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Polaron hopping through piecewise-linear functionals
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We use piecewise-linear functionals to study the polaron energy landscape and hopping rates in β-Ga2O3,
which we adopt as an example of an anisotropic material hosting multiple polaronic states. We illustrate various
functionals for polaron localization, including a hybrid functional and two types of semilocal functionals, and
discuss how to ensure the piecewise-linearity condition. Then, we determine the formation energies of stable
polarons, and show that single-site and multisite polaronic states can be found in close energetic competition. We
calculate the hyperfine and superhyperfine parameters associated with each polaron, and discuss the comparison
with experiment. Next, we perform nudged-elastic-band calculations to determine energy landscapes and hole
transfer rates of all first-nearest-neighbor polaron hoppings. We show that when the piecewise-linearity condition
is ensured polaron properties are robust upon variation of the functional adopted, including formation energies,
energy barriers, and charge transfer rates. This supports the use of semilocal functionals for calculating polaron
transport properties.
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I. INTRODUCTION

Polarons are quasiparticles consisting of localized charges
coupled with self-induced lattice distortions [1]. In the limit
of strong electron-phonon coupling, the polaronic charge
localizes over a short length scale comparable to the lattice pa-
rameter, thereby forming a small polaron. Small polarons are
generally studied through first-principles methods based on
density functional theory (DFT). However, standard semilocal
DFT fails at describing polarons because of the spurious inclu-
sion of the electron self-interaction [2–13]. Two descriptions
of the self-interaction have been introduced: the one-body
and the many-body self-interaction [2–5,7]. The one-body
self-interaction refers to the charge interacting with itself,
which vanishes in Hartree-Fock theory but persists in standard
semilocal DFT. At variance, the many-body self-interaction
is defined as the deviation from the piecewise linearity of
the total energy as a function of electron occupation [2–5,7].
In this regard, it has been shown that the notion of many-
body self-interaction is superior to the notion of one-body
self-interaction [14,15]. Indeed, addressing the many-body
self-interaction implies (i) enforcing the piecewise linearity of
the total energy upon electron occupation, which is a property
of the exact density functional [2], (ii) accounting for addi-
tional electron screening effects, which are overseen when
correcting for the one-body self-interaction [14,15], and (iii)
achieving polaron properties that are robust upon variation of
the functional adopted [14–16]. Such a robustness guarantees
the reliability of the theoretical predictions, particularly in the
case of polarons for which experimental data are often scarce.

The many-body self-interaction of polarons is addressed
when using piecewise-linear functionals. This can be achieved
by adjusting parameters in hybrid functionals [11,17–34],
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in semilocal functionals specifically designed for polarons
[14,15], or in DFT + U functionals [9,16,22,23,35–44]. The
notion of piecewise linearity has already been used for
studying polarons [9,19–27,34,45]. The enforcement of the
piecewise linearity requires the inclusion of finite-size cor-
rections in the energetics of polaronic defects with frozen
lattice distortions [34,46], which can be achieved with model
correction schemes [46]. Additionally, the recent finding that
piecewise-linear functionals yield robust polaron densities,
polaronic lattice bonds, and formation energies [14–16] in-
dicates that semilocal and DFT + U functionals can be used
for studying polarons. This enables efficient calculations of
polarons, at a computational cost substantially lower than that
of hybrid functional calculations. Moreover, it is of interest
to assess whether the potential of piecewise-linear functionals
extends to the study of transport properties.

Polarons have a large impact on transport properties of
materials and on related applications in photovoltaics [1].
From an experimental point of view, it has been shown that
small polarons follow an Arrhenius-type behavior, which is
characterized by a thermally activated carrier concentration
and by an increasing mobility as a function of temperature
[47]. From a theoretical point of view, most of the studies on
polaron hopping are based on Marcus theory [48,49] or on
Emin-Holstein-Austin-Mott theory [50–52], which are equiv-
alent for such hopping processes [53]. In these approaches,
the initial and final polaron states are represented through
independent Born-Oppenheimer surfaces, and a reaction path-
way is defined to determine the transition state. The difference
between the energies of the transition state and of the initial
state gives the activation energy for the hopping process.
Depending on the coupling between the initial and final
states, two regimes are distinguished: for large coupling the
regime is adiabatic, for small coupling the regime is diabatic
[54]. Depending on the regime, different analytic expressions
for the polaron hopping rate have been derived [54]. Such
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expressions can be incorporated within the Landau-Zener
formula [55,56], and have largely been applied to polaron
hopping processes [21,53,57–71]. The theoretical framework
for studying polaron hopping is thus well defined. However,
in such a framework, the hopping rate depends exponentially
on the activation energy, which hence needs to be accurately
determined to yield reliable theoretical predictions.

The potential of piecewise-linear functionals in the deter-
mination of polaron properties can be systematically assessed
when considering an anisotropic system, which can host
multiple polaronic states. Indeed, the presence of various
polaronic states allows for a multitude of polaron hopping
pathways. This enables an extended comparison of polaron
properties obtained with different piecewise-linear function-
als. For this reason, as a test case, we consider monoclinic
gallium oxide (β-Ga2O3), a promising semiconductor for
power electronics and optoelectronics due to its large band
gap and large breakdown field [72–77]. In particular, it
has been shown that β-Ga2O3 can host both self-trapped
holes [17,25,78–88] and impurity-trapped holes [88–100].
Hybrid functional and DFT + U calculations have shown that
self-trapped holes can localize at differently coordinated oxy-
gen sites [17,25,78–88], due to the anisotropic structure of
β-Ga2O3. Paramagnetic resonance experiments suggest the
existence of self-trapped holes at only one type of O site in
β-Ga2O3 [92,99]. Experimental results of self-trapped holes
at other O sites are missing. Additionally, previous theoretical
results may also not be accurate, due to the choice of the
adopted functional. For these reasons, β-Ga2O3 represents a
prototypical material for our study.

In this work, we apply piecewise-linear hybrid and semilo-
cal functionals to study energy landscapes and transfer rates of
hole polarons in β-Ga2O3. We focus on this material because
it can host multiple polaronic states due to its anisotropic
structure. We consider the hybrid functional PBE0(α)
[101], the semilocal functional introduced by Falletta and
Pasquarello [14,15], and the Hubbard-corrected DFT + U
functional [35–44]. We highlight that these functionals de-
pend on one parameter, which can be tuned to enforce the
piecewise-linearity condition of the total energy upon elec-
tron occupation. Using such piecewise-linear functionals, we
determine the stable hole polarons, and discuss the energy
competition between single-site and multisite polaronic states.
We calculate the hyperfine and superhyperfine parameters
associated with each polaron using the various piecewise-
linear functionals, and discuss the comparison with available
experimental data. Next, we calculate the energy land-
scape pertaining to all first-nearest-neighbor polaron hoppings
through nudged-elastic-band calculations, and determine the
respective hopping rates using the Marcus-Emin-Holstein-
Austin-Mott theory. When ensuring the piecewise-linearity
condition, we not only retrieve the robustness of ground-state
polaron properties as established previously [14–16], but also
find that such a robustness holds for energy barriers and
hopping rates. This strongly supports the use of semilocal
functionals for polaron hopping calculations.

This work is organized as follows. In Sec. II, we present
the piecewise-linear functionals used in this work. In Sec. III,
we determine the electronic, structural, and hyperfine prop-
erties of stable polaronic states in β-Ga2O3 obtained with the

various piecewise-linear functionals. In Sec. IV, we determine
the energy landscapes and transition rates for all first-nearest-
neighbor polaron hoppings in β-Ga2O3. In Sec. V, we draw
the conclusions.

II. PIECEWISE-LINEAR FUNCTIONALS

We illustrate various functionals that can localize polarons,
namely, the hybrid functional PBE0(α) [101], the semilo-
cal functional introduced in Refs. [14,15], which we here
call γ DFT, and the Hubbard-corrected DFT + U functional
[35–44]. All these functionals depend on a parameter, which
we denote ξ . In particular, for the PBE0(α) functional, ξ

corresponds to the fraction of Fock exchange α admixed to
the semilocal exchange. For the γ DFT functional, ξ is the
strength γ of a weak local potential dependent on the polaron
density. For the DFT + U functional, ξ is the Hubbard in-
teraction U . These functionals modify the standard semilocal
Kohn-Sham equations by including an extra potential, namely,

(
H0

σ + V ξ
σ

)
ψ

ξ
iσ = ε

ξ
iσψ

ξ
iσ , (1)

where H0
σ is the semilocal Perdew-Burke-Ernzerhof (PBE)

Hamiltonian [102], V ξ
σ is the extra potential, ψ

ξ
iσ are the wave

functions, ε
ξ
iσ are the eigenvalues, and σ is the spin. For

the three functionals considered, the potential V ξ
σ takes the

following expressions:

V α
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∑
i

fiσ

∣∣ψα
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ψα

iσ

∣∣
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[
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φI

m
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where Vxσ is the PBE exchange potential, fiσ is the occupation
of the ith orbital in the spin channel σ , q is the polaron charge,
and nIσ is the occupation matrix of localized orbitals φI

m of
state index m on atom I . The total energy corresponding to
Eq. (1) is

E ξ = E0 + �E ξ , (5)

where E0 is the semilocal PBE energy, and �E ξ the energy
correction related to the potential V ξ

σ . For the three function-
als, the energy �E ξ is given by

�Eα = −αEx[nα
↑, nα

↓] (6)

−α

2
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fiσ f jσ

∫
dr dr′

×ψ∗
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|r − r′| , (7)

�Eγ = q
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σ
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dr V γ

σ (r)
dnγ

σ (r)

dq
,

�EU = U

2

∑
Iσ

Tr[nIσ (1 − nIσ )], (8)
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where nξ
σ is the total electron density in the spin channel σ .

The analytic expression of �Eγ is derived in Appendix A.
The enforcement of the piecewise-linearity condition is

crucial to achieve polaron localization, which often fails when
using standard semilocal functionals [14,15]. While the hy-
brid functional PBE0(α) gives an overall improvement of the
electronic structure including band gaps and density of states
[16,24,25,29,30,33,103–105], the γ DFT and the DFT + U
functionals specifically target the many-body self-interaction
of the polaron state and are not expected to reproduce more
global properties [14–16]. Indeed, the γ DFT band gaps are
equal to those obtained with PBE, which generally underes-
timate the experimental band gap. In DFT + U calculations,
the U is applied to the orbitals constituting the polaron state
[16], which may not be the states constituting the band edges.
The piecewise linearity of the total energy as a function of
the polaron occupation can be achieved by selecting ξ = ξk

such that the concavity of the total energy vanishes. Through
Janak’s theorem [106], this corresponds to enforcing the po-
laron level ε

ξ
p to be constant with respect to the polaron charge

q, namely,

d2

dq2
E ξ (q)

∣∣∣∣
ξ=ξk

Janak= − d

dq
εξ

p (q)

∣∣∣∣
ξ=ξk

= 0. (9)

For instance, in the case of a hole polaron in the spin chan-
nel ↓, Eq. (9) can be satisfied by imposing the condition
ε

ξk
p (+1) = ε

ξk
p (0), where the energy levels ε

ξk
p (+1) and ε

ξk
p (0)

are calculated for the polaron structure Rξk
+1. We remark that

in the enforcement of Eq. (9), the polaron level ε
γk
p could

potentially resonate with the electronic bands, thus leading to
charge delocalization and vanishing lattice distortions. This
problem can be overcome by including a self-consistent scis-
sor operator to the Hamiltonian, as discussed in Appendix B.

The polaron localization depends on the competition be-
tween two energy contributions: the energy gain due to charge
localization and the energy cost due to lattice distortions. This
can be quantified through the concept of formation energy,
which is defined as [107]

E ξ

f (q) = E ξ (q) − E ξ

ref(0) + qε
ξ

b , (10)

where E ξ (q) is the total energy of the polaron system, E ξ

ref(0)
is the total energy of the reference pristine system, and ε

ξ

b is
the band level corresponding to the delocalized state. When
the piecewise linearity is enforced [Eq. (9)], the total energy
can equivalently be rewritten as

E ξk (q) = E0(0) − qεξk
p , (11)

which leads to the following expression for the polaron for-
mation energy:

E ξk
f (q) = q

(
ε

ξk
b − εξk

p

) + [
E ξk (0) − E ξk

ref(0)
]
. (12)

Finite-size electrostatic corrections due to the use of peri-
odic boundary conditions need to be applied to total energies
and defect energy levels [46,107–109]. This is due to the spu-
rious interactions of the net localized charge in the supercell
with its periodic replicas and with the neutralizing background
charge present in the system. In particular, in the case of
polarons, one also needs to correct for the energetics of the

neutral state in the presence of lattice polarization [46], which
is obtained for a vanishing polaron charge in the polaronic
geometry. This can be achieved by treating on an equal footing
the screening of the electrons and of the ionic polarization
charge arising from the lattice distortions [46]. For instance,
in the case of a hole polaron, the finite-size correction for the
charged (q = +1) and neutral (q = 0) energy levels in the
presence of polaronic lattice distortions are given by

εcor(+1) = −2Em(+1, ε0), (13)

εcor(0) = −2
Em(ε∞/ε0 − 1, ε∞)

ε∞/ε0 − 1
, (14)

where Em(q, ε) is the total energy correction for a system of
charge q with screening described by the dielectric constant
ε [108,109], ε∞ the high-frequency dielectric constant, and
ε0 the static dielectric constant. The total energy of the system
with a hole polaron is then corrected by Em(+1, ε0), where the
static dielectric constant ε0 is used since both atoms and elec-
trons are relaxed self-consistently. The code for performing
these corrections is freely available [110,111]. For simplicity
of notation, we consider that finite-size effects are implicitly
included in the total energies and polaron levels in all for-
mulas throughout this work. For instance, in the enforcement
of Eq. (9), ε

ξk
p (q) is corrected as ε

ξk
p (q) + εcor(q). Similarly,

E ξk
f (+1) is corrected as E ξk

f (+1) + Em(+1, ε0). Without the
inclusion of finite-size corrections, the polaron formation en-
ergies would be noticeably underestimated [15,16].

III. STABLE POLARONIC STATES

The calculations are performed with version 7.2 of the
QUANTUM ESPRESSO suite [112], which includes the imple-
mentation of the γ DFT functional and of the self-consistent
scissor operator introduced in Appendix B. The core-valence
interactions are described by norm-conserving pseudopoten-
tials [113]. We model β-Ga2O3 with a 120-atom monoclinic
supercell (a = 12.38Å, b = 9.28, c = 11.76Å). The energy
cutoff is set to 60 Ry. The lattice parameters are determined at
the PBE level of theory for the pristine system. The Brillouin
zone is sampled at the � point. Through the application of
finite electric fields [114] at the PBE level of theory, we
determine the high-frequency and static dielectric constants,
ε∞ = 3.75 and ε0 = 11.98, which are used for the finite-
size corrections [46,108]. We remark that in β-Ga2O3 there
are three differently coordinated O atoms. As illustrated in
Fig. 1(a), we denote OI the oxygen atom shared by two GaO6

octahedra and one GaO4 tetrahedron, OII the oxygen atom
shared by one GaO6 octahedron and two GaO4 tetrahedra, and
OIII the oxygen atom coordinated with four oxygen atoms.

We investigate the stability of hole polarons in β-Ga2O3

using piecewise-linear PBE0(α), γ DFT, and DFT + U func-
tionals. For each polaron, we use an initial structure in which
the Ga-O bonds surrounding the selected O atom have been
elongated. We then perform self-consistent electronic and
structural relaxations to determine the polaron structure Rξ

+1
at various values of the parameter ξ of the considered func-
tional. For each structure, we calculate the polaron energy
levels ε

ξ
p (+1) and ε

ξ
p (0), and correct for their finite-size ef-

fects through Eqs. (13) and (14), respectively. By imposing
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FIG. 1. (a) Bulk structure of β-Ga2O3 (OI in yellow, OII in cyan,
OIII in green, Ga in pink). (b) Polaron isosurfaces at 5% of their
maximum for the various hole polarons in β-Ga2O3 (Ga atoms in
pink, O atoms in red).

ε
ξk
p (+1) = ε

ξk
p (0) [cf. Fig. 2(a)], we find the value ξk that

enforces the piecewise linearity of the total energy, thus sup-
pressing the many-body self-interaction of the polaron. The
polaron formation energy is then calculated with Eq. (10) with
ξ = ξk. The selection of ξk is crucial in the determination of
the polaron formation energy, in consideration of the large
variations of the formation energy with ξ , as illustrated in
Fig. 2(b) and as previously found in Refs. [14,15].

Using the hybrid functional PBE0(α), the enforcement of
the piecewise linearity leads to hole polarons localized either
at a single OI site, at two neighboring OII sites, which we
denote O2II, or at a single OIII site. For these states, we find
αk = 0.25, 0.26, and 0.24. Considering that αk is essentially
independent of the polaronic defect, we set αk = 0.25 and
calculate the formation energies of the three polaron states,
obtaining −0.63, −0.71, and −0.39 eV, respectively.

With the semilocal functional γ DFT, the enforcement of
the piecewise linearity yields hole polarons localized either
at a single OI site, at a single OII site, or at a single OIII

site, with respective γk = 1.37, 1.45, and 1.40. Considering
that γk is essentially independent of the polaronic defect, we
take a fixed γk = 1.4 and find respective formation energies of
−0.59, −0.56, and −0.11 eV. To avoid resonances between
the polaron level and the conduction band, the conduction
band manifold has been shifted by a constant amount � =
3 eV through the use of the self-consistent scissor operator
introduced in Appendix B.

In the DFT + U calculations, following Ref. [16], we apply
the Hubbard U correction to the 2p orbitals of the O atoms,

FIG. 2. (a) Energy levels and (b) formation energy obtained with
γ DFT as a function of γ for the hole polaron trapped at the OI site in
β-Ga2O3. In (a), the polaron levels are identified by their respective
charge states.

TABLE I. Polaron formation energies obtained with piecewise-
linear PBE0(α), γ DFT, and DFT+U functionals. The formation
energies of the metastable states are given in parentheses. Energies
in eV.

PBE0(α) γ DFT DFT+U

OI −0.63 −0.59 −0.74
OII (−0.66) −0.56 −0.54
O2II −0.71 (−0.25) (−0.28)
OIII −0.39 −0.11 −0.42

which constitute the localized polaron state. The enforcement
of the piecewise linearity leads to polarons localized either at
a single OI site, at a single OII site, or at a single OIII site,
with respective Uk = 4.7, 5.1, and 4.9 eV. Considering that
Uk is essentially independent of the polaronic defect, we take
a fixed Uk = 4.9 eV and determine the respective formation
energies of −0.74, −0.54, and −0.42 eV. We illustrate the
various polaron states in Fig. 1(b) and give all the formation
energies in Table I.

We remark that polarons localized at single OI and OIII

sites are achieved with all piecewise-linear functionals. How-
ever, different descriptions are found for the polaronic state
involving OII sites. In particular, PBE0(α) stabilizes the
double-site O2II state, while γ DFT and DFT + U stabilize
the single-site OII state. The localization of hole polarons at
OI and O2II sites was already reported in previous studies
[17,25,83,86,88,97,99], while the localization of the hole po-
laron at a OIII site was only recently found in the work of
Frodason et al. [86]. All such previous studies employ hybrid
functionals, namely, the PBE0 functional [17,25,83,88,97,99]
and a range-separated hybrid functional [86]. The adopted
fraction of Fock exchange α in these works ranges from 0.26
to 0.35 [17,25,83,86,88,97,99]. For comparison, we consider
the recent study of Frodason et al. [86], in which the OI, O2II,
and OIII states are found. In particular, these authors calculated
polaron formation energies of −0.48, −0.49, and −0.33 eV,
respectively. These results systematically underestimate our
PBE0(α) values in Table I, while showing similar relative
stability. However, a direct comparison with all such previous
studies [17,25,83,86,97,99] remains ambiguous, due to the
disparity in the functional adopted and in the treatment of
finite-size effects.

Our findings suggest that the hole polaron localized
at a single OII site is in competition with the hole po-
laron localized over two OII sites (O2II). In particular, the
piecewise-linear PBE0(α) functional stabilizes the O2II state,
while the piecewise-linear γ DFT and DFT + U functionals
stabilize the OII state. Here, we determine the energy of the
metastable state for each functional. In the PBE0(α) calcula-
tions, we find the structure of the OII state using large values
of α, for which the OII state is more stable than the O2II state.
Then, we progressively optimize the structure by lowering α

to approximately αk. Similarly, in γ DFT and DFT + U calcu-
lations, we find the structures of the O2II state using low values
of γ and U , which we subsequently increase until approaching
γk and Uk, respectively. As illustrated in Fig. 3, we extrapolate
the formation energies of these metastable states at αk, γk,
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FIG. 3. Energy competition between the hole polarons localized
either at the OII site or at the O2II site, as obtained with PBE0(α),
γ DFT, and DFT + U functionals.

and Uk, and find that for the three functionals considered the
energies of the competing OII and O2II states lie within 0.05,
0.31, and 0.26 eV, respectively. These values are comparable
with the accuracy of piecewise-linear functionals in the de-
termination of polaron formation energies (cf. Table I). For
comparison, we add to Table I the formation energies of these
metastable states.

The competing OII and O2II states show very different
polaron distributions [cf. Fig. 1(b)]. Hence, it is of interest to
evaluate the parameter ξ ′

k that enforces the piecewise linear-
ity for the metastable polaronic states, namely, the OI state
in PBE0(α), the O2II state in γ DFT, and the O2II state in
DFT + U . At fixed atomic structure, the enforcement of the
piecewise linearity for such states gives α′

k = 0.26, γ ′
k = 2.23,

and U ′
k = 7.44 eV. This shows that the values of αk and α′

k
obtained for the O2II and OII states practically coincide, in
accord with previous studies showing that αk is essentially
independent of the considered defect [16,24,29,30,32]. This is
due to the fact that the hybrid functional PBE0(α) addresses

FIG. 4. Polaron densities integrated over xy planes obtained with
piecewise-linear PBE0(α), γ DFT, and DFT + U functionals for the
hole polarons localized at the OI, OII, O2II, and OIII sites.

the self-interaction on the entire electronic manifold. At vari-
ance, the values of γ ′

k and U ′
k obtained for the O2II state vary

from the values of γk and Uk obtained for the OII state. This
can be related to the fact that γ DFT and DFT + U mainly
address the self-interaction of the polaron state, and hence the
values of γk and Uk are consequently affected by the polaron
distribution. Additionally, we remark that γ ′

k and U ′
k are both

larger than γk and Uk, respectively. Moreover, the OII state
becomes more stable than the O2II state for sufficiently large
values of γ and U (cf. Fig. 3). This implies that self-consistent
electronic and structural optimizations for the enforcement
of Eq. (9) using γ DFT and DFT + U functionals yield the
OII state. This suggests that piecewise-linear functionals may
have the tendency of favoring single-site localization over
multisite localization.

We now compare the properties of the stable polaronic
states obtained with the various piecewise-linear functionals.
As illustrated in Fig. 4, the polaron electron densities are prac-
tically independent of the adopted functional. An excellent
agreement is also found for the polaronic lattice distortions,
with deviations smaller than 0.05 Å (cf. Table II), with the
sole exception of the weak bonds for the OIII state for which
a deviation of 0.10 Å is observed. Similarly, differences in
the formation energies due to the choice of the functional are
within 0.15 eV in all cases, except for the OIII state where
we find a larger discrepancy of 0.31 eV (cf. Table I). Overall,
this analysis confirms the robustness of the polaron properties
obtained with piecewise-linear functionals [14–16].

It is of interest to determine the accuracy by which γk, Uk,
and αk enforce the piecewise-linearity condition. This can be
achieved by taking the difference between the formation ener-
gies obtained with the expressions in Eqs. (12) and (10) at ξ =
ξk. Indeed, these two expressions are formally equivalent for
all partial charge occupations q when the piecewise-linearity
condition is satisfied. We hence determine the quantity

δ = ∣∣E ξk (q) − [
E ξk (0) − qεξk

p

]∣∣, (15)
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TABLE II. Lengths of Ga-O polaronic bonds (in increasing order) obtained with piecewise-linear PBE0(α), γ DFT, and DFT+U
functionals. The bond lengths of the metastable states are given in parentheses. Bond lengths are in Å.

PBE0(α) γ DFT DFT+U

OI 1.97/2.17/2.17 2.02/2.16/2.16 1.98/2.20/2.20
OII (1.97/1.97/2.21) 2.02/2.02/2.18 1.99/1.99/2.22
O2II 1.93/1.93/2.09 (1.94/1.94/2.06) (1.93/1.93/2.08)
OIII 1.96/2.09/2.24/2.69 2.01/2.12/2.23/2.73 1.97/2.12/2.33/2.65

and find for the stable polarons a mean average δ of 0.02,
0.06, and 0.02 eV using γ DFT, DFT + U , and PBE0(α)
functionals, respectively. This agreement validates the param-
eters chosen to enforce the piecewise-linearity condition [cf.
Eq. (9)].

We now highlight the role of the band gap in the de-
termination of accurate polaron energetics. As illustrated in
Fig. 5(a), we obtain band gaps of 4.38, 2.05, and 3.68 eV with
PBE0(αk), PBE, and DFT + Uk, respectively. The PBE0(αk)
band gap is in agreement with the range of experimental
values 4.4–4.8 eV for β-Ga2O3 [116,117]. This is in accord
with previous findings showing the accuracy of band gaps
obtained with piecewise-linear hybrid functionals with respect
to the experiment [11,14,15,24–30,32,33]. At variance, both
PBE and DFT + Uk noticeably underestimate the experimen-
tal band gap. Nevertheless, the incorrect description of the
band gap in γ DFT and DFT + U is not critical for the ac-
curate determination of polaron properties [16]. Additionally,
we remark that the energy level of the hole polaron local-
ized on a OI site calculated with the piecewise-linear γ DFT
functional is in resonance with the PBE conduction band.
This demonstrates the necessity of including a self-consistent
scissor operator in the γ DFT Hamiltonian to avoid the delo-
calization of the polaron wave function (cf. Appendix B).

For comparison with experiment, it is of interest to de-
termine the hyperfine and the superhyperfine parameters of

FIG. 5. (a) Band edges of β-Ga2O3 as obtained with PBE0(α)
and DFT + U as a function of α and U , respectively. The vertical line
denotes the choice of the parameter for which the piecewise-linearity
condition is retrieved. The energy levels are aligned with respect to
the average electrostatic potential [115]. (b) Band gaps and energy
levels of the hole polaron localized at the OI site, as obtained with
γ DFT, DFT + Uk, and PBE0(αk). The γ DFT band gap coincides
with that obtained with PBE. The polaron level calculated with
γ DFT is found by applying the scissor operator to the conduction
band manifold (cf. Appendix B).

O and neighboring Ga atoms, respectively, associated with
each hole polaron in β-Ga2O3. Indeed, these parameters quan-
tify the coupling between the unpaired electron spin and the
nuclear spins, and can be measured through electron spin
resonance. In particular, for each atom I , the hyperfine Hamil-
tonian is given by

Hhyp
I = Se · AI · SI , (16)

where AI is the hyperfine tensor, Se the electronic spin, and
SI the nuclear spin. The components of the hyperfine tensor
are given by AIi j = aIδi j + bIi j , where aI is the Fermi contact
interaction and bIi j is a dipolar traceless term. These quantities
are defined as [119]

aI = 8π
3 geμegIμI m(rI ), (17)

bIi j = geμegIμI

∫
dr m(r)

3rir j − δi j r2

r5
, (18)

where m = n↑ − n↓ is the spin density, ge the electron g factor,
µe the Bohr magneton, gI the nuclear gyromagnetic ratio, µI

the nuclear magneton, rI the position of the ion I , and r the
distance between the electron and the nucleus. The values
of gI and µI can be found in the literature [118]. The gyro-
magnetic ratio gI is given by the ratio between the nuclear
magnetic moment and the nuclear spin [119]. The eigenval-
ues and the associated principal directions of AI can then
be compared with electron paramagnetic resonance (EPR)
experiments.

We perform hyperfine calculations using the GIPAW code
[120,121] for all polaronic states in β-Ga2O3. In Table III,
we give the hyperfine parameters and the corresponding prin-
cipal axes for the 17O atoms where polarons localize. The
experimental signatures related to the 17O isotope are dif-
ficult to measure because the natural abundancy of the 17O
isotope is less than 0.01% [99]. Thus, we also give the Fermi
contact interactions obtained for Ga atoms surrounding the
hole polarons in Table IV. For Ga atoms, we omit the dipolar
terms, which contribute by less than 3% to the eigenvalues of
the hyperfine tensor. The dipolar terms and the correspond-
ing principal axes of 17O atoms obtained with the various
piecewise-linear functionals are in excellent agreement with
each other. This confirms the accuracy of the spin densities,
in accord with our previous findings on the polaron density
(cf. Fig. 4). The Fermi contact interactions of 69Ga isotopes
obtained with the various piecewise-linear functionals are also
in good agreement with each other. Larger discrepancies are
found for the Fermi contact interactions of 17O atoms. In
this case, the O 2p orbitals that constitute the polaron wave
function do not contribute [cf. Eq. (17)], and the discrepancy
can be related to the description of the s orbitals of the O atom
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TABLE III. Eigenvalues Aη of the hyperfine tensor and spherical angles (θη, φη ) of the corresponding principal directions for 17O atoms
hosting a hole polaron in β-Ga2O3 (η = x, y, z). Hyperfine parameters are given in Gauss. In the case of the hole polaron localized at the O2II

site, the results for the two O sites where the polaron localizes are averaged with the exception of the angle θx , which assumes two distinct
values for the two OII sites involved.

OI OII O2II OIII

PBE0(αk) γ DFT DFT+Uk PBE0(αk) γ DFT DFT+Uk PBE0(αk) γ DFT DFT+Uk PBE0(αk) γ DFT DFT+Uk

a −29 −82 −27 −30 −76 −28 −31 −51 −20 −27 −76 −26
bx 49 52 51 44 52 51 29 31 29 45 51 50
by 49 53 52 44 51 51 29 31 29 45 52 51
bz −98 −105 −103 −88 −103 −102 −58 −62 −58 −90 −103 −101
Ax 20 −30 24 14 −24 23 −2 −20 9 18 −25 24
Ay 20 −29 25 14 −25 23 −2 −20 9 18 −24 25
Az −127 −187 −130 −118 −179 −130 −89 −113 −78 −117 −179 −127
θx 3◦ 2◦ 4◦ 90◦ 90◦ 90◦ 76◦/104◦ 76◦/104◦ 77◦/104◦ 129◦ 126◦ 122◦

φx −1◦ 4◦ −1◦ 89◦ 90◦ 90◦ 0◦ 0◦ 0◦ 10◦ 10◦ 4◦

θy 90◦ 90◦ 90◦ 75◦ 105◦ 106◦ 90◦ 90◦ 90◦ 55◦ 131◦ 138◦

φy 90◦ 90◦ 90◦ −1◦ 0◦ 0◦ 90◦ 90◦ 90◦ 135◦ 141◦ 138◦

θz 93◦ 92◦ 94◦ 16◦ 15◦ 16◦ 14◦ 14◦ 13◦ 121◦ 117◦ 114◦

φz 0◦ 0◦ 0◦ 0◦ 0◦ 0◦ 0◦ 0◦ 0◦ 70◦ 78◦ 78◦

at which the polaron localizes. The Fermi contact interactions
obtained with PBE0(αk) and DFT + Uk are found to be very
close. However, it remains to be ascertained whether this
accord carries broader validity beyond the specific case of
β-Ga2O3. The superhyperfine parameters of Ga atoms neigh-
boring the hole polarons localized at the OI and O2II sites have
also been calculated by Skachkov et al. [99]. In particular,
these authors used the DFT + U functional with U = 4 eV
and found a = −16,−8, and −8 G for the OI state and
a = −13,−12, and −9 G for the O2II state, which are lower
than our values. The differences are due to the dependence of
the Fermi contact interaction on the value of the spin density
at the ion site [cf. Eq. (17)], which is sensitive to the details of
the electronic structure, as previously observed by Skachkov
et al. [99]. A quantitative comparison with experimental val-
ues might also require the inclusion of dynamical Jahn-Teller
and spin-orbit coupling effects [99].

In relation to a specific EPR signal, Kananen et al. sug-
gested that the hole polaron localized at the OI site could be
compatible with the experiment [82]. This is based on a geo-
metric analysis relating the orientation of the polaron density
and the measured g tensor [82]. Moreover, for interpreting the
observed EPR signal, Kananen et al. assumed that the hyper-
fine interaction with the two neighboring sixfold-coordinated

Ga atoms would be much larger than with the more distant
fourfold-coordinated Ga neighbor. However, in a subsequent
study, Skatchkov et al. found that the hyperfine coupling is
sizable for all three Ga neighbors, and that the largest in-
teraction is actually found for the fourfold-coordinated Ga
neighbor [99], in contrast with the assumptions of Kananen
et al. Thus, Skatchkov et al. inferred that hole polarons are
not at the origin of the EPR data [99]. Our calculated Fermi
contact interactions are also sizable for more than two Ga
atoms, and their relative magnitude is in agreement with the
results of Skatchkov et al. Hence, our results also suggest that
the EPR signal first observed by Kananen et al. unlikely re-
sults from localized hole polarons. The difficulty in measuring
polaron-related signals likely results from the n-type character
of β-Ga2O3 samples, which favors rapid hole polaron annihi-
lation by electron-hole recombination [82].

IV. POLARON HOPPING

The energy landscape of a polaron hopping process can
be determined using nudged-elastic-band (NEB) calculations
[122], which allow one to determine the minimal energy path
connecting initial and final states. This is achieved by dis-
cretizing the path in a series of images, and by minimizing

TABLE IV. Fermi contact interaction of 69Ga atoms surrounding the hole polarons in β-Ga2O3. We consider 69Ga isotopes, which are
60.1% abundant [99]. The values for 71Ga isotopes (39.9% abundant [99]) can be achieved by multiplying those for 69Ga isotopes by 1.27059
[118]. Ga(I) denotes a fourfold-coordinated Ga atom, while Ga(II) denotes a sixfold-coordinated Ga atom. Values are given in Gauss. For the
hole polaron localized at the O2II site, the values given correspond to an average over the two O sites.

OI OII O2II OIII

PBE0(αk) γ DFT DFT+Uk PBE0(αk) γ DFT DFT+Uk PBE0(αk) γ DFT DFT+Uk PBE0(αk) γ DFT DFT+Uk

Ga(I) −35 −43 −29 −27 −32 −22 −24 −36 −24 −34 −43 −28
Ga(I) −27 −32 −22 −24 −36 −24 −31 −40 −27
Ga(II) −16 −28 −12 −13 −19 −10 −17 −27 −17 −22 −25 −22
Ga(II) −16 −28 −12 −11 −9 −11
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FIG. 6. Energy profile for electron transfer from the initial state
A to the final state B along a configurational coordinate Q. The
activation energy Ea, the coupling J between the two states, the lower
and upper adiabatic energy surfaces E− and E+, and the transition
state (TS) are indicated.

the forces orthogonal to the path for all intermediate images
[122]. The energy landscape is then projected along a config-
urational coordinate Q. A common choice for Q is

(Qn)2 =
∑

I

mI

∣∣rn
I − r1

I

∣∣2
, (19)

where n is the image index, mI the mass of atom I , and
rn

I the Cartesian coordinate of atom I in the nth image.
Once the energy profile along the configurational coordinate
Q is obtained, the rate of polaron charge transfer from the
initial to the final state can be calculated using the Marcus-
Emin-Holstein-Austin-Mott theory [48–52]. Depending on
the coupling between the initial and final states, two regimes
can be distinguished [57]. For small coupling, the regime is
diabatic and the energy of the transition state is found in
correspondence of the intersection of the Born-Oppenheimer
surfaces of the initial and final states. For large coupling, the
regime is adiabatic and the transition state is more stable than
the one obtained in the diabatic case. A schematical illustra-
tion of the energy profiles in these two regimes is given in
Fig. 6.

Then, the charge transfer rate kt for the hopping from an
initial state to a final state can be calculated using the Landau-
Zener formula [54–57], namely,

kt = κν� exp

(
− Ea

kBT

)
, (20)

where κ is the thermally averaged electronic transmis-
sion coefficient, ν an effective nuclear frequency along the
reaction coordinate, � the nuclear tunneling factor, Ea the
activation energy, and T the temperature. The tunneling factor
� takes into account the nuclear quantum effects and can
generally be approximated as � ≈ 1, except when considering
low temperatures or light elements [67]. The effective nuclear
frequency ν can be calculated as [21]

ν2 = ∂2E (Q)

∂Q2
, (21)

and can be estimated from the NEB energy profile around the
initial state within an effective one-dimensional phonon fre-
quency approximation [123,124]. We remark that presence of
the atomic masses in Eq. (19) allows one to directly associate

the right-hand side of Eq. (21) to the nuclear frequency ν. The
transmission coefficient κ describes the transition probability
from the initial state to the final state through multiple pas-
sages via the intersection point between the diabatic surfaces
[54–57]. By denoting (1 − P) the probability of the diabatic
transition at the transition state from the low-energy adiabatic
surface to the high-energy adiabatic surface and vice versa (cf.
Fig. 6), κ can be expressed as [54–57]

κ = P + (1 − P)2
∞∑

k=0

P2k+1 = 2P

1 + P
, (22)

where it is assumed that no transition occurs when the system
falls back to the initial state [54]. The probability P is calcu-
lated as [54–57]

P = 1 − exp

[
− π2J2

hν
√

4π (Ea + J )kBT

]
, (23)

where h is the Planck constant, kB the Boltzmann constant,
and J the coupling between initial and final states (cf. Fig. 6).
We note that Ea + J corresponds to the diabatic activation
energy, as schematically illustrated in Fig. 6. The coupling
J can be calculated as the difference of the bonding and
antibonding energy levels at the transition state [125]. For
P → 1 the regime is adiabatic, whereas the regime is diabatic
for P → 0.

We now study the minimal energy path for hopping of hole
polarons in β-Ga2O3 by performing NEB calculations with
piecewise-linear γ DFT and DFT + U functionals. We avoid
the use of the hybrid functional PBE0(α) for NEB calcula-
tions, which would require an excessively large amount of
computational resources. We consider all the 21 first-nearest-
neighbor hoppings, which are indexed in Table V by the
pairs of O sites involved in the hopping and their respective
distance. This requires performing 14 NEB calculations with
each functional since hoppings involving two different O sites
provide information on both forward and backward transi-
tions. In particular, for each NEB we take a 15-image path
connecting the initial and final states. We use a fixed ξk in-
stead of an image-dependent one, as this affects the activation
energies in a minor fashion [16]. In this way, we determine the
energy landscape as a function of the reaction coordinate Q.

For each transition, we determine the activation energy Ea

as the difference between the transition-state energy and the
ground-state energy of the initial state. For illustration, we
show in Fig. 7 the hopping process between two OI sites
connected through a Ga atom. In this case, we find very
good agreement between the activation energies obtained with
piecewise-linear γ DFT and DFT + U functionals, obtaining
barriers of 0.41 and 0.47 eV, respectively. In particular, the
activation energies in the two cases differ by only 58 meV.
These results are also in good agreement with the value of
0.40 eV found by Varley et al. for the same hopping process
[17]. In Fig. 7, we also give the energy barriers calculated
with the piecewise-linear PBE0(α) functional for the NEB
pathways obtained with γ DFT and DFT + U , finding a negli-
gible difference of 7 meV between the two paths. This further
corroborates the reliability of piecewise functionals and their
mutual equivalence.
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TABLE V. Distance d between hopping sites (in Å), activation energy Ea (in meV), effective nuclear frequencies hν (in meV), and hole
transfer rate kt (in Hz) at 300 K for all first-nearest-neighbor polaron hoppings in β-Ga2O3, as obtained with piecewise-linear γ DFT and
DFT+U functionals.

γ DFT DFT+U

Hopping Index d Ea hν J kt d Ea hν J kt

OI → OI 1 3.16 674 74 198 8.4 × 101 3.28 653 119 260 3.1 × 102

2 3.09 408 113 647 3.8 × 106 3.09 466 118 696 4.3 × 105

OI → OII 3 2.88 404 77 607 3.0 × 106 2.83 560 124 676 1.2 × 104

4 2.98 673 45 171 7.6 × 101 2.94 734 106 302 1.2 × 101

OI → OIII 5 2.65 693 74 602 4.2 × 101 2.67 647 82 680 2.6 × 102

6 2.88 677 77 645 7.9 × 101 2.90 554 271 790 3.2 × 104

7 3.24 720 99 564 1.9 × 101 3.23 692 97 623 5.7 × 101

OII → OI 8 2.88 375 123 607 1.5 × 107 2.83 372 168 676 2.3 × 107

9 2.98 642 136 171 5.4 × 102 2.94 547 174 302 2.7 × 104

OII → OII 10 3.04 467 106 344 3.7 × 105 3.06 477 168 350 4.0 × 105

11 3.09 416 109 443 2.7 × 106 3.09 441 164 490 1.6 × 106

12 2.84 326 59 547 4.7 × 107 2.82 267 146 725 1.2 × 109

OII → OIII 13 2.94 703 90 479 3.3 × 101 2.96 744 86 144 6.7 × 100

14 2.99 637 96 589 4.6 × 102 2.98 524 147 567 5.7 × 104

OIII → OI 15 2.65 214 73 602 4.5 × 109 2.67 334 140 680 8.4 × 107

16 2.88 205 129 645 1.1 × 1010 2.90 241 31 790 6.7 × 108

17 3.24 246 106 564 1.9 × 109 3.23 369 146 623 2.2 × 107

OIII → OII 18 2.94 251 76 479 1.1 × 109 2.96 617 165 144 1.6 × 103

19 2.99 179 61 589 1.5 × 1010 2.98 398 103 567 5.2 × 106

OIII → OIII 20 2.69 497 77 428 8.3 × 104 2.70 427 106 610 1.7 × 106

21 3.09 511 76 349 4.9 × 104 3.09 491 65 489 9.0 × 104

When considering all other hopping processes, we find
overall a similar good agreement between the activation en-
ergies obtained with γ DFT and DFT + U , as given in Table I.
In particular, the mean absolute error of activation energies
amounts to only 85 meV [cf. Fig. 8(a)]. The largest variations
are observed for the transitions OIII → OII (indices No. 18
and No. 19), which can be related to the discrepancy in the
energy difference between final and initial states involved
in the NEB calculation (cf. Table I). This can be related to
the Bell-Evans-Polanyi principle, which establishes a linear
relationship between the activation energy and the energy
difference between final and initial states [126,127].

FIG. 7. Energy landscape of a polaron hopping between two
neighboring OI sites connected through a Ga atom in β-Ga2O3 (tran-
sition index No. 2 in Table V), as obtained with piecewise-linear
(a) γ DFT and (b) DFT + U functionals through the NEB method.
The activation energies Ea and the effective nuclear frequencies ν are
indicated. In green, we give the activation energies calculated with
the piecewise-linear functional PBE0(α) for the same NEB pathway.

Then, we focus on the determination of the hole transfer
rates for all transitions. First, we calculate the effective nuclear
frequency ν through quadratic interpolation of the energy
profile around the initial state, as shown in Fig. 7. Then, we
determine the couplings J for all transitions as half the sepa-
ration between occupied and unoccupied defect energy levels
at the transition state [125], as illustrated in Fig. 9. Given the
activation energies Ea, the effective nuclear frequencies ν, and
the couplings J , we calculate the probabilities P defined in
Eq. (23) at T = 300 K. We find that P = 1 in all cases, with
the exception of the transition No. 18 calculated with DFT +

FIG. 8. (a) Activation energies and (b) hole transfer rates at
300 K for the hole polaron hoppings in β-Ga2O3 listed in Table V.
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FIG. 9. Occupied and unoccupied defect energy levels as a func-
tion of the reaction coordinate for a polaron hopping between two
neighboring OI sites in β-Ga2O3 (transition index No. 1 in Ta-
ble V), as obtained with piecewise-linear (a) γ DFT and (b) DFT + U
functionals. Defect energy levels are corrected by finite-size effects.
Below, isodensity surfaces at 5% of their maximum for the densities
of the occupied and unoccupied defect states at the transition state,
as calculated with γ DFT.

U for which P = 0.9. This indicates that essentially all the
transitions are adiabatic. We then calculate the hole transfer
rates at T = 300 K for all hopping processes using Eq. (20).
The effective nuclear frequencies ν, the couplings J , and the
rates kt obtained for all the hoppings are given in Table V.

As shown in Fig. 8(b), we also find good agreement for
the hole transfer rates calculated with γ DFT and DFT + U ,
characterized by a mean value of | log10(kγk

t /kUk
t )| equal to

1.5, which represents the mean absolute error on the order
of magnitude of kt. This is quite satisfactory considering that
even small variations of the activation energy can affect the
hole transfer rate by several orders of magnitude due to the
exponential dependence of the transfer rate on the activation
energy [cf. Eq. (20)]. This analysis sets the overall accu-
racy of piecewise-linear functionals in the determination of
electron transfer rates, and shows that the robustness of the
polaron properties obtained with piecewise-linear functionals
also holds for activation energies and hopping rates.

We remark that some of the activation barriers in Ta-
ble V are higher than the formation energies of the initial
state. In such a case, the transition state is less stable than
the delocalized state in which the polaron charge delocalizes
uniformily over the entire system and the polaronic lattice
distortions vanish. This indicates that the hole polaron dif-
fusion in β-Ga2O3 cannot be uniquely described by polaron
hopping, and that more complex scattering mechanisms com-
bining polaron hopping and polaron delocalization should be
considered in the calculation of polaron mobilities.

V. CONCLUSIONS

In conclusion, we investigated the use of piecewise-linear
functionals for the determination of polaronic ground-state
and transport properties. We showed that enforcing the
piecewise-linearity condition leads to robust polaron proper-

ties upon variation of the functional. Considered properties
include electron densities, lattice bonds, formation energies,
hyperfine and superhyperfine parameters, activation energies,
and transfer rates. Such a robustness validates the accuracy
and the reliability of the calculated polaron properties. This
is particularly relevant when considering formation energies,
which are subject to large variations upon varying the param-
eters of the functionals.

By consequence, our work demonstrates that semilocal
functionals yield essentially the same polaron properties,
thereby supporting their use for exploring polaronic energy
landscapes and for determining polaron transport properties.
This becomes important when considering anisotropic ma-
terials, which can be characterized by numerous polaronic
hopping pathways for which hybrid-functional calculations
would be computationally beyond reach.

In summary, our work provides a paradigm shift for the
study of polaron transport properties, through the use of
piecewise-linear functionals as opposed to standard func-
tionals. This also lends justification to the use of efficient
semilocal functionals, thus paving the way to accurate and
systematic studies of polaronic transport properties from first
principles.

Material associated to this work can be found on Materials
Cloud [128].
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APPENDIX A: γDFT ENERGY FUNCTIONAL

In this Appendix, we derive the expression of the total
energy �Eγ in Eq. (7). We assume that the total energy is well
described by an expansion up to second order in q [14,15].
Then, �Eγ can be written as

�Eγ (q) = �Eγ (0) + q
d�Eγ

dq

∣∣∣∣
q=0

+ q2

2

d2(�Eγ )

dq2
. (A1)

We remark that �Eγ (0) = 0 since the potential V γ
σ van-

ishes at q = 0. Moreover, since V γ
σ is linear in q then also

d (�Eγ )/dq is linear in q, which thus vanishes at q = 0.
Hence, by using the chain rule for derivatives with respect to
q, Eq. (A1) can be rewritten as

�Eγ (q) = q2

2

∑
σσ ′

∫
dr dr′ δ2(�Eγ )

δnγ
σ (r)δnγ

σ ′ (r′)
dnγ

σ (r)

dq

dnγ

σ ′ (r′)
dq

.

(A2)
Similarly, the potential V γ

σ in Eq. (3) can be expanded in q as
follows:

V γ
σ (r) = q

∑
σ ′

∫
dr′ δV γ

σ (r)

δnγ

σ ′ (r′)
dnγ

σ ′ (r′)
dq

. (A3)

Using the variational relation V γ
σ (r) = δ(�Eγ )/δnγ

σ (r) in
Eq. (A3), and inserting the resulting expression in Eq. (A2),
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we obtain

�Eγ (q) = q

2

∑
σ

∫
dr V γ

σ (r)
dnγ

σ (r)

dq
, (A4)

which can be evaluated by finite differences as

�Eγ (q) = 1

2

∑
σ

∫
dr V γ

σ (r)
[
nγ

σ (q, r) − nγ
σ (0, r)

]
. (A5)

The expression in Eq. (A5) is valid for any potential V γ
σ with

a prefactor q in V γ
σ , under the assumption of quadraticity of

the total energy with q.

APPENDIX B: SELF-CONSISTENT SCISSOR OPERATOR

In this Appendix, we discuss the self-consistent scissor
operator used for opening the band gap. We remark that, in
the case of electron polarons, the polaron level is stabilized
by going down in energy with respect to the conduction band.
At variance, in the case of hole polarons, the polaron level is
stabilized by going up in energy with respect to the valence
band. Considering that in semilocal density functional the-
ory the band gap is underestimated, resonances involving the
electron (hole) polaron state with the valence (conduction)

band states could occur, which may prevent polaron localiza-
tion.

This problem can be overcome by including in the Hamil-
tonian a scissor operator Sσ that artificially increases the band
gap of the system. The scissor operator only affects electron
bands that are unrelated to the polaronic state. This allows one
to address resonances between the polaron level and the delo-
calized band states, without affecting the polaron properties.
The adopted scissor operator has the expression

Sσ = �
∑

i∈Mξ
σ

∣∣ψξ
iσ

〉〈
ψ

ξ
iσ

∣∣ , (B1)

where ψ
ξ
iσ are the wave functions obtained in the self-

consistent optimization of the Kohn-Sham equations, and �

is a constant. For electron polarons, Mξ
σ denotes the manifold

of valence-band states and � is taken to be negative, while for
hole polarons Mξ

σ denotes the manifold of conduction-band
states and � is taken to be positive. The energy levels of all
states belonging to the manifold Mξ

σ are then shifted by the
amount �. When Mξ

σ denotes the valence-band manifold, the
inclusion of Sσ in the Hamiltonian shifts the total energy by a
contribution N�, where N is the number of valence electrons.
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