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Quadrupole partial orders and triple-q states on the face-centered cubic lattice
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We study �3 quadrupole orders in a face-centered cubic lattice. The �3 quadrupole moments under cubic
symmetry possess a unique cubic invariant in their free energy in the uniform (q = 0) sector and the triple-q
sector for the X points q = (2π, 0, 0), (0, 2π, 0), and (0, 0, 2π ). Competition between this cubic anisotropy
and anisotropic quadrupole-quadrupole interactions causes a drastic impact on the phase diagram both in the
ground state and at finite temperatures. We show details about the model construction and its properties, the
phase diagram, and the mechanism of the various triple-q quadrupole orders reported in our preceding letter
[J. Phys. Soc. Jpn. 90, 043701 (2021)]. By using a mean-field approach, we analyze a quadrupole exchange
model that consists of a crystalline-electric field scheme with the ground-state �3 non-Kramers doublet and the
excited singlet �1 state. We have found various triple-q orders in the four-sublattice mean-field approximation.
A few partially ordered phases are stabilized in a wide range of parameter space and they have a higher
transition temperature than single-q orders. With lowering temperature, there occur transitions from these
partially ordered phases into further symmetry broken phases in which previously disordered sites acquire
nonvanishing quadrupole moments. The identified phases in the mean-field approximation are further analyzed
by a phenomenological Landau theory. This analysis reveals results qualitatively consistent with the mean-field
results and also shows that the cubic invariant plays an important role for stabilizing the triple-q states. The
present mechanism for the triple-q states also takes effect in systems with different types of quadrupoles, and we
discuss its implications for recent experiments in a few f - and d-electron compounds.
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I. INTRODUCTION

Strongly correlated electron systems possess a variety of
possibilities of exotic phenomena [1,2] and also innovative
devices in future [3]. Strong correlations between d or f elec-
trons often lead to fascinating and mysterious ordered phases
[4], phase transitions [5], and even liquidlike phases [2]. In ad-
dition to these correlation effects, the importance of spin-orbit
(SO) coupling has been recognized for materials including
heavy elements with 5d or 4d electrons [6–8]. These electrons
are subject to both the crystalline-electric field (CEF) and the
SO coupling. Various phenomena of multipoles emerge in
such configurations [9]. This causes nontrivial properties in
their spin, orbital, or more general multipole models [9,10].

Several years ago, the present authors studied antiferro
quadrupole orders in Pr 1-2-20 compounds [11–13], in which
Pr ions form a diamond sublattice. Each Pr3+ ion has two
f electrons and its ground state is a non-Kramers dou-
blet �3 in the cubic environment, which is a consequence
of the interplay of CEF and SO couplings [14]. This �3

doublet has two active components of electric quadrupole
O20 and O22, and they form a two-dimensional basis of
E irreducible representation of the cubic point group Q =
(Qu, Qv ) = (O20,

√
3O22). To understand quadrupole orders

in this system, it is too naive to make predictions based on
the understanding of an apparently similar spin-1/2 model on
the same lattice. Despite their local degrees of freedom being
a doublet in common, there exists a crucial difference. This

is due to their opposite parities under time reversal operation:
spin has odd parity, while electric quadrupole has even parity.
Its even parity protects the presence of a nonvanishing third-
order term of quadrupole moments in the system’s free energy.
Its consequences and implications were briefly discussed in
the previous study [15].

More recently, Kusanose et al. have measured the low-
temperature properties of �3 quadrupole moments in another
compound PrMgNi4 [16–18]. An important difference is that
Pr ions form a face-centered cubic (fcc) sublattice there. In
our preceding study [15], we have shown that different lattice
structures open a way to stabilize novel triple-q orders includ-
ing partial-ordered states. One can understand this by noting
that the third-order term in the free energy contains a follow-
ing coupling of the moments at three wave vectors p1,2,3,

∼bABCA(p1)B(p2)C(p3), (1)

with bABC being the third-order coupling constant. A
requirement exists such that p1 + p2 + p3 = G should be
one of the reciprocal lattice vectors. The set of A(p1),
B(p2), and C(p3) is a certain combination of multipole
operators such that the product ABC remains invariant under
any point-group symmetry operation. As the third-order
coupling is nonvanishing bABC �= 0, one naively expects a
first-order transition occuring at a temperature higher than
the second-order one, which is determined as a vanishing
point of the second-order coefficient in the free energy.
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Such a type of third-order term has been discussed in
several contexts for nonmagnetic systems including the γ -α
transition in Ce [19], possible low-temperature phases in
UPd3 [20], and multiple phases in PrV2Al20 [21]. As for the
simplest cases with p1 = p2 = p3 = 0, quadrupole orders
in PrTi2Al20 have been theoretically discussed [11,12,22–
24], and also experimentally explored [25–28]. A system
with �3 quadrupole moments on an fcc lattice is the simplest
realization for such triple-q physics and we will study this in
this paper in more detail than in the previous report [15].

This paper is organized as follows. In Sec. II, we will intro-
duce a low-energy effective model defined in the space of �3

and �1 CEF states relevant to the Pr-based systems. We will
explain the basic properties of exchange interactions between
the quadrupole moments, and in Sec. III, we will examine the
local quadrupole Hamiltonian. In Sec. IV, we will perform a
single-site mean-field analysis for a �3-only model, and find
that its results turn out insufficient. Then, we will proceed to
the discussions about the four-site mean-field approximations
including various triple-q orders in Sec. V. Sections VI–VIII
are devoted to phenomenological analyses of the microscopic
mean-field results and we will clarify how various triple-q
orders including partially ordered states emerge. We will also
discuss a possible application of the present triple-q mecha-
nism to other systems in Sec. IX and summarize this paper in
Sec. X.

II. MODEL

In this section, we will introduce a model Hamiltonian
to be studied in this paper for discussing quadrupole or-
ders in Pr-based �3 systems. In Sec. II A, we will analyze
their local Hilbert space and construct an effective exchange
Hamiltonian of f -electron quadrupoles based on their symme-
try property. In Sec. II B, we will then analyze this exchange
Hamiltonian at the classical level and carry out a mode anal-
ysis to identify the leading ordering patterns. One should
understand that the quadrupole interactions are determined by
integrating out the degrees of freedom of conduction electrons
in the real Pr-based compounds, and we do not consider those
conduction electrons explicitly. This is because our aim is
to study the physics related to symmetry breakings exhibited
by the localized f electrons. Whether the system is insulat-
ing or metallic does not alter the qualitative aspect of the
symmetry breaking. Exceptions are some details at quantum
critical points [29], but they are not the issue of the present
study. In order to determine the phase diagram and identify
ordering patterns in each phase, the localized electron model
is sufficient and has been used as a reasonable starting point
in the studies of, e.g., CeB6 [30,31], URu2Si2 [32], and Pr
1-2-20 systems [23,24]. Throughout this paper, we analyze
fundamental properties of quadrupole orders in the minimal
�3 model (10) on the fcc lattice with the simplest fcc nearest-
neighbor interactions and clarify their general trends with
a few important material parameters rather than focus on a
specific material.

A. �3-�1 model

We first explain the local Hilbert space of the �3 sys-
tems for discussing quadrupole orders in their ground-state

FIG. 1. (a) Cubic unit cell of the fcc lattice of Pr ions and its
four sublattices labeled by A–D.

−→
AB = δ1,

−→
AC = δ3, and

−→
AD = δ5.

(b) The relevant CEF states of a Pr3+ ion in this paper. �3 is
the non-Kramers ground-state doublet and �1 is a singlet excited
state. |m〉 is the eigenstate Jz|m〉 = m|m〉 in the J = 4 multiplet.
(c) Brillouin zone of the fcc lattice. The three X points are
k1=(2π ,0,0), k2=(0,2π ,0), and k3=(0,0,2π ).

systems. As discussed in Refs. [11,12,15], it is important to
include the excited �1 state in order to take into account
local anisotropy. This is because the quadrupole operators
have quite large matrix elements connecting the �3 doublet
to the �1 state. See Eq. (5). The other CEF excited states
can be safely neglected, since they have no quadrupole ma-
trix elements with �3. Thus our local Hilbert space consists
of the singlet �1 = {|s〉} and the non-Kramers doublet �3 =
{|u〉, |v〉}:

|s〉 = 1√
12

[√
5

2

(|4〉 + | − 4〉)+
√

7 |0〉
]
, (2)

|u〉 = 1√
12

[√
7

2

(|4〉 + | − 4〉)−
√

5 |0〉
]
, (3)

|v〉 = 1√
2

(|2〉 + | − 2〉). (4)

Here |Jz〉 denotes the eigenstate of the z component of the
total angular momentum Jz in the multiplet of the total angular
momentum J = 4. Using these three basis states {|s〉, |u〉, |v〉},
the �3 quadrupole operators Q ≡ (Qu, Qv )T with T being the
transpose are represented as [11]

Qu ≡
⎛
⎝0 α 0

α 1 0
0 0 −1

⎞
⎠, Qv ≡

⎛
⎝0 0 α

0 0 −1
α −1 0

⎞
⎠,

α ≡
√

35

2
. (5)

As noted before, the matrix elements connecting �3 to �1 are
quite large α ∼ 3.

In the fcc lattice, each site has twelve nearest
neighbors separated by δ1,4=(0, 1

2 ,± 1
2 ), δ2,5=(∓ 1

2 , 0, 1
2 ),

δ3,6=( 1
2 ,± 1

2 , 0), and their counterparts −δ’s. See Fig. 1.
The symmetry analysis in our previous study concluded that
quadrupole interactions generally have anisotropic couplings
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FIG. 2. The eigenvalues �±(p) in the px-py plane for J < 0. K/|J| = (a) 1.0, (b) 2.0, and (c) 3.0. Note that (2π, 2π, 0) ≡ (0, 0, 2π ) for
the fcc lattice.

in addition to isotropic ones [15]. The minimal model of
quadrupole interactions reads as

HQ =
∑
〈r,r′〉

Q(r) · Ĵr−r′Q(r′), (6)

Ĵr−r′ = Jĝ0 + Kĝ(r − r′), (7)

where 〈r, r′〉 indicates that the sum runs over the nearest-
neighbor site pairs and ĝ0 = σ̂0. Throughout this paper, σ̂0

denotes the 2 × 2 identity matrix. The anisotropy factor has
a form represented with the Pauli matrices σ̂1 and σ̂3

ĝ(δ) = cos ζ (δ) σ̂3 − sin ζ (δ) σ̂1, (8)

where σ̂1,3 operate in the (Qu, Qv ) space. The angle parameter
ζ (δ) is defined for the bond vector δ=(x, y, z) as

ζ (δ) = Im log(eiωx2 + e−iωy2 + z2), ω ≡ 2
3π. (9)

As for the nearest-neighbor bonds, ζ (±δn) = nω − π , and
this leads to the relation ĝ(δ1) + ĝ(δ3) + ĝ(δ5)=0. The same
type of anisotropic coupling has been used in the so-called
compass model to study orbital orders [33]. The effective
model (6) was obtained with the special value K = J by Kubo
and Hotta starting from a microscopic electron Hamiltonian
[34]. The special K value is due to a simple form of their
microscopic Hamiltonian, and various other types of superex-
change processes generate K �= J .

We also note that conduction electrons cause the RKKY
interactions between the localized quadrupole moments. The
RKKY interactions have, in general, a longer range beyond
the nearest-neighbor distance used in this paper. However,
their range remains finite at finite temperatures, since electron
propagation loses long-range coherence due to thermal fluctu-
ations. The distance dependence of the RKKY interactions is
quite complicated and one needs to consider the details of the
Fermi surfaces to calculate its dependence. Before performing
that type of elaborate calculation, we have to clarify funda-
mental features of quadrupole orders and focus on a minimal
model in which conduction electron degrees of freedom are
traced out.

We denote by E1 the �1 energy level relative to the �3’s
value, and assume E1 > 0 throughout this paper. Then, we
define the Hamiltonian of the �3-�1 model by

H = E1

∑
r

|s(r)〉〈s(r)| + HQ. (10)

In the following sections, we will analyze in detail the ex-
change interactions HQ and the properties of a single-site
Hamiltonian under quadrupolar molecular fields.

B. Exchange interactions

Let us start with finding a classical ground state based
on the Fourier mode analysis of HQ. In terms of Fourier
components Qp = N−1/2∑

r e−ip·rQ(r) (N is the number of
sites), HQ is represented as

HQ =
∑

p

Qp · Ĵ (p) Q−p, (11a)

Ĵ (p) ≡
6∑

n=1

eip·δn Ĵδn = Jγ0(p)σ̂0 + K γ̂ (p), (11b)

where the sum
∑

p is taken over the wave vectors in the
Brillouin zone (BZ) shown in Fig. 1(c). The coupling con-
stants are given by

γn=0,1(p) ≡ 2[cxy(p) + einωcyz(p) + e−inωczx(p)], (11c)

γ̂ (p) = −[Re γ1(p)] σ̂3 + [Im γ1(p)] σ̂1

= [− 1
2γ1(p)(σ̂3 + iσ̂1)

]+ H.c., (11d)

and the form factor cab(p) is defined as

cab(p) ≡ cos
(

1
2 pa
)

cos
(

1
2 pb
)
. (11e)

Note that Ĵ (p) = Ĵ (−p) is a real symmetric matrix, and this
guarantees the hermicity of HQ.

A classical ground state is a spiral state, and its propagating
vector p = q∗ is the position where the coefficient matrix Ĵ (p)
has the maximally negative eigenvalue. The diagonalization of
Ĵ (p) is straightforward and the eigenvalues are

�∓(p) = Jγ0(p) ∓ K|γ1(p)|. (12)

In terms of the notation introduced for a unit vector pointing
to the direction of angle θ

eθ ≡ (cos θ, sin θ )T =: e(θ ), (13)

the corresponding eigenvectors are written as

v−(p) = e(ϑp), v+(p) = e(ϑp + π/2), (14)

for �−(p) and �+(p), respectively. The angle parameter ϑp is
given by the following parametrization:

γ1(p) = |γ1(p)| e−2iϑp, ϑp : real. (15)
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Figure 2 shows the eigenvalues �∓(p) in the px - py plane for
J < 0 as an illustrative example.

We can easily show that the maximally negative
eigenvalue is

�min =
{

−2J − 4|K| for |K| + 2J > 0

6J for 2J < |K| < −2J
. (16)

The minimum position is located at k1 = (2π, 0, 0), k2 =
(0, 2π, 0), and k3 = (0, 0, 2π ) when |K| + 2J > 0, while at
k0 = (0, 0, 0) otherwise. Thus the propagating wave vector q∗
is either one of k1,2,3 or k0 depending on the parameters. Note
that k1,2,3 are the X points in the BZ, i.e., the centers of the
three pairs of square parts on the BZ surface. See Fig. 1(c).
When J < 0 and |K| < 2|J|, one expects a ferro order in the
ground state.

The eigenvector u(q∗) of the maximally negative eigen-
value �min describes the unstable mode that orders at a
phase transition approaching from the paramagnetic phase
side, and the local ordered moments are given as 〈Q(r)〉 =
Re u(q∗) eiq∗·r. For the ferro ordering, the coefficient matrix
J (k0) = 6Jσ̂0 is isotropic and thus the order parameter 〈Q〉
may point to any direction in the quadrupole space within the
level of Fourier mode analysis.

In the following parts of this paper, we concentrate on
“antiferro” orders with the ordering wave vector k� �=0 in detail.
The eigenvector u(q∗) is v−(q∗) for K > 0, and v+(q∗) for
K < 0, and let us represent as u(q∗)= (cos ϑ̄ (q∗), sin ϑ̄ (q∗))T

for both cases. Then, its direction is given as

K > 0 K < 0

ϑ̄ (q∗ = k�) =

⎧⎪⎪⎨
⎪⎪⎩

7
6π ∓ 1

2π, 2
3π ± 1

2π at k1

5
6π± 1

2π, 4
3π± 1

2π at k2

1
2π∓ 1

2π, π∓ 1
2π at k3

. (17)

See Fig. 3. For example, the order with q∗ = k3 has the
order parameter 〈Q(r)〉 = (−1)2z (Qu, 0)T for K > 0, while
(−1)2z (0, Qv )T for K < 0. They are known as O20- and
O22-type AFQ orders, respectively. Note that for a more gen-
eral order parameter, the cubic lattice symmetry implies that
generally six values of the order parameters

〈Q〉 = qe(0) ± q′e
(

π

2

)
, qe(ω) ± q′e

(
ω + π

2

)
,

qe(−ω) ± q′e
(

−ω + π

2

)
,

(18)

are equivalent. They are related to two types of lattice sym-
metry operations: one is a 1

2π rotation about one of the three
principle axes Ri(± 1

2π ) (i = x, y, z), and the other is an ω

rotation about the axis along [1,1,1] direction R1(±ω). The
above six 〈Q〉 values are transformed from one to another by
these operations.

We emphasize that the phase factor of the eigenvectors
u(k�) are not relevant in this Fourier mode analysis. However,
they play a role at the stage that mode couplings are taken into
account.

III. SINGLE-SITE PROPERTY

For discussing possible phases and their transitions in this
system, it is important to first understand single-site properties
under quadrupole molecular field h = (hu, hv )T. It turns out
that the wave function changes its topological character as the
field strength grows, and this change is reflected in the phase
diagrams of interacting quadrupoles.

A single-site Hamiltonian is given as

Hmf = −h · Q + E1|s〉〈s|, (19)

where the site label r is omitted. As for the external fields, only
those coupled to Q are considered here, since our concern in
this paper is quadrupole orders. Since multiplying a positive
factor to Hmf does not change its ground state, we normal-
ize the Hamiltonian such that h2 + E2

1 = 1 and introduce the
polar coordinates defined by

(hu, hv ) = sin (cos �, sin �), E1 = cos . (20)

FIG. 3. ϑp in the px-py, py-pz, and pz-px planes. Shown are
(a) ϑp for K > 0 and (b) ϑp + π/2 for K < 0. When the angle
|ϑp| or |ϑp + π/2| exceeds π/2, it is shifted by π to an equiva-
lent value. In (a), the eigenvectors at the X points are those with
ϑk1 = ϑ̄ (k1) = −π/3, ϑk2 = ϑ̄ (k2) = π/3, and ϑk3 = ϑ̄ (k3) = 0,
where schematic u-type orbital shapes are illustrated. In (b), ϑk1 =
ϑ̄ (k1) = π/6, ϑk2 = ϑ̄ (k2) = −π/6, and ϑk3 = ϑ̄ (k3) = π/2 or
equivalently −π/2.
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The normalized Hamiltonian is now represented as

Hmf = Hmf (,�)

=
⎛
⎝ cos −αsincos� −αsinsin�

−αsincos� −sincos� sinsin�

−αsinsin� sinsin� sincos�

⎞
⎠. (21)

Our primary concern is about the case of 0 <  �
1
2π , and there exists the symmetry Hmf (π − ,π + �) =
−Hmf (,�).

It is important to understand the symmetry of this Hamil-
tonian that is related to the cubic lattice structure. Let R be
one of the aforementioned two types of rotation operators.
Its application transforms a wave function with an orthogonal
matrix as ψ ′ = URψ , and thus the Hamiltonian is correspond-
ingly transformed as H′

mf = URHmfUT
R . The transformation

matrices for R = Rz(±π/2) and R1(±ω) are UR = Mz =
M(0) and U (±ω), respectively, in terms of the notations
defined for general θ by

M(θ ) =
⎛
⎝1 0 0

0 cos θ − sin θ

0 − sin θ − cos θ

⎞
⎠ = 1 ⊕ μ(θ ), (22a)

U (θ ) =
⎛
⎝1 0 0

0 cos θ − sin θ

0 sin θ cos θ

⎞
⎠ = 1 ⊕ U (θ ), (22b)

where μ(θ ) and U (θ ) are 2 × 2 orthogonal matrices operating
in the �3 subspace. Note that the �1 space is invariant for
any R, since it is singlet. μ(θ ) is a mirror operator in the
�3 multiplet. The other symmetry operations of θ = ± 1

2π

rotations can be represented as Rx(θ ) = R1(ω)Rz(θ )R1(−ω)
and Ry(θ ) = R1(−ω)Rz(θ )R1(ω). The corresponding mir-
rors are given as Mx,y = U (±ω)MzU (∓ω) = M(±ω). Note
the relations [U (nω)]T = U (−nω) and M(nω)M(n′ω) =
U ((n′ − n)ω).

Now that the transformation matrices are obtained, we can
directly show that the transformed Hamiltonian also has the
form of Hmf (,�′) and the new field direction �′ is deter-
mined. The result is summarized as follows:

U (nω)Hmf (,�) [U (nω)]T = Hmf (,� + nω), (23a)

M(nω)Hmf (,�)M(nω) = Hmf (,−� − nω), (23b)

for n = 0,±1. Note that the transformations change � alone.
These manifest the equivalence of the following six field di-
rections

�′ = ±(� + nω), (n = 0,±1). (24)

To be more precise, the Hamiltonians for these �’s
are related to each other through orthogonal transforma-
tions. For the three special directions � = nω (n = 0,±1),
[M(�), Hmf (,�)] = 0, and therefore the ground-state
wave function should be a simultaneous eigenvector of
M(�). Finally, in the limit  → 0, the �1 component of
the ground state vanishes. The Hamiltonian projected to the
remaining �3 subspace PHmfP has a continuous symmetry
PHmf (0,�)P = U ( 1

2�)[PHmf (0, 0)P][U ( 1
2�)]T.

Let 〈Q〉0(�) be the ground-state expectation value cal-
culated for Hmf (,�), and then it is also accordingly
transformed for the equivalent �’s in Eq. (24). For simplicity,
we drop the  dependence for a while. The relations (23)
imply

〈Q〉0(� + nω) = 〈
[U (nω)]TQU (nω)

〉
0(�)

= U (nω)〈Q〉0(�), (25a)

〈Q〉0(2nω − �) = 〈
M(nω)QM(nω)

〉
0(�)

= μ(nω)〈Q〉0(�). (25b)

This means that the quadrupole moment 〈Q〉0 is transformed
as a two-dimensional vector with the rotation U (nω) or mirror
μ(nω) operation defined in Eq. (22). The transformed values
are those six listed in Eq. (18). These symmetries also imply
the following properties for the special field directions � =
1
2ω × (integer):

〈Q〉0(�) ‖ h,
∂

∂�

∣∣〈Q〉0(�)
∣∣ = 0. (26)

Let us analyze the eigenvalues of Hmf (,�). It is enlight-
ening to regard this problem as a one-dimensional system
with three internal states where � is its “wave number” while
 is a control parameter [35]. At  = π , the ground-state
wave function is trivially a pure singlet �1 state and the ex-
citations are fully gapped for all �’s as shown in Fig. 4. As
 decreases, the gap reduces and closes at c = cot−1 27

8 �
0.092π and � = π + nω (n = 0,±1). The symmetry of the
Hamiltonian also implies a level crossing between the two
excited states at  = π − c. With varying , the ground
state changes its nature drastically from a half-integer “spin”
type ( ∼ 0) to an integer “spin” one ( > c). This change
is characterized by the Berry phase factor (−1)2πχB of the
ground-state wave function ψ acquired during the adiabatic
change in � from 0 to 2π : ψ(� = 2π ) = (−1)2πχBψ(0)
[36,37]. This factor (−1)2πχB is −1 for  < c, while +1
for  > c. This change comes from the contribution of
the three singular points at (,�) = (c, π + nω), at which
the two low-energy modes exhibit a dispersion of Dirac
-cone type.

This change in the ground-state wave function is clearly re-
flected in the trajectory of quadrupole moment 〈Q〉0(,�) =
[ψ(,�)]†Qψ(,�) upon varying � from 0 to 2π . See
Figs. 5 and 6. The � trajectory exhibits qualitatively dif-
ferent shapes in the four regions of : (A) 0 �  < c2 ≡
cot−1 27

4 � 0.047π , (B) c2 <  < c, (C) c <  < 1
2π ,

(D) 1
2π <  < π . We will discuss each region below.

Let us start from the region A. Results for several values
of  � c are shown in Fig. 5. In the limit  → 0 (i.e.,
|h|/E1 → 0), the ground state has no �1 component, and thus
can be represented as a pseudospin-1/2 wave function. This
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FIG. 4. (a) Eigenenergies λ of Hmf (,�) in Eq. (21). For clarity, the data for  = c or π − c, showing the gap closing, are highlighted.
(b) Trajectory of the ground-state wave function ψ = (ψ1, ψ2, ψ3) from � = 0 to 2π . The values with  = cot−1 5 < c and  = cot−1 3 >

c are used as examples. ψi(� = 2π ) = −ψi(0) for all i’s when  < c, while ψi(2π ) = ψi(0) when  > c. The upper and lower end
points correspond to � = ±π for  < c.

leads to trivial results: |〈Q〉0| = 1 and 〈Q〉0 ‖ h for any field
direction �. Thus the � trajectory is a unit circle. As  in-
creases, the amplitude of 〈Q〉0 grows and its direction deviates
from the field direction �. As a consequence, the trajectory
is no longer circular but keeps threefold rotation and mir-
ror symmetries imposed by the relations (25). This indicates
that the hybridization of the �1 state generates an anisotropy
in the Q space, and this is an essentially important aspect
of the quadrupole order. The three special field directions
� = π + nω (n = 0,±1) are special, and the moment is then

FIG. 5. Trajectory of 〈Q〉0 as � varies from 0 to 2π is drawn
for several values of  < c. The  value is shown by color, and
positions for typical � values are indicated. The unit circle represents
the result in the pseudospin-1/2 limit ( = 0). The magnitude |〈Q〉0|
increases as  increases. Inset is a zoom up near 〈Q〉0 ∼ (3, 0)T

where � ∼ 0. The arrows indicate the direction for increasing �.
Trajectories show a similar behavior for � ∼ 2π/3 and 4π/3.

pinned as 〈Q〉0(,�) = (cos �, sin �)T and does not change
its amplitude with . In their opposite directions � = nω, the
moment has a maximal amplitude

∣∣〈Q〉0(, nω)
∣∣ = 1

2

[
1 + cot  + 36√

(cot  + 1)2 + 35

]
, (27)

and this value grows monotonically from 1 to 7
2 as  varies

from 0 to 1
2π . The upper boundary of the region A is c2, and

for the three special field directions the quadrupole moment
points to

〈Q〉0(c2, nω) = 35
13 (cos nω, sin nω)T =: Q̄(n)

p . (28)

These become cusps of the � trajectory, and actually the �

dependence is singular there, for example, 〈Qv〉0(c2, δ�) ∝
(δ�)5 for |δ�| � 1.

In the region B of , the moment 〈Q〉0 changes its direction
nonmonotonically with �, and the trajectory has three pinch
points located at Q̄(n)

p . The pinch points are reached when the
field direction is � = nω ± δ where cos δ = cot / cot c2.
It is remarkable that each pinch point Q̄(n)

p is visited twice
upon varying field direction � with  fixed: once from
“above” and from “below” the other time. See the inset of
Fig. 5. These pinch points do not move with  in the region
B, since the ground state there is fixed to ψ(, nω ± δ) ∝
U (nω)(1, α, 0)T.

The upper boundary of the region B is  = c, and
this case is exceptional. The �-trajectory is not connected
but consists of three disconnected parts. This is due to the
level crossing of the ground state at (c,� = π + nω) dis-
cussed before. The doubly degenerate ground states are ψ1 ∝
U (nω)(2,−α, 0)T and ψ2 = U (nω)(0, 0, 1)T. With approach-
ing one level-crossing point from some direction in the (,�)
space, these two states are hybridized to form the ground state
as ψ1 cos ξ + ψ2 sin ξ , and the mixing angle ξ is determined
by the approaching direction. With varying ξ for each crossing
point, the expectation value 〈Q〉0 traces a fraction of an ellipse.
For example, around the crossing point at � = π (i.e., n=0),

205126-6



QUADRUPOLE PARTIAL ORDERS AND … PHYSICAL REVIEW B 107, 205126 (2023)

FIG. 6. � trajectories of 〈Q〉0 for  � c. The magnitude |〈Q〉0| increases as  increases for (a)  < π/2, while decreases for (b)
π/2 <  < π .

this ellipse is expressed as

( 〈Qu〉0 + 26/17

9/17

)2

+
( 〈Qv〉0√

105/17

)2

= 1. (29)

One should note that the “pinned” point 〈Q〉0 = (−1, 0)T is
on the minor axis of this ellipse. The ellipses for the other
level crossing points are obtained by rotating this by the angle
±ω about the origin. When the parameter set passes a level-
crossing point (c,� = π + nω), 〈Q〉0 jumps from one point
on the corresponding ellipse to its opposite point. In the case
of the � trajectory, this jump takes place from a point on the
ellipse’s major axis to its opposite point. Thus the interiors of
these ellipses are a forbidden region of 〈Q〉0 as far as E1 > 0,
and this property is also important in the discussion of the
quadrupole order.

In the region C of , the �-trajectory becomes simple
again. Just above c, |〈Q〉0| shows jumps to the larger mag-
nitude as shown in Fig. 6(a). This is what we have just
discussed above. For example, |〈Q〉0|(� = π ) jumps from 1
at  = c − 0 to 35

17 at c + 0. In this region, the quadrupole
moment changes its direction monotonically with � as shown
in Fig. 6(a).

Finally, while the region D ( 1
2π < ) is not directly rel-

evant to the following sections, we also study this region to
complete the single-site analysis. This corresponds to the sit-
uation where the singlet �1 level is below the �3 doublet. This
indicates that |〈Q〉0| should shrink to 0 as  approaches π .
This process is shown in Fig. 6(b). The change is smooth with
respect to both  and �, and shows no jump or singularity.
This is consistent with the energy level analysis in Fig. 4(a),
where there is no ground-state level crossing.

IV. MEAN-FIELD APPROACH

In this section, we employ a mean-field approach to deter-
mine the phase diagram and investigate ordered phases. We
will first analyze the limit of E1 → ∞. This corresponds to a
pseudospin- 1

2 model with no internal anisotropy. As shown in
Fig. 5, the trajectory of field response is a unit circle, despite
the anisotropic interaction K exists. We will show that only
three states appear in that limit: two antiferro states with O20

or O22 order parameter, and an isotropic ferro state. Then, we
will proceed to develop a four-sublattice mean-field theory. Its
results predict several triple-q states. We will determine the
J-K phase diagram and calculate the temperature dependence
of the order parameters. Details of the triple-q orders will be
also discussed.

A. Pseudospin-1/2 limit

In the limit of E1 → ∞, we can safely ignore the excited
�1 state for both the Hamiltonian (6) and the quadrupole
operators Q(r). Thus Q(r)’s are treated as pseudospin- 1

2 op-
erators, and the mean-field equation for the order parameter
is easy to analyze [15]. For an isolated quadrupole, the re-
sponse to the mean-field h has an elementary form 〈Q〉 =
N (h/T ) χ0(T ) h. Here, χ0 = 1/T is the linear susceptibility,
and the nonlinear correction is N (x) ≡ x−1 tanh x The latter
can be neglected for |x| � 1.

First, let us consider the region of ferro order (2J < |K| <

−2J). The eigenmode analysis shows that the two eigenvalues
of J (k) are degenerate, since the K terms vanish at k0 = 0.
This means there is no preference for the ordering direction
in the Qu-Qv quadrupole space. Recalling that each site has
12 nearest neighbors, one sets h = 12|J|〈Q〉, and this leads to
the condition of the transition temperature 12|J|χ0(Tc) = 1.
Its solution and the ground-state energy are

Tc = 12|J|, E (T =0) = 6J, (FQ). (30)
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FIG. 7. Quadrupole configuration in the AFQ ordered states
viewed from the positive z direction. The z coordinate of each site is
indicated beside the orbital. (a) O20 AFQ order with q∗ = k2. (b) O22

AFQ order with q∗ = k3.

For the antiferro case, one chooses one of the ordering vec-
tors q∗ at the X points. Let us first discuss the O20 type realized
for K > 0. See the eigenvector of the exchange coupling J (p)
in Fig. 3. For the domain with q∗ = k2 = (0, 2π, 0), the order
parameter is 3y2 − r2 type: u±(k2) with ϑ̄ (k2) = 4

3π or 1
3π

as shown in Eq. (17). Since this ordering vector corresponds
to two-sublattice (A and B) orders, one uses a two-sublattice
version of the mean-field theory with hA,B = −4J (〈QA〉 +
2〈QB〉) ∓ 4Kĝ(δ2)(〈QA〉 − 〈QB〉). Here, −(+) is for hA(B).
The self-consistent equations for 〈QA,B〉 lead to

Tc = 4J + 8K, E (T =0) = −2J − 4K, (AFO20). (31)

This antiferro quadrupole pattern is schematically shown in
Fig. 7(a), where the quadrupole moments exhibit a ferro align-
ment on each zx plane, while an antiferro alignment along the
y direction. Similarly, for K < 0, the antiferro O22 quadrupole
solution leads to

Tc = 4J − 8K, E (T =0) = −2J + 4K, (AFO22), (32)

which are obtained from Eq. (31) by just replacing K → −K .
As an illustrative example, Fig. 7(b) shows the ordering pat-
tern for O22 antiferro order with q∗ = k3 = (0, 0, 2π ), where
the orbital type is x2 − y2: v±(k3) with θ (k3) = ± 1

2π . See
also Fig. 3(b) and Eq. (17).

The ground-state phase diagram determined from
Eqs. (30)–(32) is shown in Fig. 8(a). The phase boundaries
agree with those obtained by the mode analysis in Sec. II B.

FIG. 8. Phase diagram in the limit of E1 → ∞ in (a) the J-K
and (b) the K-T planes. In (b) the wavy line represents a first-order
transition.

Note that the transition from the high-temperature disordered
phase is always second order, while that between the different
ordered states are first order as shown in Fig. 8(b).

B. Triple-q orders

Now, let us consider realistic situations where E1 < ∞,
and examine whether the solutions in the previous section re-
main stable or not. The discussion above has examined only
the leading instability due to the exchange coupling Ĵ (p). A
crucial point is missing, and that is the anisotropy in the Qu–
Qv space that emerges from a hybridization of the excited �1

state. When this anisotropy is taken into account, most parts
of the ordered antiferro states in Fig. 8(b) are to be replaced
by various triple-q orders, and they have four-sublattice con-
figurations in the real space. In this section, we concentrate
on showing the results of the four-sublattice mean-field calcu-
lations. The mechanism stabilizing the triple-q states will be
discussed in detail in Sec. VI based on a phenomenological
Landau theory.

For a general configuration of the four-sublattice order, the
sublattice order parameters QA,B,C,D are related to those in the
Brillouin zone at the four wave vectors kn (n = 0, 1, 2, 3).
Labeling the sublattices as shown in Fig. 1(a), the relation is⎡

⎢⎢⎢⎢⎣
QA

QB

QC

QD

⎤
⎥⎥⎥⎥⎦ = 1

2

⎡
⎢⎢⎢⎢⎣

1 1 1 1

1 1 −1 −1

1 −1 −1 1

1 −1 1 −1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

Qk0

Qk1

Qk2

Qk3

⎤
⎥⎥⎥⎥⎦, (33)

where 1’s in the matrix elements are 2 × 2 identity matrices.
This is evident from the representation of the triple-q states
Q(r) = 1

2

∑3
n=0 cos(kn · r) Qkn

. We note that these order pa-
rameters Qkn

are real, since −kn is equivalent to +kn in the
Brillouin zone.

For later purposes, we introduce the following polar coor-
dinates of the quadrupole moments:

Qk0
≡ Qeθ�

, Qk1
≡ XeθX ,

Qk2
≡ Y eθY , Qk3

≡ ZeθZ . (34)

Here, Q, X,Y, Z � 0. We sometimes use an alternative
notation

Qkn
= Xn e(θn). (35)

We will use these variables to distinguish and identify various
states in the following sections.

V. MEAN-FIELD PHASE DIAGRAM

In this section, we will determine the phase diagram of the
�3-�1 model (10) based on a four-site mean-field approach.
We will identify various ordered states and briefly summarize
their transitions before more detailed analyses in the later
sections.

First, we show the J-K phase diagrams for T = 0.5E1,
0.1E1, and 0 in the panels (a), (b), and (c), respectively, of
Fig. 9. Each of the phases is identified, and its symmetry
and schematic quadrupole configuration are summarized in
Fig. 10. Simple antiferro (AFO22) and ferro (FO20) states
appear in similar regions as those in Fig. 8(b), while the area of
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FIG. 9. [(a)–(c)] J-K phase diagram at fixed values of T , and (d) real-space configuration Q(r) in each ordered state. (a) T/E1 = 0.5,
(b) 0.1, and (c) 0.0. The order of transition is indicated for the borders in (a)–(c) as “1st” or “2nd”. Tricritical points are marked by filled
circles. “para” in (a) and (b) denotes a disordered phase with no symmetry breaking. See also Fig. 10 for the symmetry and Q configuration
in each state. In (b), a region of the zxzy state exists near (J, K )/E1 ∼ (0.005, −0.006), but it is too small to see. In (c), the zxzy′ state contains
a small zxzy region but they are not distinguished since both have the same symmetry. Inset in (c) is a zoom up of the part near the origin
for K > 0. The zyzx′ state has two disconnected parts. In the part at large J , two of the four sublattice Q’s are the largest there (see the zyzx′

state in Fig. 10). In the part at small J , one Q is larger than the others, (see the zyzx state in the Fig. 10). A small region of the NS′ state [not
shown in the main panel of (c)] bridges the zyzx′ and zyzx states via two second-order transitions. The phase diagram at K = 0 is discussed in
Appendix D. (d) Schematic quadrupole configuration in each ordered state in a cubic unit cell. In the zyzx state, moments at the corners have
a slightly different magnitude from those at the face centers.

the AFO20 state is small at low temperatures. This is a striking
difference from the results of the two-sublattice calculations.
Note that the ferro quadrupole state is named FO20 rather
than FQ, since the system favors O20 over O22 due to the
anisotropy driven by the hybridization α of the excited �1

state in Eq. (5). Other regions in the J-K parameter space are
occupied by various types of the triple-q orders or otherwise
the high-temperature disordered state denoted by para. We
name these triple-q states by a combination of four letters
according to the real-space quadrupole configurations in the
four sublattices [15]. These four letters denote the principle
axis of uniaxial orders in the sublattices A–D. For example,
zyox means that QA, QB, and QD are z2, y2, and x2 types,
respectively. The C-sublattice is disordered, namely, “o”
represents disordered. Thus the zyox and zoxy states are par-
tially ordered. They appear only at high temperatures and
do not exist in the ground state phase diagram in Fig. 9(c).
In these partial-order states, the ferro component has zero
amplitude, Q = 0, while Q �= 0 in the fully ordered states.
The phase with the lowest symmetry in the four-site mean-
field calculations is named no symmetry state (NS and NS′).
They are not invariant for any operation of the cubic lattice
symmetry or for sublattice exchanges.

We comment about new aspects of the phase diagrams un-
touched in the first report [15]. The first aspect is about the NS′
state. This appears when K > 0 in an extremely small region
near the phase boundary between the zyzx′ and zyzx states at

very low temperatures as shown in the inset of Fig. 9(c). As
shown in Fig. 10, the two states zyzx and zyzx′ have the same
symmetry, and thus the transition between the two should be
first order. When the NS′ state intervenes into their boundary,
the new boundary becomes a line of second-order transition
with either the zyzx or zyzx′ state. Remember that the two
modes Qk1

and Qk2
are both dominant in the zyzx′ state (i.e.,

X = Y > Z), while only one mode is dominant in the zyzx
state: Qk1

(X > Y = Z). See Fig. 10. Thus, as J increases
starting from the zyzx′ state, we observe that the balance of
the two modes is eventually lost such that X > Y in the NS′
state and then Y approaches Z with approaching the zyzx state.
This change may happen continuously, and this explains the
calculated results. We note that while the NS and NS′ states
have the same symmetries, they are distinct. Further details
are analyzed in Appendix D.

The second new aspect is about a tiny region of the zxzy′
state near the small island of the NS state at T/E1 = 0.1 in
Fig. 9(b). The area of this is too small to see there. The third
aspect is about the order of transitions. Some parts of the
phase boundaries are of the first-order transition, and they
are separated from the parts of the second-order transition
by tricritical points. In Ref. [15], these tricritical points are
shown only in the ground state phase diagram corresponding
to Fig. 9(c). We have carefully examined the order of transi-
tions at finite temperatures, and the locations of the tricritical
points are indicated by filled circles also in the panels (a) and
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FIG. 10. Symmetry of the ordered states and schematic
quadrupole configurations in real space Q(r) and in momentum space
Qkn

(n = 0, 1, 2, 3). The first four columns show a list of broken
symmetries among those of the original point group: (C4) the fourfold
rotation about a principal axis, (C3) the threefold rotation about
[111] direction, (σd ) the mirror with respect to (11̄0) plane, (σh) the
mirror with respect to (001) plane. Broken ones are indicated by a ×
symbol. Q’s are shown by arrows in the two-dimensional quadrupole
space where the horizontal (vertical) direction corresponds to
the Qu (Qv) component. The zyzx (zxzy) and zyzx′ (zxzy′) states
have the same symmetry, but are distinguished by the direction of the
smallest Q(r) (Qk0

). Circles with dots are guide for the eye. Q(r)’s
are calculated using Eq. (33) from Qkn

’s, for the domain chosen in
Figs. 11–13.

(b). For example, a tricritical point exists on the para-AFO22

phase boundary. This was one of our predictions in Ref. [11],
where antiferro orders only differentiate two sublattices in-
side the unit cell without breaking the translation symmetry.
The discussion there is applicable to the present case that an
instability of Qk takes place at the X points in the Brillouin
zone.

Let us now examine the temperature dependence of the or-
der parameters. Figure 11 shows their amplitudes |Qk�

|(T ) for
the typical ordered states. We just show the results for one of
the degenerate domains. The transitions of the para-FO20 (a),
para-zyox (b), AFO20-zyox (b), and NS-zoxy (f) are clearly all
discontinuous, i.e., first order. The transitions of the zyox-zyzx
(zyzx′) [(c) and (d)] and para-zoxy [(f)–(h)] are either first or-
der or continuous as depending on the parameters. In contrast,
the transitions of the para-AFO22 (g), NS-AFO22 (e), and
NS-zxzy (g) are all continuous for the parameter sets used.
We note that there is no direct para-AFO20 transition. The

high-temperature side above the AFO20 state is always the
zyox state.

Next, we discuss the order parameter variations in the
J-K space for several fixed values of T . To this end, we
parametrize J and K as

(J, K ) ≡ J̄ (cos ξ, sin ξ ), (36)

and vary ξ from 0 to 2π . Figure 12 shows the ξ dependence
of |Qk�

| for J̄ = 0.08E1 at T = E1 and 0.1E1. In addition to
|Qk�

|’s, we introduce

QXY Z ≡ X + Y + Z, (37a)

QEg,1 ≡ 1√
6

(2Z − X − Y ), QEg,2 ≡ 1√
2

(X − Y ), (37b)

with

QEg ≡ (
Q2

Eg,1 + Q2
Eg,2

)1/2

= [
X 2 + Y 2 + Z2 − 1

3 (X + Y + Z )2
]1/2

. (37c)

These QEg,1 and QEg,2 describe the symmetry breaking in the
triple-q states. For example, both of the zoxy and zyox partial
ordered states have X = Y = Z , and thus QEg = 0. These two
differ in the angle variables θX,Y,Z . The transition between
AFO22 and NS states is about the changes in the two modes
(X and Y in Fig. 12). They stay zero inside the AFO22 state
and emerge continuously in the NS state. The two states have
the same internal symmetries in Fig. 10, and what breaks is
the translation symmetry; A two-sublattice order changes to
a four-sublattice one. At the NS–zxzy transition, the equality
of the largest amplitude modes breaks. Namely, the equality
Z = X in the zxzy state breaks down in the NS state. The
related transition is either first order or continuous as shown
in Figs. 9 and 12.

Let us switch to the analysis of the moment directions. In
the relatively high symmetry states, AFO20, AFO22, and zyox,
the directions θ�,X,Y,Z are fixed to the high symmetry axes
1
4ω × (integer). Figure 13 shows typical examples of their
change as a function of ξ . In Fig. 13(a), θX and θY seem to
abruptly appear at the AFO22-NS phase boundary. However,
it does not mean that the transition is of first order, since
X = Y = 0 inside the AFO22 state. In the partially ordered
zoxy state, the quadrupole directions are equally separated
and satisfy the relations θY − θX = θX − θZ = θZ − θY = ω,
by properly shifting the origin of the four-site unit cell, since
this shift changes two of the three directions by the angle π .
See Eq. (33). In contrast, the angle average α ≡ (θX + θY +
θZ )/3 varies continuously inside the zoxy state as shown in
Figs. 11(f), 11(h), and 13(a). Note that the sign of α distin-
guishes the two domains. The counterpart of this state is zyox
in the K > 0 region. There, α is fixed to 0 and θZ − θY = −ω,
while the other θ relations are unchanged. See Fig. 13(b).
One should also note that these zyox and zoxy states have no
uniform moment and thus Q = 0.

While the direction of the uniform moment θ� changes
continuously in the NS state, it is fixed in the other states
to one of the symmetry axes 1

2ω × (integer). Figure 14 plots
cos(3θ� ) in the J-T plane for K/E1 = −0.02. Inside the
NS state, it varies continuously between −1 and 1. One
should also note that the para-zoxy phase boundary extends
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FIG. 11. Temperature dependence of the moment magnitudes |Qkn
| for (a)–(d) K > 0 and for (e)–(h) K < 0. Blue �, green �, red ◦,

and purple line show |Qk1
| = X , |Qk2

| = Y , |Qk3
| = Z , |Qk0

| = � = Q, respectively. The parameter set (J, K )/E1 is shown in each panel.
Discontinuous changes in � = Q are marked by a black arrow. In (f) and (h) also plotted is α ≡ (θX + θY + θZ )/3 − π/2 (mod 2π ). In
(b)–(d) and (f), the transition between the para and zyox or zoxy states is discontinuous.

smoothly across the multicritical point at J/E1 ∼ 0.03 to
the para-AFO22 boundary. We will discuss this aspect in
Sec. VIII A.

We close this section by discussing the consequence of
the topological transition explained in Sec. III. In the fol-
lowing discussion, we discuss the local quadrupole moments
QA−D. In the mean-field theory, strong interactions J and K
enhance the effective mean fields. Thus the local moments in-
crease their amplitude correspondingly for most of the cases.
However, when Q points to one of the special directions

FIG. 12. ξ dependence of |Qkn |. X , Y , Z , and � are those de-
fined in Fig. 11. Dotted and dashed lines represent QXY Z and QEg ,
respectively. J̄/E1 = 0.08. (a) T/E1 = 1.0 and (b) 0.10.

θ = nω + π (n: integer), its amplitude is pinned to |Q| = 1
and does not grow even when the interactions increase. This is
because the system belongs to the region of “half-integer spin”
where |〈Q〉0(� = nω + π )|=1 as shown in Fig. 5, as far as the
mean fields are not so strong ( < c). With further increas-
ing the interactions, the parameter  increases and finally
reaches  = c, where the topological transition occurs. For
larger interactions exceeding the critical value ( > c), the
ground state wave function is “integer spin” type, and |Q| is
no longer pinned and grows continuously as shown in Fig. 6.

FIG. 13. Order parameter directions θX,Y,Z,� in a specific domain
at high and low temperatures for J̄/E1 = 0.08. Note that θ is not
shown when its Qkn

= 0, e.g., θ� for the zoxy and zyox states.
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FIG. 14. Color plot of cos(3θ� ) in the J-T plane for K/E1 =
−0.02. Phase boundaries are indicated by black or white lines.
θ� = ω × (integer) for the FO20 and zxzy′ states, while θ� =
π + ω × (integer) for the AFO22 and zxzy states. Note that Q stays
zero in the zoxy state. A dotted line represents the boundary between
the zxzy and zxzy′ states, but this does not mean a phase transition
there. This is just the line of Q = 0.

The point is that as long as the local mean-field direction
is � = nω + π , |Q| cannot change up to  = c. Once the
direction � tilts from nω + π , the quadrupole moments also
tilt and their amplitude can change.

Such a Q pinning is indeed realized in the zyzx′, zxzy′, and
AFO20 states. Figure 15(a) is a color plot of the minimum
amplitude Qmin ≡ min |QA,B,C,D| for T = 0. It clearly shows
that Qmin=1 in the zyzx′, zxzy′, and AFO20 states. Apart from
these three states, there is a regime with Qmin � 1 inside the
NS state for K/E1 ∼ −0.01 and J/E1 ∼ 0.01. In the NS state,
the quadrupole moment changes its direction away from θ =
nω + π , and Qmin varies continuously. In the zyzx state for
K > 0, no moments point to θ = nω + π , and thus no such

pinning effect takes place. In contrast, in the zxzy state for
strong coupling J and K < 0, one moment points to θ = nω +
π , but this time the system is already in the “integer-spin”
domain, and thus pinning effects are absent.

Figures 15(b) and 15(c) illustrate the variation of the sub-
lattice moments QA−D with increasing J at T = 0. The panel
(b) is the data for K/E1 = 3.9 × 10−3 and shows that QA
stays (−1, 0)T inside the zyzx′ state and jumps to (1, 0)T at
the transition to the zyzx state. The panel (c) is for K/E1 =
−3.9 × 10−3 and shows that |QA| = 1 inside the zxzy state
and the transition to the NS state is continuous. This is a
clear contrast to the cases for K > 0, and the direction of
QA gradually changes around the transitions. These transitions
occur inside the regime where the A-sublattice state behaves
as a “half-integer spin.” We also point out that the variations
of QA−D in the panel (c) is quite complicated.

VI. LANDAU THEORY

In this section, we employ a phenomenological Landau
analysis and interpret the determined mean-field phase dia-
grams (Fig. 9). Our aim is to explain the stability of various
ordered states and describe their transitions based on a phe-
nomenological theory.

The determined phase diagrams in Sec. V are quite compli-
cated, and their complete analysis is beyond the scope of the
present paper. Since the partially ordered zyox and zoxy states
are exotic states characteristic to the present model, we set
them as our main targets and investigate mainly their stability
mechanism and instability to other states.

In our phenomenological analysis, we will construct the
Landau free energy in terms of Qk0

and Qk�
’s and analyze

various triple-q orders in detail. An important point is that
the ordering vectors q∗ = k� allow cubic couplings of the
three antiferro modes Qk�

, which play a crucial role in sta-
bilizing several ordered states in this system. This analysis
succeeds in explaining most of the results of the microscopic
mean-field calculations in Sec. IV.

FIG. 15. (a) Color plot of Qmin in the J-K plane for T = 0. (b) Trajectories of the sublattice moments QA–QD as J varies at K/E1 =
3.9 × 10−3 and T = 0 fixed. (c) Trajectories now for K/E1 = −3.9 × 10−3. Arrows indicate the variation upon increasing J and the symbol
color represents J value. Unit circles and lines indicating directions of θ = ω×(integer) are guides for the eye.
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A. Landau-Ginzburg free energy expansion

Let us first introduce the local free energy floc(r) with the
quadrupole moment φ(r) ≡ [(φu, φv )(r)]T as

floc(r) = 1
2 a0(T )|φ(r)|2 − b

[
φ3

u (r) − 3φu(r)φ2
v (r)

]
+ c|φ(r)|4 + O(|φ(r)|5). (38)

The coefficients a0, b, and c are all positive constants depend-
ing on temperature, which may be derived from the local CEF
model through a Legendre transformation [11]. It is customary
to consider the temperature dependence of a0(T ) alone and
neglect the changes in b and c. One should note that a0(T )
is the inverse of local quadrupole susceptibility and decreases
monotonically towards zero with decreasing temperature. An
important characteristic of this system is the presence of the
b term. This third-order term exists only for order parameters
with even parity under both time reversal and space inversion
operations, and our quadrupole moments belong to this cate-
gory. Its explicit form in terms of φu and φv is independent
of the details of the system, and determined from the coeffi-
cient related to the reduction of the triple product of the �3

representation to the trivial one, �3 ⊗ �3 ⊗ �3 → �1.
Following the conventional procedure, we add to Eq. (38)

the exchange interaction energy, which are given by the mean-
field approximation. Thus the total free energy density f̄ =
F/N reads as

f̄ ≡ 1

N

∑
r

⎡
⎣ floc(r) +

6∑
j=1

φ(r + δ j ) · Ĵδ j φ(r)

⎤
⎦ (39a)

= 1

N

∑
p

φ(−p) ·
[

1

2
a0 + Ĵ (p)

]
φ(p)

− b

N3/2

∑′
φu(p3)[φu(p1)φu(p2) − 3φv (p1)φv (p2)]

+ c

N2

∑′
[φ(p1) · φ(p2)][φ(p3) · φ(p4)], (39b)

where
∑′ denotes the sum over pi’s under the constraint∑

i pi = (some reciprocal lattice vector G). The interaction
matrix Ĵδ is given by Eq. (7), while its Fourier transform Ĵ (p)
is given by Eq. (11b). We have neglected a constant energy,
and N is the number of the sites. The terms for G �= 0 are
Umklapp processes, and they will turn out to be important
later.

Since our main concern is various antiferro orders of
quadrupole, we split the total free energy as follows:

f̄ = fX + f� + f�X + fother, (40)

where fX is the antiferro part, i.e., contributions of φ(k�)’s
alone. f� is the ferro part contributed by φ(k0), and f�X is
the coupling of φ(k�)’s with φ(k0). We will show that this
coupling modifies and eventually destabilizes several antiferro
orders. Lastly, fother is the sum of all the remaining parts.

Figure 16 summarizes the relations among various states in
the J-K plane along with the section numbers where they are
discussed. The detailed discussions about several states are
summarized in Appendices. In particular, the configurations
at K = 0 are discussed in detail in Appendix B. The yellow

FIG. 16. Summary of the order parameter configurations dis-
cussed on the basis of Landau theory in Secs. VI–VIII. We list
only the major states (NS′ not included) and also indicate in which
section each state is discussed. The three configurations enclosed
by a dashed rectangular are those for K = 0. They are analyzed in
Appendix B. The label “1st” or “2nd” marked for an arrow indicates
the order of the corresponding transition, but one should note that the
possibility of a first order transition is not excluded for any of them.
Yellow arrows indicate how each configuration at K �= 0 evolves
from one of the degenerate configurations at K = 0.

arrows illustrate schematically the relations between the states
at K �= 0 and those at K = 0 through small K perturbations.

B. Free energy of the antiferro modes

In this section, we will rewrite the antiferro part fX into a
convenient form for later analyses. When |K| + 2J > 0, the
maximally negative eigenvalue of the matrix Ĵ (p) is �min =
−2J − 4|K| and it is realized at p = k�’s. Thus it is natural
to expect a single-q order with the ordering vector located at
one of k�’s. The transition temperature of this order T = T 0

c
is determined by the equation 1

2 a0(T 0
c ) + �min = 0. How-

ever, the situation is not so simple in this system, since the
free energy contains the third-order terms including φ(k�)’s.
The three wave vectors at the X points satisfy the relation
k1 + k2 + k3 = (2π, 2π, 2π ) = G, and thus the correspond-
ing third-order coupling is nonvanishing. This may lead to
a first-order transition to a triple-q state with a transition
temperature Tc > T 0

c .
To analyze such triple-q states, we restrict the degrees

of freedom to those {φ(k�)}�=1,2,3 and ignore other modes.
Notice that φ(k�)’s are real, since each k� is equivalent to
−k�, and proportional to

√
N in the antiferro ordered states.

We thus rescale them as ψ(�) ≡ φ(k�)/
√

N . The related part
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of the free energy density reads as

fX =
∑

�

ψ(�) ·
[

1

2
a0(T ) + Ĵ (k�)

]
ψ(�)

− 6b

[
ψ (1)

u ψ (2)
u ψ (3)

u −
∑

�

ψ (�)
u ψ (�+1)

v ψ (�+2)
v

]

+ c
∑

�

|ψ(�)|4 + 2c′∑
�<�′

|ψ(�)|2 |ψ(�′ )|2

+ 4c′′∑
�<�′

[ψ(�) · ψ(�′ )]2, (41)

where one should understand that ψ(�+3) ≡ ψ(�). Here, al-
though the direct calculations provide c′ = c′′ = c, we regard
these three as independent parameters, since each term is
separately invariant. We rewrite Eq. (41) in terms of the po-
lar coordinates defined as ψ(�) = (ψ (�)

u , ψ (�)
v )T ≡ X�e(θ�) as

in Eqs. (34) and (35). We also define X ≡ (X1, X2, X3) and
θ ≡ (θ1, θ2, θ3) for later use. Substituting these into Eq. (41),
we obtain

fX =
[

1

2
a0(T ) − 2J

]
R2 + cR4 − 4K

∑
�

X 2
� cos (2θ� + �ω)

− 6bX1X2X3 cos θ̄ + 2(c′ − c)
∑
�<�′

X 2
� X 2

�′

+ 4c′′∑
�<�′

X 2
� X 2

�′ cos2(θ� − θ�′ ), (42)

where

R2 ≡ X 2
1 + X 2

2 + X 2
3 , θ̄ ≡ θ1 + θ2 + θ3. (43)

Further analysis depends on the sign of the anisotropic inter-
action K . In the following sections, we will discuss the two
cases separately.

VII. ANALYSIS OF THE K > 0 PART

In this section, we perform phenomenological analyses
on the triple-q states for the K > 0 part of the mean-field
phase diagrams. We will mainly examine two limiting cases,
large and small K limits, in the following sections. We first
attempt to find solutions that minimize fX in Eq. (42) for the
case of K > 0. As discussed in Sec. II B, the eigenvector of
the maximally negative eigenvalue of Ĵ (k�): �min = �−(k�)
corresponds to θ = (ω,−ω, 0). We will fix these angles and
find an approximate solution in Sec. VII A. Then, we will in-
troduce their couplings to the uniform moment in Sec. VII B.
This mode coupling induces a finite uniform moment and also
deforms the angles θ from (ω,−ω, 0). In Sec. VII C, we will
discuss possible triple-q states in the small K limit, starting
from the results for K = 0.

A. Large K case: the zyox state

In the limit of K → ∞, the free energy fX has a symmetry
inherited from the K term. The replacement θ� → θ� + π

for any � does not change the K term, and this results in
a eightfold degeneracy of fX minimum: θ = (ω,−ω, 0) +
(n1, n2, n3)π , where n j = 0, 1. The third-order term favors

four out of these eight possibilities. Since b > 0, the favored
ones are those with

∑
j n j = (even).

We continue the minimization procedure for fX now with
respect to X�’s. This is a cumbersome but straightforward
calculation, and we show only its results. There exist two
types of solutions, and both are controlled by the renormalized
second-order coupling

aX(T ) ≡ 1
2 a0(T ) − 2J − 4K. (44)

One type is the solution that only one of X�’s is nonvanishing,
while X1 = X2 = X3 in the other type. The former one is the
single-q order, and the latter one is the zyox order.

A solution for the single-q order (X� = δ�3R∗
1q) exists when

aX(T ) < 0, and it is represented as follows:

R∗
1q ≡

[−aX(T )

2c

]1/2

, f 1q
X = −aX(T )2

4c
. (45)

See Eq. (A9) in Appendix A.
A zyox-type solution (X1 = X2 = X3 =: R∗

zyox/
√

3) appears
as a local minimum, and we denote its transition temperature
by T �. See Eq. (A10) for the effective free energy as a function
of R∗

zyox. We define R� as the R∗
zyox value just below T �. These

values are determined as

R� ≡
√

3b

4(c + c1/3)
, aX(T �) =

√
3

2
bR� ≡ a� > 0, (46)

where

c1 ≡ 2(c′ − c) + c′′. (47)

Then, the temperature dependence of important quantities is
written as

R∗
zyox = R�[1 +

√
1 − aX(T )/a�], (48)

f zyox
X = (4

√
3)−1bR�3 F2(1 − aX(T )/a�), (49)

where F2(x) = 4 − 3(1 + x)2 − 8x3/2.
Let us now compare the stability of these two ordered

states by calculating their free energies. One should recall that
aX(T ) decreases monotonically with lowering temperature.
Four temperatures characterize possible phase transitions:

T × < T c
1q < T c

zyox < T �. (50)

As defined before, T � is the temperature where a solution
of the zyox order appears. However, since its free energy is
still higher than that for the disordered phase, this order is
not realized yet. The zyox order is stable below T c

zyox and
this temperature is determined by the condition aX(T c

zyox ) =
8
9 a�. With further lowering temperature, the effective second-
order coupling aX(T ) vanishes eventually and this defines the
“transition temperature” of the single-q order T c

1q. Below this
temperature, the single-q ordered state is more stable than the
disordered state. However, its free energy f 1q

X remains higher
than f zyox

X for a while, and thus the single-q order does not
appear yet. With further decreasing temperature, f zyox

X (T ) may
cross with f 1q

X (T ). This determines the final characteristic
temperature T ×, below which the single-q order is finally
realized. Equating the two free energies, T × is obtained as
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a solution of the following equation:

c1

8c
= x−2

[
1 − 3

2
x + (1 − x)3/2

]∣∣∣∣
x=a(T × )/a�

. (51)

One should note that the transitions at T c
zyox and T × are both

first order.
We have not examined a possibility of double-q orders,

and there is a reason for that. In the free energy density fX in
Eq. (42), the third-order term generally has a nonzero coupling
b �= 0. Thus, when two order parameters are nonvanishing,
say X1, X2 > 0, their product acts as a field linearly coupled to
X3, and this induces a nonvanishing amplitude of X3. There-
fore any double-q order is inevitably converted to a triple-q
order, and genuine double-q orders do not exist as a stable
phase.

Unfortunately, the above free energy analysis does not
fully explain the actual phase diagram in the K > 0 part. For
example, the zyzx state is hardly realized. This is because we
have not taken account of coupling to the uniform component
ψ0 ≡ φ(k0)/

√
N , or its effects on tilting θ from the assumed

values. In addition, the single-q state also couples with ψ0
and this lowers the free energy. Thus the above analysis is
satisfactory only for the zyox state, and we need to include
those corrections for the zyzx and single-q states. Nonetheless,
it remains true that the zyox state appears at a temperature
higher than the transition temperature T c

1q of the single-q state.
This is one of the main results in this paper.

Finally, let us demonstrate the partially ordered configu-
ration of quadrupoles in real space for the zyox state. Since
ψ0 = 0, the direct substitution of X� = R∗

zyox/
√

3 ≡ q∗/2 and
θ� = �ω into Eq. (33) leads to

QA = 0, QB = q∗êω, QC = q∗ê0, QD = q∗ê2ω, (52)

where êθ is defined in Eq. (13). This is precisely what we have
obtained in the microscopic calculations in Sec. V.

B. Instability to the zyzx state

So far, we have only examined the antiferro orders of the
modes of ψ(�) (� = 1, 2, 3). As shown in Sec. IV, they couple
to the uniform moment ψ(0) in the single-q and zyzx (zyzx′)
states. In the latter state, the order parameters consequently tilt
from the directions θ� = �ω. We will study this tilting in this
section. To avoid complication in a full analysis, we employ
an alternative approach based on a perturbation analysis of
the mode coupling. We focus on the part of K > −2J . Thus
we consider the case where the order parameters are modified
only slightly from the previous solutions in Sec. VII A. We
restrict ourselves to the second-order stability analysis and
show possible types of instability in each of the two states.
We parametrize its small deformations as follows:

X − Rē0 ∼ 1√
3

R(−d2ē1 + d1ē2), (53)

θ − ω(1, 2, 0) ∼ η0ē0 + η1ē1 + η2ē2. (54)

Here, the deformations |dj |’s and |η j |’s are all assumed to
be small, and ē0 = 1√

3
(1, 1, 1), ē1 = 1√

2
(1,−1, 0), and ē2 =

1√
6
(1, 1,−2).

The above small deviations from the zyox state couple with
the uniform moment ψ0 ≡ (ψ0u, ψ0v )T ≡ Qeθ�

, and we also
assume Q � 1. See Eqs. (13) and (34). The ψ0 contributes
to the free energy starting from the second-order term as
a� (T )ψ2

0 = a� (T )Q2 with

a� (T ) ≡ 1
2 a0(T ) + Jγ0(0) = 1

2 a0(T ) + 6J > aX(T ). (55)

The couplings between ψ0 and the deformation of the zyox
order parameters |dj |’s and |η j |’s arise from the following
mode coupling terms f�X = f (3)

�X + f (4)
�X , where

f (3)
�X = −λ

3∑
�=1

[
ψ0u

(
ψ (�)

u
2 − ψ (�)

v
2
)− 2ψ0vψ

(�)
u ψ (�)

v

]

= −λQ
3∑

�=1

X 2
� cos(2θ� + θ� ), (56)

f (4)
�X = λ′∑

�<�′
[ψ(�) · ψ(�′ )][ψ(6−�−�′ ) · ψ0]

= λ′X1X2X3Q
∑
�<�′

cos(θ� − θ�′ ) cos(θ̄ − θ� − θ�′ − θ� )

= λ′X1X2X3Q
3∑

�=1

cos(2θ� + θ� − θ̄ ), (57)

where λ ≡ 3b and λ′ ≡ 8c. Collecting the terms within the
second order in the deviations d1,2, η0,1,2, and ψ0 in the free
energy Eqs. (42), (56), and (57), one obtains the change in the
free energy δ f as

δ f � 1
2α0η

2
0 + 1

2α1|ψ0|2 + 1
2α2|d|2 + 1

2α3|η⊥|2
− g1d · η⊥ − g2ψ0 · η⊥ + g3ψ0 · d. (58a)

Here, d ≡ (d1, d2)T and η⊥ ≡ (η1, η2)T. The coefficients are
given as

α0 = 16

3
KR2 + 2

√
3bR3, α1 = 2a� (T ), (58b)

α2 = 2

3
aX(T )R2 + 2√

3
bR3 + 4

3
cR4, (58c)

α3 = 16

3
KR2 + 4

3
c′′R4, g1 = 4

3
c′′R4, (58d)

g2 =
√

2

3
R2(

√
3λ − λ′R), g3 =

√
2

3
λR2. (58e)

We first note that the part of η0 is decoupled in Eq. (58a)
from the others, and the minimization leads to η0 = 0 since
α0 > 0. For discussing other diagonal coefficients α’s, let us
assume c = c′ = c′′ > 0 as in the original form (39b). One
notices that α2 may change its sign with lowering temperature.
The remaining α1 and α3 are positive, since we consider
the situation of a� (T ) > 0 and K > 0. We denote by Tα2 the
temperature at which α2 = 0. Then it is obtained by evaluat-
ing aX(Tα2 ) = −R∗

zyox (
√

3b + 2cR∗
zyox ) < 0 = aX(T c

1q), which
shows Tα2 < T c

1q. This value is aX(Tα2 ) = −63b2/c. Thus,
ignoring the couplings g’s, one sees that the zyox state is
a locally stable solution for T > Tα2 . We also note that g2

[Eq. (58e)] may change its sign to negative as R increases.
The pure zyox state becomes unstable, once δ f in Eq. (58a)

can take a negative value. A new stable configuration then
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acquires a nonvanishing value of one or some of ψ0, d, and
η⊥, which deform the original zyox order. This instability is
signaled by the appearance of a negative eigenvalue in the
coefficient matrix. That is, the instability takes place at the
position where the determinant D3 of the block-diagonal 3 × 3
matrix changes from positive to negative. This determinant is
given by

D3 = α1α2α3 + 2g1g2g3 −
3∑

i=1

αig
2
i . (59)

Since Eq. (59) includes the effects of the coupling between
ψ(�) and ψ(0), the condition of D3 = 0 determines a transition
temperature which is not necessarily the same as Tα2 .

Let us discuss this instability of the zyox state but do it
only qualitatively in order to simplify discussions. For large
K (> 0), it is natural to set η⊥ = 0 in the zeroth-order ap-
proximation, since its coefficient α3 is a large positive value.
Analyzing the variations with ψ0 and d, we find that the
zyox state is unstable when g2

3 > α1α2. Then, a nonvanishing
deformation is spontaneously induced and it has the ampli-
tude ψ0 = −Cd and η⊥ = C′d with C ∼ g3/α1 > 0 and C′ ∼
(g1 − Cg2)/α3.

Suppose the induced ferro component ψ0 points to the
direction θ� = 0. This implies that the other induced deforma-
tions have the form of d1 < 0 and d2 = η2 = 0. The sign of η1

is also negative if Cg2 < g1 or positive otherwise. In our mi-
croscopic calculations, we have observed a wide region of the
zyzx state, which corresponds to the solution with deformation
η1 < 0. This is a consequence of the decrease of g2 due to
increasing R associated with lowering temperature. Although
the transition between zyox and zyzx states in Fig. 9(b) in the
microscopic mean-field results is first order, the deformation
is consistent with this analysis.

If ψ0 is induced in the opposite direction θ� = π , the
other induced deformation also changes their signs. d1 > 0
with η1 > 0 for Cg2 < g1. This is the zyzx′ state as shown in
Fig. 10. See the second-order behavior in Fig. 11(c). Since the
free energy (58a) fixes only the relative directions among ψ0,
η⊥, and d, we cannot discuss the NS′ state. The stability of the
NS′ state will be discussed in Sec. VII C.

C. Small K limit

So far, we have analyzed mostly the large-K region of
the K > 0 part. The order parameters ψ(�) then point to the
directions close to �ω. We now analyze the opposite limit to
see which types of orders are stabilized.

When K is small, the quadratic part of the free energy
is nearly isotropic, and thus the quadrupole moments tend
to rotate freely. This indicates that the three θ�’s can point
to arbitrary directions under the constraint of cos θ̄ = 1 in
the zeroth-order approximation. The details of this straight-
forward but lengthy analysis are explained for K = 0 in
Appendix B. As shown in Fig. 16, three triple-q states exist
when K = 0. A set of three arrows schematically represent
the antiferro moments {ψ(�)}�=1,2,3 in each state. In addition
to the single-q order, the phase diagram at K = 0 (see Fig. 18)
has three regions of the triple-q states: (i) symmetric triple-q
with X1 = X2 = X3, (ii) uniaxial triple-q with X1 = X2 < X3,

and (iii) fully anisotropic triple-q with X�’s all different. In
each triple-q state, only the relative directions of the order
parameters θ� − θ�′ are fixed. This is because the eigenvalue of
the exchange interaction for K = 0 in Eq. (12) is degenerate,
�+(p) = �−(p) in Eq. (12), which means that the direction
of the quadrupole moment ψ(�) can be arbitrary concern-
ing the quadratic terms in the free energy. For example, a
representative state for the symmetric triple-q state (i) has
θ = (ω, 2ω, 0). By modifying this with all the permutations of
θ�’s, one obtains other five states, which have the same energy
as the original’s. For the above (i), (ii), and (iii), the third and
the fourth order terms determine the most stable one of the
three. In the following, we will discuss how switching on K
lifts this degeneracy.

First, let us examine the symmetric triple-q states (i) for
K = 0, which have the highest transition temperature and 24
domains. See Figs. 18 and 19. One of the domains corre-
sponds to the zyox state for K > 0 with θ = (ω, 2ω, 0), and
this was discussed in Sec. VII A. Note that this solution has
fourfold degeneracy corresponding to different domains or
equivalently disordered sublattice. For finite K , it is natural
that the free energy of these four states becomes lower than
those of the other states in the symmetric triple-q states.

As for the zyzx state, its solution at K = 0 has a uniaxial
anisotropy X1 = X2 �= X3. As demonstrated in Appendix B,
the symmetric triple-q state becomes unstable and is replaced
by the uniaxial state at smaller values of a, which correspond
to lower temperatures (Fig. 19). This has a configuration of the
type θ = ( 1

2π,− 1
2π, 0), and we concentrate on this particular

domain. For K > 0, the energy of the K-term is lowered for
the configurations with θ� ∼ �ω. Because of θ3 = 0 in the
above domain, one expects that the direction of ψ(3) does not
tilt even for K > 0. In contrast, ψ(1,2) with θ1,2 = ±π/2 can
tilt to lower the energy of the K-term for K > 0 with keeping
θ̄ = 0, θ1 = −θ2 ∼ 1

2π + δ ∼ 2
3π with δ > 0. See a detailed

analysis in Appendix C.
For the NS′ state, one can perform a similar analysis

starting from the fully anisotropic state. However, since this
reveals no new aspect, and so we omit its analysis here. We
will return to these discussions about the anisotropic zyzx
and NS′ states, when we analyze the NS state for K < 0 in
Sec. VIII C.

VIII. ANALYSIS OF THE K < 0 PART

In the K < 0 part, the situation is more complicated, and
we now perform its phenomenological analysis. This compli-
cation is due to the competition of the second- and third-order
terms in the free energy (42). The minimum eigenvalue �min

in Eq. (16) corresponds to the eigenvector, for example,
v+(k�) and θ = π ( 7

6 , 11
6 , 1

2 ) as listed in Eq. (17). For the
single-q orders, the transition temperature is determined by
ãX(T ) = 0, where

ãX(T ) ≡ 1
2 a0(T ) − 2J + 4K. (60)

See Eq. (42). This satisfies cos θ̄ = 0 in Eq. (42), and this
means no energy gain in the b term. Therefore one needs a full
minimization to determine the order parameters to identify a
stable state, and this requires solving coupled nonlinear equa-
tions with six variables. Instead of this elaborate work, we
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make a simple analysis in this section to explore an essential
mechanism stabilizing the triple-q orders for K < 0.

Recall that the b term stabilizes the triple-q states when
K > 0. Thus we first examine whether the same mechanism
works for K < 0. Assume that ψ�’s tilt slightly from the
directions determined by minimizing the second-order
term:

θ = θ0 + (δ1, δ2, δ3), θ0 ≡ π
(

7
6 , 11

6 , 1
2

)
. (61)

Nonvanishing values of δ�’s do not minimize the second-order
terms in the free energy, but some distorted triple-q order
may have a chance to lower the total free energy than that
for the single-q. This type of order with the three equivalent
X�’s will be discussed in the section A below. After that, in
the following section B, we will also examine a configuration
which can gain both of the b and K terms by introducing
amplitude modulations in X�’s.

A. Case of X1 = X2 = X3: the zoxy state

It is natural to consider that a solution with the highest
symmetry among the triple-q states for K < 0 has a common
amplitude of ψ(�)’s (X1 = X2 = X3) similarly to the zyox state
for K > 0. This also leads to the constraint that δ�’s should be
all the same in Eq. (61). Let us first examine this simplest case:
δ� = α and X� = R/

√
3 for all �’s. This is the zoxy state, and

one of the four sublattices is disordered as in the zyox state.
See also Eq. (71). Its free energy is given as

fX = [
ãX(T ) − 8K sin2 α

]
R2 − 2√

3
bR3 sin 3α + 1

4
c2R4,

(62)

with c2 ≡ 4(c′′ + 2c′ + c)/3. This has the symmetry fX(π −
α) = fX(α). Minimizing this with respect to α leads to the
following two types of solutions:

α
(i)
± = 1

2
π ± cos−1

[√
1

4
+ K̄2 + K̄

]
, for K � 0, (63a)

α(ii) = −1

2
π, for 0 � K, (63b)

where K̄ ≡ K/(
√

3bR) for K < 0 and this is a dimensionless
parameter which controls the α dependence, and K̄ < 0 for
K < 0. The solution α(ii) corresponds to the zyox state with
θ = (ω, 2ω, 0) as discussed in Sec. VII A. However, since our
concern is the region of K < 0 in this section, we do not
consider that solution further.

The type (i) solutions exist for any K̄ � 0. Their range
is 0 � α

(i)
− � 1

6π , and α
(i)
+ = π − α

(i)
− . The two solutions α

(i)
±

have the same free energy, and we consider α
(i)
− for the mo-

ment. Its asymptotic form is α
(i)
− ∼ (

√
3/8)|K|−1bR for small

R/|K|. Inserting this into Eq. (62), the corresponding free
energy is obtained as

f (i)
X = ãX(T )R2 + 1

4

(
c2 + 3

2 K−1b2
)
R4 + · · · . (64)

One should note that this has no R3-term. Therefore, if c2 +
3
2 K−1b2 > 0, a possible transition must be continuous, and
its transition temperature is given by the same expression
ãX(T ) = 0 [Eq. (60)] as that for the single-q order. One can

see this in Fig. 14 as a straight phase boundary with the disor-
dered phase as J varies. Thus the fourth-order term determines
which of the zoxy or single-q state appears. The free energy
of the single-q order is

f 1q
X = ãX(T )R2 + cR4. (65)

Comparing Eqs. (64) and (65), one obtains the appearance
condition of the triple-q state

4c > c2 + 3
2 K−1b2 = 4

3 (c + 2c′ + c′′) − 3
2 (−K )−1b2. (66)

For the parameters estimated from the local potential (c =
c′ = c′′), this condition reads as

−9b2

8c
< K < 0. (67)

This is consistent with the results of microscopic calculations
in Fig. 9, which show the single-q AFO22 state for larger
(−K ). The transition can be first order, when the fourth-order
coefficient [c2 − 3b2/(−2K )]/4 turns into negative for large
b. However, its quantitative analysis needs to include fifth-
and sixth-order terms in Eq. (39b). Using the expression (63a)
in fX, one sees that the free energy has a local minimum at
R = R◦ with

R◦ = c−1
2

{
g +

√
g2 − 4c2

2ãX(T )
[
a0(T ) − 2J

]}1/2
, (68a)

g ≡ 6b2 − 2c2[ãX(T ) − 2K]. (68b)

For g < 0, a second-order transition occurs at ãX(T ) = 0.
The condition g < 0 is indeed equivalent to the previous
one c2 + 3

2 K−1b2 > 0 derived from Eq. (64). For g > 0, the
transition is generally first order. It occurs at the position
where fX(R = R1) = 0, but we do not show the details. As
discussed in Appendix B, the case of K = 0 turns out to be
easier to analyze, and the results are much simpler. Indeed,
those results are consistent with the microscopic mean-field
calculations. See discontinuous behavior in Fig. 11(f), while
continuous one in Fig. 11(h).

One can apply the above analysis to other cases with π

shifts, which correspond to different domains. There are four
different but equivalent domains in the same state, and their θ

values are given as

θ = θ0 + α(1, 1, 1)

+ {(0, 0, 0), (0, π, π ), (π, 0, π ), (π, π, 0)}. (69)

Here, α is the solution α
(i)
− in Eq. (63a) and 0 � α � π

6 .
Starting from any one of them, the other three can be obtained
by translations as discussed in Sec. IV B. As for the solution
α

(i)
+ = π + α = π − α

(i)
− with −π

6 � α � 0 in Eq. (63a), one
obtains

θ = θ0 + α(1, 1, 1)

+ {(π, π, π ), (π, 0, 0), (0, π, 0), (0, 0, π )}. (70)

The free energy for the latter sets (70) is identical to that for
the former sets (69). Note the different ranges of the solution
α for these two sets. In total, the zoxy state has 8 = 4 × 2
domains; 4 corresponds to the trivial translations and 2 arises
from the degeneracy related to the mirror operations with
respect to one of Z3 axes in the Q space, e.g., x ↔ y, and
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z → z. Note that the mirror symmetry is broken in the zoxy
states as shown in Fig. 9(d) and Fig. 10. Seeing Eq. (63a), one
expects that |α| increases with lowering temperature, since R
usually increases. This agrees qualitatively with the results
of microscopic calculations shown in Figs. 11(f) and 11(h).
As |α| approaches 1

6π , the order parameters ψ�’s tilt their
directions toward ω × (integer). This is similar to the zyox
state realized for K > 0, in which θ = (ω, 2ω, 0). In contrast,
for the zoxy state, the directions θ approaches (2ω, 0, ω), but
this is not equivalent to any of the domains in the zyox states.
To see this, it is useful to check the real space configuration of
the quadrupole moments. Since these configurations have no
coupling to ψ0 [Eqs. (56) and (57)], the uniform component
vanishes ψ0 = 0. Then, substituting X� = R/

√
3 ≡ q̄/2 for all

�’s and θ = (2ω, 0, ω) into Eq. (33), one obtains

QA = 0, QB = q̄e2ω, QC = q̄eω, QD = q̄e0. (71)

This configuration indeed manifests a partial order. Compare
this with Eq. (52). This agrees with the results of the micro-
scopic calculations in Sec. V. See also Fig. 10 and Fig. 9(d).
Note that this is the configuration corresponding to α = 1

6π .
For general values of α, O22-type components also mix as
shown in Fig. 9. This is apparent since eπ/2+α = eω cos( π

6 −
α) − eω/4 sin( π

6 − α). Here, eω represents the O20-type (2x2 −
y2 − z2), while eω/4 does the O22-type (

√
3(z2 − y2)).

B. Case of X1 = X2 �= X3: zxzy state

Now, we study the states with an “xxz”-type anisotropy
for K < 0. In addition to the high-symmetry solution with
X1 = X2 = X3 discussed in the previous section A, another
simple way lowers the energy in both the K and b terms of fX.
This requires “uniaxial” modulations in the ψ�’s magnitude
of quadrupole moments such as X1 = X2 > X3 > 0. Here,
the term “uniaxial” means that there is only one axis corre-
sponding to the direction of ψ(3) around which the triple-q
configuration is symmetric in the quadrupole space as will be
explained below. The directions θ are determined as follows.
First, one expects that the free energy of the part of ψ1 and ψ2
in the K term for K < 0 is lowered by setting θ1 = −θ2 ∼ 7

6π .
Second, it is possible to lower fX through the b term by setting
θ3 = 0, since this satisfies θ̄ = 0. An expectation is that the
energy cost of the K term is not large due to ψ3’s small
magnitude. This is indeed the zxzy state obtained in Sec. IV B.
Note that the trend is θ1 → 7

6π as K → −∞. This choice of
θ can lower both K and b terms of the free energy.

Let us concentrate on the case of large (−K ) in the follow-
ing. The free energy reads

f zxzy
X =2ãX(T )X 2 + aX(T )Z2 − 6bX 2Z

+ c3X 4 + c4X 2Z2 + cZ4, (72)

where X ≡ X1 = X2, Z ≡ X3, c3 = 2(c + c′) + c′′, and c4 =
4c′ + 6c′′. The coefficients of the quadratic terms aX and ãX

were defined in Eqs. (44) and (60), respectively. Minimizing
Eq. (72) with respect to X , we obtain a stationary value of X
and the result is

X =
[−2ãX(T ) + 6bZ − c4Z2

2c3

]1/2

≡ X∗(Z ). (73)

Substituting this to Eq. (72), we obtain

f zxzy
X = c−1

3

{
[c3aX(T ) − c4ãX(T ) − 9b2]Z2 − ã2

X(T )

+ 6ãX(T )bZ + 3c4bZ3 + (
c3c − 1

4 c2
4

)
Z4}. (74)

The stationary value of Z is calculated via ∂ f zxzy
X /∂Z = 0 with

the constraint X 2
∗ (Z ) � 0. Since its analytic solution is not so

simple, we do not discuss the detail here. Nevertheless, it is
certain that the transition between the zyox and the zxzy states
is first-order, since it is determined by the crossing of their free
energy values. One can also examine the stability of the zxzy
states in comparison with the lower symmetry NS state as has
been done in Sec. VII B, but we do not show them here. Note
that the above analysis neglects the ferro component ψ0. This
is induced in the zxzy state, and Eq. (72) is valid only for large
(−K ). When (−K ) is very large, the moment directions are
fixed to θ = 7

6π (1,−1, 0) or one of the equivalent directions.
However, at K = 0, as shown in Appendix B, the favored
configurations are uniaxial ones, e.g., θ = 3

2π (1,−1, 0), or its
equivalent ones. This indicates that with decreasing (−K ), |θ1|
and |θ2| decrease with keeping the symmetry of the zxzy state.
In the next section C, we will discuss the question whether
such a zxzy state survives for smaller (−K ).

The zxzy state can break its symmetry down to that for
the NS state with X1 �= X2 �= X3. The phase transition is either
first or second order. Once the three modes are inequivalent,
the relation |θ1| = |θ2| no longer holds. The discussion can be
done in a similar way to that in Sec. VII B, but we omit it for
simplicity. See the discussions in the next section C.

C. Fully asymmetric case: NS states

Lastly, we will discuss the no symmetry (NS) state. Instead
of carrying out the stability analysis as has been done in
the last sections A and B, we will take an alternative ap-
proach and study the limit of small (−K ). As discussed in
Appendix B, some solutions at K = 0 have anisotropic con-
figurations. These degenerate anisotropic states have different
values of θ. Below, we will discuss how this degeneracy is
lifted for K < 0.

Among the solutions at K = 0, the isotropic configura-
tion shown in Fig. 16 obviously appears for K < 0 in a
state connected to the zoxy state discussed in Sec. VIII A.
At low temperatures, a wide range of the parameter space is
covered by a phase with “xxz”-type uniaxial configurations
and unbalanced magnitudes X1 = X2 �= X3. This is denoted
by uniaxial triple-q in Fig. 16. See detailed discussions in
Appendices C and D. They have the configurations of either
X = (p, q, q) with θ = 1

2π (0, 1,−1) or X = (q, p, q) with
θ = 1

2π (−1, 0, 1). We will investigate the possibility of tilting
for the first case. To simplify our discussion, we assume that
p and q are fixed. Representing the three modes of the tilting
as δθ = α(1, 1, 1) + δ(2,−1,−1) + η(0, 1,−1), the change
in the K term of the free energy is calculated up to the linear
order as

δ f pqq
2K (δθ) ∼ 4

√
3K
(
p2δθX + q2δθY

)
= 4

√
3K[(p2 + q2)α + (2p2 − q2)δ + q2η].

(75)
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Since the linear-order coefficients are nonvanishing above,
these three modes are all induced, but the direction θ3 is
pinned to − 1

2π in this order. By taking account of other terms
such as the cubic b terms, θ3 may eventually tilt. Thus the
uniaxial state becomes unstable for K < 0, and is replaced by
the NS state.

This result partly explains the isolated island of the zxzy
state in the phase diagram shown in Fig. 9. The stability of the
zxzy state for large (−K ) depends on the free energy of the
NS [Eq. (60)] and the single-q [Eq. (65)] states. We do not try
further analysis in this paper.

We close this section with a comment on a very small
region where the configurations are X1 �= X2 �= X3 and θ =
1
2π (0, 1,−1). This is denoted in Figs. 16 and 19 as the fully
anisotropic triple-q for K = 0 and for small J . Since the three
magnitudes differ to each other, the directions θ tilt for finite
K away from the directions θ = 1

2π (0, 1,−1), and this leads
also to the NS (NS′) state. Indeed, such changes have been
observed in the microscopic calculations shown in Fig. 20(b).

IX. DISCUSSION

In this section, we discuss the implications of the present
theory for the related materials including PrMgNi4 and 5d1

double perovskites. We also briefly comment on further im-
plications of the multiple-q physics of multipoles in other
systems.

It should be noted that the microscopic mean-field results
in Sec. V based on the localized model are supported by the
Landau analysis in Sec. VI. This indicates that the discussions
about the triple-q physics in this paper are also applicable
to metallic systems. One should understand that the ordering
wave vectors are determined with taking into account the
effects of the conduction electrons.

A. �3 quadrupole moments in real systems

The rare earth compound PrMgNi4 has a structure in which
Pr3+ ions form an fcc sublattice [16], and the CEF ground
state of the Pr3+ ion has been identified as the non-Kramers
doublet �3. This material is metallic but shows no indication
of the quadrupolar Kondo effects. For discussing the phase
transition in this material, it is useful to compare it with the re-
sults obtained for the localized model. A detailed quantitative
analysis needs more elaborate calculations and it is one of our
future studies. The excited states of Pr3+ ion are the �4 triplet
at 1.16 meV, the �1 singlet at 2.78 meV, and the �5 triplet at
11.6 meV, and these excitation energies have been determined
by the inelastic neutron scattering experiments [18]. Here, the
excitation gap to �1 corresponds to the parameter E1 used in
Eq. (10). Since the other states have no quadrupole matrix el-
ements with the ground states �3, we have not taken them into
account. The unidentified inelastic peaks at 2.5 and 5.9 meV
suggest that the cubic lattice symmetry is weakly broken.
However, thermodynamic experiments such as specific heat
and magnetization measurements have shown no signature
of phase transitions down to the temperature ∼0.1 K. This
broken lattice symmetry is now considered as an extrinsic
effect of lattice imperfections or excess Mg atoms. They mask
the intrinsic quadrupole ordering discussed in this paper, and
thus further experimental studies using single crystals are

necessary to identify the type of quadrupole order realized
in this system. To explore exotic quadrupolar physics, it is
important to find other materials related to PrMgNi4. Mg or
Ni may be replaced by nearby elements in the periodic table
with similar chemical properties.

In a recent study, PrCdNi4 was synthesized and found to
show a clear phase transition [38]. The estimated entropy
S at the transition temperature Tq � 1 K is less than ∼0.5 ln 2,
and the ordering degrees of freedom have not been identified.
A broad peak at T � 5 K is reported in its specific heat above
Tq. Although this might be a Schottky peak due to the CEF
excited states, its origin remains unclear, since S(T � 5 K)
is less than ln 2 and too small to conclude that this anomaly
is due to the CEF excitations. In this respect, it is interesting
to apply the present theory and explore a possibility of
triple-q ordered states above Tq. We have no information on
the detailed bond dependence of the quadrupole exchange
interactions, except the point that the total magnitude is
about 1 K. In addition to the nearest-neighbor interactions,
some further-neighbor ones may also be large and have
non-negligible effects. For determining their values, it is
useful to observe the spin-orbital wave in the ordered phase,
and such experiments are highly desirable. We also expect
that further experimental studies clarify the nature of the low
temperature phase in PrCdNi4.

Other interesting materials related to the present theory are
the family of double-perovskites containing an fcc sublattice
of ions with 5d1 electron configuration [39–44]. A character-
istic point is that those ions have a quartet ground state with
the effective total angular momentum Jeff = 3

2 due to strong
spin-orbit coupling in 5d orbitals. Various nontrivial orders
have been proposed for this system [45–47]. Under the cubic
CEF, this quartet can be regarded as a product state made of a
spin- 1

2 doublet and an orbital �3 (Eg) doublet. Thus, in the
temperature range where their spins remain disordered, we
may expect that their orbital degrees of freedom are described
by the present theory.

One member of this family is Ba2MgReO6. Hirai et al.
studied it by synchrotron x-ray-diffraction measurement and
observed a phase transition of the AFO22-type quadrupole
order at Tq = 33 K above the magnetic ordering temperature
Tm = 18 K [43]. They also found a ferro O20 component
below Tq, and it has been explained by considering the
electron-lattice anharmonic coupling or lattice anharmonicity
[43,47,48]. We propose to apply the present theory to this
system and explain a ferro component as an induced moment
due to the third-order coupling.

From our point of view, it is worthwhile to examine the ef-
fects of CEF excited states above the Jeff = 3

2 multiplet on the
magnitude of the observed ferro orbital moments. Important
excited states are orbital singlet (spin doublet) states. They
realize a situation of the orbital degrees of freedom similar to
those studied in this paper, where the third-order couplings
of quadrupoles take effects. This line of analysis is under
progress [49].

B. Other applications

We have demonstrated in this paper that the triple-q
quadrupole orders emerge generically, if not always, in the
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fcc lattice with nearest-neighbor interactions, and that some
of them are partially ordered states. One of the main results
is that the partial-order state for K > 0 (named zoxy) has
a higher transition temperature than the single-q quadrupole
order. This is a consequence of the cooperation of the
anisotropic interaction K and the third-order b term of the
local potential in the free energy. It is also important that
the b term couples the modes at all the three X points, and
this causes several triple-q order patterns of quadrupoles. The
translation symmetry imposes the important matching con-
dition k1 + k2 + k3 = G. Some three-dimensional systems
have a set of high-symmetric k points in the Brillouin zone
satisfying this condition. For example, k1 = (0, π, π ), k2 =
(π, 0, π ), and k3 = (π, π, 0) in a simple cubic lattice satisfy
k1 + k2 + k3 = G. In two dimensions, this condition is easily
satisfied particularly in systems with a hexagonal symmetry,
since the three vectors are confined in the same plane [50].

Multipoles have such third-order couplings, if their parity
is even under both time reversal and spatial inversion oper-
ations. One can expect similar triple-q orders in some other
systems. For example, promising candidates are the system
of electron t2g orbitals (dxy, dyz, and dzx) in cubic materials.
Other candidates are those of the eg orbitals in two- and three-
dimensional systems. In the t2g systems, a possible third-order
coupling has a form of OxyOyzOzx [19], and this is similar to
the b term discussed in this paper.

We also note that such a third-order coupling also exists
for composite degrees of freedom. For example, most nat-
ural candidates are the systems with both active dipole and
quadrupole moments. This case was studied using the RZn
compounds (R: rare earth element such as Tm or Nd) [51,52]
or actinide monopnictides [53], which have the CsCl-type
crystal structure, i.e., an fcc structure. Recently, two of the
present authors discussed that UNi4B is also categorized to
this type of materials [54]. It was motivated by the experi-
ments pointing out the importance of quadrupole degrees of
freedom in this system [55]. A triple-q charge-density-wave
(CDW) order has also been discussed for the kagome-lattice
superconductors AV3Sb5 (A = K, Rb, Cs) [56–58]. Its free
energy includes a cubic term similar to ours, and this also
leads to triple-q CDW orders in this system. This suggests
an interesting possibility of superconductivity mediated by
fluctuations in a triple-q order, but this is not an issue of this
paper and we do not discuss it further.

When a leading instability occurs at an incommensurate
wave vector q with small |q|, this leads to several large-scale
structures such as mosaic, (half-)vortex, or skyrmion, and this
corresponds to triple-q orders in magnetic systems [50]. We
once again emphasize that those exotic configurations are
stable at high temperatures as is the zoxy state in this paper.
These fascinating possibilities will be examined in our future
studies [59].

X. SUMMARY

In this paper, we have studied �3 quadrupole orders in an
fcc lattice. We have employed a four sublattice mean-field the-
ory, and shown the presence of various triple-q states, which
include partially ordered states with disordered sites at high
temperatures. We have discussed the stability of these states,

based on the phenomenological Landau theory and shown that
its results can well explain those of the microscopic mean-
field calculations. The third-order coupling of quadrupoles in
the free energy plays a crucial role for stabilizing the triple-q
states with the ordering vectors located at the zone boundary
X points. This unique mechanism for the triple-q orders is
quite ubiquitous in the systems with the time-reversal even
parity including electric multipoles, and it also works in many
other systems. We believe that our work stimulates further
theoretical studies and experiments on exotic quadrupole or
other multipole orders in future.
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APPENDIX A: DETAIL ANALYSIS ON THE LARGE K
LIMIT FOR K > 0

We start with minimizing the free energy fX in Eq. (42)
with respect to the following two angle variables  and �

with 0 � ,� � π/2 in two steps:

(X,Y, Z ) = R(sin  cos �, sin  sin �, cos ). (A1)

We will see that an important dimensionless parameter is

y ≡ 3b

c1 R
> 0. (A2)

The first step is the minimization with respect
to �. Calculation of ∂ fX/∂� leads to the condition
sin4  cos 2� [sin 2� − σ ()/σ (c)] = 0 with σ (x) ≡
cos x/ sin2 x. Here, c = c(y) is defined as

c(y) = cos−1[
√

1 + y2 − y]. (A3)

Note that c(y) is a monotonically increasing function, and
c(0) = 0 and c(y → ∞) = π/2. An important relation is
cos c(y�) = y� at the special value y� = 1/

√
3. Judging also

from the corresponding values of second-order derivative, the
minima are located at

�∗ =
{

π/4, (for 0 �  � c)

�2, π/2 − �2, (for c �  � π/2)
(A4)

with

�2() = 1

2
sin−1

[
σ ()

σ (c)

]
. (A5)

The case of  = 0 corresponds to the single-q state, which
is not under consideration here. For these obtained �∗ values
in Eq. (A4), we further examine the extremum and minimum
conditions with respect to .

For � = π/4, the extremum condition is 0 = ∂ fX/∂ ∝
sin (3 cos2  − 1)(cos  − t ). Therefore there is at most
one minimum and it is located at � = cos−1 y� for y > y�.
The energy of this local minimum is

fX

(
�,�

∗=
π

4

)
=
(

y−1 − 2√
3

)
bR3, (A6)
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and this is negative when y >
√

3/2. This solution corre-
sponds to the symmetric triple-q state with X = Y = Z . The
case of 0 < y < y� has no minimum in this  region.

For c <  < π/2, the minimum in the � direction at
�∗ = π/4 splits into two minima located at �2() and
π/2 − �2(). The extremum condition with respect to  is

∂ fX

∂

∣∣∣∣
�=�2()

∝ sin(2) [t2 + cos(2)], (A7)

for both of the two new positions. Therefore a local minimum
exists only when y < 1 and its position is the symmetric
point ∗ = π/2. The other extremum points (∗,�∗) are
located at ∗ = (1/2) cos−1(−y2) or π − (1/2) cos−1(−y2)
and �∗ = �2(∗) or π/4 − �2(∗), but they are all saddle
points, because they are local maxima in the  direction.

Let us summarize the results for the local minima of
fX(,�). Their locations depend on the value of t and

(�∗,∗) =
{

(�∗, 0),
(
0, π

2

)
,
(

π
2 , π

2

)
, for 0 < t < t�(

π
4 , cos−1 t�

)
, for t < t� < 1

.

(A8)
Note that �∗ is arbitrary when ∗ = 0.

There are two classes of stationary solutions. One is single-
q configurations. The other is symmetric triple-q (zyox) state
with X = Y = Z = R/

√
3. The free energy for the single-q

reads

f 1q
X = aX(T )R2 + cR4, (A9)

while that for the zyox configuration is

f zyox
X = aX(T )R2 − 2b√

3
R3 +

(
c + 1

3
c1

)
R4. (A10)

Here, aX(T ) is defined in Eq. (44). Equation (A10) shows that
the zyox state is stabilized by the third-order term, while the
magnitude of the fourth-order term depends on the anisotropic
coupling c′ and c′′ according to the definition of c1 in Eq. (47).

APPENDIX B: ANALYSIS OF THE K = 0 CASE: EFFECTS
OF THE LOCAL FREE ENERGY

We analyze in this Appendix the triple-q orders at K = 0.
The isotropic J term alone contributes to the inter-site interac-
tion part of the free energy fX in Eq. (42) as ( 1

2 a0 − 2J )R2.
This analysis is qualitatively the same as that for the local
free energy, since the cubic and the fourth-order terms in the
free energy arise from the local CEF potential and the form
of the quadratic part is isotropic. Thus the stable states at
K = 0 can be regarded as those favored by the single-ion
potential. For complete analysis, it is necessary to take into
account the effect of anisotropic intersite interactions, i.e., the
K term. Nevertheless it is very useful to analyze the properties
of the states favored by the single-ion potential. By using this
knowledge as a starting point, we perform a stability analysis
at K �= 0 in Secs. VII and VIII.

1. Minimization with respect to θi’s

First, we minimize fX in Eq. (42) with respect to the order
parameter directions θX,Y,Z . Their amplitudes are assumed to
be known. Ignoring the quadratic K term proportional to K ,

FIG. 17. (a) Parameters in the renormalized free energy f̄ . Spe-
cial points in the panel (b) are also shown. Note that the point P there
corresponds to the edge connecting (A, B) = (0, 0) and (0,1). The
colored two parts are the region under consideration. They are sep-
arated by the boundary A = Ac(B), where the minimum position of
f̄ starts to shift from (θ23, θ13) = (0, π

2 ). (b) Domain of the dimen-
sionless free energy ḡ34(t, s). The fundamental region (X3 � X2 �
X1) is colored.

one can write down the free energy as a sum of the following
four terms:

fX = f 24
X + f 3

X + f 4A
X + f 4B

X . (B1a)

With the notation of X = (X1, X2, X3) = (X,Y, Z ) and
θ = (θ1, θ2, θ3) = (θX , θY , θZ ), two of the four terms do
not dependent on θi’s: f 24

X = a(T ) R2 + c R4 and f 4A
X =

2Δc
∑

i< j X 2
i X 2

j , where a(T ) = 1
2 a0(T ) − 2J and Δc = c′ −

c, and R2 = ∑
i X 2

i as before. The other two terms do
depend as

f 3
X = −6b X1X2X3 cos θ̄ ,

(
θ̄ =

∑
i

θi

)
, (B1b)

f 4B
X = 4c′′∑

i< j

X 2
i X 2

j cos2 θi j, (θi j ≡ θi − θ j ). (B1c)

We can assume without any loss of generality the relation
X1 � X2 � X3, and we will examine this case. As for the
order parameter directions, the free energy depends on their
three combinations, θ̄ , θ13 and θ23. Note that they constitute
a complete set of the directions, since θ12 = θ13 − θ23. The
θ̄ dependence immediately shows the minimum is located at
θ̄∗ = 0.

Therefore, in order to minimize with respect to θi j’s, it is
convenient to consider the function f̄ ≡ f 4B

X /(4c′′X 2
1 X 2

2 ) =
A cos2 θ23 + B cos2 θ13 + cos2(θ23 − θ13), where the coeffi-
cients are

A ≡
(

X3

X1

)2

� B ≡
(

X3

X2

)2

� 1, (B2)

and their ratio is denoted as

κ ≡ A

B
=
(

X2

X1

)2

� 1. (B3)

See Fig. 17(a). Because of the symmetries f̄ (θ23, θ13) =
f̄ (θ23 + π, θ13) = f̄ (θ23, θ13 + π ) = f̄ (−θ23,−θ13), it suf-
fices to consider the fundamental region, (θ23, θ12) ∈
(−π/2, π/2] × [0, π/2]. The symmetric points (θ23, θ13) =
π
2 (n2, n1) are local extrema for any integers n2 and n1
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irrespective of the values of A and B, but most of them are
maxima or otherwise saddle points. In the fundamental region,
(0, π/2) is the only point among them which has a chance
of being minimum. We calculated the f̄ ’s Hessian and found
that this local minimum is stable as far as A � B/(1 + B) ≡
Ac(B). Note that the upper bound Ac cannot exceed 1/2. When
A increases beyond Ac(B) with B fixed, the local minimum
at (0, π/2) becomes unstable and starts to move towards the
direction proportional to −(B, Ac(B)). The minimum position
(θ∗

23, θ
∗
13) is determined by solving the extremum conditions

sin[2(θ∗
23 − θ∗

13)] = −A sin(2θ∗
23) = B sin(2θ∗

13). (B4)

If Ac(B) < A � B, one and only one solution exists inside the
fundamental region, and this is a minimum position of f̄ . Its
explicit expression reads as

θ∗
23 = − 1

2π + 1
2 sin−1[S /(2κA)

]
, (B5a)

θ∗
13 = 1

2π − 1
2 sin−1[S /(2κB)], (B5b)

S ≡ {[1 − (κ − A)2][(A/Ac(B))2 − 1]}1/2. (B5c)

Since (κ − A)2 < 1, this result once again manifests that this
nontrivial solution exists only when A > Ac(B). For evaluat-
ing the free energy, we need the values of cos2 θi j’s. We have
calculated them from Eq. (B5) and found that their expres-
sions are particularly simple in terms of Xj’:

cos2 θ∗
i j = [

R2
/(

2X 2
i

)− 1
][

R2
/(

2X 2
j

)− 1
]
, (B6)

where R2 = ∑
i X 2

i as defined before. Thus the minimum
value f 4B

X
∗ = 4c′′X 2

1 X 2
2 f̄ ({θ∗

i j}) is immediately calculated
with these values, and the result is

f 4B
X

∗ =
{

4c′′X 2
2 X 2

3 , when R/
√

2 < X1

c′′(R4 − 2
∑

i X 4
i

)
, otherwise

. (B7)

Here, X1 and X3 should be understood as the largest and
smallest respectively of {X,Y, Z} in general cases, while X2 is
the remaining one. The condition for the upper case is equal
to the previous one A < Ac(B).

Let us now determine the values of θi’s from the
above results. In order to obtain all the possibilities,
one should also consider the solutions not limited to the
fundamental region ±(θ∗

23, θ
∗
13) + π (n2, n1). Combining the

result for θ̄ , one find the minimum positions are repre-
sented as θ∗ = (θ∗

1 , θ∗
2 , θ∗

3 ) = n0ωd0 + 2
3 [(±θ∗

13 + n1π )d1 +
(±θ∗

23 + n2π )d2] where the two plus-minus signs should take
an identical value. The vectors d0, d1, and d2 are (1,1,1),
(1,− 1

2 ,− 1
2 ), and (− 1

2 , 1,− 1
2 ), respectively. The representa-

tive value (θ∗
23, θ

∗
13) is the symmetric point (0, π/2) for A <

Ac(B), or the nontrivial solution (B5) for A > Ac(B). Count-
ing independent combinations, one finds 24 different sets of
(θ∗

1 , θ∗
2 , θ∗

3 ) for a general value of (θ∗
23, θ

∗
13), but all of them

can be generated from one representative θ∗◦ using three types
of symmetry operations. They are

(i) inversion: θ∗
i → 2

3
θ̄ − θ∗

i , for ∀i, (B8a)

(ii) mirror: θ∗
i → θ∗

i , θ∗
j → θ∗

j + π, for j �= i, (B8b)

(iii) rotation: θ∗
i → θ∗

i ± ω, for ∀i. (B8c)

The total number of the combinations is indeed (1 +
1) × (1 + 3) × (1 + 2) = 24. For the trivial minimum point
(θ∗

23, θ
∗
13) = (0, π/2) for A � Ac(B), the number is reduced

to 12, since the half of the operations duplicate the points.
One may choose θ∗◦ = (π/2)(0, 1,−1) as a representative for
this case. One should note that for the half of the 12 sets two
θi’s are identical. This is a consequence of one of the mirror
operations. When f̄ has no anisotropy (A = B = 1), the value
of nontrivial solution is (θ∗

23, θ
∗
13) = ω(− 1

2 , 1
2 ), and there also

exist 24 minimum points of θ∗. Six of them have a symmet-
ric 120◦-configuration {θ∗

1 , θ∗
2 , θ∗

3 } = {−ω, 0, ω}, while the
others have an umbrella configuration {θ∗

1 , θ∗
2 , θ∗

3 } = {(n −
1
2 )ω, nω, (n + 1

2 )ω}.

2. Minimization with respect Xi’s

Now that fX has been minimized with respect to the order
parameter directions {θi}, the next minimization procedure
is about their amplitudes {Xi}. As before, we do this under
the constraint of

∑
i X 2

i = R2 being fixed. The simplest way
of imposing this constraint is the use of the parametrization
X 2

1 = R2t , X 2
2 = R2s, and X 2

3 = R2(1 − s − t ), and we search
a minimum point in the (s, t )-space. Since the free energy is
invariant upon any permutation of {Xi}, it suffices to consider
the fundamental region illustrated in Fig. 17(b), which corre-
sponds to the part of X3 � X2 � X1.

For minimization with respect to s and t , it suffices to
consider the following dimensionless function ḡ34, since f 24

X
is independent of s and t :

ḡ34(t, s) ≡ f 3
X + f 4A

X + f 4B
X

∗

bR3
= ḡ3 + c̄Aḡ4A + c̄Bḡ4B,

(B9a)

ḡ3 = −6[ts(1 − s − t )]1/2, (B9b)

ḡ4A = 2[t + s − (t + s)2 + ts] =: W (t, s), (B9c)

ḡ4B =
{

4s(1 − s − t ) for t � 1
2 ,

2W (t, s) − 1 for t < 1
2 ,

(B9d)

with the coefficients scaled as

c̄A ≡ ΔcR/b, c̄B ≡ c′′R/b. (B9e)

Note that its domain is a narrow region shown in Fig. 17(b),
and its control parameters are only c̄A and c̄B. As for ḡ4A,
its minimum and maximum locate at the P and S point, re-
spectively: ḡ4A(P) = 0 and ḡ4A(S) = 2

3 . As for ḡ4B, the local
maximum value is ḡ4B(T) = 1

4 and ḡ4B(S) = 1
3 in the region I

and II, respectively. Its minimum is degenerate and ḡ4A
min = 0

at all the points on the edge PQ.
Therefore numerical minimization of ḡ34 is easy to perform

with searching the entire domain, and we have determined the
phase diagram covering the main part of the parameter space.
The result is shown in Fig. 18, and the minimum position
(t�, s�) differs among the four parts marked by different colors.

First, the red part (large-c̄A region) is the single-q state,
since the minimum locates at the point (t�, s�) = (1, 0) corre-
sponding to X = (R, 0, 0).

Secondly, the blue part (region of negatively large c̄A)
is the symmetric triple-q state, and the minimum locates
at the symmetric position (t�, s�) = ( 1

3 , 1
3 ) corresponding to
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FIG. 18. Configurations of the order parameters at the X points
in the parameter space of c̄A and c̄B defined in Eq. (B9e) for K = 0.
Arrows represent three vectors ψk�

. The fully anisotropic state is not
realized at c̄A = 0 (c = c′ = c′′). In the single-q state, the arrow can
freely rotate, since the free energy has no anisotropy with respect to
its direction in Eq. (B1a).

X1 = X2 = X3 = R√
3
. The minimum position does not move

within each of these two states. Therefore the transition be-
tween them is first order, and the border is given by the line
2c̄A + c̄B = 2

√
3.

Thirdly, in the green-color part the minimum point locates
on the edge PT in the domain, and thus the solution has an uni-
axial symmetry (X2 = X3 < R

2 < R√
2

< X1). As c̄A decreases,
the single-q state (red part) becomes unstable and continu-
ously turns into this state. This phase boundary is determined
by a breakdown of the stability condition of the minimum at
the P point, and this gives the vertical line c̄A = 3

2 . However,
this continuous transition terminates at the tricritical point
(c̄�

A, c̄�
B) = ( 3

2 , 3
4 ), and the transition becomes first order for

c̄B < c̄�
B. The first order transition line slightly winds and

connects to the end point of the boundary between the single-q
and symmetric triple-q states (c̄��

A , c̄��
B ) = (1.567, 0.330). The

symmetric triple-q state (blue part) also becomes unstable and
turns into the uniaxial state, as c̄B increases. The minimum at
the S point becomes unstable on the line c̄A + 2c̄B = 3

√
3/2.

However, a first-order transition takes place before that and
the minimum jumps to a point with t� > 1

2 . This determines
the boundary of the symmetric and uniaxial triple-q states.

Lastly in the gray part, the minimum of ḡ34 locates inside
the triangle PTQ, and thus the solution has no symmetry cor-
responding to fully anisotropic triple-q state. This also means
that the transition to the uniaxial triple-q state is continuous.

This phase diagram of ḡ34 in Fig. 18 is actually very useful,
and we can make many predictions based on it for possible
phase transitions in the fX system upon lowering tempera-
ture. In any ordered state, the order parameter amplitude R

is nonvanishing and varies with T . Usually, R(T ) grows as T
decreases. When the disordered phase changes to an ordered
state, R(T ) varies continuously starting from 0 if the transition
is continuous, while jumps to a finite value otherwise. In any
case, the two parameters c̄A and c̄B vary with T according to
Eq. (B9e) with R = R(T ), but they are confined on a ray start-
ing from the origin, i.e., c̄B/c̄A is independent of T . Therefore
we can predict which ordered states may appear upon temper-
ature control by looking at the changes on the ray in Fig. 18.
By repeating this procedure with varying the ray’s direction
u = tan−1 c̄B/c̄A, we can determine the phase diagram.

Let us write down explicitly the above procedure. Suppose
a set of parameters a, b, and c’s is given, and consider possible
phase transitions upon lowering temperature. The first step is
the construction of the following function:

ḡu(R) ≡ ḡ34(t�, s�)
∣∣
c̄A=RC cos u, c̄B=RC sin u

, (B10)

where the two dimensional vector b−1(2Δc, c′′) is parame-
terized by its modulus C and angle u. Here, (t�, s�) denotes
the minimum position for the given value of R. The total free
energy density is then given as

f̃X = a(T )R2 + cR4 + bR3ḡu(R). (B11)

Now, the Landau free energy functional has been minimized
with respect to all the degrees of freedom except for R.
Therefore the minimization with respect to R is the last
task. The minimum is determined by the stationary condition
d f̃X/dR = 0, but it always has the trivial solution R = 0. A
nontrivial solution is the one satisfying the following equa-
tion:

−2a(T ) − 4cR2 = 3bRḡu(R) + bR2 dḡu(R)

dR
=: Yu(R2).

(B12)

One can solve this graphically: plot Yu as a function ρ ≡ R2

and find its crossing with the straight line −2a(T ) − 4cρ. If it
crosses from below as ρ increases, its crossing point ρ�(T )
determines the minimum position as R = √

ρ�(T ). If there
are multiple crossing points of this kind, the one with the
lowest f̃X is the global minimum. Then, the stable state at
the temperature T is that in Fig. 18 at the position (c̄A, c̄B) =√

ρ�(T )C(cos u, sin u).

APPENDIX C: DETAIL OF SMALL K ANALYSIS

In this Appendix, we examine how a finite value of K
affects the anisotropic configurations at K = 0. Using the
previous notation X = (X1, X2, X3) for (X,Y, Z ) and θ =
(θ1, θ2, θ3) for (θX , θY , θZ ), the K-term in the free energy fX

in Eq. (42) reads as

f X1X2X3
2K (θ1, θ2, θ3) = −4K

3∑
j=1

X 2
j cos(2θ j + jω), (C1)

where ω ≡ 2
3π as before. Let us start discussing from

the limit of K = 0. There are three equivalent configura-
tions: (X , θ) = (q, q, p, π

2 ,−π
2 , 0) and its two equivalents

(p, q, q, 0, π
2 ,−π

2 ), and (q, p, q,−π
2 , 0, π

2 ). They are in-
deed realized at low temperatures at K = 0 as discussed in
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Appendix B 2. Upon switching on K , the degeneracy of these
three configurations is lifted as is evident from the factor
cos(2θ j + jω) appearing in Eq. (C1). This will result in dif-
ferent behavior in their stability.

Before discussing the effects of f X1X2X3
2K , we first check

the stability of the K = 0 solution against rotating the order
parameters. Let us consider small variations in the order pa-
rameter directions such that ±π

2 → ±π
2 + η± and 0 → η0.

Then, the corresponding change in the free energy δ fX is
calculated by evaluating Eq. (42)

δ fX|K=0 ∼ q2[3bp(η+ + η− + η0)2 + 2c′′ p2(η+ + η− − 2η0)2

+ 2c′′(p2 − 2q2)(η+ − η−)2]. (C2)

The leading term in this change is quadratic with respect
to the three sets of linear combinations of η± and η0. They
are the eigenmodes within this harmonic approximation, and
their energies are all positive, since p2 � 2q2 for these states
and b is assumed positive. This concludes that the solution at
K = 0 is stable against small variations in θ.

Now we calculate f X1X2X3
2K ’s for the aforementioned three

configurations. The results are

f qqp
2K

(
π

2
,−π

2
, 0

)
= −4K (p2 + q2), (C3a)

f pqq
2K

(
0,

π

2
,−π

2

)
= f qpq

2K

(
−π

2
, 0,

π

2

)
= 2K (p2 + q2).

(C3b)

Thus, for K > 0, the configuration θ = ( 1
2π,− 1

2π, 0) is the
most stable, while those with (0, 1

2π,− 1
2π ) or (− 1

2π, 0, 1
2π )

are stabilized for K < 0. To simplify the discussion, we re-
strict ourselves to the analysis of f X1X2X3

2K with fixing X1 =
X2 = q and X3 = p, and consider a free energy change δ f qqp

2K
associated with small variations in θ. For K > 0, straightfor-
ward calculation gives

δ f qqp
2K

(
π

2
+ η+,−π

2
+ η−, η0

)

∼ 4K
[
2p2η2

0 + q2(η2
+ + η2

−) −
√

3q2(η+ − η−)
]
. (C4a)

The stability of this configuration is examined by minimizing
the sum of this δ f qqp

2K and δ fX|K=0 in Eq. (C2). It is important
that this δ f2K has a linear term of η+ − η−. Therefore its non-
vanishing amplitude is induced as η+ − η− ∼ √

3K/[c′′(p2 −
2q2)], while the other two eigenmodes remain zero in their
amplitudes. This indicates that the two directions θ1 and θ2 tilt
from ± 1

2π but the relation θ1 = −θ2 continues to hold.
For K < 0, similar analyses show that a linear term appears

once again in δ f X1X2X3
2K

δ f pqq
2K

(
η0,

π

2
+ η+,−π

2
+ η−

)

∼ 4|K|[p2η2
0 + q2(2η2

− − η2
+) −

√
3(q2η+ + p2η0)

]
,

(C4b)

δ f qpq
2K

(
−π

2
+ η−, η0,

π

2
+ η+

)

∼ 4|K|[p2η2
0 + q2(2η2

+ − η2
−) +

√
3(q2η− + p2η0)

]
.

(C4c)

FIG. 19. Color plot of �Q in J-T plane for K = 0. �Q is fi-
nite only in the fully anisotropic state for 0 < J < Jc. The phase
boundaries are indicated by the white lines and for the triple-q
states, the quadrupole configurations in the wavenumber space are
schematically shown.

The linear term is proportional to q2η± + p2η0, and this
combination contains at least two or generally all the three
eigenmodes in Eq. (C2). Therefore these eigenmodes acquire
nonvanishing values in the configuration minimizing the total
δ fX. The values of η± and η0 are thus nonvanishing, and
generally they have no symmetry. This further induces in-
equivalent changes in the magnitudes {Xj}. Therefore these
configurations with no symmetry correspond to NS states for
K < 0. A final remark is about a negative coefficient of one
of η2

± in Eqs. (C4b) and (C4c). Since this is proportional |K|,
one can neglect their effects, as in the case of K > 0, as far as
|K| is small.

APPENDIX D: PHASE CHANGES ACROSS THE K = 0 LINE

In this Appendix, we study in detail how various symmetry
broken phases change near the K = 0 line in the (J, K ) param-
eter space based on the results of the microscopic mean-field
approximation in Sec. IV. In particular, we focus on the region
of very low temperature. As shown in the inset of Fig. 9(c), the
NS′ state exists near the K = 0 line. Its phase boundary with
the zyzx state touches the K = 0 line around J/E1 ∼ 0.007,
and indeed the touching point is Jc/E1 � 0.0067 at T = 0.
The ground state for J > Jc is the uniaxial triple-q state shown
in Fig. 18, while it is the fully anisotropic state for 0 < J < Jc.
For J < 0, the ground state is always the ferro state, but this
is not our interest in this paper. In this Appendix, we use the
notations X = (X,Y, Z ) and θ = (θX , θY , θZ ).

Figure 19 shows the J-T phase diagram at K = 0. The
color map represents the magnitude difference �Q between
the smallest and the second smallest ones among X , Y , and Z .
This is one type of the order parameter identifying the fully
anisotropic state, where the three magnitudes are all different.
The region with finite �Q is limited to a small part of J > 0
at low temperatures. In the part of J > 0, the phase with the
highest transition temperature is the symmetric triple-q state
as discussed in Appendix B. Its lower T side is covered by the
uniaxial triple-q state with “xxz” anisotropy.

At K = 0, the ordered states have many equivalent do-
mains. Once K becomes finite, these degeneracies are lifted,
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FIG. 20. |Qkn
| as a function of K near K = 0. (a) J/E1 = 0.005,

where the ground state for K = 0 is the fully anisotropic state with
X �= Y �= Z . (b) J/E1 = 0.07, where the ground state for K = 0 is the
uniaxial state with X = Y �= Z . The order parameters for K → 0+
and K → 0− are different but they belong to the equivalent domains
in the order parameters for K = 0. In each of the figure, schematic
configurations {Qkn

} are drawn for the intuitive understanding about
the changes in the order parameters.

and some of them are stabilized. Figure 20 shows the change
of |Qk0

| and {|Qk�
|}3

�=1 = {X,Y, Z} upon varying K with J
fixed. The temperature is set to T = 0.0015625, practically
equivalent to T = 0. The two panels correspond to the results
for different J’s: J/E1 = (a) 0.005 and (b) 0.007. The phase
at K = 0 is the fully anisotropic state in the panel (a), and the
uniaxial state in the panel (b).

Let us start with discussing the K = 0 case in the panel
(a) of Fig. 20. The three magnitudes X , Y , and Z are all
different. The configuration of one typical domain there is
schematically illustrated: the magnitude is the largest for that
with θ = 0, and the smallest for θ = −π/2. This state is de-
generate in its configuration, and this degeneracy corresponds
to 36 different domains except for trivial translations. First,
there are 3! ways of assigning Qk�

’s to these three vectors,
and the corresponding 6 permutations constitute a first class.
There are two other classes of operations generating degener-
ate domains. One type of operation is the direction exchange

π/2 ↔ −π/2 while the direction for the largest moment is
fixed at θ = 0. The other type is the rotation θ → θ ± ω for
all the moments. Combining these three types of operations
yield in total 3! × (1 + 1) × (1 + 2) = 36 domains, and they
are degenerate in the fully anisotropic triple-q state at K = 0.

The degeneracy of these 36 domains is lifted when K �= 0.
In Fig. 20(a), we show the configuration where the smallest
magnitude is Y and its direction is θY ∼ −π/2. Upon switch-
ing on K > 0, the configuration with Z � X > Y is stabilized,
since θZ ∼ 0 ensures the maximum gain in the quadratic terms
in fX. At the same time, θX = π/2 and θY = −π/2, and they
are quite close to ω and −ω, respectively, which also lowers
fX. In contrast, for K < 0, the moment with the two larger
magnitudes X and Z point to the direction θX ∼ π/6 and θZ ∼
π/2. This maximizes the energy gain in the quadratic terms in
fX. As for the smallest one Y , it points to the direction θY =
−ω, which minimizes the energy cost in fX, while maximizes
the energy gain in the b term. See the discussion in Sec. VIII B.
Irrespective of the sign of K , the phase changes with K as
NS → zxzy → NS and NS’ → zyzx′ → zyox. These changes
are accompanied by rotations of the moments, which are
smooth but quite complicated. It should be noted that the
appearance of the zyzx′ and zxzy′(zxzy) states is related to the
topological transition of the local mean-field state as discussed
in Sec. III. One of the quadrupole moments, say QA, is pinned
to QA = (−1, 0) in the “spin-1/2” regime. Without symmetry
breaking to NS or NS′, QA cannot vary continuously within
the “half-integer spin” regime. See also Fig. 15.

Let us switch to the panel (b) of Fig. 20. The uniaxial triple-
q state is realized at K = 0. The configurations shown are for
the domain in which the moment for θ = 0 has the largest
magnitude among the 36 degenerate domains.

The stability of the uniaxial triple-q state has been analyzed
in Secs. VII C, VIII B, and VIII C, and in Appendix C. There
we have demonstrated that the NS′ state does not appear for
K > 0, while the NS state does appears for K < 0. One can
see this in the mean-field calculations in Fig. 20(b). Note
that, when considering the instability of the fully anisotropic
triple-q state, the NS′ state can appear as shown in the inset of
Fig. 9(c). The configurations shown are those with Y being
the smallest magnitude. For K > 0, one of the previously
degenerate domains at K = 0 gradually transforms into the
zyzx state. During this process, the moment with the largest
magnitude Z keeps the directions θZ = 0, while the other
two with the same magnitude X = Y tilt their directions θX

and θY . For the parameter space shown in the panel (b), the
largest moment is that for X for K < 0 owing to the quadratic
terms fX. Note that we consider the situation with Y being
the smallest. The two smaller magnitude Z and Y start to
vary differently; Z increases while Y decreases with lowering
K (< 0). This is the NS state and the angles θX,Y,Z also tilt from
the directions at K = 0.
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