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Berry curvature dipole and nonlinear Hall effect in two-dimensional Nb2n+1SinTe4n+2
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Recent experiments have demonstrated interesting physics in a family of two-dimensional composition-
tunable materials Nb2n+1SinTe4n+2. Here we show that, owing to their intrinsic low symmetry, metallic nature,
tunable composition, and ambient stability, these materials offer a good platform for studying the Berry curvature
dipole (BCD) and nonlinear Hall effect. Using first-principles calculations, we find that the BCD exhibits
pronounced peaks in monolayer Nb3SiTe6 (the n = 1 case). Its magnitude decreases monotonically with n and
completely vanishes in the n → ∞ limit. This variation manifests a special hidden dimensional crossover of
the low-energy electronic states in this system. The resulting nonlinear Hall response from the BCD in these
materials is discussed. Our work reveals pronounced geometric quantities and nonlinear transport physics in
Nb2n+1SinTe4n+2 family materials, which should be readily detected in experiment.
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I. INTRODUCTION

The Hall effects, in which an antisymmetric contribution
jH to the transverse current is induced by a longitudinal
driving E field, are of fundamental importance in condensed-
matter physics [1–3]. At linear order, i.e., with jH ∼ E , the
Hall effect requires the broken time-reversal symmetry T ,
which can be achieved either by an applied magnetic field
or by intrinsic magnetism. This constraint is loosened when
considering Hall responses at nonlinear order, as the nonequi-
librium electron distribution driven by the E field already
breaks T at its first order. Focusing on the second-order
response, in nonmagnetic materials and in the absence of
magnetic field, Sodemann and Fu proposed a Berry curva-
ture dipole (BCD) contribution to the nonlinear Hall current
jH ∼ E2 within the semiclassical theory framework [4]. Their
work has attracted a great deal of interest in the past few years,
and the effect has been successfully detected in several mate-
rial systems [5–24]. It was suggested that this effect offers a
new mechanism for nonlinear applications, such as frequency
doubling and rectification [25–27].

For experimental study, two-dimensional (2D) materials
have advantages in their great tunability. For example, the
Fermi level in 2D materials can be readily tuned via gating
technique to a large extent not possible in 3D bulk materi-
als [5,28]. However, regarding the BCD and its induced non-
linear Hall effect, the constraint from crystalline symmetry
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in two dimensions is rather stringent. It was shown that in
two dimensions, a nonzero BCD is compatible only with a
single in-plane mirror line [4]. Explicitly, the allowed wall-
paper groups are just P1, Pm, Pg, and Cm. Regarding layer
groups, there are 19 allowed ones: Nos. 1, 4, 5, 8–13, and
27–36. Hence, to realize the effect, one has to choose crys-
tals with very low symmetry, which are rather limited, or
take extra effort to exert strain or twist on the crystal to
lower the symmetry. This severely hinders the experimental
study.

Recently, the family of composition-tunable materials
Nb2n+1SinTe4n+2 has attracted interest in both theory and ex-
periment [29–34]. In the bulk form, these materials are van
der Waals layered materials. Their high-quality 2D layers
can be obtained by the mechanical exfoliation method [35].
The special feature of this family is the tunable composition
embodied by the integer n [36–39]. For each n, the system
is a stoichiometric crystal, and the physical properties have
an interesting dependence on n. For example, it was shown
that in a 2D monolayer, for finite n, the material is a nonsym-
morphic nodal-line semimetal [29], whereas for the n → ∞
limit, the material, i.e., Nb2SiTe4, is a narrow-gap semicon-
ductor [33,40]. With increasing n, the low-energy states at the
Fermi level exhibits a dimensional change from 2D-like states
to 1D-like states [32].

We note that 2D Nb2n+1SinTe4n+2 materials actually offer
a good platform to explore BCD-related physics. First, except
for the n → ∞ limit, all members of the family have a suffi-
ciently low symmetry to allow an intrinsic BCD, without the
need for applied strain. Second, they offer an opportunity for
systematic investigation of the evolution of the BCD with the
tunable composition. Third, these 2D materials are stable at
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ambient conditions [32], which facilitates experimental study
as well as possible applications.

Motivated by the above considerations, in this work we
study theoretically the BCD and nonlinear Hall effect in
monolayer Nb2n+1SinTe4n+2 materials. With first-principles
calculations, we show that the n = 1 case, i.e., Nb3SiTe6, pos-
sesses a pronounced BCD. The magnitude can reach 1.54 Å
in the hole-doped case, larger than previously reported values
in 2D Td -WTe2 [18], strained NbS2 [21], and WSe2 [18].
With increasing n, the BCD peaks in the spectrum show
a monotonic decrease and eventually vanish in the n → ∞
limit. This behavior can be understood from two perspectives:
One is from the symmetry perspective and the other is from
the dimensional evolution of the electronic states. The latter
view manifests that although structurally these materials are
strongly bonded in both directions in two dimensions, elec-
tronically the states exhibit a dimensional crossover from two
dimensions to one. This hidden crossover dictates the change
in the BCD. The key features of the results are further captured
by our tight-binding models constructed for this family of
materials. To guide the experiment, we discuss the properties
of the nonlinear Hall response arising from the BCD. Our
work reveals interesting properties of the Nb2n+1SinTe4n+2

family materials and suggests them as a suitable platform to
explore BCD and nonlinear Hall physics.

II. COMPUTATIONAL METHOD

Our first-principle calculations were based on the density
functional theory (DFT), performed by using the VIENNA

ab initio simulation package [41–43]. The ionic poten-
tials were treated by using the projector augmented wave
method [44]. The exchange-correlation functional was treated
by the generalized gradient approximation [45] in the scheme
by Perdew et al. [46]. The plane-wave cutoff energy was
set to be 400 eV, and a 10 × 4 × 1 �-centered k-point mesh
was used for the Brillouin zone (BZ) sampling. The conver-
gence criteria for the total energy and the force were set to
be 10−6 eV and 0.01 eV/Å, respectively. To avoid artificial
interaction between periodic images, a vacuum space of 20 Å
thickness normal to the 2D layer (i.e., in the z direction) was
added. Spin-orbital coupling (SOC) was included in all calcu-
lations. Based on the band-structure calculation, an ab initio
tight-binding model was constructed using the WANNIER90
package [47]. The d orbitals of Nb atoms and p orbitals of
Te atoms were used as the initial guess of the local basis.
The BCD was calculated based on this ab initio tight-binding
model. In evaluating the BCD, we set T = 100 K in the Fermi
distribution function.

III. CRYSTAL AND ELECTRONIC STRUCTURES

The Nb2n+1SinTe4n+2 family materials were first synthe-
sized by chemical vapor transport method [36]. The lattice
structures of their 2D monolayers are illustrated in Fig. 1.
Here, each monolayer consists of three atomic layers: The
middle layer containing Nb and Si atoms is sandwiched be-
tween two Te layers [Fig. 1(a)]. From the top view [see
Figs. 1(b)–1(d)], these materials can be seen as composed of
three building blocks, which are conventionally called the a, b,

FIG. 1. (a) Lattice structure of monolayer Nb3SiTe6. (b) The
three building blocks of Nb2n+1SinTe4n+2 family materials: a, b, and
c chains. (c) Top view of the n = 1 case (Nb3SiTe6). The dashed
box marks the unit cell. (d) Nb2n+1SinTe4n+2 can be constructed by n
copies of (ab) chains and one c chain in a unit cell (the dashed box).

and c chains. As shown in Fig. 1(b), a and b chains contain Si
atoms and have the same composition as NbSi1/2Te2, whereas
the c chain does not contain Si and has the composition of
NbTe2. Assuming these chains are along the x direction [as in
Fig. 1(c)], then a and b are connected by a glide mirror opera-
tion M̃y = {My| 1

2 0}, and in these materials they always appear
together. Members of this family are formed by assembling
these chains along the lateral direction (y) in a periodic man-
ner such that Nb2n+1SinTe4n+2 corresponds to the arrangement
of (ab)nc. Namely, in a period, we have one c chain and n
copies of (ab) chains, as illustrated in Fig. 1(d). In the n = ∞
limit, there is no c chain in the structure anymore and we reach
the composition of Nb2SiTe4.

Our optimized lattice parameters for n = 1, 2, 3,∞ are
listed in Table I. These values are in good agreement with
experiment and previous calculations [29,30,32]. We also
note that for members with finite n, they all have the layer
group symmetry Pb21m, with C2v point group. In comparison,

TABLE I. Optimized lattice parameters and the corresponding
symmetries of representative monolayer Nb2n+1SinTe4n+2 materials.

n a (Å) b (Å) Thickness (Å) Layer group Point group

1 6.408 11.633 3.649 Pb21m C2v

2 6.405 19.590 3.770 Pb21m C2v

3 6.404 27.552 3.651 Pb21m C2v

∞ 6.401 7.962 3.783 Pbam D2h
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FIG. 2. (a) Brillouin zone for monolayer Nb2n+1SinTe4n+2. (b)–
(f) Band structures for monolayer Nb2n+1SinTe4n+2: (b) and (c) n =
1, with (b) a close-up around the path X -M in (c); (d) n = 2; (e)
n = 3; and (f) n = ∞.

Nb2SiTe4 with n = ∞ has a larger layer group Pbam and a
point group D2h. The main difference is the extra glide mirror
M̃x = {Mx|0 1

2 } for the n = ∞ case but not for any finite n.
From Fig. 1(c) one can see that it is the c chains that break the
M̃x symmetry which holds for (ab) chains.

In Fig. 2 we plot the calculated electronic band structures
for the four representative members in Table I (band structures
in a larger energy window are also presented in the Supple-
mental Material [48]). One can see that the band structures for
n = 1, 2, 3 show similar features. Previous works have shown
that in the absence of SOC, these materials are nodal-line
semimetals [29,32]. The nodal line on the X -M path around
the Fermi level is enforced by the nonsymmorphic T M̃y

symmetry. The detailed analysis was given in our previous
works [49], so we will not repeat it here. It should be noted
that in Fig. 2, the band structures include the SOC effects.
Under SOC, the T M̃y symmetry protection is no longer exact,
so the original nodal-line degeneracy will be lifted. In the
enlarged view in Fig. 2(b), one can clearly see the splitting of
the nodal line. Nevertheless, there is still a degenerate nodal
point at X (and also at M). This point is a fourfold-degenerate
Dirac point enforced by nonsymmorphic symmetries of the
system. Its formation mechanism was discussed in Ref. [29].
The SOC-induced change to the band structure is weak, so for
many properties, SOC may just be neglected. However, band
geometric properties like Berry curvature and the BCD are
very sensitive to small-gap regions in band structures, such
as those due to SOC splitting. Therefore, to study the BCD
and its nonlinear Hall effect, we have to include SOC in the
calculation.

The low-energy states around the Fermi level are mostly
distributed on the c chains. Previous scanning tunneling spec-
troscopy experiments also verified this feature [32,33]. With
increasing n, the distance between two c chains will increase

and hence the coupling between them will decrease. As a
result, the band dispersion will become flatter along the y
direction, as can be seen in Figs. 2(c)–2(e) along the �-Y and
X -M paths.

For Nb2SiTe4 with n = ∞, Fig. 2(f) shows that it is a
narrow-gap semiconductor. The band gap is approximately
0.51 eV, which is slightly larger than the band gap of layered
Nb2SiTe4 (approximately 0.39 eV) [40]. This different char-
acter can now be understood from the discussion above. One
can view the c chains as metals, whereas the (ab) chains are
insulating. Since Nb2SiTe4 is entirely made of (ab) chains, its
spectrum would naturally be gapped.

The features discussed above, particularly the evolution of
the band structure with n, will have important implications for
the BCD and nonlinear Hall response in these materials.

IV. BERRY CURVATURE DIPOLE

Berry curvature is an intrinsic band geometric quantity. It
plays an important role in many physical properties, espe-
cially anomalous transport properties [50]. In nonmagnetic
materials, nonzero Berry curvature requires the breaking of
inversion symmetry. This condition is fulfilled in monolayer
Nb2n+1SinTe4n+2 with finite n. For Nb2SiTe4 with n = ∞,
inversion symmetry is respected and hence Berry curvature
vanishes identically.

For a 2D system, Berry curvature only has a single com-
ponent, which can be expressed as (we set e = h̄ = 1 in the
formulas)

�z(nk) = −2 Im
∑
n′ �=n

〈unk|vx|un′k〉〈un′k|vy|unk〉
(εnk − εn′k)2

(1)

for a state |unk〉, where vx and vy are the velocity operators
and εnk is the energy of |unk〉. Consider Nb3SiTe6 (n = 1). In
Fig. 3(a) we plot the distribution of its Berry curvature in the
BZ for occupied states, i.e., the quantity

�(k) =
∑

n

f0(nk)�z(nk), (2)

where f0 is the Fermi distribution function. One observes that
the Berry curvature is odd in ky and even in kx, as required by
T and M̃y, and its value is quite pronounced along the �-Y
path.

The BCD is the first moment of Berry curvature in the BZ.
It is a pseudovector in two dimensions, defined as [4]

Da =
∑

n

∫
BZ

d2k

(2π )2
f0(nk)∂a�z(nk)

= −
∑

n

∫
BZ

d2k

(2π )2
f ′
0(nk)va(nk)�z(nk), (3)

where a ∈ {x, y} and ∂a ≡ ∂ka . In the second line, we per-
formed an integration by parts, which explicitly demonstrates
that the BCD is a Fermi surface property.

For finite n, Nb2n+1SinTe4n+2 only has a single mirror
line along x, which allows a nonzero BCD. Since D is a
pseudovector, it must be along the y direction, i.e., D = Dyŷ.
In Fig. 3(b) we plot the calculated Dy versus the chemical
potential μ for n = 1. One observes two peaks in the figure:

205124-3



ZHAO, CAO, ZHANG, LI, LI, MA, AND YANG PHYSICAL REVIEW B 107, 205124 (2023)

FIG. 3. Berry curvature and its dipole in Nb3SiTe6. (a) Distri-
bution of Berry curvature for the occupied states. (b) The BCD Dy

versus chemical potential μ. (c)–(f) The k-resolved BCD as defined
in Eq. (4), plotted for (c) and (d) μ = 0.064 eV [the upper peak in
(b)] and (e) and (f) μ = −0.180 eV [the lower peak in (b)]. The
Fermi contours at these energies are indicated by the black curves.

One is at 0.064 eV with a value of 0.399 Å and the other
is at −0.180 eV with a value of −1.540 Å. The two peaks
are of opposite signs. We note that the magnitude of −1.540
Å is quite large. This is comparable to or larger than those
found in monolayer Td -WTe2 (0.1–0.7 Å) [18], strained NbS2

(0.2 Å) [21], and strained WSe2 (0.02 Å) [18].
To understand the origin of the large BCD in monolayer

Nb3SiTe6, we plot the momentum space distribution of the
quantity

Da(k) = −
∑

n

f ′
0(nk)va(nk)�z(nk), (4)

which, according to Eq. (3), represents the k-resolved contri-
bution to the BCD (on the Fermi surface). In Figs. 3(c)–3(f)
the plots are made for μ = 0.064 eV (upper peak) and
−0.180 eV (lower peak). First of all, one observes that Dx(k)
is an odd function in ky whereas Dy(k) is an even function,
as required by the M̃y symmetry. Hence, after integration
over the BZ, the BCD only has the y component left. From
Figs. 3(c)–3(f) one can see that the nodal-line region along
X -M does not make a sizable contribution to the BCD. For
the upper peak [Fig. 3(d)], the large contribution to Dy is from
the �-Y path, which corresponds to the SOC splitting gap
indicated in Fig. 2(c). The spin splitting gap on the outer Fermi
surface [marked by the green arrow in Fig. 3(d)] also gives a
non-negligible contribution. As for the lower peak, Figs. 3(e)
and 3(f) show that the Fermi surface has two separate pieces.
By examining the band structure around the hot spots in
Fig. 3(f), we find that the large negative contribution is also
from SOC splitting of the band structure.

Next we consider the cases with n = 2 and 3. From the
results in Fig. 4 one can see that the magnitude of the BCD

FIG. 4. The BCD Dy versus chemical potential μ for the (a) n =
2 and (b) n = 3 cases.

decreases with increasing n. For n = 3, the BCD value above
μ = 0 (which is also the energy of the nodal line) is already
negligibly small. As for the lower peak, the value is about
0.663 Å for n = 2 and 0.396 Å for n = 3.

This trend of a decreasing BCD with increasing n in
monolayer Nb2n+1SinTe4n+2 can be understood from two per-
spectives. First, in terms of symmetry, Nb2n+1SinTe4n+2 with
finite n supports the BCD because of its low symmetry. The
presence of c chains is crucial because they break the M̃x sym-
metry of (ab) chains (Fig. 5). Without c chains, M̃x becomes
an exact symmetry and it suppresses the BCD (given the other
mirrors in the system) as in the n = ∞ limit. Hence, the
density of c chains in the system can be viewed as a measure
of the extent of symmetry breaking. It is strongest in the n = 1
case and gradually decreases as n increases, determining the
trend in the BCD.

Meanwhile, the trend is also connected with the di-
mensional crossover in this system [34]. As discussed, the
low-energy states are mostly distributed on the c chains. One
may view the c chains as metallic 1D subsystems put in an
insulating matrix formed by the (ab) chains. For small n,
the system retains a 2D character, because the c chains are
not far from each other and the interchain coupling is siz-
able. However, with increasing n, the interchain coupling will
decrease and the system approaches the quasi-1D character.
Berry curvature is a differential 2-form, which vanishes in the
1D limit [as can also be seen from Eq. (1)]. Thus, the BCD

FIG. 5. (a) The (ab) chains preserve the M̃x symmetry, whereas
c chains break it. Hence, the density of c chains represents the extent
of M̃x symmetry breaking. (b) The Nb2n+1SinTe4n+2 system may be
schematically viewed as 1D metallic chains (c chains) embedded in
a 2D insulator matrix [made of (ab) chains].
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must decrease and approach zero during this dimensional
crossover.

It must be emphasized that the dimensional crossover
here refers to the low-energy electronic states. Structurally,
Nb2n+1SinTe4n+2 materials always maintain a 2D material
character: The lattices are strongly bonded in both the x and y
directions. Thus, the crossover is a hidden feature that occurs
only for the electronic sector. This is a very interesting piece of
physics for 2D Nb2n+1SinTe4n+2 materials. Now we reveal its
manifestation in the BCD, which can be detected via nonlinear
Hall measurement.

V. MODEL STUDY

To understand the features in the band structure and in the
BCD, we construct a minimal lattice model to describe the
low-energy bands in monolayer Nb2n+1SinTe4n+2 with finite
n. The model may also serve as a good starting point for
subsequent theoretical studies of this class of materials.

In Refs. [34,49] we proposed a 2D Dirac Su-Schrieffer-
Heeger (SSH) model, which is spinless (i.e., without SOC)
and captures the nonsymmorphic nodal-line feature in mono-
layer Nb2n+1SinTe4n+2. However, to study the BCD, as we
noted, the consideration of SOC is necessary. Therefore, we
need to extend the previous spinless Dirac SSH model to
include SOC effects.

The Dirac SSH model is defined on a rectangular lattice,
as shown in Fig. 6. It consists of an array of zigzag chains
running in the x direction. In a unit cell, there are two sites
A and B. Physically, each chain corresponds to a c chain in
Nb2n+1SinTe4n+2. The construction is motivated by the DFT
results showing that the low-energy bands are mainly from the
dz2 orbitals on the Nb sites in c chains. Assigning one orbital to
each site and considering the nearest intrachain and interchain
hoppings, one obtains the model constrained by T , M̃y, and
Mz symmetries,

H0 = t

[
0 1 + e−ikx

1 + eikx 0

]
σ0

+ t ′
[

0 e−iky
(
1 + e−ikx

)
eiky

(
1 + eikx

)
0

]
σ0, (5)

where the momenta are measured in units of the lattice con-
stant inverses and the Pauli matrices σ denote the spin degree
of freedom.

Next we add SOC to the model. The above-mentioned
symmetries result in the following SOC terms up to next-
nearest-neighbor hopping processes:

HSOC = t

[
2λ1 sin kx 0

0 −2λ1 sin kx

]
σz

+ t ′
[

2λ3 sin ky iλ2eiky (1 + e−ikx )
−iλ2e−iky (1 + eikx ) 2λ3 sin ky

]
σz.

(6)

Here the first term is from the intrachain hopping process,
whereas the second term is from the interchain process, as
indicated in Fig. 6(b). Therefore, our spin-orbit-coupled Dirac
SSH model is obtained as

H = H0 + HSOC. (7)

FIG. 6. (a) Schematic showing the tight-binding model. The
model consists of zigzag chains. A primitive cell contains two sites
A and B; t and t ′ are the amplitudes for intrachain and interchain
hoppings, respectively. (b) Three hopping processes corresponding
to the SOC terms in Eq. (6). (c) Band structure of the tight-binding
model. (d) Corresponding BCD Dy versus chemical potential. (e)
Variation of the BCD peak value as a function of the interchain
coupling. The solid curve is a guide to the eye. In (c) and (d) we
set t = 0.2 eV, t ′ = 0.16 eV, λ1 = 1, and λ2 = λ3 = 0.1. The same
values of t and λ are taken in (e).

In Fig. 6(c) we plot a typical band structure of this model.
Namely, there is an approximate nodal line on the X -M path
(split by SOC); the SOC splitting is observed on the X -M and
Y -� paths, but not on the �-X and M-Y paths. The double
degeneracy on X -M and Y -� is due to the anticommutation
between M̃y and Mz on these two paths. One can see that
it indeed captures the main features of DFT band structures
in Fig. 2(c). In Fig. 6(c) we plot the BCD calculated for this
model. The two BCD peaks in Fig. 3(b) are reproduced in this
simple model. One peak is above the nodal-line energy and the
other one is below, and they have opposite signs. Finally, we
plot the BCD peak magnitude as a function of interchain cou-
pling t ′. One can see that the value monotonically increases
with the interchain coupling. Since t ′ decreases with n in
monolayer Nb2n+1SinTe4n+2, the behavior in Fig. 6(d) agrees
with our result from DFT calculations.

VI. NONLINEAR HALL EFFECT

It was shown that the BCD leads to a second-order non-
linear Hall current. For a 2D system, the current can be
expressed as

jH = − 1
2τ ẑ × E(D · E ), (8)

where E is the applied in-plane E field and τ is the relax-
ation time. Consider monolayer Nb2n+1SinTe4n+2 with the
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FIG. 7. (a) Nonlinear Hall current induced by the E field in
Nb3SiTe6. The in-plane E field makes an angle θ with the mirror line.
The induced Hall current is perpendicular to the E field, as indicated
by the green arrow. (b) Nonlinear Hall conductivity χH versus the
angle θ .

coordinate setup in Fig. 7(a). Assuming the applied E field is
in the direction specified by the polar angle θ (with respect
to the mirror line), i.e., (Ex, Ey) = E (cos θ, sin θ ), the Hall
current will be in the direction of ( jx, jy) = jH(− sin θ, cos θ ),
with the Hall current magnitude

jH = χH(θ )E2 (9)

and the nonlinear Hall conductivity

χH(θ ) = − 1
2τDy sin θ. (10)

Experimentally, a 2D material sample can be etched into
a disk shape and attached with multiple pairs of leads [6,51]
such that the sin θ angular dependence in the nonlinear Hall
response can be verified in experiment. To measure the
second-order nonlinear response, one typically modulates the
driving source with a low frequency and detects the signal at
double frequency using the lock-in technique [5,6]. The Fermi
level of 2D materials can be readily tuned by using the electric
gating technique. Here consider monolayer Nb3SiTe6 (i.e.,
n = 1). With our calculated Dy ∼ 1.54 Å at the lower peak,
assuming τ = 10 ps, which is typical for 2D materials, the
magnitude of χH can reach 2.9 × 10−4 nm S/V and its angular
dependence is shown in Fig. 7(b). Under a driving field of
E ∼ 104 V/m, the resulting nonlinear Hall current density

can reach approximately 0.6 µA/cm. For n = 2 (3), the signal
is expected to be smaller by a factor of approximately 2
(approximately 4), which is still detectable in experiment.

VII. CONCLUSION

We have revealed monolayer Nb2n+1SinTe4n+2 materials as
a suitable platform for studying the BCD and nonlinear Hall
effect. These materials have adequate symmetry to support
the effect without extra strain, enjoy stability at ambient con-
ditions, and exhibit composition tunability. We showed that
the BCD is most pronounced for the n = 1 case, where its
magnitude can reach 1.54 Å. The BCD value decreases with
increasing n. This can be understood from the degree of sym-
metry breaking and also from a dimensional crossover. It is
interesting that this crossover occurs only for the low-energy
electronic states, whereas structurally the system is always
strongly bonded in two dimensions. The evolution of the BCD
with n can be regarded as a manifestation of this hidden transi-
tion. We constructed the spin-orbit-coupled Dirac SSH model,
which captures the main features of the DFT results. The
nonlinear Hall conductivity and its angular dependence were
analyzed. Our work uncovered interesting geometric quan-
tities and nonlinear physics in the Nb2n+1SinTe4n+2 family
materials. It provides useful guidance for subsequent exper-
iments on these systems.
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