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Deep learning Hamiltonians from disordered image data in quantum materials
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The capabilities of image probe experiments are rapidly expanding, providing new information about quantum
materials on unprecedented length- and timescales. Many such materials feature inhomogeneous electronic
properties with intricate pattern formation on the observable surface. This rich spatial structure contains informa-
tion about interactions, dimensionality, and disorder—a spatial encoding of the Hamiltonian driving the pattern
formation. Image recognition techniques from machine learning are an excellent tool for interpreting information
encoded in the spatial relationships in such images. Here, we develop a deep learning framework for using the
rich information available in these spatial correlations in order to discover the underlying Hamiltonian driving
the patterns. We first vet the method on a known case, scanning near-field optical microscopy on a thin film of
VO2. We then apply our trained convolutional neural network architecture to new optical microscope images of a
different VO2 film as it goes through the metal-insulator transition. We find that a two-dimensional Hamiltonian
with both interactions and random field disorder is required to explain the intricate, fractal intertwining of metal
and insulator domains during the transition. This detailed knowledge about the underlying Hamiltonian paves
the way for using the model to control the pattern formation via, e.g., tailored hysteresis protocols. We also
introduce a distribution-based confidence measure on the results of a multilabel classifier, which does not rely
on adversarial training. In addition, we propose a machine-learning-based criterion for diagnosing a physical
system’s proximity to criticality.
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I. INTRODUCTION

The types of surface probes, such as atomic force mi-
croscopy (AFM), scanning tunneling microscopy (STM), and
scattering scanning near-field infrared microscopy (SNIM),
among many others [1,2], in addition to the wealth of data they
generate, are increasing at a rapid pace. As often happens in
science, new experimental frontiers reveal new physics: These
scanning and image probe experiments often reveal complex
electronic pattern formation spanning multiple lengthscales at
the surface of correlated quantum materials, even when they
are atomically smooth [3–12]. For example, manganites can
have ferromagnetic and antiferromagnetic regions that coexist
on multiple lengthscales [9]. In the unidirectional electronic
glass in cuprates [4], domains of stripe orientation take frac-
tal form with correlations over four orders of magnitude in
lengthscale [13]. Magnetic domains in NdNiO3 were also
revealed to have fractal textures [14]. We focus here on VO2,
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a material whose metal and insulator domains can show self-
similar structure over multiple lengthscales [3,8,15].

Unfortunately, most of our theoretical tools are designed
for understanding and describing homogeneous electronic
states. Therefore, it is vital that we envision new theoreti-
cal frameworks for understanding why the patterns form in
strongly correlated materials. The cluster analysis techniques
we developed for interpreting these images have already
uncovered universal behavior among disparate quantum mate-
rials [3,7,8,14,16], but the methods only work on systems near
criticality, and for sufficiently large fields of view. Powerful
image recognition methods from machine learning (ML) hold
the potential to complement and extend these analyses into
new regimes.

There has been tremendous growth recently in the appli-
cation of ML methods to condensed matter. (For reviews, see
Refs. [17–20].) ML is being applied as a tool to tackle various
problems in condensed-matter physics, including disordered
and glassy systems [21–23], quantum many body problems
[24], quantum transport [25], renormalization group [26,27],
and big data in materials science [28,29]. ML also benefits
from physics, an area known as physics-inspired ML theory
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[17]. Applied to experimental data, ML has been used to
detect in which phase of matter a physical system is [30],
and to aid in the experimental detection of the glass transition
temperature [31]. Other common uses of ML for experimen-
tal data include the extraction of material parameters from
experiment [28,32], or using ML to replace a lengthy and
time-consuming fitting procedure [32,33].

Regarding phase transitions, ML has been used to de-
tect in which phase of matter a theoretical configuration is
[19,20,34], as well as to identify the transition temperature
of a theoretical model [19,34,35], each in cases in which a
particular Hamiltonian is already assumed. Relatively little
attention has been paid to the critical region [20], where
domains display power-law structure across multiple length-
scales. In addition, much of the work done to identify phases
or detect phase transitions has been purely computational,
with the Hamiltonian assumed [19,20,34,35]. By contrast, our
method utilizes the rich spatial correlations available in near-
critical configurations to detect which Hamiltonian should be
used to describe a physical system, and we apply the method
to experimentally derived data.

Here we develop a deep learning (DL) classifier to
recognize spatial configurations from several different Hamil-
tonians. We test the DL classifier on experimental image data
of VO2 obtained via SNIM, and then we apply it to new optical
microscope images of VO2. Convolutional neural networks in
particular are heavily used in image classification. We have
previously shown that with ML, images from simulation can
be classified with a very good accuracy of ∼97% [36]. Here
we show that a DL architecture can classify two-dimensional
(2D) surface images into one of seven candidate theoretical
models, to even better accuracy (>99%). We introduce a sym-
metry reduction method that reduces training time over the
data augmentation method. In addition, we use the DL model
on experimental images derived from SNIM and optical mi-
croscope data to discover the underlying Hamiltonian driving
pattern formation of metal and insulator puddles in films of
VO2. We also introduce a method for judging the confidence
of a multilabel classifier, based on the multivariate distribution
of values of the output nodes. We furthermore propose that
this confidence measure tracks proximity to criticality.

This article is organized as follows: In Sec. II A, we give
an overview of the Hamiltonians of interest from statistical
mechanics in this paper. Section III shows the end-to-end
deep learning architecture and process. We demonstrate the
effectiveness of symmetry reduction to reduce training time
as compared with data augmentation, and we develop a con-
fidence criterion to judge the reliability of predictions. In
Sec. IV, we make predictions on SNIM and optical micro-
scope data on thin films of VO2. We show that using only
simulated data for training, we have developed a robust deep
learning classification model that can learn the Hamiltonian
driving pattern formation from experimental surface probe
images.

II. DEVELOPING A DEEP LEARNING MODEL
TO REVEAL UNDERLYING HAMILTONIANS

We first construct several possible Hamiltonians that could
potentially describe the morphology of these metal and insula-

tor domains, including the multiscale behavior. Then, we use
numerical simulations to generate thousands of spatial config-
urations of metal and insulator domains that can arise in these
Hamiltonians. Next, we develop and train a deep learning
(DL) convolutional neural network (CNN) on a subset of these
images in supervised learning mode. After we validate that the
DL model can correctly identify the underlying Hamiltonian
from a single domain configuration with greater than 99%
accuracy, we then apply our trained DL model to experimental
data on VO2 obtained via both SNIM and optical microscopy.

A. Candidate Hamiltonians and the morphologies they produce

We use numerical simulations to generate typical config-
urations of metal and insulator domains that can arise from
various model Hamiltonians that could potentially be control-
ling the metal-insulator domain structure. Simulation methods
are described briefly in this section and in detail in the Supple-
mental Material (SM), and they are summarized in Table I. As
VO2 undergoes a temperature-driven transition from metal to
insulator and vice versa, the macroscopic resistivity changes
by four to five orders of magnitude. However, rather than
doing so homogeneously, we previously used SNIM to pro-
duce spatially resolved images of the metal and insulator
domains, which revealed that VO2 thin films transition inho-
mogeneously, with metal and insulator domains interleaving
with each other over a wide range of lengthscales [3,37]. (Note
that the voltage-driven transition is also inhomogeneous, as
revealed by optical measurements [38].) We introduce a range
of possible Hamiltonians that could be responsible for driving
the multiscale textures during the metal-insulator transition in
VO2. Domain configurations from these Hamiltonians will be
used to train the DL model to identify the underlying physics
driving pattern formation in this material.

Because the experimental probes of interest are directly
measuring electronic degrees of freedom, we construct Hamil-
tonians that are about these electronic degrees of freedom.
The intricate patterns of metal and insulator domains happen
across multiple lengthscales from the resolution of the probes
all the way out to the field of view (≈20 nm–4 µm for SNIM
and ≈370 nm–28 µm for optical microscope data). There-
fore, we construct Hamiltonians at the order-parameter level.
Because the theories are constructed at the order-parameter
level, they are not microscopic, although they can provide
constraints on microscopic models.

First, we consider a clean, interacting Hamiltonian. A
reasonable ansatz is that the interaction energy between neigh-
boring domains is lower for like domains than for unlike
domains. We model this proclivity toward neighboring like
domains [8,39] with a nearest-neighbor Ising Hamiltonian:

H = −J
∑
〈i, j〉

σiσ j −
∑

i

hσi, (1)

where σi = ±1 is a two-state local order parameter, which in
this case tracks metal (e.g., σ = 1) and insulator (e.g., σ =
−1) domains. In an infinite size system, this model undergoes
an equilibrium, second-order phase transition as a function of
temperature at a critical temperature of T 2D

c ≈ 2.27J in two-
dimensional systems and T 3D

c ≈ 4.51J in three-dimensional
systems [40,41]. However, the model also undergoes a first-
order phase transition as a function of applied field h. This
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TABLE I. Parameters of simulations of the statistical mechanics models. In the first part of the table, parameters are in the critical region.
In the second part of the table, parameters are not near criticality.

Model Parameters simulated Simulation method

2D clean Ising (C-2D) T = 2.25 − 2.64 Monte Carlo
3D clean Ising (C-3D) T = 4.45 − 4.65 Monte Carlo
2D RFIM (RF-2D) R = 1.00 − 1.19 Zero-temperature field sweep
3D RFIM (RF-3D) R = 2.25 − 2.29 Zero-temperature field sweep
2D percolation (P-2D) p = 0.57 − 0.61 Biased coin flip
3D percolation (P-3D) p = 0.29 − 0.33 Biased coin flip

p = 0.02 − 0.2 Biased coin flip
Noncritical percolation (P∗) p = 0.48 − 0.52 Biased coin flip

p = 0.8 − 0.98 Biased coin flip

first-order line terminates in the critical end point mentioned
above. The phenomenology of a first-order line terminating
in a critical end point is why this model is often used in
conjunction with the liquid-gas transition. For example, when
the liquid-gas transition is approached along the coexistence
curve in temperature and pressure, the transition is second
order [see the red dotted line in Fig. 2(a)] [42]. The influ-
ence of that critical point is felt throughout a critical region
[the light green region in Fig. 2(a)], which includes part of
the first-order line in the vicinity of the critical end point.
Similarly, this model can be used to describe the first-order
metal-insulator transition in VO2, with a critical end point
whose influence extends along the first-order line [8]. The
physical structure of domains is power law throughout this
critical region, when viewed on lengthscales shorter than
the correlation length, which diverges as the critical point is
approached. In mapping this order-parameter model to the
temperature-driven metal-insulator transition in VO2, we are
making the ansatz that a sweep of temperature in the experi-
ment maps to a combination of temperature and field sweep
in the model, as in our prior work [8] and Ref. [43].

We simulate configurations near criticality (see Table I),
since that is where this Hamiltonian can cause structure over
multiple lengthscales. We use Monte Carlo simulations to
generate typical examples of multiscale morphologies of in-
sulator and metal domains that can arise from the clean Ising
Hamiltonians of Eq. (1). Intricate domain configurations arise
near the critical points of this model. Figures 1(a)–1(d) show
some configurations near T 2D

c on a 100 × 100 lattice, with
periodic boundary conditions. Figures 1(e)–1(h) show some
representative configurations near T 3D

c on a 100 × 100 × 100
lattice. Further simulation details are in the SM.

The correlation length of a system diverges at criticality,
ξ ∝ 1/|T − Tc|ν . When viewed on lengthscales x < ξ , the
system exhibits critical fluctuations, i.e., fluctuations on all
lengthscales between the correlation length ξ and the short
distance cutoff, which for the lattice models we study is the
lattice spacing, and in the real physical system it is the size
of a unit cell. Close enough to criticality, this lengthscale
will exceed any finite field of view (FOV). Therefore, when
observed on a finite FOV (experimentally, or in simulation),
there is a finite range of parameters over which the system
displays critical pattern formation. For this reason, the entire
range of parameters listed in the first part of Table I should be
viewed as critical for the FOVs considered in this paper.

In addition to an interaction energy between domains, ma-
terial disorder also affects the types of shapes that metal and
insulator domains take. Because material disorder may make
certain regions of the sample more favorable to an insulator,
and certain others more favorable to metal, we use a random-
field Ising model (RFIM) to simulate the effects of material
disorder on the metal and insulator textures [44]:

H = −J
∑
〈i j〉

σiσ j −
∑

i

(hi + h)σi. (2)

The first term is the clean Ising model of Eq. (1). In the second
term, the uniform field h and the local random fields hi couple
directly with the local order parameter. The random fields
are chosen from a Gaussian distribution of width R where
the probability of hi is P(hi ) = exp ( − h2

i /(2R2))/
√

2πR2. In
the physical system, VO2 changes from insulator to metal as
the temperature is changed. Within the model, this physics
presents itself as a combination of model temperature and
uniform field h [8].

The ordered phase corresponds to all metal or all insula-
tor, and the transition is second order when approached as a
function of temperature or disorder strength at zero applied
field [see the red dotted lines in Fig. 2(b)]. When instead the
field is swept across the ordered region, the transition is a
first-order change from metal to insulator [see the blue dotted
line in Fig. 2(b)]. When temperature and the disorder strength
are both nonzero, the behavior of the model in the vicinity of
the phase transition is dominated by the random field [45].
That is, the random field is relevant but the temperature is
irrelevant in the renormalization-group sense in a broad range
around the solid green line in Fig. 2(b). We therefore model
the patterns of metal and insulator domains that are possible
with this Hamiltonian by generating domain configurations
at zero temperature while sweeping the uniform field h. At
zero temperature, this model undergoes an equilibrium phase
transition at a random field strength of Rc ≈ 2.27J in an
infinite size three-dimensional system (RF-3D) [46]. In two
dimensions (RF-2D), the critical disorder strength is Rc → 0
[47] in the infinite size limit, although in a finite-size system or
with finite FOV, Rc(L) > 0. For the FOV we consider, Rc ≈ J
for RF-2D.

When the random field model is near criticality, as the
uniform field is swept from low to high or high to low, in-
tricate patterns develop over multiple lengthscales near the
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(a) T=2.30J (b) T=2.35J (c) T=2.45J (d) T=2.55J

(e) T=4.50J (f) T=4.52J (g) T=4.55J (h) T=4.60J

(i) R=1.00J (j) R=1.05J (k) R=1.10J (l) R=1.15J

(m) R=2.25J (n) R=2.26J (o) R=2.27J (p) R=2.28J

(q) p=0.31 (r) p=0.50 (s) p=0.59 (t) p=0.80

FIG. 1. Typical critical configurations generated from simulations of clean and random field Ising models and percolation models.

coercive field strength, where the metal/insulator domain
fraction changes most rapidly with respect to uniform field h.
Figures 1(i)–1(l) show representative configurations of RF-2D
for a 100 × 100 lattice. Figures 1(m)–1(p) show representa-
tive configurations on the surface of a 100 × 100 × 100 lattice
near the 3D critical disorder strength, R3D

c .
There is also the possibility that in fact domains are not

interacting with each other as in the above Hamiltonians, but

rather each domain acts independently. In the corresponding
uncorrelated percolation model, a site is labeled “metallic”
with a probability p; otherwise it is labeled “insulating.”
When p 
= 0.5, this is like flipping a biased coin, where p
is the probability of turning up heads. This model also has
a second-order phase transition as a function of p, and it
displays structure across multiple lengthscales near its crit-
ical point. The critical percolation strength pc is marked
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FIG. 2. (a) Generic liquid-gas phase diagram above the triple
point. For paths along the dotted blue line, the phase transition is
first order. However, the transition is second order when approached
along the dotted red line. The critical end point (solid green circle)
exerts itself over a critical region (open green circles). (b) Phase
diagram of the random-field Ising model. While the clean or random-
field Ising model has a second-order phase transition as a function
of temperature (the red dotted lines), the transition is first order
when approached as a function of applied field, crossing through the
ordered region (blue dotted line). Critical behavior is observed in the
vicinity of the green critical temperature line, whose critical behavior
is controlled by the random-field fixed point for any finite disorder
strength. Because the random-field fixed point is a zero-temperature
fixed point, the critical region is much broader than in the
clean case.

by a percolating cluster spanning the entire system, mean-
ing that it touches one side of the system, and also the
opposite side. In a two-dimensional system on an infinite
square lattice, this threshold occurs at p2D

c ≈ 0.59 and in a
three-dimensional system on an infinite cubic lattice it oc-
curs at p3D

c ≈ 0.31 [48]. Figure 1(s) shows a percolation
configuration of size 100 × 100 at p2D

c = 0.59. Figure 1(q)
shows a percolation configuration 100 × 100 × 100 at
p3D

c = 0.31.
To further train the DL model to distinguish configura-

tions that are near criticality (such as those described above)
from configurations that are not near criticality, we also
generate training images on uncorrelated percolation away
from any critical point. To avoid the multiscale, fractal tex-
tures associated with criticality, in this set of images we use
the percolation model in the following ranges: p = 0.02 −
0.2; 0.48 − 0.52; 0.8 − 0.98. The first range produces images
that are mostly black, the second range produces images that
are “white noise” [such as Fig. 1(r)], and the third range pro-
duces images that are mostly all white [like those in Fig. 1(t)].
Table I summarizes the parameter ranges we use for generat-
ing simulated data for training and validation from each of the
above Hamiltonians.

III. CUSTOMIZED DEEP LEARNING MODEL

The parameters from Table I are used to generate 8000
images for each model near its transition, with the exception
that percolation away from the 2D and 3D critical perco-
lation strengths accounts for 16 000 images, for a total of
64 000 training images of synthetic data. We describe in the
following three subsections the three major components of

our deep learning model: Sec. III A, data preparation via
symmetry reduction; Sec. III B, a CNN with multiple layers;
and Sec. III C, our method for judging the confidence of the
classifier.

A. Data preparation: Symmetry reduction method

The entire phase space associated with typical config-
urations generated by the models above satisfies certain
symmetries. For example, the clean Ising model [Eq. (1)]
satisfies the Z2 symmetry σi → −σi. Similarly, the RFIM
[Eq. (1)] is symmetric under the simultaneous operations
σi → −σi with hi → −hi. Likewise, the percolation model
is symmetric under the simultaneous operations σi → −σi

with p → 1 − p. In addition, for the square domain con-
figurations we use as training data, the statistical weight of
typical configurations in phase space is symmetric under all
of the operations of the dihedral group of the square, D4.
Such symmetries are often employed in ML via a technique
called data augmentation, in which all of the distinct sym-
metry operations are applied to specific configurations in
order to generate more configurations and thereby augment
the training data. When a neural network is trained under
this kind of augmented data set, the resulting trained neu-
ral network respects all of the symmetries of the underlying
models that produced the training data, rather than suffering
from accidental asymmetries that mimic the random nature
by which the training data are produced. The number of
distinct symmetry operations available in our case is that
of Z2 ⊗ D4, or 2 × 8 = 16. For the square-shaped images
of domain patterns that we generate, using this method of
data augmentation would increase the training set by a factor
of 16.

Rather than employ data augmentation, we introduce an
alternative method: symmetry reduction. We prepare the data
by reducing the symmetry of each configuration as much as
possible before feeding them into the neural network. This
symmetry reduction is as effective as the data augmentation
method, but significantly reduces the time needed to train
the neural network. For symmetry reduction to be effective,
it is essential that all data go through the symmetry re-
duction before being fed into the CNN (including training,
validation, and any subsequent real-world data fed into the
classifier).

Let us turn our attention to the Z2 ⊗ D4 symmetry op-
erations in effect. Our models [Eqs. (1) and (2), including
the noninteracting percolation limit where J → 0] map metal
and insulator domains to Ising spins σ = +1 for metal,
and σ = −1 for insulator. There are 2 × 8 = 16 symmetry
operations that can be applied to these spin configurations
while preserving the weights of the typical configurations
in phase space. We perform the following symmetry op-
erations to each configuration in order to prepare the
data:

(i) Ising Z2 symmetry σi → −σi: If a domain configuration
has majority spin down, we flip all spins to make it majority
spin up.

(ii) Rotations by 0, π/2, π, 3π/2: The configuration is
rotated such that of the four quadrants, quadrant I has the most
spins up.
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FIG. 3. Symmetry reduction method, as described in the text.

(iii) Transpose (reflection about the xy diagonal): If quad-
rant IV has more spins up than quadrant II, we transpose the
configuration to ensure that quadrant II has more spins up than
quadrant IV.

All the above operations are performed in the given order,
and the logic is summarized in Fig. 3 [49].

B. Convolutional neural net architecture

We pass to the neural network single-channel binary im-
ages (i.e., strictly black and white, the same image space as
QR codes) of size 100 × 100. The architecture of the CNN is
as follows (Fig. 4): We use two sets of convolutional layers
interleaved with max pooling layers. The first convolutional
layer applies a suite of 32 filters of size 5 × 5 to the image,
resulting in an image with 32 channels. (By way of compar-
ison, an RGB image has three channels, so that each pixel
is described by three numbers.) These 32 filters have a total
of 32 × 5 × 5 parameters to be trained. The subsequent max
pooling layer groups successive sets of 2 × 2 pixels, keeping
only the largest value in each channel, thus reducing the
image size to 50 × 50. The next convolutional layer applies
a suite of 64 filters of size 5 × 5 × 32 to the 32-channel
image, which was passed from the previous max pooling
layer. These 64 filters have a total of 64 × 5 × 5 parame-
ters to be trained. This is followed by another max pooling
layer, reducing the image size to 25 × 25 pixels, now with
64 channels.

FIG. 4. Convolutional neural network. The input image here is
reduced by the symmetry operations given in Fig. 3. The multidimen-
sional output 2b is flattened into a one-dimensional array (3a) before
it is fed into the fully connected layer. We use the Adam (adaptive
moment estimation) optimization algorithm to train the network [50].
The output label is determined using softmax activation on the output
layer.

All of this is followed by a fully connected layer, followed
by a dropout of 50% of the connections, followed by a final
fully connected layer, resulting in seven-dimensional output
for classification (C-2D, C-3D, RF-2D, RF-3D, P-2D, P-3D,
and P*). We use a softmax activation in the final output layer,
which results in single label classification. If there are n output
classes with numbers vi, the softmax activation function is
defined as

Y softmax
i = exp (vi )

/ n∑
j=1

exp (v j ), (3)

where Y softmax
i is the output likelihood estimate.

After the symmetry reduction, 80% of the configurations
are used for training; the remaining 20% are used for vali-
dation. The training set is used to train the network, whereas
the validation set is used to predict the expected error upon
generalization beyond the training set. Figure 5 shows how
the errors evolve with the training epoch. The epoch at which
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FIG. 5. Error in the training and validation set vs the number of
epochs. Epochs correspond to the number of times the training set
went through a training process. To prevent overfitting, we chose
epoch = 4 for testing with experimental images. Training/validation
accuracy = 99.64%/99.67%.

the classification errors in the validation phase deviate from
the errors in the training phase roughly marks the onset of
overfitting. Figure 5 shows that the classification errors are
less than 0.5% at this point.

C. Figure of merit of classifications

Our goal is to use our ML model developed under su-
pervised learning conditions to distinguish among hypotheses
about datasets from real experiments. But before applying our
trained ML model to images from experiment, it is important
to understand that a trained classifier is only as good as its
training set. Thus far, we have generated “simulated data”
from various theoretical Hamiltonians, and we have trained an
ML algorithm as to which sets of simulated data came from
which underlying Hamiltonian. A major challenge in going
from simulated data to real-world data is how to control for
hypotheses that were not originally envisioned. For example,
if an ML classifier has been trained to recognize the difference
between cats and dogs, what answer will it give when shown
a banana? A simple classifier will give a classification from
its training set, but ideally the answer should not be “cat”
or “dog,” but rather “neither.” Likewise, if our ML classifier
is shown experimental data from a system whose underlying
Hamiltonian is sufficiently different that none of our Hamil-
tonians used in the training process are a good description of
the physical system, a simple classifier will still return some
classification. Therefore, it is necessary to devise a method
for flagging potentially dubious classifications. One method
is adversarial training, i.e., to train the CNN on images that
are not in the set of Hamiltonians comprising the hypothesis.
Once again, this is limited by human imagination. For ex-
ample, how will one know when this process is sufficiently
completed, and how can one control for unforeseen image
types arising in experiment? It is better to design a neutral
method for flagging suspicious classifications, one that is not
limited by the adversarial training set.

Therefore, we seek to devise a completely different method
for identifying potentially dubious classifications. To do this,
we turn our attention to the distribution of values observed
right after the last fully connected layer in Fig. 4. Figure 6
shows what the distribution of values looks like at this step,
over the entire training set. Since this distribution is well
clustered for the seven models of interest, a prediction point
lying far from its corresponding cluster should be scrutinized
rather than blindly accepted.

For each class, the distribution at the end of the last
fully connected layer (see Fig. 6) is generated from the
training examples. We form the seven-dimensional stan-
dard deviation vector of these clusters about their centers
of mass. We subsequently flag as suspicious any output in
this layer that is a distance in this space of more than one
standard deviation vector from all points in the cluster. Set-
ting the cutoff at smaller distances rejects too many correct
predictions in the validation set. A generalization of this
method would be to use any or all of the intermediate lay-
ers for detecting such an anomaly in the input data; see
Ref. [53].

IV. APPLICATION TO EXPERIMENTAL IMAGES ON VO2

A. Testing the CNN on SNIM images of a thin film of VO2

We next turn our attention to testing the trained CNN on
an experimentally derived dataset for which the Hamiltonian
underlying the experimentally observed pattern formation is
already known, before applying the CNN to a new experimen-
tal dataset for which the answer is not previously known. In
this section, we consider experimental data taken via SNIM
on a thin film of VO2. VO2 undergoes a metal-insulator tran-
sition just above room temperature, in which the resistivity
changes by over five orders of magnitude [54]. Rather than
transitioning all at once, we previously showed that there is
a finite regime of phase coexistence in which the metal and
insulator puddles show significant pattern formation [3]. In
fact, the spatial correlations reveal structure on all length-
scales measured via SNIM, from the pixel size (20 nm) all the
way out to the field of view (4 µm) [8]. The physics driving the
pattern formation in this sample is already known via the clus-
ter analysis techniques we recently developed [13,55,56]. By
applying these techniques to analyze the metal and insulator
puddles in this thin film of VO2, we showed that the multiscale
domains are of a fractal nature, with quantitative geometric
characteristics including avalanche statistics matching those
of the RF-2D [8].

Figure 7 shows the application of the CNN to experimental
data on a thin film of VO2 as it undergoes the metal-insulator
transition. The data were obtained using SNIM, and first re-
ported in Ref. [3]. SNIM measurements return an intensity
a as a continuous variable at each pixel, resulting in single
channel images. These SNIM images are of a size 256 ×
256 px. The SNIM images are converted to black pixels and
white pixels by assigning SNIM values of a < 2.5, which are
insulating, to be white, and SNIM values of and a > 2.5,
which are metallic, to be black, as discussed in Ref. [8].
These thresholded images are shown in the top row of Fig. 7.
Reference [8] showed that the geometric characteristics of the
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FIG. 6. Distribution of values of the output nodes for each class in the last fully connected layer, for all of the training sets. These clusters
inhabit a seven-dimensional “model” space. The two representations in the figure are projections of the same seven-dimensional information
onto two different three-dimensional subspaces. An interactive 3D visualization of the full 7D file is available in the Supplemental Material
[51] and Ref. [52].

pattern formation are insensitive to changes in the threshold a
within about 15% of this threshold value.

As shown in Fig. 8, the CNN takes in the experimentally
derived images 100 × 100 px at a time, in each instance re-
turning a classification indicating which Hamiltonian likely
produced the pattern formation. To make full use of the spa-
tial structure in the image, we use a sliding window of size
100 × 100 px, resulting in (256 − 100 + 1) × (256 − 100 +
1) = 157 × 157 classifications for each image.

In Fig. 9, we show the distribution of values in the last
fully connected layer of the CNN, over the set of sliding

windows. The colored dots corresponding to the training set
are the same as those shown in Fig. 6. Results of CNN applied
to the experimentally derived SNIM images of VO2 that are
within one seven-dimensional standard deviation of a training
set are indicated by orange dots. Results of the SNIM data that
are farther away are indicated by black dots, as described in
Sec. III C.

Figure 7 shows the final results of the classifier applied
to the SNIM data. Below each SNIM image (top row), the
bar chart indicates the percentage of sliding windows that
give a particular classification. Bright bars and numbers in

FIG. 7. Classification results of our deep learning model applied to SNIM images on a thin film of VO2 as described in the text. The top
row shows the thresholded data as described in the text. The field of view is 4 µm × 4 µm. White patches are insulating; black patches are
metallic. The total percentage of classifications for a particular model are reported in the bar charts of panels (a)–(d). Classification percentages
that fall within 1σ of a cluster in the training set are indicated in parentheses. Classifications that fall more than 1σ away from the edge of the
corresponding cluster in the training set are colored darker in the bar chart.
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FIG. 8. End-to-end classification flowchart with CNN. We use a
sliding window of size 100 × 100 px over the experimentally derived
images, and slide the window 1 px at a time in each direction. For
each 100 × 100 px image, we first apply symmetry reduction before
feeding the image into the trained CNN. We compare the result of
the CNN classifier to the entire distribution of CNN output from our
training set. If the result is within one seven-dimensional standard
deviation of one of the training images, the prediction is considered
more confident than if it is farther away.

parentheses correspond to classifications that are within one
seven-dimensional standard deviation of the training sets. The
darker part of the bar, and the numbers not in parentheses,
refer to the total percentage of sliding windows which give
the corresponding classification. Thus the overall result of the
ML classifier on an experimentally derived dataset is that it
agrees with the classification from cluster techniques, with at
least 83% confidence.

Notice that in Fig. 9, the distribution of values of the output
nodes in the last fully connected layer for the CNN applied to
the SNIM data is always close to the RF-2D model. Moreover,
the entire set of points moves toward the training set distribu-
tion and then away from it, as a function of temperature. The
temperature of closest approach is T = 342.8 K. This same
phenomenon is borne out in the bar charts of Fig. 7, where
the height of the bright green bar also peaks at T = 342.8 K.
This is highly reminiscent of critical behavior, which grows in
strength as the system approaches criticality, and diminishes
as the system moves away from criticality. We propose that
the distance of the center of mass of the SNIM cluster from
the training clusters can be used as a measure of proximity to
the critical point. Further study is needed to test this idea.

B. Applying the CNN to new optical microscope
images of a VO2 film

The top panels in Fig. 10 show metal and insulator do-
mains in a thin film of VO2 made at UCSD, taken using a

home-built optical microscopy system capable of remaining
in focus while temperature is cycled through the full metal-
insulator transition. (See the Supplemental Material [51] and
Ref. [63] for full details of the sample preparation and ex-
perimental setup.) The optical data are taken at a series of
temperatures going through the metal-insulator transition. The
physical dimensions of the square image sizes in Fig. 10 are
all 28 µm × 28 µm, and the pixel size is 50 nm [64]. Both
the FOV and the pixel size are larger than those of the SNIM
images in Fig. 7.

We apply the same sliding window technique as with the
SNIM data to analyze pieces of each image, 100 × 100 px
at a time, in each instance returning a classification indicating
which Hamiltonian likely produced the pattern formation. Be-
cause the optical images in Fig. 10 are 760 × 760 pixels, this
results in (760 − 100 + 1) × (760 − 100 + 1) = 6612 classi-
fications for each image.

The bottom panels in Fig. 10 show the final results of
the CNN classifier applied to the optical microscope data.
Below each optical microscope image, the bar chart indicates
the percentage of sliding windows which give a particular
classification. In this case, the images from temperatures T =
339–343 K are each identified as RF-2D with a maximum
greater than 89% confidence. In Fig. 11we show the distri-
bution of values in the last fully connected layer of the CNN,
over the set of sliding windows. The small circles correspond
to the training set, and they are the same as those shown in
Fig. 6. We discuss the implications of this identification in
Sec. V.

From a theoretical point of view, we do not expect ev-
ery image acquired from the experiments to have significant
pattern formation. For example, once the image saturates to
metal or insulator, there is no pattern formation left, and
consequently there is much less information available in these
datasets about the underlying model. Rather, we expect the
images to display criticality which reaches peak prominence
at a particular temperature. The typical method to discern
proximity to criticality is through correlation lengths. The
correlation length is expected to blow up as a power law,
ξ ∝ 1/|T − Tc|ν in the vicinity of the critical temperature.
However, the maximum correlation length our CNN can dis-
cern is cut off by the maximum FOV that the CNN is fed from
the experimental data. Furthermore, the CNN analysis does
not return a lengthscale. Instead, we observe once again the
interesting behavior that the proximity of the experimentally
derived data’s cluster of output values in the last fully con-
nected layer approaches and then retreats from the cluster of
output values in the training sets as a function of temperature,
as evidenced by the nonmonotonic behavior of the height of
the bright green bars with temperature in Fig. 12. This is in
line with our previous conjecture that the average distance
of the cluster from that of the training set can be used as a
measure of proximity to criticality.

V. DISCUSSION

For both experimental datasets, whether from SNIM or
from optical microscopy, the deep learning CNN determined
that the intricate pattern of metal and insulator patches was
being set by the physics of the RF-2D. For the SNIM data,
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FIG. 9. Distribution of values of the output nodes for each class in the last fully connected layer, for the VO2 SNIM data, superimposed
on the distribution for the training sets shown in Fig. 6. Results for the VO2 data that are within one seven-dimensional standard deviation
of a training set are indicated by orange dots. Results for the VO2 data that are farther away are indicated by black dots. An interactive 3D
visualization of the full 7D file is available in the Supplemental Material [51] and Ref. [52].

this matches our prior identification using cluster methods
[8]. For the microscope data, it was already known prior to
application of the CNN that the physics driving the pattern
formation should be arising from a 2D Hamiltonian. This is
because the thickness of the film (≈300 nm) is comparable

to the lateral resolution of the instrument. Consequently, the
spatial correlations being measured are firmly in the two-
dimensional limit. However, the fact that the CNN returned
a two-dimensional model and not a three-dimensional model
gives us further confidence in the CNN method.
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FIG. 10. Classification results of our deep learning model applied to new 28 µm × 28 µm optical microscopy images of a VO2 thin film
as described in the text. White patches are insulating; black patches are metallic. The total percentage of classifications for a particular model
is reported in the bar charts of panels (a)–(e). Classification percentages that fall within 1σ of a cluster in the training set are indicated in
parentheses. Classifications that fall more than 1σ away from the edge of the corresponding cluster in the training set are colored darker
in the bar chart. All CNN predictions from optical data during a full temperature ramp up are presented in Fig. 12 of the Supplemental
Material [51] (see also Refs. [57–62] therein).

The identification of the Hamiltonian as RF-2D means that
a combination of material disorder and interactions between
spatially proximate regions of the sample drives the pattern
formation. The fact that interactions must be present rules
out a Preisach model [65] of independent hysteretic switch-
ers, as we previously argued based on first-order reversal
curve measurements [66] and a cluster analysis of the critical
exponents during the transition [8]. The multiscale nature
of the pattern formation is driven by proximity to critical-
ity, which can happen even in a first-order phase transition,
near a critical end point [8,67]. Consistent with proximity
to criticality, we have previously shown that there is signif-
icant slowing down of the relaxation time near the phase
transition [68,69].

Random-field critical points exhibit extreme critical slow-
ing down: because the barriers to equilibration grow as a
power law as the system nears criticality, the characteristic
relaxation time grows exponentially as the system approaches
criticality [45]. Because of this extreme critical slowing down,
the model is notorious for highly nonequilibrium behavior,
including hysteresis, glassiness, coarsening, and aging. In ad-
dition, the model has an anomalously large region of critical
behavior: a system that is 85% away from the critical point
can still display 2 decades of scaling [47]. This means that it is
fairly easy within this model to get into a regime that displays
pattern formation across multiple lengthscales, including frac-
tal textures.

With the model controlling this pattern formation now
well established from this study and from our previous work
[8], we can make the following statements about VO2: In-
creasing disorder is expected to broaden hysteresis curves,

and also decrease the slope of the hysteresis curve at its
inflection point [70]. Indeed, these expectations are borne
out in recent ion irradiation studies of resistivity in VO2

[71]. In addition, due to the pronounced memory effects
with exponentially long equilibration times, exact identifica-
tion of material properties can be history-dependent, leading
to the appearance of nonrepeatability. On the other hand,
disorder can ultimately be exploited as another means of
control [9,72].

The ML method is complementary to the aforementioned
cluster techniques. Whereas the cluster techniques require at
least two decades of scaling in the dataset, we have shown
here and in Ref. [36] that an ML classifier can make de-
terminations on datasets with smaller FOV. And while the
cluster techniques are designed to extract information from
datasets in systems that are in the vicinity of a critical point,
we expect that the ML methods developed here can be useful
farther away from criticality, because they are able to make
determinations on smaller FOV, i.e., they do not require that
the system have the long correlation length associated with
proximity to criticality.

In the same way that the critical exponents are encoded
in the shapes and statistics of the fractal electronic tex-
tures that arise near a critical point [8,13,55], our ML study
reveals that the universal features of the model itself are
encoded in the spatial correlations of the textures, without
needing the intermediate step of identifying critical expo-
nents. Criticality presents itself even at the moderate (i.e.,
not long) lengthscales our CNN views, which is set by the
size of the sliding window we employ on the datasets to be
classified.
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FIG. 11. Distribution of relative weights of each class in the last fully connected layer, for the VO2 optical data (square sample presented in
Fig. 10), superimposed on the distribution for the training sets shown in Fig. 6. Results for the VO2 data that are within one seven-dimensional
standard deviation of a training set are indicated by orange dots. Results for the VO2 data that are farther away are indicated by black dots. An
interactive 3D visualization of the full 7D file is available in the Supplemental Material [51] and Ref. [52].

The method is also potentially extendible to handle nondis-
crete order parameters, such as continuum models, which
present a challenge for cluster methods. For example, it may
be possible to use a similar framework to diagnose pattern
formation that reveals an underlying XY model or Heisenberg
model. In addition, by using regression, we expect to be able

to go beyond criticality to begin to determine the values of
parameters in the Hamiltonian.

We have developed this ML method first on criti-
cal systems, which have no characteristic lengthscale due
to the power-law structure, and therefore display spatial
structure on every lengthscale within a correlation length.
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FIG. 12. All CNN predictions from optical data during a tem-
perature ramp up of data presented in Fig. 10. Darker colors denote
classifications that are more than 1 standard deviation from the iden-
tified training set.

However, we expect this general scheme to also be broadly
applicable to systems that have an emergent lengthscale,
such as frustrated phase-separation systems in general,
such as block copolymers, the mixed phase of type I su-
perconductors, reaction-diffusion systems, and convection
rolls [73,74].

Dagotto [9] points out that quenched disorder plays an im-
portant role in many strongly correlated materials, and based
on this, he argues that for such materials, “it is not sufficient
to consider phase diagrams involving only temperature and
hole-doping x. A disorder strength axis should be incorpo-
rated into the phase diagram of these materials as well.”
Models incorporating disorder predict that nonequilibrium
behavior including glassiness (multiple nearby local energy
minima) and hysteresis are prominent features when elec-
tronic phase separation occurs in the presence of quenched
disorder [8,13,14,16,55,70,72,75–77]. The methods we have
employed here, which identify the terms in the Hamiltonian,
when extended to include a regression analysis to identify the
values of the parameters in those terms, have the potential
to identify the disorder strength. Mapping out this disorder
strength axis in strongly correlated phase diagrams has the
potential to help disentangle some of the ambiguities and
apparent inconsistencies heretofore reported in the literature
of these systems [78–81].

Future work on this type of classifier will also benefit from
(i) generalizing the CNN to handle input images of any size,
(ii) developing a learning-based optimization for the rejection
classifier, and (iii) handling grayscale images without the need
to threshold them.

VI. CONCLUSION

In conclusion, we have extended machine learning meth-
ods to be able to identify the Hamiltonian driving pattern
formation in complex electronic matter. We have shown that
the accuracy that can be achieved by using a CNN to classify
synthetic data is better than 99%, and about 83–89 % accurate
on experimental data. We introduce a symmetry reduction
method, which significantly lowers the training time over data
reduction without reducing accuracy. In addition, we intro-
duce a distribution-based method for quantifying confidence
of multilabel classifier predictions, without the problems as-
sociated with introducing adversarial training sets. We also
propose a machine learning based criterion for diagnosing
proximity to criticality.

We have also demonstrated that this framework can be
successfully applied to real experimental images by using
it to classify the Hamiltonian of SNIM data on a thin film
of VO2, for which the answer was already known from a
complementary theoretical method. Having thus vetted our
ML model, we applied it to optical microscope data on a
different sample of VO2. In each case, we find that the pattern
formation of metal-insulator domains in thin films of VO2 is
driven by proximity to a critical point of the two-dimensional
random field Ising model. Further tests of this model include
hysteresis protocols in the presence of a series of engineered
disorder strengths.

ACKNOWLEDGMENTS

We thank M. J. Carlson for technical assistance with
image stabilization, and we acknowledge helpful conver-
sations with A. El Gamal and K. A. Dahmen. The work
at ESPCI (M.A.B., L.A., and A.Z.) was supported by Co-
fund AI4theSciences hosted by PSL Université, through the
European Union’s Horizon 2020 Research and Innovation
Programme under the Marie Skłodowska-Curie Grant No.
945304. The work at UCSD (P.S. and I.K.S.) was supported
by the AFOSR Award No. FA9550-20-1-0242. M.M.Q. ac-
knowledges support from the National Science Foundation
(NSF) via Grant No. IIP-1827536. D.N.B acknowledges
support by the Center on Precision-Assembled Quantum Ma-
terials, funded through the US National Science Foundation
(NSF) Materials Research Science and Engineering Centers
(Award No. DMR-2011738). S.B., F.S., and E.W.C. acknowl-
edge support from NSF Grant No. DMR-2006192, NSF
XSEDE Grants No. TG-DMR-180098 and No. DMR-190014,
and the Research Corporation for Science Advancement
Cottrell SEED Award. F.S. acknowledges support from the
COVID-19 Research Disruption Fund at Purdue through the
U.S. Department of Education HEERF III (ARP) Award
No. P425F204928. S.B. acknowledges support from a Bils-
land Dissertation Fellowship. E.W.C. acknowledges support
from a Fulbright Fellowship and from DOE BES Award No.
DE-SC0022277. L.B. acknowledges support from a Summer
Undergraduate Research Fellowship at Purdue. This research
was supported in part through computational resources pro-
vided by Research Computing at Purdue, West Lafayette,
Indiana [82].

205121-13



S. BASAK et al. PHYSICAL REVIEW B 107, 205121 (2023)

[1] D. N. Basov, R. D. Averitt, D. van der Marel, M. Dressel, and
K. Haule, Rev. Mod. Phys. 83, 471 (2011).

[2] G. Binnig and H. Rohrer, Rev. Mod. Phys. 71, S324 (1999).
[3] M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O.

Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple,
F. Keilmann, H.-T. Kim, and D. N. Basov, Science 318, 1750
(2007).

[4] Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C. Lupien, T.
Hanaguri, M. Azuma, M. Takano, H. Eisaki, H. Takagi, S.
Uchida, and J. C. Davis, Science 315, 1380 (2007).

[5] S. Guénon, S. Scharinger, S. Wang, J. G. Ramírez, D. Koelle,
R. Kleiner, and I. K. Schuller, Europhys. Lett. 101, 57003
(2013).

[6] M. Lange, S. Guénon, Y. Kalcheim, T. Luibrand, N. M. Vargas,
D. Schwebius, R. Kleiner, I. K. Schuller, and D. Koelle, Phys.
Rev. Appl. 16, 054027 (2021).

[7] B. Phillabaum, Using Anisotropy as a Probe for Nematic Order
in the Cuprates (Purdue University Press, West Lafayette, IN,
2012).

[8] S. Liu, B. Phillabaum, E. W. Carlson, K. A. Dahmen, N. S.
Vidhyadhiraja, M. M. Qazilbash, and D. N. Basov, Phys. Rev.
Lett. 116, 036401 (2016).

[9] E. Dagotto, Science 309, 257 (2005).
[10] A. Moreo, M. Mayr, A. Feiguin, S. Yunoki, and E. Dagotto,

Phys. Rev. Lett. 84, 5568 (2000).
[11] D. Cho, K. M. Bastiaans, D. Chatzopoulos, G. D. Gu, and M. P.

Allan, Nature (London) 571, 541 (2019).
[12] I. Battisti, K. M. Bastiaans, V. Fedoseev, A. de la Torre, N.

Iliopoulos, A. Tamai, E. C. Hunter, R. S. Perry, J. Zaanen, F.
Baumberger, and M. P. Allan, Nat. Phys. 13, 21 (2016).

[13] B. Phillabaum, E. W. Carlson, and K. A. Dahmen,
Nat. Commun. 3, 915 (2012).

[14] J. Li, J. Pelliciari, C. Mazzoli, S. Catalano, F. Simmons, J. T.
Sadowski, A. Levitan, M. Gibert, E. Carlson, J.-M. Triscone, S.
Wilkins, and R. Comin, Nat. Commun. 10, 4568 (2019).

[15] A. Sharoni, J. G. Ramírez, and I. K. Schuller, Phys. Rev. Lett.
101, 026404 (2008).

[16] K. W. Post, A. S. McLeod, M. Hepting, M. Bluschke, Y.
Wang, G. Cristiani, G. Logvenov, A. Charnukha, G. X. Ni,
P. Radhakrishnan, M. Minola, A. Pasupathy, A. V. Boris, E.
Benckiser, K. A. Dahmen, E. W. Carlson, B. Keimer, and D. N.
Basov, Nat. Phys. 14, 1056 (2018).

[17] G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N.
Tishby, L. Vogt-Maranto, and L. Zdeborová, Rev. Mod. Phys.
91, 045002 (2019).

[18] J. Carrasquilla, Adv. Phys.: X 5, 1797528 (2020).
[19] E. Bedolla, L. C. Padierna, and R. Castañeda-Priego, J. Phys.:

Condens. Matter 33, 053001 (2021).
[20] P. Mehta, M. Bukov, C.-H. Wang, A. G. Day, C. Richardson,

C. K. Fisher, and D. J. Schwab, Phys. Rep. 810, 1 (2019).
[21] P. Ronhovde, S. Chakrabarty, D. Hu, M. Sahu, K. K. Sahu, K. F.

Kelton, N. A. Mauro, and Z. Nussinov, Eur. Phys. J. E 34, 105
(2011).

[22] S. S. Schoenholz, E. D. Cubuk, D. M. Sussman, E. Kaxiras, and
A. J. Liu, Nat. Phys. 12, 469 (2016).

[23] L.-F. Arsenault, A. Lopez-Bezanilla, O. A. von Lilienfeld, and
A. J. Millis, Phys. Rev. B 90, 155136 (2014).

[24] G. Carleo and M. Troyer, Science 355, 602 (2016).
[25] A. Lopez-Bezanilla and O. A. von Lilienfeld, Phys. Rev. B 89,

235411 (2014).

[26] P. Mehta and D. J. Schwab, arXiv:1410.3831.
[27] C. Beny, arXiv:1301.3124.
[28] J. Schmidt, M. R. G. Marques, S. Botti, and M. A. L. Marques,

npj Comput. Mater. 5, 83 (2019).
[29] L. M. Ghiringhelli, J. Vybiral, S. V. Levchenko, C. Draxl, and

M. Scheffler, Phys. Rev. Lett. 114, 105503 (2015).
[30] Y. Zhang, A. Mesaros, K. Fujita, S. D. Edkins, M. H. Hamidian,

K. Chng, H. Eisaki, S. Uchida, J. C. S. Davis, E. Khatami, and
E.-A. Kim, Nature (London) 570, 484 (2019).

[31] Y. Zhang and X. Xu, Heliyon 6, e05055 (2020).
[32] S. Xu, A. S. McLeod, X. Chen, D. J. Rizzo, B. S. Jessen, Z.

Yao, Z. Wang, Z. Sun, S. Shabani, A. N. Pasupathy, A. J. Millis,
C. R. Dean, J. C. Hone, M. Liu, and D. N. Basov, ACS Nano
15, 18182 (2021).

[33] X. Chen, Z. Yao, S. Xu, A. S. McLeod, S. N. G. Corder,
Y. Zhao, M. Tsuneto, H. A. Bechtel, M. C. Martin, G. L.
Carr, M. M. Fogler, S. G. Stanciu, D. N. Basov, and M. Liu,
ACS Photonics 8, 2987 (2021).

[34] J. Carrasquilla and R. G. Melko, Nat. Phys. 13, 431 (2017).
[35] L. Wang, Phys. Rev. B 94, 195105 (2016).
[36] L. Burzawa, S. Liu, and E. W. Carlson, Phys. Rev. Mater. 3,

033805 (2019).
[37] A. Sohn, T. Kanki, K. Sakai, H. Tanaka, and D.-W. Kim,

Sci. Rep. 5, 10417 (2015).
[38] N. J. McLaughlin, Y. Kalcheim, A. Suceava, H. Wang, I. K.

Schuller, and C. R. Du, Adv. Quantum Technol. 4, 2000142
(2021).

[39] S. Papanikolaou, R. M. Fernandes, E. Fradkin, P. W. Phillips,
J. Schmalian, and R. Sknepnek, Phys. Rev. Lett. 100, 026408
(2008).

[40] L. Onsager, Phys. Rev. 65, 117 (1944).
[41] M. E. Fisher, Rev. Mod. Phys. 46, 597 (1974).
[42] C. Kittel and H. Kroemer, Thermal Physics (Freeman, San

Francisco, 1980).
[43] P. Limelette, A. Georges, D. Jerome, P. Wzietek, P. Metcalf, and

J. M. Honig, Science 302, 89 (2003).
[44] Disorder can also cause spatial variations in the coupling J. This

random bond disorder is irrelevant in the renormalization-group
sense when random field disorder is present.

[45] D. S. Fisher, Phys. Rev. Lett. 56, 416 (1986).
[46] A. A. Middleton and D. S. Fisher, Phys. Rev. B 65, 134411

(2002).
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