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Quantum chaos and phase transition in the Yukawa–Sachdev-Ye-Kitaev model
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We analyze the relation between quantum chaotic behavior and phase transitions of the Yukawa–Sachdev-Ye-
Kitaev model as a function of filling and temperature, which describes random Yukawa interactions between N
complex fermions and M bosons in zero spatial dimensions for both the non-Fermi liquid and insulating states
at finite temperature and chemical potential. We solve the ladder equations for the out-of-time-order correlator
(OTOC) for both bosons and fermions. Despite the appearance of the chemical potential in the Hamiltonian,
which explicitly introduces an additional energy scale, the OTOCs for the fermions and bosons in the non-Fermi
liquid state turn out to be unaffected, and the Lyapunov exponents that diagnose chaos remain maximal. As the
chemical potential increases, the system is known to experience a first-order transition from a critical phase to
a gapped insulating phase. We postulate that the boundary of the region in parameter space where each phase is
(meta)stable coincides with the curve on which the Lyapunov exponent is maximal. By calculating the exponent
in the insulating phase and comparing to numerical results on the boundaries of stability, we show that this is
plausible.
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I. INTRODUCTION

The Sachdev-Ye-Kitaev (SYK) model [1] has attracted
great interest in both high-energy and condensed matter com-
munities [2–4]. It consists of N flavors of fermions in (0 +
1)-d coupled by a random, Gaussian, all-to-all interaction,
and it exhibits several remarkable properties [5]. First, it is
exactly solvable in the large-N limit, despite the strong cou-
pling. Second, it possesses a (near) conformal symmetry in
the infrared and has a holographic dual, corresponding to a
black hole in near-AdS2, making it a tractable platform for
the study of AdS/CFT correspondence [6]. Finally, it is a fast
scrambler—it is maximally chaotic as measured by the Lya-
punov exponent λL = 2πT , a feature shared by black holes in
Einstein gravity [5]. This makes it noteworthy as an example
of a solvable system for quantum gravity.

On the condensed matter side, the SYK model and its vari-
ants are useful platforms for the understanding of non-Fermi
liquid (nFL) physics [7–9], which is relevant to the strange
metal behavior of unconventional superconductors [10–15].
nFLs are characterized by a power-law frequency dependence
of the fermion self-energy and a resulting spectral function
without quasiparticle peaks, and occurs, for example, when
massless bosonic modes destroy the coherence of the fermions
[16]. While the fermions in the SYK model display nFL
behavior in the near-conformal regime, perhaps more relevant
to condensed matter physics is a variant of the SYK model,
dubbed the Yukawa-SYK (Yukawa-SYK) model, in which the
random four-fermion interaction is replaced with a random
Yukawa interaction between N flavors of complex fermions
and M flavors of bosons with bare mass m0. The Yukawa-SYK
model has been studied in the context of superconducting
instabilities of nFLs [17–20] and has been generalized to finite
dimensions [21]. Interestingly, it has been shown that the pair-
ing transition is dual to that of a holographic superconductor
in AdS2 space-time [22].

At a generic filling factor, the Yukawa-SYK model has
a nFL phase as well as an incompressible, insulating phase
[23]. The nFL state exhibits power-law self-energies for both
fermions and bosons with M/N-dependent exponents, and
also has the interesting property that the boson mass flows to
zero even if the bare mass is large (this self-tuning also occurs
in (1 + 1)-d but not higher dimensions [21]). For small chem-
ical potential, the nFL is stable, but at larger μ there are nFL
solutions with negative compressibility, indicating an unstable
phase. At a critical value of μ, there is a first-order transition
to the insulating phase. The phase diagram of the model has
been studied analytically and numerically in Refs. [24,25]. It
is worth noting that the original SYK model with complex
fermions also displays a similar phase diagram [26,27].

At half filling with μ = 0, the Yukawa-SYK model is
known to be maximally chaotic [28]. In this paper, we fo-
cus on the quantum chaotic properties of the Yukawa-SYK
model in (0 + 1)-d away from half filling as a function of
chemical potential μ and their relation to the phase transition.
It is typical to quantify the rate at which chaos develops by
the Lyapunov exponent λL [21,28–30]. In classical chaotic
systems, even slight differences in initial conditions result
in trajectories q(t ) that diverge exponentially: δq(t )/δq(0) ∝
eλLt . In quantum many-body systems, the analogous object
is an out-of-time-order correlator (OTOC) [29] which also
grows exponentially and defines a quantum Lyapunov expo-
nent (correlators of this form had been considered earlier by
Ref. [31]). We will compute the following correlator for the
fermions:

Fc(t1, t2) ∼ Tr
[
ρ

1
2 {c(t1), c†(0)}ρ 1

2 {c(t2), c†(0)}†]. (1)

When t1 = t2 = t , this defines the OTOC, which involves the
trace of a positive semidefinite operator and ensures a real
Lyapunov spectrum. The Lyapunov exponent can then be
extracted from the leading exponential growth of this OTOC,
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Fc(t1, t2) ∼ exp[λL(t1 + t2)/2]. It has been argued [32] that in
quantum systems at temperature T there is an upper bound
[32] on the Lyapunov exponent λL � 2πkBT/h̄ (we set kB =
h̄ = 1 henceforth), which is known to be saturated by black
holes and SYK-like models [5].

The key result of this paper is that λL = 2πT to lead-
ing order for the entire nFL phase; on the other hand, λL

is exponentially suppressed in the insulating phase. As was
mentioned, the two phases are separated by a first-order phase
transition, which means there is a hysteresis regime in (μ, T )
space where both the nFL and insulating solutions are stable
or metastable [25], and the transition occurs somewhere in this
region when the global minimum of the free energy switches
from one solution to the other. From the upper bound for λL,
we conjecture that the boundaries of this hysteresis region
are curves on which the λL for one of the phases attains
its maximum value. Indeed, we numerically verify that the
curve on which the insulating solution disappears matches
very well with the curve on which λL approaches 2πT for the
insulating solution at low temperatures. For the nFL solution,
since λL universally approaches the upper bound to leading
order, one needs to go beyond the conformal limit to compute
the correction to λL and to verify the conjecture. We leave this
to a future study.

The rest of this paper is organized as follows. In Sec. II, we
present the Yukawa-SYK model and review the known results
at zero temperature for both the nFL and insulating states.
We then map the zero-temperature nFL Green’s functions
to finite temperature using the conformal symmetry of the
model, and we calculate the various Green’s functions that
will be required for the perturbative expansion of the OTOC.
In Sec. III, we show how the OTOC can be computed by
summing a series of ladder diagrams and solve the resulting
eigenfunction problem in detail. Finally, in Sec. IV, we dis-
cuss the implications of our results for the OTOC on the phase
diagram of the Yukawa-SYK model and compare with some
known numerical results.

II. MODEL AND PRELIMINARIES

The Yukawa-SYK model [17–20,23] consists of M flavors
of complex fermions and N flavors of bosons interacting
via a Yukawa term with a random coupling. The bosons
have bare mass m0; the fermions are dispersionless and the
fermion density is controlled by the chemical potential μ;
see Refs. [33,34] for related works on a similar model in
string-inspired quiver quantum mechanics. The Lagrangian of
the system in imaginary time is

L =
M∑
i

[c†
i (∂τ − μ)ci] +

N∑
α

[
1

2
(∂τφα )2 + 1

2
m2

0φ
2
α

]

+ i√
MN

∑
i jα

tα
i jc

†
i c jφα. (2)

For each realization of the system, the coupling is drawn
from a Gaussian distribution with 〈tα

i j〉 = 0 and 〈tα
i jt

β

kl〉 =
ω3

0(δikδ jl − δilδ jk )δαβ , with ω0 > 0. For the rest of this paper,
we assume the weak-coupling limit ω0 � m0, in which, de-
spite the name, the theory remains nonperturbative. Without

loss of generality, we can restrict our attention to μ > 0 be-
cause of particle-hole symmetry.

This model has already been analyzed at zero tem-
perature in Refs. [17–20,23] and at finite temperature in
Ref. [25]. We assume a replica-diagonal solution and define
the fermion and boson self-energies through G−1(ω) = iω +
μ + �(ω) and D−1(
) = 
2 + m2

0 + �(
). The Schwinger-
Dyson (SD) equations in the imaginary time domain are then

�(τ, τ ′) = −ω3
0D(τ, τ ′)G(τ, τ ′), (3)

�(τ, τ ′) = M

N
ω3

0G(τ, τ ′)G(τ ′, τ ). (4)

It was shown that in the weak-coupling limit, the only impor-
tant energy scales are μ and the ratio

ωF ≡ ω3
0

/
m2

0. (5)

For μ > ωF /2, the SD equation has a (meta)stable solution
corresponding to an incompressible state: the filling ν = 1
regardless of μ, the bosonic self-energy vanishes, and the
fermionic self-energy is a constant. On the other hand, for
small μ, the SD equations admit a nFL solution in which the
Green’s functions have power-law forms. We will compute
the OTOC in both of these phases, beginning by deriving the
various finite-temperature Green’s functions that will appear
in the expansion of the OTOC.

A. Non-Fermi liquid state

At zero temperature, for sufficiently small chemical po-
tential with μ � ωF , a solution of the SD equation, which is
stable for μ � ωF and metastable for μ ∼ ωF , is

�(ω) = −μ + ω1−x
f |ω|x(α + isgnω) ≡ −μ + �̃(ω), (6)

�(
) = −m2
0 + βm2

0ω
2x−1
f |
|1−2x ≡ −m2

0 + �̃(
), (7)

where ω f (related to but not to be confused with ωF ) is a dy-
namically generated energy scale below which these solutions
are valid. The parameters ω f , α, β, and x are related to the
values of ω0, m0, ωF , μ, and M/N . The expressions for these
parameters have been obtained in Ref. [23] but, as we shall
see, they will not enter the Lyapunov exponent. In particular,
we will make use of the relations

M

N
= 1 − 2x

x

cos(πx)

cos(πx) + 1−α2

1+α2

,

ω3
0

4πβm2
0ω f (1 + α2)

= −�(−2x)

�2(−x)
. (8)

In fact, the self-energies always have this form at sufficiently
low frequencies regardless of ωF and m0 (even in the strong
coupling limit ω0 
 m0). In the conformal limit in which
iω � �(ω) and 
2 � �(
), the Green’s functions have
the power-law forms G(ω) = �̃(ω)−1 and D(
) = �̃(
)−1,
which can be recast in the time domain as∫

dτ ′G(τ, τ ′)�(τ ′, τ ′′) = δ(τ − τ ′′), (9)∫
dτ ′D(τ, τ ′)�(τ ′, τ ′′) = δ(τ − τ ′′). (10)
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We have further dropped the tildes on the self-energies. In do-
ing so, we are neglecting a contribution on the left-hand side
(LHS) of Eq. (9) which looks like

∫
dτ ′G(τ, τ ′)μδ(τ ′ − τ ′′)

[and an analogous contribution in Eq. (10)]. This is permissi-
ble because it is only nonzero at infinitely short timescales,
whereas we are interested in the low-energy (long-time)
physics.

In the frequency domain, the Green’s functions are

G(ω) = ωx−1
f

α2 + 1

α − isgnω

|ω|x , (11)

D(
) =β−1m−2
0 ω1−2x

f

1

|
|1−2x
. (12)

Using the Fourier transform identities∫
dω

2π
eiωτ 1

|ω|2�
= sin(π�)

π
�(1 − 2�)|τ |2�−1, (13)

∫
dω

2π
eiωτ sgnω

|ω|2�
=i

cos(π�)

π
�(1 − 2�)|τ |2�−1sgnτ, (14)

we find in the time domain

G(τ − τ ′)

= −AGsgn(τ − τ ′)

× cos

(
πx

2
+ sgn(τ − τ ′) arctan α

)
1

|τ − τ ′|1−x
, (15)

D(τ − τ ′) = AD
1

|τ − τ ′|2x
, (16)

where AG = ωx−1
f (α2 + 1)−1/2π−1�(1 − x) and AD ≡

β−1m−2
0 ω1−2x

f π−1 cos(πx)�(2x) are constants.
Taken together, Eqs. (3), (4), (9), and (10) are invariant

under the transformation τ → f (τ ) and

G(τ, τ ′) → [ f ′(τ ) f ′(τ ′)]�
g(τ )

g(τ ′)
G( f (τ ), f (τ ′)), (17)

�(τ, τ ′) → [ f ′(τ ) f ′(τ ′)]1−� g(τ )

g(τ ′)
�( f (τ ), f (τ ′)), (18)

D(τ, τ ′) → [ f ′(τ ) f ′(τ ′)]1−2�D( f (τ ), f (τ ′)), (19)

�(τ, τ ′) → [ f ′(τ ) f ′(τ ′)]2��( f (τ ), f (τ ′)), (20)

where f and g are arbitrary functions and

� = 1 − x

2
(21)

is a scaling exponent. As discussed in Ref. [35], f corresponds
to the reparametrization (conformal) symmetry, and g corre-
sponds to an emergent symmetry of the complex fermions,
which is a U (1) gauge symmetry when |g| = 1.

Using the emergent symmetries, we now obtain the finite-
temperature, imaginary-time propagators as well as some
other propagators that will be necessary to compute the
OTOC, using the method of Refs. [5,36]. Focusing first on
the bosons, we make the choice

f (τ ) = tan

(
πτ

β

)
(22)

in Eq. (19) to obtain

D(τ − τ ′) = AD

(
π

β
∣∣ sin π (τ−τ ′ )

β

∣∣
)2x

, (23)

which solves the SD equations, is translationally invariant,
and has the required periodicity in β. This propagator is
defined as D(τ − τ ′) ≡ 〈T φ(τ )φ(τ ′)〉 where the τ ’s are in
general complex and, importantly, T orders the fields ac-
cording to the real part of τ (corresponding to imaginary
time) and ignores the imaginary part (corresponding to real
time). This means that the retarded propagator −iDR(t −
t ′) ≡ 〈[φ(it ), φ(it ′)]〉θ (t − t ′) can be built from Eq. (23) by
adding an infinitesimal real part to the arguments to ensure
the correct ordering:

DR(t − t ′) = −i[D(ε + it, it ′) − D(it, ε + it ′)]θ (t − t ′)

= −2AD sin(πx)

(
π

β sinh π (t−t ′ )
β

)2x

θ (t − t ′).

(24)

We will also need the Wightman propagator which connects
two times separated by half the thermal circle:

Dlr (t, t ′) ≡ 〈φ(β/2 + it )φ(it ′)〉

= AD

(
π

β cosh π (t−t ′ )
β

)2x

. (25)

Because this propagator is automatically time-ordered, it is
simply D(β/2 + it, it ′).

Now we do the same for the fermions, applying the
transformation Eq. (17) with the aforementioned choice of
f (τ ) and using time translation invariance to set τ ′ = 0. We
have an additional freedom to choose g(τ ) in Eq. (17). The
finite-temperature Green’s function is then, with g(τ ) still
undetermined,

G(τ ) = −AGg(τ )sgn[tan(πτ/β )]

× cos

(
πx

2
+ sgn[tan(πτ/β )] arctan α

)

×
(

π

β
∣∣ sin πτ

β

∣∣
)1−x

. (26)

To determine g(τ ), we use the short-time information of the
Green’s function which enforces the antiperiodicity condition
G(τ − β ) = −G(τ ). The result is the constraint

g(τ − β )

g(τ )
= cos

(
πx
2 + arctan α

)
cos

(
πx
2 − arctan α

) , (27)

which is solved by

g(τ ) =
(

cos
(

πx
2 + arctan α

)
cos

(
πx
2 − arctan α

)
)−τ/β

, (28)

normalized such that g(τ ) = 1 at T = 0.
The propagator Eq. (26), with g(τ ) given by Eq. (28),

is G(τ − τ ′) ≡ 〈T c(τ )c†(τ ′)〉, from which we can build the
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retarded propagator

GR(t − t ′) ≡ 〈{c(it ), c†(it ′)}〉θ (t − t ′)

= [G(ε + it, it ′) − G(it, ε + it ′)]θ (t − t ′)

= − AGei arctan α sin(πx)g(i(t − t ′))

×
(

π

β sinh π (t−t ′ )
β

)1−x

θ (t − t ′) (29)

and (note the argument—these propagators are defined so the
later time is always called t)

GA(t − t ′) ≡ 〈{c(it ′), c†(it )}〉θ (t − t ′)

= [GR(t − t ′)]∗. (30)

The Wightman propagators are given by

Gr (t − t ′)

≡ 〈c(β/2 + it )c†(it ′)〉 = G(β/2 + it, it ′)

= −AG

√
cos

(
πx

2
− arctan α

)
cos

(
πx

2
+ arctan α

)

× g(i(t − t ′))

(
π

β cosh π (t−t ′ )
β

)1−x

(31)

and

Gl (t − t ′) ≡ 〈c(it ′)c†(β/2 + it )〉 = [Gr (t − t ′)]∗. (32)

B. Insulating state

At zero temperature and in the weak coupling limit ω0 �
m0, the system has a (meta)stable insulating phase for μ >

ωF /2 [23]. In this phase, the Green’s functions are simply
those of free bosons (with the mass unchanged) and free
fermions with a renormalized chemical potential:

μ̃ ≡ μ − ωF

2
> 0. (33)

Fourier transforming to imaginary time yields

G(τ ) = e−μ̃τ θ (τ ), D(τ ) = e−m0|τ |

2m0
. (34)

Because of the gapped nature of the phase, the Green’s func-
tions are approximately independent of temperature as long
as T � μ̃, m0. The retarded and advanced Green’s functions
are constructed as before (this can also be done from the
frequency domain with the usual analytic continuation iω →
ω ± iδ):

GR,A(t − t ′) = e∓iμ̃(t−t ′ )θ (t − t ′),

DR(t − t ′) = sin[m0(t − t ′)]
m0

θ (t − t ′). (35)

Finally, we obtain the right- and left-pointing Wightman
propagators

Gr,l (t − t ′) = e−μ̃[ β

2 ±i(t−t ′ )],

Dr,l (t − t ′) = 1

2m0
e−m0[ β

2 ±i(t−t ′ )]. (36)

FIG. 1. The Keldysh contour used for the expansion of the
OTOC, with two real-time folds (note that real-time evolution cor-
responds to the imaginary part of τ ). The real part of τ has period β;
the ends of the contour should be identified. The arrow indicates the
direction of contour ordering. One ordering of the operators, from
the expansion of the anticommutators, is depicted.

However, the Wightman propagators for the bosons contain
a factor of exp(−m0β/2) and are exponentially suppressed,
since we assume m0 
 T . (The fermion propagators are not
similarly suppressed because we make no assumption about
the ratio μ̃/T .) This means that we can approximate Dr,l ≈ 0,
and we will entirely neglect the diagrams in the ladder series
with this type of rung.

III. SOLUTION OF THE LADDER EQUATION

For the Yukawa-SYK model, the OTOC in Eq. (1) is pre-
cisely defined as

Fc(t1, t2) =
∑

i j

Tr

M2

[
ρ

1
2 {ci(t1), c†

j (0)}ρ 1
2 {ci(t2), c†

j (0)}†
]
,

(37)
We evaluate the OTOC by the usual technique which is de-

scribed in Ref. [36] (see also Refs. [29,37]) via a path integral
defined on a complex time (Keldysh) contour, which encircles
the compactified imaginary time direction and also has two
real time folds (rails) at τ = 0 and τ = β/2 (see Fig. 1). Two
operators are placed at the two ends (Imτ = 0 and Imτ = t1,2)
of each rail. Since imaginary time is strictly increasing along
this contour, contour ordering is the same as τ ordering and
we can use the τ -ordered Green’s functions of the previ-
ous section. The four possible orderings of the operators in
the double anticommutator are accounted for by displacing
the operators at t = 0 infinitesimally forward or backward
in the imaginary time direction so they lie just after or just
before the real time folds; summing over the four different
contour orderings yields the desired correlator.

At zeroth order in the interaction, each of the orderings
can be computed by contracting the operators using Wick’s
theorem in the path integral along the complex contour. The
terms with contractions between operators across different
rails cancel after summing over different orderings, and the
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FIG. 2. Feynman diagrams for the fermionic OTOC to lead-
ing order in 1/N and 1/M. All propagators are fully renormalized
by self-energy contributions to leading order in 1/N and 1/M.
The disorder average involves averaging products of independent
Gaussian variables, which can be reduced by Isserlis’s theorem to
a sum of products of averages of all pairings of the variables. Hence
the disorder average, indicated by dashed lines, acts like another field
with a constant propagator which requires the fermion and boson
flavors at one end to match those at the other end. Diagrams with
crossed rungs, and other types of pairings in the disorder average,
are suppressed in the large M, N limit.

survivors conspire to produce a product of the (free) retarded
and advanced Green’s functions.

In the interaction picture, we expand the interaction-
induced time evolution operator perturbatively, inserting
copies of the interaction vertex along the real time folds and
using Wick’s theorem. Insertions along the imaginary time
axis, on the other hand, cancel upon summing over orderings.
When operators on the same rail are contracted, the resulting
contributions are just part of the self-energy, and these are
accounted for by using the fully dressed propagators rather
than the noninteracting ones. On the contrary, the contractions
within interaction vertices between opposite rails are not cap-
tured by the self-energy. Taking into account these diagrams
(with insertions on both sides of each rail), to leading order
in M and N , we find that the OTOC can be expressed as a
series of uncrossed ladder diagrams, which can be written
recursively as in Fig. 2. The fact that only ladder diagrams
need to be included at leading order in large-N is a common
theme in related models and has been shown, for example,
for the SYK model [5] and for a weak coupling φ4 theory
[29]. For the details of the large-M, N analysis for the current
model, see Appendix A. According to a modified Feynman
rule (cf. Ref. [29]), the vertical lines are retarded (advanced)
propagators and the horizontal lines are Wightman propaga-
tors. For completeness, in Appendix B, we prove the Feynman
rule using the lowest order diagram of the ladder series.

The goal is to compute the correlator on the LHS of the
upper equation in Fig. 2. As indicated by the last diagram
on the RHS, its full expression involves a second correlator,
defined as

Fc̄ = 1

M2

∑
i j

Tr
[
ρ

1
2 {c†

i (t1), c†
j (0)}ρ 1

2 {c†
i (t2), c†

j (0)}†
]
, (38)

given by the lower equation, to account for the two possible
directions of fermion loops (a complication that does not arise
in models with Majorana fermions). Even though Fc̄ = 0 for
free fermions, it is generated by interaction effects at second
order in perturbation theory. To see this, one can plug the first
term on the right-hand side (RHS) of the upper equation in
Fig. 2 to the third term of the RHS of the lower equation.
More details on how this diagram follows from the Feynman
rules can be found in Appendix C. In turn, Fc̄ contributes to
Fc via the last diagram on the RHS of the upper equation in
Fig. 2. Following the Feynman rules in a similar way, we show
the leading order contribution at fourth order in Appendix C.
As we shall see, including these diagrams is important for
getting the correct Lyapunov exponent. We note that there
is some variation in the literature as to whether this type of
diagram is included, which we leave for future investigations.
In agreement with Refs. [21,38], we find that for complex
fermions such diagrams are indeed generated. We express the
ladder equation for the OTOC in terms of integral kernels

Kcc = ω3
0GR(t13)GA(t24)Dlr (t43),

Kφc = ω3
0DR(t13)DR(t24)Gr (t43),

Kcφ = M

N
ω3

0GR(t13)GA(t24)Gl (t43),

(39)
Kc̄c̄ = ω3

0GA(t13)GR(t24)Dlr (t43),

Kφc̄ = ω3
0DR(t13)DR(t24)Gl (t43),

Kc̄φ = M

N
ω3

0GA(t13)GR(t24)Gr (t43),

where ti j ≡ ti − t j . The notation Kφc, for example, indicates
that it corresponds to portions of the diagrams which create
bosons at later times out of incoming fermions. The c̄ refers
to fermion lines with arrows that are reversed compared to
the OTOC (that is, an advanced propagator on the left rail
and a retarded one on the right). The kernels involving c̄
are simply the complex conjugates of the the corresponding
kernels with c. Denoting the fermion OTOC by Fc(t1, t2), the
ladder equation is then

Fc = 1

M
GR(t1)GA(t2) + Kcc � Fc + Kcφ � Kφc � Fc

+ Kcφ � Kφc̄ � Fc̄,

Fc̄ = Kc̄c̄ � Fc̄ + Kc̄φ � Kφc̄ � Fc̄ + Kc̄φ � Kφc � Fc. (40)

The � denotes an integral convolution, that is,

(K � F )(t1, t2) ≡
∫ ∞

−∞
dt3dt4K (t1, t2, t3, t4)F (t3, t4). (41)

The inhomogeneous first term GR(t1)GA(t2)/M in the series
does not increase exponentially like Fc and quickly becomes
negligible. The inhomogeneous term acts as a source and
ensures that the exponential growth is suppressed by 1/M,
i.e., Fc ∝ eλLt/M. The value of λL can be determined by
dropping the inhomogeneous term. After doing this, the two
equations in Fig. 2 can be solved by Fc = F ∗

c̄ , so that one only
needs to solve one of them.

The strategy for solving this eigenfunction problem is to
find functions fc(t1, t2) (possibly complex) and fφ (t1, t2) (real)
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which satisfy

Kcc � fc = kcc fc, Kc̄c̄ � f ∗
c = kcc f ∗

c ,

Kφc � fc = kφc fφ, Kφc̄ � f ∗
c = kφc fφ, (42)

Kcφ � fφ = kcφ fc, Kc̄φ � fφ = kcφ f ∗
c ,

where kcc, kφc, kcφ are real constants. If we can find such
functions, then we can choose Fc ∼ fc/M and Fc̄ ∼ f ∗

c /M
in Eqs. (40). Both equations reduce to the same algebraic

requirement that

kcc + 2kcφkφc = 1, (43)

where the factor of 2 comes from considering both Fc and Fc̄

on the RHS of the upper equation of Fig. 2.

A. Non-Fermi liquid state

We begin by writing out Kcc in full:

Kcc = Ccce−it13L/β

(
π

β sinh πt13
β

)1−x

θ (t13)e+it24L/β

(
π

β sinh πt24
β

)1−x

θ (t24)

(
π

β cosh πt34
β

)2x

, (44)

where

Ccc ≡ ω3
0A2

GAD sin2(πx), and L = ln

(
cos

(
πx
2 + arctan α

)
cos

(
πx
2 − arctan α

)
)

. (45)

We first make the change of variable ti ≡ β

2π
φi and use the step functions to restrict the region of integration. The first equation in

Eqs. (42) becomes∫ φ1

−∞
dφ3

∫ φ2

−∞
dφ4Ccce−iφ13L/2πe+iφ24L/2π

(
1

2 sinh φ13

2

)1−x(
1

2 sinh φ24

2

)1−x(
1

2 cosh φ34

2

)2x

fc(φ3, φ4) = kcc fc(φ1, φ2). (46)

Now we perform another change of variable: z1,3 ≡ e−φ1,3 , z2,4 ≡ −e−φ2,4 (note the minus sign). The kernel equation becomes

Ccc

∫ ∞

z1

dz3

|z3|
∫ z2

−∞

dz4

|z4|
∣∣∣∣ z1z4

z2z3

∣∣∣∣
iL
2π |z1z3| 1

2 (1−x)

|z13|1−x

|z2z4| 1
2 (1−x)

|z24|1−x

|z3z4|x
|z34|2x

fc(z3, z4) = kcc fc(z1, z2), (47)

where zi j ≡ zi − z j . We solve this by making the ansatz

fc(z1, z2) =
∣∣∣∣ z1

z2

∣∣∣∣
iL
2π |z1z2| 1

2 (1−x)

|z12|1−x−h
, (48)

which will make the integrand only a function of the differ-
ence between the z’s. With this choice, the integral in Eq. (47)
becomes

Ccc

(∫ ∞

z1

dz3

∫ z2

−∞
dz4

|z12|1−x−h

|z13|1−x|z24|1−x|z34|1+x−h

)
fc(z1, z2).

(49)

Here h is a parameter that can be later tuned to satisfy Eq. (43).
As we shall see, it is directly related to λL. The expression
in parentheses, as promised, is simply a constant, despite
appearing to be a function of z1 and z2. It is invariant under the
affine transformation zi → azi + b; in particular, the integra-
tion variables can be shifted and scaled to set z1 = 1, z2 = 0
and the integral can be evaluated:

kcc =Ccc

∫ ∞

1
dz3

∫ 0

−∞
dz4

1

|1 − z3|1−x|z4|1−x|z34|1+x−h

=Ccc
�2(x)�(1 − x − h)

�(1 + x − h)
. (50)

Now we repeat this procedure for the second equation of
Eqs. (42), feeding in our expression for fc. Upon making the

additional ansatz

fφ (z1, z2) = |z1z2|x
|z12|2x−h

, (51)

again to make the integrand dependent only on the zi j’s, we
find

kφc = Cφc

∫ ∞

1
dz3

∫ 0

−∞
dz4

1

|1 − z3|2x|z4|2x|z34|2−2x−h

= Cφc
�2(1 − 2x)�(2x − h)

�(2 − 2x − h)
, (52)

where

Cφc ≡ −4ω3
0AGA2

D sin2(πx)(2π/β )3x−1

×
√

cos

(
πx

2
− arctan α

)
cos

(
πx

2
+ arctan α

)
.

(53)

The final two equations of Eqs. (42) are compatible with
the same choice of fc and fφ , and the result is

kcφ = Ccφ

∫ ∞

1
dz3

∫ 0

−∞
dz4

1

|1 − z3|1−x|z4|1−x|z34|1+x−h

= Ccφ
�2(x)�(1 − x − h)

�(1 + x − h)
, (54)
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where

Ccφ ≡ −M

N
ω3

0A3
G sin2(πx)(2π/β )1−3x

×
√

cos

(
πx

2
− arctan α

)
cos

(
πx

2
+ arctan α

)
.

(55)

With these results, Eq. (43) reduces to an algebraic equa-
tion for h:

�2(x)�(1 − x − h)

�(1 + x − h)

×
[
Ccc + 2CcφCφc

�2(1 − 2x)�(2x − h)

�(2 − 2x − h)

]
= 1. (56)

The constants Ccc,Ccφ,Cφc involve a complicated mix
of α, β, ω0, m0, ω f ,

nsM
N , and x. We can use the relations

Eqs. (8), along with the gamma function reflection identity
and the fact cos(πx/2 − arctan α) cos(πx/2 + arctan α) =
1
2 (cos(πx) + 1−α2

1+α2 ), to write Eq. (56) purely in terms of x:

1 = −1

�(−x)�(x)

�2(x)�(1 − x − h)

�(1 + x − h)

×
[

1 + 2(1 − 2x)
1

�(2x)�(1−2x)

�2(1−2x)�(2x−h)

�(2−2x−h)

]
.

(57)

Remarkably, this is exactly solved for all x by

h = −1. (58)

This can be verified analytically by making repeated use of the
identity �(z + 1) = z�(z). Transforming back to the original
time variables, we have

fc(t1, t2) = e
−iL
β

(t1−t2 ) e−h 2π
β

( t1+t2
2 )(

2 cosh 2π
β

( t1−t2
2

))1−x−h
. (59)

The OTOC grows in the same way as fc(t, t ) at long times, and
the Lyapunov exponent can be read off from this expression:

λL = −2π

β
h = 2πT . (60)

Notice that the only effect of the chemical potential, which
enters through L, is to introduce an oscillatory factor in fc

which does not affect the OTOC or λL. This means that in
any regime where the conformal limit is valid, the spectral
asymmetry does not disturb the OTOC from its form at half
filling, which corresponds to μ = α = L = 0. Furthermore,
λL is independent of the ratio M/N . Interestingly, by following
the argument in Ref. [37], we can conclude that the bosons are
maximally chaotic as well with little additional computation,
since the boson ladder equation involves the same kernels as
for the fermions. The boson correlator Fφ (t1, t2) is defined as

Fφ (t1, t2) =
∑
αβ

Tr

N2

[
ρ

1
2 [φα (t1), φβ (0)]ρ

1
2 [φα (t2), φβ (0)]†

]
,

(61)
and can be expressed diagrammatically via the coupled equa-
tions of Fig. 3 by introducing the correlators Fcφ and Fc̄φ ,
which involve the processes that convert two incoming bosons

FIG. 3. Feynman diagrams for the bosonic OTOC. Notation is
the same as in Fig. 2.

to two outgoing fermions. Algebraically, the equations read

Fφ = F 0
φ + Kφc � Fcφ + Kφc̄ � Fc̄φ,

Fcφ = Kcc � Fcφ + Kcφ � Fφ, (62)

Fc̄φ = Kc̄c̄ � Fc̄φ + Kc̄φ � Fφ,

where Fcφ , Fc̄φ , and etc., represented diagrammatically in
Fig. 3, are mixed OTOCs defined as, e.g.,

Fcφ (t1, t2) =
∑

iα

Tr

MN

[
ρ

1
2 [ci(t1), φα (0)]ρ

1
2 [ci(t2), φα (0)]†

]
.

(63)
We neglect the inhomogeneous term in Eqs. (62) as usual
and substitute the first equation into the second and third to
eliminate Fφ . We see that Fcφ and Fc̄φ obey precisely the same
ladder equation as Fc and Fc̄, respectively [cf. Eqs. (40)], and
thus they too are proportional to fc and f ∗

c with the same
exponent h = −1. Hence the mixed OTOCs such as Fcφ also
have the same Lyapunov exponent.

Substituting these solutions back into the first equation of
Eqs. (62) and using the properties of the kernels Eqs. (42), we
find that the boson OTOC Fφ is proportional to fφ , which in
the time domain is

fφ (t1, t2) = e−h 2π
β

( t1+t2
2 )(

2 cosh 2π
β

( t1−t2
2

))2x−h
. (64)

This has exactly the same long-time growth and Lyapunov
exponent as the fermion OTOC, only without the oscillation
in t1 − t2.

Intuitively, since the system is strongly interacting among
both boson and fermions, the exponential growth of chaos
does not depend on which field operators are used to perturb
and probe the system.

B. Insulating state

We repeat the procedure for the (meta)stable insulating
state. As mentioned earlier [cf. Eqs. (36)], the boson left-right

205122-7



ANDREW DAVIS AND YUXUAN WANG PHYSICAL REVIEW B 107, 205122 (2023)

propagators are exponentially suppressed, so we drop the in-
homogeneous terms, containing Kcc and Kc̄c̄, on the RHSs of
Eqs. (40):

Fc = Kcφ � Kφc � Fc + Kcφ � Kφc̄ � Fc̄,

Fc̄ = Kc̄φ � Kφc̄ � Fc̄ + Kc̄φ � Kφc � Fc. (65)

The kernels have the same structure as before, but the Green’s
functions are now the insulating ones. Again, we solve this by
finding fc and fφ satisfying Eqs. (42).

Kφc � fc = kφc fφ,

Kcφ � fφ = kcφ fc. (66)

Then the choice Fc = fc, Fc̄ = f ∗
c solves the insulating ladder

equation when

1 = 2kcφkφc. (67)

By the same argument as in the previous subsection, the
boson OTOC Fφ will again be proportional to the function
fφ . Since we will see that fc and fφ both have the same
exponential growth, we conclude that the fermions and bosons
have the same Lyapunov exponent in the insulating phase.

We make the ansatz

fc(t1, t2) = e
λL
2 (t1+t2 )−iγ (t1−t2 ), (68)

where λL and γ are real, and λL is of course the Lyapunov
exponent. Since we obtain the OTOC, which must be real,
by setting t1 = t2, γ will drop out of the final result, but it is
nonetheless necessary to keep it as a parameter. As will be
shown, in the absence of the inhomogeneous term, λL and γ

parametrize a whole family of functions with the properties
Eqs. (42), and the requirement 1 = 2kcφkφc constrains the
solutions for λL and γ . The multiplicity of solutions is an
artifact of neglecting the inhomogeneous term in the ladder
equation (the OTOC should be unique), but physically the
ladder equation represents the amplification of F 0

c by repeated
applications of a kernel, and only the fastest-growing compo-
nent will survive this procedure. Therefore, we will tune γ to
make λL as large as possible.

For the first equation in Eqs. (66), we first calculate the
action of Kφc on our ansatz, using Eqs. (39), (35), (36), and
(68), the result is

Kφc � fc =ω3
0

∫ t1

−∞
dt3

∫ t2

−∞
dt4

sin m0t13

m0

sin m0t24

m0
× e−μ̃(β/2+it43 )e

λL
2 (t3+t4 )−iγ t34

=ω3
0

m2
0

e−μ̃β/2 1

(2i)2

∑
σ,σ ′=±

σσ ′

(−iσm0 + iμ̃ + λL/2 − iγ )(−iσ ′m0 − iμ̃ + λL/2 + iγ )
e−iμ̃t12 e

λL
2 (t1+t2 )−iγ t12 (69)

from which we can read off kφc, and we find that

fφ (t1, t2) = e+iμ̃t12 e
λL
2 (t1+t2 )−iγ t12 . (70)

Now we act on this with Kcφ :

Kcφ � fφ = M

N
ω3

0

∫ t1

−∞
dt3

∫ t2

−∞
dt4e−iμ̃t13 eiμ̃t24 e−μ̃(β/2−it43 )e+iμ̃t34 e

λL
2 (t3+t4 )−iγ t34

= M

N
ω3

0e−μ̃β/2 1

(iμ̃ + λL/2 − iγ )(−iμ̃ + λL/2 + iγ )
e

λL
2 (t1+t2 )−iγ t12 . (71)

We recover fc as required, and the prefactor is kcφ . Combining the results of Eqs. (69) and (71) with the requirement 1 = 2kcφkφc,
we find that the ansatz solves the ladder equation when

1 = 2M

N

ω6
0

m2
0

e−μ̃β

(
1

2i

)2 ∑
σσ ′

σσ ′

(−iσm0 + iμ̃ + λL/2 − iγ )(−iσ ′m0 − iμ̃ + λL/2 + iγ )(iμ̃ + λL/2 − iγ )(−iμ̃ + λL/2 + iγ )
.

(72)

Since we have assumed the boson mass is the largest en-
ergy scale in the problem and since λL cannot exceed 2πT ,
we can neglect μ̃ and λL relative to m0 in the denominator
of Eq. (72). We will further assume and then verify that γ is
similarly negligible. With these assumptions, the eigenvalue
equation reduces to

2M

N
ω2

F e−μ̃β =
(

λL

2

)2

+ (γ − μ̃)2. (73)

Clearly, the optimal choice is γ = μ̃, consistent with the
assumption m0 
 γ ; any other choice drags the Lyapunov

exponent down, so

λL(μ̃, T ) =
√

8M

N
ωF e−μ̃/2T for T � μ̃. (74)

Note that this choice also ensures that the bosonic OTOC is
real, just like in the nFL case. We see that for the insulating
state, λL is exponentially suppressed, consistent with the un-
derstanding that the system is in a trivial gapped state.

Observe that the Lyapunov exponent is an increasing func-
tion of temperature and a decreasing function of chemical
potential. This is consistent with the intuition that chaos is
suppressed as the system goes deeper into the insulating
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FIG. 4. The Lyapunov exponent, calculated from the insulating
side in the low-T limit, saturates the chaos bound along the solid
blue curves. The red curves with data points come from numerical
results [25] for the leftmost boundary of the hysteresis region. For
completeness, the numerical results for the rightmost boundary of the
hysteresis region are also shown in orange, though we did not attempt
to find this curve analytically. The T = 0 data points are analytic
results—see Ref. [23]. The upper and lower panels have M/N = 1
and M/N = 4, respectively, and both have ωF = 1/4. The agreement
is good at low T but, unsurprisingly, fails when T ∼ ωF , noticeable
in the lower panel.

phase, where the filling is close to unity and there is little
phase space available for scrambling.

IV. DISCUSSION AND CONCLUSION

In this paper, we generalized the Green’s functions of the
Yukawa-SYK model at weak coupling to finite temperatures
and computed the OTOCs and Lyapunov exponents of the
nFL state in the conformal limit and the insulating state. The
fermions are maximally chaotic in the nFL phase, even away
from half filling. The chemical potential merely gives a phase
to the correlator Fc(t1, t2) which does not affect the OTOC
or the Lyapunov exponent. The bosons also saturate the chaos
bound, as do the other mixed correlators described above such
as Fcφ , etc.

For the insulating state, we have obtained an expression
for λL at low temperature in Eq. (74). As the temperature
increases, λL for the insulating solution increases. As λL has
an upper bound of 2πT , it is interesting to see where in the
(μ, T ) plane λL for the insulating state approaches this value.
Heuristically, this should correspond to the point when the
metastable insulating state becomes unstable. To determine
the boundary in the (μ̃, T ) plane, we set λL(T ) ∼ 2πT and
solve for the critical value μc as a function of temperature in
the low-temperature limit:

μc(T ) = ωF

2
+ 2T ln

(√
M

N

ωF

T

)
. (75)

We expect Eq. (74) to be correct for T � μ̃ ≡ μc − ωF /2, so
T � ωF . This curve is plotted in blue in Fig. 4. To the left of
this curve, the exponent violates this bound, so the insulating
state cannot be stable, demarcating the leftmost boundary of
the hysteresis region (to the right of this curve, we cannot say

that the insulating state is energetically favorable to the nFL
state, only that it is not forbidden by the chaos bound).

In Ref. [25], the nFL and insulating states were placed on
a phase diagram as a function of (μ, T ), which we reproduce
for the present model in Fig. 4. The data were obtained by
iteratively solving the SD equations as described therein. (The
index structure of the random coupling is slightly different in
the model of Ref. [25], but the SD equations have essentially
the same structure. The only change is that M/N in this pa-
per corresponds to 4M/N in Ref. [25].) The two phases are
separated by a first-order transition (not shown), located in
the hysteresis region bounded by the red and orange curves,
in which both states are local minima of the free energy. On
the left branch of the red curve, the insulating state becomes
unstable, and on the right the nFL state becomes unstable.

The boundary of stability of the insulating state determined
by the Lyapunov exponent appears to agree with the numerical
results where expected. Because it is difficult to compute the
boundary of the hysteresis region numerically by the itera-
tive method described in Ref. [25], especially at very low
temperatures, and because our Eq. (75) is a low-temperature
approximation, it is difficult to meaningfully quantify this
agreement, but nonetheless the connection between the chaos
bound and the stability of the phase is plausible. The rightmost
boundary of the hysteresis region, beyond which the nFL state
is unstable, will require more work to calculate because our
analysis assumes the conformal limit which yields an expo-
nent of 2πT regardless of μ and T . In reality, there should
be small corrections to this result, but calculating these will
require going beyond the conformal limit. We surmise that the
rightmost boundary of the hysteresis region corresponds to the
curve where these small corrections switch from negative to
positive and violate the chaos bound. In this sense the chaos
bound may also be interpreted as a stability bound [39]. We
leave a detailed analysis of this to a future study.
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APPENDIX A: LARGE-M, N COUNTING

In this Appendix, we justify the claim that the leading
order diagrams in the large-M, N expansion of the OTOC
Eq. (37) are those depicted in Fig. 2 by explicitly computing
the factors of M and N up to second nonvanishing order in the
interaction. At zeroth order, the fermion operators are free, so
the first term is

1

M2

∑
i j

Tr
[
ρ

1
2 {c0

i (t1), c0†
j (0)}ρ 1

2 {c0
i (t2), c0†

j (0)}†
]

(A1)

= 1

M2
Tr

[
ρ

1
2 GR,0(t1)δi jρ

1
2 GA,0(t2)δi j

]
(A2)

= 1

M
GR,0(t1)GA,0(t2). (A3)

The superscript zeros indicate free fermions and their free
Green’s functions. The summation over fermion flavors has
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FIG. 5. Some diagrams at leading order in the large-M, N expan-
sion of the fermion OTOC. All propagators in these diagrams are
bare, unlike in the figures in the main text.

produced one factor of M for an overall factor of 1/M at
this order. This term is represented in Fig. 5(a). The fermion
flavors on each rail are constrained to be the same, so the
single factor of M corresponds to the sum over the single
fermion index i in the diagram.

At first order in the interaction, all diagrams vanish because
every term is proportional to the random coupling tα

i j which
has zero mean. All diagrams with an odd number of interac-
tion vertices vanish similarly. This disorder averaging can be
viewed as an additional field with a constant propagator which
forces the two fermion flavors and the boson flavor at one end
to match those at the other.

At first nonvanishing order, the two vertices can either be
placed on the same rail or with one on each rail. The former
option, however, merely forms part of the self-energy for the
fermion on that rail and is already included in Fig. 2—since
those propagators are all dressed, the very first term in the
sum contains this contribution. All the self-energy diagrams,
by construction, are of leading order in M and N , so these
contributions to the OTOC are as well. The latter option is
depicted in Fig. 5(b) (the type-I rung). Compared to the zeroth
order term, it contains one additional factor of M from the new
fermion sum, one additional factor of N from the new boson
sum, and a factor of 1/MN from the interaction. Hence this
diagram is also leading in M and N . In fact, the addition of
each type-I rung at any order has the same effect and does
not change the M and N factors. This is true at all orders, so
the diagram of Fig. 6, for example, is also dominant, and is
included in our ladder equation.

At second nonvanishing order, there are several ways of
contracting the vertices, and the disorder average is over a
product of four t’s, which can be decomposed by Isserlis’s
theorem into a sum of averages of all pairings of the t’s (di-
agrammatically, all the ways of pairing the vertices by dotted
lines). Again, many of these diagrams contain pieces which
form part of the self-energy, such as in Fig. 5(d), which is

FIG. 6. A diagram with two type-I rungs, included in the ladder
series.

accounted for in Fig. 2 by the second term in the sum. Another
possibility is two type-I rungs in sequence. The important
new diagram at this order is the type-II rung (or box) in
Fig. 5(c). Compared to the zeroth order diagram, it has three
more fermion sums (a factor of M3), one more boson sum
(a factor of N), and four more vertices (a factor of 1/M2N2)
for a combined factor of M/N . Hence this diagram is also
of leading order, as are any diagrams obtained by appending
more of these type-II rungs.

Notice that the pairing of vertices in the disorder average is
important. For example, the type-II rung must have the disor-
der average done as in Fig. 5(c). The other two possible pair-
ings of the vertices force too many constraints on the flavors,
and it can be easily verified that such terms are subleading in
M and/or N . Another example is shown in Fig. 7(a): if the
disorder average connected vertices on the same rung, this
would be a relevant self-energy contribution, but, with the
interrung pairing as shown, it is suppressed by 1/N .

There are a few other diagrams to check, including crossed
rungs, other pairings in the disorder average, and diagram (b)
of Fig. 7, but it is not difficult to verify that they are all sub-
leading. The dominant diagrams, at all orders, are precisely
those achieved by iteratively tacking on type-I and type-II
rungs to the zeroth order diagram as our ladder equation
depicts.

FIG. 7. Examples of subleading diagrams in the large-M, N ex-
pansion of the fermion OTOC. All propagators are bare, unlike in the
figures in the main text.
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APPENDIX B: FEYNMAN RULE FOR THE LADDER DIAGRAMS IN THE OTOC

In the interaction picture, the leading correction to the fermion OTOC Fc(t1, t2) beyond self-energy effects is given by using
Wick’s theorem on the path integral along the complex time contour,

(B1)

which corresponds to a ladder diagram with one rung, which
we show in Fig. 8. Here I (t ) ∝ tc†(t )φ(t )c(t ) is the interaction
vertex (with the flavor summations suppressed for brevity),
which we used in the second step. The contraction is defined
as the complex-time-contour-ordered correlator

(B2)

where Tcont is the ordering operator on the complex time con-
tour. Therefore, for contractions across two real-time folds,
we get Wightman propagators, e.g.,

(B3)

Importantly, as we mentioned in the main text, the
(anti)commutators in Eq. (B1) are not defined in the usual
way, but via altering the order the operators on the complex
time contour, i.e.,

O1(it1),O2(it2)±
≡ lim

ε→0
O1(ε + it1)O2(it2) − O1(it1)O2(ε + it2), (B4)

where [· · · ]+ ≡ {· · · }. Therefore, in this notation

(B5)

FIG. 8. The ladder diagram corresponding to Eq. (B1).

The nested (anti)commutators in Eq. (B1) are defined using
multiple εi → 0, making sure the limits are taken such that εi

corresponding to inner (anti)commutators tend to zero first. It
is easy to verify that the (anti)commutator defined this way
satisfies the same algebraic properties as the original version.

The expression in Eq. (B1) can be simplified by succes-
sively extracting contractions (c numbers) from the nested
(anti)commutator. Importantly, when contracting (anti)-
commutators, the only nonvanishing contribution comes from
contractions that match the (anti)commutation, i.e., between
operators separated by a comma. In particular,

(B6)

because the order between b and b̄ is not altered by the ε-
prescription above, and the two terms forming the commutator
defined in Eq. (B4) cancel. As an example for nested commu-
tators,

(B7)
where in the first step we used the mathematical identity
[āb̄, b] ≡ −{ā, b}b̄ + ā{b̄, b̄}, and the first term in the mid-
dle expression vanishes because of Eq. (B6). Combining this
recipe with Eq. (B3), it can be shown in general that for an
OTOC with nested commutators, one can successively re-
place contractions separated by a comma with the retarded or
advanced Green’s functions, and replace contractions across
real-time folds via Wightman propagators. This is the analog
of Feynman rules for OTOCs.

Applying the Feynman rules, we get

F1 =ω3
0

M

∫ ∞

−∞
dt ′

∫ ∞

−∞
dt ′′GR(t ′)GR(t1 − t ′)Dlr (t ′′ − t ′)

× GA(t ′′)GA(t2 − t ′′). (B8)

Higher-order ladder diagrams are obtained by replacing∫ t1
0 dt ′[I (it ′), c†(it1)] with∫ t1

0
dt ′

n · · ·
∫ dt ′

2

0
dt ′

1[I (it ′
n), [· · · , [I (it ′

1), c†(it1)], (B9)

which can then be contracted using the same procedure. It is
straightforward to see that the Feynman rule for the ladder dia-
grams in the OTOC is to assign a retarded (advanced) Green’s
function to all vertical lines, and a Wightman correlator to the
horizontal lines.
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FIG. 9. (a) A contribution to the anomalous OTOC at second
order. (b) A contribution to the original OTOC at fourth order, which
contains (a) as a subdiagram. All propagators are bare.

APPENDIX C: LEADING ORDER DIAGRAMS INVOLVING
Fc̄ FROM FEYNMAN RULES

At low orders in the expansion of the OTOC, one finds
retarded Green’s functions on one rail of the ladders and
advanced ones on the other. However, it is possible for both
retarded and advanced Green’s functions to appear on either
rail. This first becomes relevant to the anomalous OTOC Fc̄ at
second order in perturbation theory, and relevant to the OTOC
Fc at fourth order in perturbation theory.

We begin with

Fc̄ ∼ Tr[ρ1/2{c̃i(it1), c̃ j (0)}ρ1/2{c̃i(it2), c̃ j (0)}†], (C1)

which is depicted on the left side of the second equation in
Fig. 2. The tildes indicate that these are Heisenberg picture
operators, which are related to the interaction picture opera-
tors c(τ ) by c̃(τ ) = U †c(τ )U , where

U = T exp

(
− i√

MN
tα
kk′

∫ τ

0
dτ ′c†

k (τ ′)ck′ (τ ′)φα (τ ′)
)

, (C2)

with flavor summations implied. If we expand U †c(τ )U to
second order in the random coupling, we find

[U †ci(t1)U ](2) = −1

MN
tα
kk′t

β

ll ′

∫ t

0
dt ′

∫ t ′

0
dt ′′[c†

l (it ′′)cl ′ (it
′′)φβ (it ′′), [c†

k (it ′)ck′ (it ′)φα (it ′), ci(it1)]], (C3)

as detailed in Refs. [40,41], and as claimed in Eq. (B9). Suppressing prefactors, integrations, and flavors indices for brevity, there
is a diagram [Fig. 9(a)] corresponding to the contraction

(C4)
where we reiterate that the notation with both commutators and contractions is explained in Appendix B. Applying the Feynman
rules developed in Appendix B, we find that Eq. (C4) produces an integral with the structure

Fc̄ = ω6
0

M

∫
dt ′dt ′′dt ′′′dt ′′′′GR(t1 − t ′)DR(t ′ − t ′′)GA(t ′′)Gr (t ′ − t ′′′)Gr (t ′′ − t ′′′′)GA(t2 − t ′′′)DR(t ′′′ − t ′′′′)GR(t ′′′′). + · · · .

(C5)

This diagram is the last term of the second equation in Fig. 2 with the shaded rectangle removed. As a ladder diagram similar to
that in Fig. 5(c), it is straightforward to show that this diagram is of O(1/M ), i.e., at the same order as other leading diagrams in
the series. This contribution is included in the integral Eqs. (40), as can be seen via an iterative expansion.

As indicated in the top equation of Fig. 2, the existence of Fc̄ leads to an additional contribution to Fc, which at leading
order is diagrammatically shown in Fig. 9(b). Again, this diagram is at O(1/M ) and can be explicitly written in contractions just
like Eq. (C4). Writing it explicitly in terms of contracted nested commutators will unfortunately take too much space, but the
corresponding Feynman diagram is obtained by combining two leading diagrams for Fc̄. Applying the Feynman rule developed
in Appendix B, we get

Fc = · · · + ω12
0

M

∫
dt̄ ′dt̄ ′′dt̄ ′′′dt̄ ′′′′GR(t1 − t̄ ′)DR(t̄ ′ − t̄ ′′)Gr (t̄ ′ − t̄ ′′′)Gr (t̄ ′′ − t̄ ′′′′)GA(t2 − t̄ ′′′)DR(t̄ ′′′ − t̄ ′′′′)

×
∫

dt ′dt ′′dt ′′′dt ′′′′GR(t̄ ′′′′ − t ′)DR(t ′ − t ′′)GA(t ′′)Gl (t ′ − t ′′′)Gl (t ′′ − t ′′′′)GA(t̄ ′′ − t ′′′)DR(t ′′′ − t ′′′′)GR(t ′′′′) + · · ·, (C6)

which is also obtained by iteratively expanding the integral Eqs. (40).
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