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Third-order charge transport in a magnetic topological semimetal
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Magnetic topological materials and their physical signatures are a focus of current research. By first-principles
calculations and symmetry analysis, we reveal exotic topological semimetal states in an existing antiferromagnet
ThMn2Si2. Depending on the Néel vector orientation, the topological band crossings near the Fermi level
form either a double-nodal loop or two pairs of Dirac points, which are all fourfold degenerate and robust
under spin-orbit coupling. These topological features produce large Berry connection polarizability, leading
to pronounced nonlinear transport effects. Particularly, we evaluate the third-order current response, which
dominates the transverse current in ThMn2Si2. We show that the third-order response can be much more sensitive
to topological phase transitions than a linear response, which offers a powerful tool for characterizing topological
states of matter.
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I. INTRODUCTION

Topological semimetals (TSMs) have been attracting
tremendous interest in the past decade [1–4]. They are charac-
terized by protected band degeneracies near the Fermi level,
which may form a variety of nodal points [5–11], nodal lines
[12–14], or nodal surfaces [15–18] in momentum space. Due
to these degeneracies, the low-energy electron excitations
are endowed with exotic characters in dispersion, pseudospin
structure, or topological charge, different from conventional
materials.

Currently, despite exciting progress in the classifications
of TSM states and in the high-throughput search of these
materials [11,19–27], good candidate materials are still quite
limited. Here, “good” means that the material should at least
have a band degeneracy close to the Fermi level and not
overlap with other extraneous bands. The challenge is more
pronounced regarding the recent research focus of magnetic
TSMs [28–31]. In many magnetic materials, the low-energy
bands are quite complicated owing to the less dispersive d
or f bands. In addition, many band degeneracies lose their
protection under spin-orbit coupling (SOC), which is often
sizable in magnetic materials.

In the meantime, there is an urgent need in exploring the
physical consequences of TSM states. So far, experimen-
tal studies in the field are mainly in terms of spectroscopic
probes, linear transport, and magnetotransport. We note that
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band degeneracies can naturally give rise to strong interband
coherence. For example, the Weyl points are singularities of
Berry curvature [5], which is a band geometric quantity en-
coding interband coherence and scales as ∼1/(�ε)2 in terms
of the energy splitting �ε between two bands. Indeed, this
underlies the large anomalous Hall response [32,33] and the
chiral anomaly [34,35] effect proposed for Weyl semimetals.
Following this thought, one naturally wonders whether there
are other band geometric quantities enhanced in TSMs and
what physical effects they may bring about.

In this paper, we first reveal a high-quality magnetic TSM
in an existing antiferromagnetic (AFM) material ThMn2Si2.
We show that depending on its Néel vector direction, the band
degeneracies can form a double-nodal loop or two pairs of
Dirac points close to the Fermi level. These magnetic band
crossings are fourfold degenerate and robust against SOC.
Using this material as an example, we show that TSMs fea-
ture strongly enhanced Berry connection polarizability (BCP)
[36–39], which is an intrinsic band geometric quantity and
scales as ∼1/(�ε)3. In ThMn2Si2, it leads to a pronounced
third-order charge current response to a driving E field, which
dominates the transverse current. Furthermore, we show that
the third-order signal is much more sensitive to the change in
band topology than the linear order, so it offers a promising
tool for characterizing TSMs.

II. ThMn2Si2: STRUCTURE AND MAGNETISM

ThMn2Si2 single crystals were first synthesized in the
1960s [40,41]. They have a tetragonal CeAl2Ge2-type struc-
ture with space group I4/mmm (No. 139). As shown in
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FIG. 1. (a) Perspective view and (b) top view of the ThMn2Si2 lattice. The magnetic structure in (a) represents the AFM-z state. (c) Band
structure of ThMn2Si2 along with a projected density of states (PDOS) in the absence of SOC. The arrows mark the band crossing points
belonging to two types of nodal lines, NL1 and NL2, as schematically illustrated in (d).

Figs. 1(a) and 1(b), the structure consists of atomic layers
stacked along the c axis (z direction), with the Mn layer
separated by Si-Th-Si sandwiches. Th atoms occupy the 2a
Wyckoff position, whereas Mn (Si) atoms are at the po-
sition of 4d (4e). For the conventional cell in Fig. 1(a),
the experimentally measured lattice constants are a = b
= 4.021 Å and c = 10.493 Å [41]. These values are adopted
in our first-principles calculations.

Experimental measurements showed that ThMn2Si2 is
AFM with a Néel temperature ∼483 K [42]. From the neutron
diffraction result, the magnetism is mainly from Mn and has
an A-type configuration, as illustrated in Fig. 1(a), i.e., the
coupling is ferromagnetic within each Mn layer and is AFM
between the layers. The magnetic easy axis is along c. The
magnetic moment at Mn site was measured to be ∼1.75μB at
78 K [42] and <2μB at 4.2 K [43]. All these features have
been successfully reproduced by our first-principles calcula-
tions (see Supplemental Material for details [44]).

III. NODAL LINES IN THE ABSENCE OF SOC

Let us first consider the band structure of AFM ThMn2Si2

in the absence of SOC. As shown in Fig. 1(c), the system
exhibits a semimetal character. The low-energy bands around
Fermi level are mainly from Mn-3d and Si-2p orbits. One
observes multiple band crossings close to Fermi level [45].
A careful scan over the Brillouin zone (BZ) shows that they
belong to two families of nodal lines, which form different
winding patterns over the BZ torus [46]. As illustrated in
Fig. 1(d), the first family (denoted as NL1) consists of a single
nodal ring located within the kz = π plane and centered at Z ,
whereas the second (denoted as NL2) includes four nodal lines
in the kx = 0 and ky = 0 planes, each traversing the BZ in the
z direction.

To understand the protection of these nodal lines, we note
that without SOC, the two spin channels are decoupled and
hence can be analyzed separately. Each spin channel can be
regarded as spinless and has an effective time-reversal sym-
metry T [47]. In addition, each channel has the symmetry of
inversion (P), vertical mirrors Mx and My, and horizontal
glide mirror M̃z = {Mz| 1

2
1
2 0} (at a Mn layer). Therefore, the

nodal lines actually enjoy a double protection. First, in each
spin channel, the spinless PT symmetry dictates a quantized
π Berry phase on a small loop encircling a line, protecting it
from opening a gap. Second, each line is protected by a mirror
symmetry as the two crossing bands have opposite mirror

eigenvalues. The latter also constrains the nodal lines in the
three mirror-invariant planes of BZ.

IV. DOUBLE-NODAL LOOP AND DIRAC POINTS
UNDER SOC

Now, we study the band structure when SOC is included.
We first consider the ground state with Néel vector along z,
denoted as the AFM-z state. The system has a magnetic space
group of PI 4/nnc. The calculated band structure in Fig. 2(a)
looks similar to Fig. 1(c). Focusing on the band crossings in
Fig. 2(a), one observes that the NL2 lines are gapped out,
however, surprisingly, the NL1 ring is still maintained under
SOC.

With SOC, each state |u〉 is degenerate with a partner
PT |u〉, where T is the genuine time-reversal operation and
P here acts on the central Th site in Fig. 1(a). Hence, the NL1

ring is fourfold degenerate, formed by crossing between two
doubly PT -degenerate bands. This is made possible if the
PT partners share the same M̃z eigenvalue and the crossing
is between bands with opposite eigenvalues, as illustrated in
Fig. 2(b).

To verify this, note that

M̃2
z = −t110 = −e−ikx−iky , (1)

with t110 the translation of one lattice unit respectively in
the x and y directions, so its eigenvalues are given by gz =
±ie−i(kx+ky )/2. Due to the offset between the inversion center
(Th site) and the mirror plane (Mn layer), the commutation
relation between P and M̃z is M̃zP = t111PM̃z. It follows that

FIG. 2. (a) Band structure with SOC for the AFM-z state. The
arrows indicate the crossing points on the double-nodal loop, as
illustrated in (b). Each point on the loop is formed by the crossing
of four bands. The red and blue colors denote bands with opposite
M̃z eigenvalues.
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FIG. 3. (a) Magnetic structure for the AFM-x state. (b) shows the
corresponding band structure with SOC. The arrows mark two (of the
four) Dirac points on the Z-U path. (c) illustrates the distribution and
the dispersion of these Dirac points.

for any state |u〉 with M̃z|u〉 = gz|u〉, its partner satisfies

M̃z(PT |u〉) = −e−ikz gz(PT |u〉). (2)

Thus, in the kz = π plane, the PT partners indeed share the
same eigenvalue gz.

This kind of fourfold nodal loop robust under SOC was
initially proposed by Fang et al. [14] and was named the
double-nodal loop. Its material realizations are very rare, es-
pecially in magnetic systems, being only predicted in MnPd2

up to now [30].
A key feature of magnetic TSMs is that their topological

states can be controlled by rotating the magnetic order pa-
rameter, e.g., by spin torques, applied field, or strain, which
changes the symmetry of the system. Here, let us consider the
case when the Néel vector is along the x direction (referred
to as the AFM-x state), as in Fig. 3(a). This breaks the four-
fold rotation along z and the magnetic space group becomes
PI mmn. As shown in Fig. 3(b), points on the NL1 and NL2

nodal lines are almost all gapped out except for four points,
namely the intersection points of these lines with the Z-U
path [Fig. 3(c)]. These points represent fourfold-degenerate
AFM Dirac points. Hence, when the Néel vector rotates from
the z to x direction, the system transitions from a magnetic
double-nodal loop semimetal to an AFM Dirac semimetal.

To understand this topological phase transition, we note
that (1) the PT symmetry is maintained regardless of the Néel
vector direction, (2) M̃z is broken for AFM-x, so the double-
nodal loop is no longer protected, and (3) there emerges
a twofold screw axis C̃2x = {C2x| 1

2
1
2 0}. This C̃2x symmetry,

together with PT , protects the four Dirac points on the
C̃2x-invariant path Z-U . The analysis is similar to that for
the AFM-z case and hence is relegated to the Supplemental
Material [44].

FIG. 4. (a)–(c) Calculated distribution of BCP tensor elements in
the kz = π plane for the AFM-z state. The gray lines depict the Fermi
surface. The unit of Gab is Å2 V−1. (d) Third-order conductivity ten-
sor elements (divided by τ ) vs the chemical potential μ for AFM-z.
Here, we also plot the longitudinal conductivity σxx (red dashed line,
right axis). The energy range of the double-nodal loop is indicated
by the green shaded region.

V. BCP AND THIRD-ORDER CURRENT RESPONSE

As the Berry curvature, BCP is an intrinsic band geometric
quantity, which characterizes the positional shift of Bloch
electrons under an applied E field [36–39]. It is a second-rank
tensor. For a band with index n, it can be expressed as (we set
e = h̄ = 1) [36]

Gab(k) = 2 Re
∑
m �=n

(va)nm(vb)mn

(εn − εm)3
, (3)

where a and b label the Cartesian components, v’s are the
interband velocity matrix elements, and εn is the band energy.
From (3), one can see that BCP ∼ 1/(�ε)3, so it should be
strongly enhanced at small gap regions, especially at band
degeneracies. In Figs. 4(a)–4(c), we plot BCP components for
the AFM-z state in the kz = π plane where the double-nodal
loop is located. One clearly observes that BCP is concentrated
around the nodal loop as well as the four small-gap spots
where the original NL2 lines cross the plane.

In TSMs, band degeneracies exist near the Fermi level,
which means pronounced BCP would appear for the low-
energy states, thereby impacting the physical properties of the
system. Recently, it was revealed that BCP underlies many
nonlinear response properties of solids [38,39,48–51]. Here,
we consider the third-order charge current response. This is
because ThMn2Si2 has a quite high symmetry: It has the
symmetry T t00 1

2
, P , and also C4z in the ground state AFM-z.

Notably, the inversion symmetry P forbids any second-order
current response, whether it is intrinsic from BCP [49,50] or
extrinsic from the Berry curvature dipole [52,53]. Considering
transport in the x-y plane, these symmetries suppress both
the linear- and second-order current responses in the direction
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transverse to E . Thus, the third-order current j ∼ E3 will be
the leading-order transverse response.

In the extended semiclassical theory, BCP determines the
third-order current that is linear in the electron relaxation time
τ [39]. The corresponding third-order conductivity tensor can
be expressed as [39]

χabcd =τ

[∫
[dk](−∂a∂bGcd + ∂a∂d Gbc − ∂b∂d Gac) f0

+1

2

∫
[dk]vavbGcd f ′′

0

]
, (4)

where [dk] stands for
∑

n dk/(2π )d with d the dimension
of the system, the v’s here are the intraband velocity for the
band n, and f0 is the Fermi distribution function. Considering
in-plane transport, the indices a, b, c, d ∈ {x, y}. Obviously,
the χ tensor is most easily evaluated in a coordinate sys-
tem adapted to the crystal, as in Fig. 1(b). The direction of
applied E field can be specified by its polar angle θ , i.e.,
E = E (cos θ, sin θ, 0). Note that expression (4) includes both
the longitudinal and transverse responses. Focusing on the
transverse third-order current j (3)

⊥ which is along ẑ × E, we
can write j (3)

⊥ = χ⊥(θ )E3 in terms of a third-order transverse
conductivity χ⊥. For the ground-state ThMn2Si2 with C4z

symmetry, we find

χ⊥(θ ) = − 1
4 (χ11 − 3χ12) sin 4θ, (5)

where χ11 = χxxxx, and χ12 = (χxxyy + χxyxy + χxyyx )/3.
In Fig. 4(d), we plot the involved tensor elements for

ThMn2Si2 as a function of chemical potential. One observes
that the response is peaked around the intrinsic Fermi level, in
a window overlapping with the energy range of the double-
nodal loop (the green shaded region). This indicates that
the contribution is mainly due to the double-nodal loop and
confirms our claim that band degeneracies in TSMs tend to
enhance BCP and generate pronounced third-order transport.

VI. PROBING TOPOLOGICAL PHASE TRANSITION

We have shown that the third-order response is greatly
enhanced by band degeneracies in TSMs. As a result, when
there is a change in the degeneracy, i.e., when the system
undergoes a topological phase transition, a significant change
in the nonlinear response can be expected.

Here, we demonstrate this point in ThMn2Si2. When the
Néel vector direction rotates from z to x, a topological phase
transition happens, with the double-nodal loop replaced by
four Dirac points. Note that for the AFM-x state, the C4z

symmetry is broken, so there are more independent elements
of χ , and the expression for χ⊥ changes to

χ⊥(θ ) = (3χ21 − χ11) cos3 θ sin θ

+ (χ22 − 3χ12) cos θ sin3 θ, (6)

where χ22 = χyyyy, and χ21 = (χyyxx + χyxyx + χyxxy)/3. Fig-
ure 5(a) plots the relevant tensor elements versus chemical
potential. Compared with Fig. 4(d), one can see a dramatic
change in the response. The contribution from the original
nodal loop is largely suppressed. Instead, the two peaks in
Fig. 5(a) are perfectly aligned with the energies of the two

FIG. 5. (a) Third-order conductivity tensor elements (divided by
τ ) vs μ for the AFM-x state. The two vertical dashed lines mark the
energies of the AFM Dirac points. The corresponding longitudinal
conductivity σxx is also shown by the red dashed curve. (b) The ratio
(χ11 − 3χ12)/σxx plotted vs μ for AFM-z state. (c) Comparison of
χ⊥(θ ) (divided by τ ) for AFM-z (red line) and AFM-x (blue line).
The AFM-z result is an order of magnitude larger than AFM-x, and
they show different angular dependence.

pairs of Dirac points (as marked by the two vertical dashed
lines).

In Fig. 5(c), we plot χ⊥(θ ) at the intrinsic Fermi level
for the two states, as a function of angle θ . One can see
that the response for AFM-x is smaller than AFM-z by an
order of magnitude, despite the overall similarity of the two
band structures [see Figs. 2(a) and 3(b)]. For comparison,
in Figs. 4(d) and 5(a), we also plot the linear Drude con-
ductivity for each state (red dashed curve), which shows
much less change between the two states. This demon-
strates that the third-order response from BCP is indeed
much more sensitive to the change in band topology, thereby
offering a promising tool for probing topological phase
transitions.

In addition, from Fig. 5(c), one notes that the third-order
response χ⊥(θ ) exhibits different angular dependence for the
two states. For AFM-z, χ⊥(θ ) has a period of π/2, whereas
the period is doubled for AFM-x. This feature can be tested in
experiment using a multiple-lead geometry [48,54].

VII. DISCUSSION

We have revealed ThMn2Si2 as an almost ideal magnetic
TSM hosting two exotic topological states. Its magnetism
persists at room temperature, and its band structure is clean
with degeneracies close to the Fermi level (energy spread of
the nodal loop is also quite small). By controlling the Néel
vector direction, the system realizes a magnetic double-nodal
loop semimetal or a AFM Dirac semimetal.

These topological band features can be probed by angle-
resolved photoemission spectroscopy (ARPES) [4]. However,
it is often difficult for ARPES to clearly resolve tiny gaps
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such as those appearing during topological phase transitions.
In such cases, the BCP-enhanced third-order current re-
sponse can be a good complement to existing characterization
techniques. Experimentally, the nonlinear signal is typically
detected using the lock-in technique with a low-frequency ac
driving field, which was successfully applied in several recent
experiments [48,54–56].

The double-nodal loop TSM can be a parent state for
generating multiple topological states under symmetry break-
ing. Besides AFM Dirac semimetals, other states, such as
Weyl semimetals or magnetic topological insulators, may also
appear by controlling magnetic ordering, lattice strain, or ex-
ternal fields. The third-order current response will be useful in
characterizing such transitions.

The third-order conductivity χ⊥ studied here is connected
with BCP, which is peaked at band degeneracies. In good
TSMs, this peak occurs near the intrinsic Fermi level, as
shown in Fig. 4(d). Meanwhile, the linear conductivity σ

typically reaches a minimum at the same range, because
as a semimetal the density of states is suppressed there, as

confirmed in Figs. 4(d) and 5(a). This contrasting behavior
again manifests the important geometric origin of nonlinear
transport. In Fig. 5(b), we further plot the ratio χ/σ versus the
chemical potential, which is even more enhanced at topolog-
ical band degeneracies. It may serve as an intrinsic material
property (free of τ ) that can be compared among different
materials.
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