squared
commutator.

Qualitatively, we can understand the observed dynamics
as follows. If we consider the information in our system to
be initially encoded in our operator, this information starts to
leak out of a region A when the operator front (defined by the
maximum of the operator density at a given time) crosses its
boundary, and continues as the rest of the operator density
exists the region. For the power-law system, the decay of
the operator density behind the operator front is much slower
compared to the fast scrambler. The total operator density in a
region A, which includes the initial position of W , i.e., PA,
therefore, remains large for a longer time. In other words,
information that is initially confined to A leaks out much
slower for the power-law Hamiltonian, which is manifested in
a slowdown of entanglement growth. This qualitative picture
of different classes of operator dynamics is summarized in
Fig. 1.

VIII. CONCLUSIONS AND OUTLOOK

We found a connection between entanglement growth and
operator spreading that reveals distinct classes of operator dy-
namics in the presence of nonlocal interactions. These classes
are not clearly distinguishable by the squared commutator
alone, at least not for system sizes of current numerical or
experimental reach. In particular, the slowdown of entangle-
ment entropy in systems with strong power-law interactions
manifests in a slower decay of the operator density p
 behind
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the operator front. Since
∑


 p
 = 1 holds, a generally slower
than exponential decay of p
 may eventually slow down the
operator front and thereby prohibit fast scrambling in systems
with strong power-law interactions for large enough N . In
addition, this behavior is in sharp contrast to the fast scrambler
from Eq. (3), which shows no slowdown in both operator
size/density and entanglement entropy.

Furthermore, this connection indicates that fast scrambling
might be associated with universal entanglement dynamics.
A recent study showed that fast scrambling is prohibited in
models with a generic all-to-all term with prefactor ∼1/Nγ

if γ > 1/2 [74]. Moreover, the authors of Ref. [53] argued
that for the Hamiltonian (3), fast scrambling only occurs if
γ = 1/2. Interestingly, by further decreasing γ from 1/2, we
observe a slowdown of entanglement growth, similar to our
findings for power-law interactions. Future theoretical work
may explore the relationship between entanglement growth
and fast scrambling in microscopic quantum systems.

An extension of this work may consider holographic mod-
els, which obey monogamy of mutual information [75]. The
latter sets further restrictions on entanglement growth and is
violated in systems with strong power-law interactions [76].
A refined understanding of entanglement growth in the pres-
ence of nonlocal interactions may result in explicit probes for
holographic quantum matter.

One might also investigate the observed slowdown of op-
erator dynamics in connection to prethermalization in systems
with power-law interactions, e.g., in ion traps [77].

Generally, the precise relationship between entanglement
growth and operator spreading characterizes various nonequi-
librium phenomena. To the best of our knowledge, there is
no example where entanglement growth does not serve as a
bottleneck of information dynamics, for example, linear en-
tanglement growth but a superlinear light cone. A throughout
understanding of this relationship may improve our ability
to probe nonequilibrium phenomena and phases of quantum
matter.
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APPENDIX A: LATE-TIME DYNAMICS

In the following, we provide further details on the late-
time dynamics of the considered Hamiltonians, regarding a
quantum quench with initial state |Y +〉. Figure 8(a) shows the
distance between the maximally mixed state and the reduced
density matrix regarding two neighboring qubits in the middle
of the system. We define this distance as the operator norm
of the difference of the two density matrices. For all con-
sidered Hamiltonians, the reduced density matrix approaches

FIG. 8. Late-time quench dynamics. (a) Distance of two-qubit
density matrix to maximally mixed state. (b) Half-chain entangle-
ment entropy. Gray dashed line shows the Page value SP. System
size is N = 22 (EXPM).

the maximally mixed state at late times. For small values
of α, the power-law Hamiltonian Hα is associated with a
significant slowdown of this approach. Note that we observe
similar behavior for other local density matrices. Furthermore,
we display the half-chain entanglement entropy in Fig. 8(b).
In all cases, the entanglement entropy approaches the Page
value SP at late times, see the dashed line. Summarizing, in the
considered quench scenario, the late-time behavior is the same
for the different Hamiltonians that we studied. That is, local
observables are determined by the expectation value in the
infinite temperature ensemble and the entanglement entropy
saturates at the Page value.

APPENDIX B: THE LOCAL REGIME

We have primarily focused our analysis on small values
of the decay exponent α since the slowdown of entanglement
growth and operator dynamics is most dominant in this case.
As mentioned in the main text, there generally exists a regime
of α with effectively local dynamics. Accordingly, in this
regime, entanglement entropy exhibits a linear growth and
operator spreading is bounded by a linear light cone. Although
we cannot rigorously prove where the transition to this regime
occurs, for the model at hand our numerical results indicate
that at least for α > 2, the dynamics are effectively local.
As mentioned in the main text, the respective velocities vα

E
and vα

B are similar renormalized in this regime, see Fig. 9.
Hence, in this local regime a connection between entangle-

FIG. 9. Velocities vα
E and vα

B as a function of the exponent α,
where |�0〉 = |Y +〉, W,V = Y . System size is N = 24 (EXPM).
Dashed line indicates the value for the local Hamiltonian, i.e., H∞.
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FIG. 10. Entanglement growth and operator spreading for var-
ious values of α = {∞, 3.0, 2.5, 2.1}. (a) Half-chain entanglement
entropy following a quench with initial state |Y +〉, inset shows the
collapse of all curves by rescaling time with the respective entan-
glement velocity vα

E. (b) Squared commutator Cr (t ) evaluated in the
initial state |Y +〉 for r = 20. The inset shows the collapse at the
operator front if time is rescaled according to the butterfly velocity
vα

B. Darker colors indicate larger values α. System size is N = 24
(EXPM).

ment growth and operator spreading can be observed already,
as they both diagnose a likewise slowdown of information
scrambling. Moreover, this has experimentally relevance as
the local dynamics of Hα is accessible for a broader range of
α on experimental platforms such as trapped ions, which are
typically limited to 0 � α � 3. We note that finite size effects
on the velocities are negligible for the considered system
sizes and conclude that the calculated velocities are universal
properties of the Hamiltonian Hα and the initial state |Y +〉 for
all N .

The effective local dynamics for α > 2 is further demon-
strated in Fig. 10. In Fig. 10(a), the half-chain entanglement
entropy for various values of α within the local regime is
shown. With decreasing α, the growth rate of entanglement
entropy also decreases. The inset shows a clear collapse of the
data if time is rescaled with the respective entanglement ve-
locity vα

E, which highlights the local dynamics in this regime.
Figure 10(b) shows the squared commutator for various values
of α within the local regime. In a similar vein, the growth of
the squared commutator decreases with smaller α. A collapse
at the operator front, i.e., Cr (t = r/vα

B) can be observed if time
is rescaled my means of the butterfly velocity, see the inset
of Fig. 10(b). Moreover, we observe an increased broadening
of the operator front with decreasing α, which may be a first
signature of the slower decay of the operator density behind
hte operator front as discussed in the main text.

APPENDIX C: ADDITIONAL DATA FOR OPERATOR SIZE

This section provides additional data regarding the opera-
tor size, which is summarized in Fig. 11. In the left panel of
Fig. 11(a), we display the linear growth of the operator size
regarding the local Hamiltonian H∞, W = Y , and different
system sizes N . All shown system sizes are characterized
by the same linear growth of operator size. Moreover, the
saturation value agrees with the expected late-time value LHaar

for the respective system size. The right panel of Fig. 11(a),
shows the operator size regarding the local Hamiltonian H∞
for N = 16 and different choices of W . Although the growth
of the operator size is similar in all cases, it appears that for

FIG. 11. (a) Temporal evolution of the operator size for the local
Hamiltonian H∞. Left panel shows the operator size for W = Y and
various system sizes N . Right panel shows the operator sizes for
various choices of W and N = 16. (b) Slowdown of operator size
for small values of the decay exponent α. The approach towards the
expected late-time value LHaar is displayed for W = Y and different
system sizes N . Left panel shows data for α = 0.4 and right panel for
α = 0.25. Data are obtained using exact diagonalization (ED).

W = X ,Z the saturation value is slightly smaller than LHaar,
which we attribute to the non vanishing overlap between these
local operators and the Hamiltonian [21].

Further data regarding the slow approach of the operator
size towards its late-time value for small decay exponents α

is presented in Fig. 11(b). Accordingly, we display LHaar −
L[W (t )] for W = Y and different system sizes N . The left
panel is associated with α = 0.4 and the right panel with α =
0.25. In both cases, the slowdown of operator size is robust
upon increasing the system size N .

APPENDIX D: CONVERGENCE OF TDVP RESULTS

In this section, we provide additional details regarding our
computations using matrix product states. All the results have
been obtained using a single site time-dependent variational
principle (TDVP) update [68]. For the calculation of the oper-
ator density we have used a state representation of the operator
[35] defined in a doubled Hilbert space.

We have performed convergence checks of the quantities
of interest with increasing bond dimension χ . In Fig. 12,
the half-chain entanglement entropy following a quench with
initial state |Y +〉 is shown for various bond dimensions. For
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FIG. 12. Half-chain entanglement entropy for N = 32 and var-
ious bond dimensions χ = {256, 512, 1024} (TDVP). Time step of
the simulation is δt = 0.1[1/J]. Darker colors indicate larger bond
dimension. Local Hamiltonian H∞ (upper left), fast scrambler HFS

(upper right), power law Hamiltonian Hα with α = 0.4 (lower left)
and 0.25 (lower right).

the time intervals we considered, the entanglement entropy
is clearly converged. Only small deviations at the end of
the respective time intervals can be observed. The squared
commutator seems to be more sensitive and a larger bond
dimension is needed for convergence, see Fig. 13, as one
has to calculate forward and backward evolution, requiring
effectively a simulation of twice the time-scales.

In Fig. 14, we display additional data regarding the op-
erator density. As discussed in the main text, we observe
a slowdown in the decay of the operator density also for
other values of α, which is shown in Fig. 14(a) for α = 0.25

FIG. 13. Squared commutator evaluated in the initial state |Y +〉
at a fixed time t for W,V = Y , N = 32, and various bond di-
mensions χ = {256, 512, 1024} (TDVP). Time step of simulation
is δt = 0.1[1/J]. Local Hamiltonian H∞, t = 10.0 (upper left), fast
scrambler HFS, t = 2.5 (upper right), power law Hamiltonian Hα

with α = 0.4, t = 2.0 (lower left), and α = 0.25, t = 1.5 (lower
right).

FIG. 14. (a) Slow decay of operator density in the left half of the
system for W = Y , various bond dimensions χ = {256, 512, 1024},
and a system size of N = 24 (TDVP). Left panel shows data for α =
0.6 and right panel for α = 0.25. (b) Operator density on the first
eight sites for N = 16, 20, 24 respectively. Left panel is data for α =
0.25 and right panel for α = 0.4.

and α = 0.6 respectively. Also for these values, the slow-
down remains upon increasing bond dimension. Furthermore,
this slowdown is robust against increasing the system size
N , which is depicted in Fig. 14(b) for α = 0.25 and 0.4,
respectively.

APPENDIX E: OPERATOR DENSITY
AND THE SQUARED COMMUTATOR

In the following, we present more details on the re-
lationship between the operator density and the squared
commutator. To this end, let us consider the squared commu-
tator, where the operator W is initially placed at the left edge
of the system, and the operator V at site r

CV
r (t ) = 1

2 〈[W (t ),Vr]†[W (t ),Vr]〉. (E1)

Here, we use 〈. . .〉 = 2−N Tr(. . .), which is the expectation
value in the infinite temperature ensemble. Furthermore, we
assume W and V to be unitary. Let us first consider r = N ,
Eq. (E1) then reads

1
2 〈[W (t ),VN ]†[W (t ),VN ]〉
= 〈[PNW (t )]2〉 − 〈[PNW (t )VN ]2〉, (E2)

where we defined PNW (t ) := ∑
|	|=N c	S	 as the projection

of W (t ) onto strings that act nontrivially on site N . The first
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term in Eq. (E2) then reads

〈[PNW (t )]2〉 =
∑

|	|=|	′|=N

c∗
	c	′ 〈S	S	′ 〉

=
∑

|	|=N

|c	|2 = pN (t ), (E3)

which is just the operator density for r = N . For the second
term, we obtain

〈[PNW (t )VN ]2〉 =
∑

|	|=|	′|=N

c∗
	c	′ 〈S	VNS	′VN 〉

=
∑

|	|=N,	N =V
|c	|2 −

∑
|	|=N,	N �=V

|c	|2.

(E4)

The second line follows from the fact that VNS	VN =
±S	, where we obtain a negative sign if the string S	 at site
N is not V . Combining Eqs. (E3) and (E4), we obtain

CV
N (t ) = 2

∑
|	|=N,	N �=V

|c	|2. (E5)

Note that Eq. (E1) depends on the choice of V . We can define
an average square commutator as

Cr (t ) = 1

|P|
∑
V∈P

CV
r (t ) =

∑
	r �=1

|c	|2, (E6)

where P = {1,X ,Y,Z}. Hence, we can establish the follow-
ing equality between the squared commutator and the operator

density:

pN (t ) = CN (t ). (E7)

Equation (E7) is a special case. In general, the average squared
commutator Cr (t ) is determined by all coefficients c	 that
belong to strings S	 that act nontrivially on site r. For r = N ,
this coincides with all coefficients that belong to strings of size
N . In the general case, we obtain

pr (t ) = Cr (t ) −
∑

|	|>r,	r �=1

|c	|2. (E8)

Thus, in this general case, the operator density is bounded
from above by the average squared commutator, i.e.,

pr (t ) � Cr (t ), r > 1. (E9)

If one has access to the Heisenberg operator W (t ), for
instance, within an ED computation, the operator density can
be obtained as follows: the part of the operator whose support
ranges up to a given site 
 can be obtained by taking the partial
trace with respect to all sites to the right of 
, i.e.,

W
(t ) := 1

2N−

TrL[W (t )] =

∑
|	|�


c	(t )S	, (E10)

where L is the complement of {1, . . . , 
}. Note that W
(t ) is
not unitary anymore. It follows then straightforwardly that

〈W
(t )W
(t )〉 =
∑

′�


p
′ (t ). (E11)

Thus, by computing Eq. (E11) for all 1 � 
 � N − 1, one
can reconstruct the operator density for all 
. In particular, we
have

p
(t ) = 〈W
(t )W
(t )〉 − 〈W
−1(t )W
−1(t )〉. (E12)
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