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Framework for efficient ab initio electronic structure with Gaussian Process States
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We present a general framework for the efficient simulation of realistic fermionic systems with modern
machine-learning-inspired representations of quantum many-body states, towards a universal tool for ab initio
electronic structure. These machine-learning-inspired Ansdtze have recently come to the fore in both a (first-
quantized) continuum and discrete Fock space representations, where, however, the inherent scaling of the latter
approach for realistic interactions has so far limited practical applications. With application to the “Gaussian
Process State,” a recently introduced Ansatz inspired by systematically improvable kernel models in machine
learning, we discuss different choices to define the representation of the computational Fock space. We show how
local representations are particularly suited for stochastic sampling of expectation values, while also indicating
a route to overcome the discrepancy in the scaling compared with continuum-formulated models. We are able
to show competitive accuracy for systems with up to 64 electrons, including a simplified (yet fully ab initio)
model of the Mott transition in three-dimensional hydrogen, indicating a significant improvement over similar
approaches, even for moderate numbers of configurational samples.
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I. INTRODUCTION

Interactions of many electrons with each other and their
environmental nuclear potentials give rise to almost all the
complexity in chemical and materials science. Accurate
simulations of these quantum particles with their known in-
teractions can describe emergent properties of a system and
are therefore a key challenge linking the electronic scale and
trustworthy predictions of relevant physical observables from
fundamental physical principles. However, these quantum
problems are formulated in a Hilbert space which inherently
scales exponentially with number of particles, and hence
numerically tractable many-body wave function approaches
typically require approximations, effectively compressing the
information in this space.

Many of these approximate wave function approaches are
based around explicitly imposing an appropriate functional
form of the many-electron state. These well-established rep-
resentations are generally directly informed by exploiting
some physical characteristics or intuition of the state which
is exploited in order to describe them compactly, such as
Laughlin [1], BCS [2], or Gutzwiller [3] states. However,
since the structure of the target state depends specifically on
the underlying physics of the studied system, most introduced
state approximations for many-electron wave functions are not
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universally suitable for all systems of interest. This makes
these representations successful for specific classes of sys-
tems. This approach can also encompass more flexible forms
which are still nevertheless restricted in their applicability,
such as coupled-cluster wave functions [4] (which require
low-rank correlations) or tensor networks [5] (which require
low entanglement).

The framework of variational Monte Carlo (VMC) [6]
makes it possible to use any functional form as a model for
the many-body wave function, as long as it can be efficiently
sampled in a chosen computational basis. Optimization of its
parameters and extraction of many-body expectation values of
interest are then enabled through efficient stochastic sampling
of the configuration space. In recent years, this has enabled
wave function models inspired by classical machine learning
(ML) to come to the fore due to their ability to describe
complicated functions of many variables in a black-box and
efficient fashion [7-14]. Importantly, such ML models, e.g.,
neural network architectures or kernel models, are typically
not limited by rigid imposed functional forms, and in principle
can be improved systematically to arbitrary accuracy to model
the many-body correlations in the quantum state. Although the
speed of this convergence in desired expectation values with
the complexity of the model is not guaranteed, the systematic
and unbiased ability to describe many-body effects without
restriction in rank or range represents probably the most
important advantage over other established models typically
used in VMC such as (Slater-)Jastrow Ansdtze [6,15].

With increasingly many successful applications of ML-
inspired models for quantum many-body wave functions often
challenging the state of the art [16,17], this route is con-
sidered a promising candidate for a truly universal quantum
many-body method. In this paper, we build on the Gaussian
Process State (GPS) [18-20], an ML-inspired wave function
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model motivated from Bayesian kernel models. This Ansatz
takes a particularly simple form which has been shown to
practically reach accuracies comparable to similarly system-
atically improvable neural-network-inspired states. We apply
the state to electronic problems interacting with the physical
long-ranged Coulomb interaction as a step towards realistic
electronic structure and discuss the challenges which arise in
this context for VMC methods in a Fock space picture. We
ameliorate many of these difficulties when sampling dense
Hamiltonians in this representation by combining the GPS
with approaches previously considered in the orbital-space
VMC literature [21], in particular constructing the Fock space
from localized basis functions. This also paves the way to
achieve a reduced (asymptotic) scaling of the method by ex-
ploiting the emerging natural sparsity of the Hamiltonian in
this representation [22-25], which would bring the scaling
into agreement with continuum real-space VMC [23,26], as
has recently also been the focus of ML-inspired quantum
states [27-37]. This opens the possibility to practically treat
larger systems.

We demonstrate the applicability of the methodology in
combination with our state parametrization, with applica-
tion to different test systems, reaching competitive energies
compared with established methodologies in the investiga-
tion of electronic systems with the real Coulomb interaction.
Our results include the description of a correlation-driven
metal-insulator transition in a minimal 64-atom model of
a correlated hydrogen material, representing a system size
beyond what has been discussed with related approaches
and towards realistic materials science applications. Further-
more, we expect the discussed developments to be able to be
combined seamlessly with other ML-inspired models, includ-
ing recent parametrizations specifically tailored for electronic
systems [38—40]. The following section introduces the GPS
Ansatz to model the electronic wave function which we uti-
lize in the VMC framework for ab initio quantum chemical
calculations, which we outline in Sec. III. Finally, we present
benchmarking results for one- and three-dimensional hydro-
gen materials in Sec. IV.

II. GAUSSIAN PROCESS STATES

The general procedure for approximating the ground state
of a system with VMC is conceptually simple: Having defined
a functional form for the wave function in the computa-
tional basis, defining a mapping from basis states |x) to the
configurational wave function amplitudes (W|x), expectation
values are evaluated by stochastic sampling from the compu-
tational basis. Through a numerical minimization, the chosen
parametrization of the state can be optimized to find a suitable
approximation of the (generally unknown) many-body target
state, here considered to be the electronic ground state of the
ab initio chemical system. Key to the success is the choice
of the trial wave function Ansatz and its ability to faithfully
represent the physics of the target state as well as exhibiting
as compact a form as possible to facilitate optimization. These
properties have recently been well served by the application
of traditional machine learning models which, if carefully
designed, do not require a low scaling in entanglement of the
target state for efficient representation [9,41].

Various neural network architectures have recently been
applied as a model to represent ab initio wave functions in
both a first-quantized [27-37] and second-quantized perspec-
tive [42—46]. In this paper, we follow the latter approach, in
which we construct a computational basis from Fock states
identifying the electronic occupancies of a finite number
of molecular orbitals. We use a similar ML-inspired model
for the wave function that was recently introduced, dubbed
the Gaussian Process State (GPS) [18-20]. The GPS repre-
sentation can be derived from the application of a general
kernel model, as in Gaussian process regression or kernel
ridge regression. Kernel models in machine learning recast the
problem into a very high dimensional feature space, at which
point the data can be described via a linear model. By allowing
the effective dimension of this feature space to be systemati-
cally enlarged (and, in this paper, variationally optimized), the
expressiveness of the GPS can be improved systematically. In
this way, the GPS represents a universal approximator of a
target state, not restricted to a rigid functional form or specific
correlation characteristics.

Here, we utilize the recent formulation of the GPS, which
can be viewed as a model supported by a set of M unen-
tangled product states as data points explicitly driving the
representation [20]. The number of product states, M, in the
following referred to as the “support dimension” of the model,
serves as the single hyperparameter of the model controlling
its complexity (and hence both its expressibility and number
of parameters). Therefore, in keeping with the approach of
other ML-inspired Ansditze, it can in principle span any state
in the Hilbert space as M increases.

The considered GPS model associates many-body config-
urations with their wave function amplitudes according to a
simple form, given by

M

L
W(x) = (x|W) = exp (Z]‘[ea,,;x,) (1)

a=1 i=1

which is specified by M x L x4 continuous variational param-
eters in the tensor €. Within this parametrization, each local
occupancy of the L spatial orbitals, denoted by x;, is used as
an index into the tensor of variational parameters. The local
occupancy x; can therefore take one of four values depend-
ing on whether the orbital is unoccupied, singly occupied
with a spin-up or spin-down electron, or doubly occupied
with electrons of both spin types. The model generalizes a
previous incarnation of the GPS, which considered a more
rigid “squared-exponential” form of the kernel based on the
Hamming distance metric between “classical” configurations,
thereby supporting the model with fixed integer occupancies
for each degree of freedom [18]. The form of Eq. (1) can
be considered a completely flexible parametrization of such a
kernel function, allowing for a fully variational identification
and weighting of the dominant correlation features, and can be
efficiently evaluated for arbitrary configurations of the state.
The model can also be viewed from the perspective
of a tensor network state, being analogous to an expo-
nentiated matrix product state (MPS) [5] for which the
matrices are constrained to be diagonal. Equivalently, the state
is a CANDECOMP/PARAFAC (CP) factorization [47,48]
of the log of the wave function amplitude tensor. The
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“diagonal” nature of the matrices makes the expressible am-
plitudes independent of the orbital ordering, and the act of
exponentiation yields a combination of all possible products
of terms contributing to the linear combination of product
states in the exponential. This makes it possible to capture
nontrivial entanglement and results in a product over the
correlation features reminiscent of correlator product states
[49,50], however, without any restriction on the ranks and
ranges of the correlations which are described. We show in
Ref. [20] how this state can also be represented by a neural
network, with a specific architecture, exposing a duality be-
tween kernel and neural network approaches which has been
previously explored in the ML community [51-53].

III. EFFICIENT FOCK SPACE YMC
FOR AB INITIO FERMIONS

A. Electronic VMC in second quantization

In this paper, we aim to utilize the representative power
of the GPS to describe the electronic ground state of molec-
ular systems. We first review second-quantized VMC for
ab initio fermions, particularly focusing on practical ap-
proaches for our specific context. The ab initio electronic
structure Hamiltonian in the Born-Oppenheimer approxima-
tion can be expressed in a discretized basis of molecular
spin-orbitals according to [54]

2L 2L
N 1 .
_ (1) At A (@) Afataa
H= Zhij ¢/ + 3 Zhiﬂd CiCLeie. 2)
ij ijk

This Hamiltonian describes the interactions of the electrons
occupying the various 2L degrees of freedom via the cre-
ation and annihilation operators ¢' and ¢ satisfying fermionic
commutation relations. The Hamiltonian matrix elements are
defined via the one-electron integrals hl(]l) capturing the single-
particle contributions from their kinetic energy and interaction
with the fixed external potential. The two-electron integrals
describe instantaneous electron-electron interactions via the
Coulomb interaction, defined as

h(g}gl _ /dr/dr/ ¢?(1’)¢_1‘(1‘)¢Z(r/)¢1(1‘/)’ 3)
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which are evaluated with respect to the molecular orbital
functions ¢;(r) defined across the real space. The spin-orbital
labels i, j, k, I can be understood as compound indices index-
ing the two-dimensional spin degree of freedom, together with
the spatial degree of freedom. Here, we work in a restricted
basis of L spatial orbitals, which are the same irrespective
of the spin component. In this paper, the molecular orbitals
are obtained as contracted functions of the underlying linear
combination of atomic orbitals as defined by various tabulated
quantum chemical basis sets [55]. With the molecular orbitals
defining the computational basis of the problem, we can use
the GPS, or other general Ansdtze, as the model mapping the
orbital occupancies of an instantaneous electronic configura-
tion to wave function amplitudes.

We evaluate the expectation via stochastic sampling. In
particular, the variational energy of the state is computed

as

(WA <mwx>> @
(W ) PO~

where the expectation value is approximated by drawing a
finite number of samples according to the un-normalized
probability distribution [(x|W)|>. We generate samples with
standard Markov chains utilizing the Metropolis-Hastings al-
gorithm, in which moves are proposed based on arbitrarily
ranged single electron hops of the configuration, also ensuring
that configurations are taken from the correct particle number
and spin magnetization sector. In second quantization, the
local energy terms of Eq. (4) are formally evaluated as

[AV](x) Y, He o W(x)
V) o W)

, &)

where I-L,xr = (x|H|x’) denotes a Hamiltonian matrix element.
Due to the k-local nature of the Hamiltonian in Eq. (2), which
contains at most quartic dependence on the fermionic opera-
tors, each local energy evaluation thus involves O[L*] terms.
Excluding vanishing terms due to the particle-conservation
symmetry for a fixed number of N electrons, the local energy
evaluation then requires the evaluation of O[N 2x (2L — N)?]
wave function amplitudes [21].

The second-quantization approach allows for the incor-
poration of the antisymmetry directly into the many-body
basis (and therefore operators expressed in the basis), as
achieved via the commutation relations of the constituent
operators in Eq. (2). The scaling above, however, contrasts
with first-quantized representations of quantum states (where
an explicitly antisymmetrized Ansatz for the state must be
imposed). In these, the configurations directly represent an
arrangement of the N electrons in real space, which avoids
the variational approximation in second-quantized represen-
tations associated with the restriction to the fixed subspace
spanned by the basis set. Due to the fact that the real-space
first-quantized Hamiltonian acting on a single configuration
only considers an analytically tractable semilocal term for
the one-body operators, and a quadratically scaling electron-
electron part depending on all electron pairs, the number
of terms to consider in the evaluation of Eq. (5) scales
only quadratically with the number of electrons, rather than
O[N?x (2L — N)*] [26].

B. Basis choice

In the second-quantized representations, as utilized in this
paper, there is a further freedom concerning the choice of
representation of the molecular orbitals. The choice of the
molecular orbitals is not unique as any unitary single-body
rotation applied to the set of orbitals {¢;} yields another valid
representation. Such a change of the basis does not alter the
physical observable characteristics of the (typically inacces-
sible) target state, whose expectation values are independent
of the change. However, it will change the amplitudes of the
wave function for each configuration in the chosen computa-
tional basis. Consequently, it likely also affects the accuracy of
the Ansatz (away from the exact M — oo limit) and the rate
of convergence to this exact limit, as well as the efficiency
by which the space can be sampled via a stochastic Markov
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process. Furthermore, symmetries of the model are often eas-
ier to exploit in symmetry-preserving representations (where
the single-particle basis transforms onto itself appropriately
under action of the symmetry operations), constraining the
choices available. With the ability to incorporate structure into
the basis of the second- quantized formulation, making an
appropriate choice is thus also a key contributing factor to
the overall success of the method. While this choice can also
be automatically tuned based on variational principles [56],
here we discuss different conceptual paradigms to construct
the molecular orbital basis.

A canonical choice for the molecular orbitals can easily
be obtained by applying a self-consistent mean-field method
such as Hartree-Fock (HF) [54], which finds an orthogonal set
of molecular orbitals based on the defined atomic orbitals. By
setting up the orbitals according to a mean-field calculation,
the resulting basis representation automatically incorporates a
large amount of physical information making this the standard
basis choice for a large number of electronic structure meth-
ods. In particular, the HF wave function is then easily obtained
as a single basis configuration in which the N energetically
lowest orbitals are occupied.

As a consequence, target wave functions for relatively
weakly correlated systems typically exhibit a very peaked
probability structure, with dominant weights only for con-
figurations which differ by few excitations from the HF
configuration. While the sparsity of the wave function is a
central cornerstone of the success of post-HF methods, such
as coupled-cluster approaches, it can be expected to cause
additional difficulties for a reliable model optimization in a
VMC context. Indeed, it was noted in Ref. [42] that a key
bottleneck in the application of neural network quantum states
(NQSs) in second-quantized bases consists of difficulties with
the VMC optimization of the state for approximations of a
peaked target distribution. This resulted in significant numbers
of configurational samples being required to achieve suitable
exploration of the Hilbert space to achieve the full potential of
the chosen neural network Ansatz. Though the general method
overall only scales linearly in the number of samples, and it is
easily parallelizable over the samples, the ability to optimize
the Ansatz with as few samples as possible is crucial in order
to scale the method up to larger systems.

While the canonical orbitals respect a natural ordering
according to single-particle energies, the obtained orbital
functions will typically be delocalized over the physical space.
As an alternative to the canonical construction of the orbitals,
in this paper, we consider orbital functions constructed to ful-
fill locality requirements, for which we expect some practical
advantages outlined below. Different approaches have been
proposed to construct an orthogonal set of localized orbital
functions, {¢;}, commonly based on either a direct orthog-
onalization of the underlying atomic orbitals [57-59] or a
numerical optimization of a locality measure [60-62]. Here,
we consider the Boys localization scheme, an approach of the
latter category. This constructs the orbitals via minimization
of the orbital width, which can equivalently be formulated as
a maximization of the quantity [63]

2
=y ‘ [ dr@iwr oy ©)

10° I
o i —— Canonical basis
I (U Split-local basis
> | TS~o === Local basis
E —4 1 S~o
z 10 S~eo
2 , s
< 10—6 \\\
a8 N
N
£ 1078 N\
o \\
E gt \
wn \
\
10712 \
0 20000 40000 60000

Basis state index

FIG. 1. Ground-state sample distribution of |W(x)|?, for a lin-
ear chain of ten hydrogen atoms with interatomic separation of
R = 1.8 ay, described in a minimal basis set (STO-6G). The am-
plitudes associated with computational basis states are plotted in
descending order from left to right with respect to different choices
of the molecular orbital basis: the canonical basis from HF orbitals
(blue solid curve), a split-localized basis (orange dotted curve), and
a localized basis (green dashed curve), according to the Boys local-
ization criteria. Sampling probabilities are rescaled to give a value of
1 for the most dominant configuration, and amplitudes smaller than
10~!2 are not displayed.

while ensuring orthogonality of the orbital functions by only
allowing optimization via unitary rotations of orthogonalized
basis functions.

In a local basis, we generally expect that the approxi-
mated wave function amplitudes follow a broader distribution
across the computational basis, in turn improving the abil-
ity to faithfully sample expectation values required for the
optimization. This is exemplified for the ground-state wave
function of a small one-dimensional system of ten hydro-
gen atoms represented in Fig. 1. The figure visualizes the
sampling probability distribution across the computational
basis for three different basis choices. In the canonical ba-
sis constructed from HF wave functions, a strongly peaked
distribution becomes apparent. For this, only 176 basis con-
figurations reach an occupational probability of more than
0.01% relative to that of the most strongly weighted config-
uration. This strongly contrasts with the structure emerging
for a localized orbital choice, giving a probability distribution
spreading across a significantly broader section of the Hilbert
space. In the considered example, the localized basis gives a
sampling distribution of the target state in which 27 164 basis
configurations are sampled that are at least 0.01% as likely
as the most probably sampled configuration. Lastly, we also
present the distribution for a split-localized representation, in
which the occupied and virtual orbitals are localized sepa-
rately. This construction is a common choice within density
matrix renormalization group (DMRG) calculations due to
a reduction of the orbital entanglement within regimes in
which both the single-particle effects and the local many-body
interactions contribute significantly to this entanglement [64].
Furthermore, it still allows the mean-field state to be repre-
sented as a single configuration in the Hilbert space. For the
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FIG. 2. Mean local energy evaluation time (mean loc. energy
eval. time) as a function of the number of atoms in a one-dimensional
hydrogen chain (fixed internuclear spacing of 1.8 ay), described in a
minimal atomic basis set (STO-6G). The local energy evaluations
were performed with a uniform wave function model. The figure dis-
plays the mean evaluation time with an efficient full contraction
over all allowed terms (blue circles), giving an asymptotic scaling
of O[N*], as well as implementations with a prescreened selection of
nonvanishing contributions with pruning thresholds 1075 E;, (green
squares) and 10~° E;, (orange triangles), resulting in an asymptotic
scaling of O[N?] in the chosen basis with localized orbitals. The
calculations were performed on a single Intel Xeon Gold 6142 CPU
core.

considered example, it still results in a sampling distribution
of the target state which is concentrated around few configu-
rations, and it is therefore not expected to help alleviate the
sampling difficulties within VMC approaches.

In addition to changing the target distribution, the uti-
lization of localized orbitals moreover paves the way for a
reduction of the computational complexity of the local en-
ergy evaluation—typically the main computational bottleneck
within practical implementations. If the molecular orbitals
are sufficiently localized, many of the two-electron integrals
hfzj) 4, as defined in Eq. (3) vanish for pairs of orbitals with
large separation. By efficiently pruning the vanishing terms
from the local energy evaluation [22-25], we can obtain an
asymptotic reduction to O[N?] terms, thus in line with real-
space formulations of the problem.

To highlight the scaling reduction which can be achieved
in a local basis, we report the mean evaluation time of the
local energy evaluation for linear chains of hydrogen atoms
of variable lengths in Fig. 2. To efficiently prune vanishing
terms in the local energy evaluation, we utilize a sparse data
structure listing the elements of the electron integral ten-
sors above a chosen threshold for all possible orbital indices
(one-electron terms) or index pairs (two-electron terms). For
each (single or double) electron annihilation in the application
of the terms in Eq. (2), the summation can then be per-
formed by only contracting over the nonvanishing elements.
In the figure, we compare the mean evaluation time for a
full contraction over all terms with the implementation ex-
ploiting the sparsity through the preselection of nonvanishing

one- and two-electron integrals. The timings were obtained
with a uniform state Ansatz and do therefore not take into
account a scaling dependency from the evaluation complexity
of chosen wave function Ansdtze (potentially utilizing low-
rank updates for the efficient evaluation), though this will not
materially affect this leading-order scaling step.

While the utilization of the sparse data structure comes
with an additional (constant) computational overhead asso-
ciated with checking the validity of an electronic move, the
plot clearly confirms the asymptotic scaling of O[N?] through
the preselection of terms. This demonstrates a clear com-
putational advantage when the pruning is applied in a local
basis as the systems increase beyond a certain size. With
an aggressive pruning threshold of 107> Ej, we observe an
advantage as the chains increase beyond 225 hydrogen atoms,
and for a smaller threshold of 10~° E},, the crossover point is
obtained at ~50 atoms. Although the specific timing details
and crossover points will be system and implementation spe-
cific, given the nuclear separation of 1.8 ag chosen in our tests,
this suggests that a computational advantage can generally be
expected for the ab initio Coulomb interaction if any linear
dimension of the system is of the order of ~50 ay or greater.
While the pruning of vanishing terms was implemented, in
the following we consider system sizes which are not in
this asymptotic limit, and therefore we still allow for a full
contraction of the local energy contributions with moderate
computational resources. However, though this thresholding is
therefore not used, this reduction of the asymptotic scaling can
nevertheless become a helpful tool for pushing the approach
to larger systems which would otherwise be inaccessible.

C. Practical considerations of the GPS

Having set up the computational basis of the problem,
we describe the quantum state as a GPS associating ampli-
tudes with basis states according to Eq. (1). We optimize
the parametrized Ansatz by minimization of the stochastically
approximated energy expectation value with the standard
stochastic reconfiguration method [6,65] until convergence of
the variational energy is observed. For all the numerical tests
discussed in the following, we used a moderate number of
~10000 samples for the approximation of expectation val-
ues. Our implementation is based on the NETKET software
package [66,67], with additional functionality, including the
GPS model definition and the implementation of the ab initio
Hamiltonian, publicly available via the GPSKET plug-in library
(with scripts to generate results in this paper included in the
repository). To set up the molecular orbitals and obtain the
one- and two-electron integrals, we utilized the PYSCF package
[68,69].

A central element of the state approximation is the eval-
uation of the local energy for each sampled configuration, as
defined in Eq. (5). This requires the evaluation of the Hamilto-
nian matrix elements, I-Alx,x/, as well as the amplitudes, W(x"),
for all configurations connected via a nonzero Hamiltonian
matrix element to W(x). As is presented in more detail in
Appendix A, the evaluation of the contributing terms can
be performed efficiently for the GPS by considering local
updates to precomputed quantities. This allows us to eval-
vate the amplitudes of a GPS Ansarz for each connected
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configuration, W(x’), via local updates, with a complexity
of O[M], therefore independent of the system size. The
evaluation of the Hamiltonian matrix elements involves a
computation of a parity prefactor ensuring the fermionic com-
mutation relations depending on a chosen normal ordering
of the orbitals [70]. The computation of parity prefactors is
equivalent to the evaluation of Jordan-Wigner type mappings
from fermions to spin or qubit degrees of freedom [71], which
we can also evaluate in constant time for each term in the
Hamiltonian with appropriate setup. Overall, each local en-
ergy evaluation therefore scales as O[M xN? x (L — N)?], not
taking into account any pruning of (approximately) vanishing
terms.

The canonical basis directly builds upon mean-field simu-
lations, making it trivial to recover the HF level of accuracy
with a wave function for which all but one amplitude
vanishes—a distribution easily represented as a GPS. In the
local basis, however, it is not immediately obvious how mean-
field properties can be recovered with this Ansatz, and we
often found it difficult to reliably reach the uncorrelated ap-
proximation in our simulations with a GPS. Furthermore,
there are questions raised regarding the ordering of the
fermionic degrees of freedom.

A specific ordering of the orbitals is required to define a
normal order for the evaluation of parity prefactors in the
Hamiltonian [70]. While we can define a natural choice to
order the orbitals in a canonical basis via the single-particle
energy level, ordering the orbitals becomes ambiguous and ill
defined for all but one-dimensional systems represented in a
local basis. However, we show in Appendix B that the effect of
all possible orbital reorderings on the sign structure can be ef-
ficiently captured in the span of the GPS model by increasing
the support dimension of the model polynomially in system
size (quadratically). Put another way, any GPS model with
support dimension M is able to have all possible observables
reproduced under any fermionic orbital reordering, by a model
with support dimension M + O[L?]. This is a manifestation
of the nonlocal correlation in the amplitudes (in this case
their sign) that the GPS model can describe, allowing this
changing sign structure from fermionic orbital reordering to
be expressed in a polynomially compact fashion. However,
the explicit construction suggests that, in general, we require
a support dimension scaling quadratically with the number of
orbitals to be able to span a state which is invariant to the
choice of the ordering. This is still a relatively high scaling,
which would reduce the efficiency of the method.

As a practical alternative, we can instead augment the GPS
with an explicitly antisymmetric reference state, such as a
single Slater determinant (SD), allowing the effect of orbital
reorderings to be entirely subsumed within this reference, and
avoiding the ambiguities of orbital ordering without requir-
ing an explicit scaling of the support dimension with system
size. This can replicate the success of such constructions for
fermionic lattice models [11,18,72] and furthermore allows
us to incorporate the properties of the uncorrelated physics
without an increase in the support dimension, or significant
impact on the overall computational cost [21]. This also en-
sures that we can rigorously describe the mean-field character
of the state, using the GPS in a similar spirit to the Jastrow
factor in standard Slater-Jastrow Amnsdtze [6]. However, by

RBM, 10* samples

...................... P CEEEEEEEEEERTee of
RBM, 10° samplej>
—— GPS x SD
GPS x SD (52 proj.)
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Rel. correlation energy error

0 10 20 30
GPS support dimension M

FIG. 3. Relative (Rel.) error in the correlation energy (with re-
spect to the exact ground-state energy) obtained for a water molecule
(6-31G basis, geometry as specified in Ref. [42]), in relation to the
support dimension of the GPS which is augmented by different refer-
ence states. Co-optimized reference Ansdtze include an unrestricted
SD (blue circles), a spin-projected unrestricted SD (orange squares),
and a spin-projected antiparallel Pfaffian Ansarz (green triangles).
The error bars were computed from the standard deviation of the
variational energy over the last 50 optimization steps, rescaled by
the exact correlation energy. The figure includes reference values
achieved with an RBM, optimized with 10* and 10° samples, from
Ref. [42], as well as a CCSD value.

simultaneously optimizing the reference state and GPS, this
construction does not limit the ability to (theoretically) ap-
proach exactness of the description by increasing the GPS
support dimension [40].

As a simple example, we replicate the description of a
water molecule in a 6-31G basis set, as discussed in Ref. [42].
That work discusses the restricted Boltzmann machine (RBM)
neural network architecture, comprising a single hidden layer
of neurons, as the Ansatz for the state. The number of hidden
nodes in the network serves as the model’s main hyper-
parameter equivalent to the support dimension in the GPS,
controlling its flexibility and computational cost, which is
comparable between the two models. It was shown that the
achieved accuracy strongly depends on the number of Monte
Carlo samples, which was attributed to a particularly peaked
sampling distribution of the target, indicating the use of a
canonical basis. While it is one of the larger systems discussed
in the ab initio study with RBM, the system still allows
for a treatment with full configuration interaction techniques
providing an exact baseline reference. Figure 3 shows results
achieved with a variationally optimized GPS, augmented by a
reference state optimized alongside the GPS, as a function of
the support dimension. We present results for three different
reference states: a single unrestricted SD, an $?-projected
unrestricted SD, and a $2-projected antiparallel Pfaffian state
[73,74]. While we were not able to achieve similar accuracies
with a sole GPS, with the augmentation, our results mostly
improve upon the accuracy reported for the RBM with only
~10* samples.

A single SD without explicit spin projection, together with
the most simple GPS with a support dimension M = 1, gives a
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corresponding relative correlation energy error of 214%. The
error can be reduced further either by increasing the support
dimension, thus adding further variational flexibility in the
GPS part, or by allowing more flexibility in the reference
state. At M = 1, the spin-projected SD decreases the relative
energy error by approximately 5%, which is then further de-
creased by roughly another percent through utilization of the
spin-projected Pfaffian. Although we see an improvement of
the description for small support dimensions, the energetic
values saturate for support dimensions larger than M = 8.
With a full §2-projected Pfaffian reference state, the rela-
tive correlation energy error converges to a value of ~4.2%,
marginally improving upon the overall best reported RBM
result of Ref. [42], which was obtained with the maximum
considered number of 10° samples, with an RBM hidden unit
density of one hidden neuron per spin-orbital. Nonetheless,
the results do not match the accuracy obtained from coupled-
cluster calculations based on single and double excitations
(CCSD). The lack of further accuracy improvements with the
GPS of larger support dimensions suggests that additional
optimization difficulties limit the manifestation of the system-
atic improvability suggested by the Ansatz construction. We
have confirmed that this limitation is, in fact, not caused by
shortcomings in the stochastic approximation of expectation
values, but also persists similarly if expectation values are
evaluated from a contraction over the full computational basis
without stochastic noise. The lack of systematic improvability
can therefore be attributed either to fundamental limitations of
the model in the considered limit or to difficulties with faith-
fully finding the optimal model parameters, often identified
as a notoriously hard challenge for machine-learning-inspired
Ansdtze, which can suffer from restrictive parameter land-
scapes or generalization difficulties [75-77]. Although more
than 90% of the correlation energy is captured in our results,
further practical improvements to the algorithm are required to
reach arbitrary accuracies to match the high level of accuracy
obtained from coupled-cluster calculations for this system.
However, whereas coupled-cluster approaches are particularly
successful for systems exhibiting relatively weak degrees of
electronic correlation, the GPS model does not particularly
target this limit, and we expect a more general applicability of
the model.

IV. TOWARDS EXTENDED HYDROGEN MATERIALS

To test the assertion of applicability in more strongly cor-
related ab initio systems, we benchmark the methodology
for simple arrays of hydrogen atoms, described in a minimal
basis set representation, already giving rise to rich quantum
phenomena of condensed matter systems driven by strong
electronic correlation. Conceptually, such hydrogen materials
share a high degree of similarity to Fermi-Hubbard models,
as well as the ability to change physical correlation regimes
via changes in bond lengths. However, these hydrogen models
are extended to general quartic electron interactions, as well
as single-particle Hamiltonian terms, which range across the
full system. They have therefore become a common testing
ground for electronic structure methods [25,78-81], for which
we benchmark the ability of the GPS Ansatz to capture the
strong electronic correlation emerging in these systems as
the interatomic spacing is increased, while ensuring that the
interactions remain more faithful to the true Coulombic one.

101 -{_,.y
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FIG. 4. Relative energy errors for linear hydrogen chains of 50
atoms at different atomic separations as obtained by different ap-
proaches. Data points include results from HF (green triangles), the
GPS description as outlined in the main text (blue circles), CCSD
(red diamonds), and DMRG calculations with fixed bond dimension
of M = 50 (orange squares). Errors are evaluated by comparison to
DMRG results converged with the MPS bond dimension. DMRG,
HF, and CCSD results are taken from Ref. [25].

In Fig. 4 we describe obtained accuracies for a one-
dimensional hydrogen chain comprising 50 atoms at different
interatomic separations. The quasi-one-dimensionality of the
system limits its entanglement and makes it possible for
DMRG to provide essentially exact descriptions for these
systems in a local basis representation, and we compare our
results to DMRG results with a converged MPS bond dimen-
sion from Ref. [25]. The quasi-one-dimensional nature also
avoids complicated nodal structures in the described wave
function solely emerging due to fermionic ordering ambigui-
ties, and we were able to achieve competitive accuracies solely
with a GPS of practically manageable support dimension,
which we chose as M = L = 50, not requiring the inclusion
of a reference state to capture mean-field characteristics and
avoid orbital ordering ambiguities. In addition to the GPS re-
sults, the figure also includes results obtained with HF, results
obtained with CCSD (where calculations could be converged),
and DMRG results with fixed MPS bond dimension of
M = 50, all taken from Ref. [25].

The electronic correlation contributes significantly to the
physical characteristics of the system. This manifests in an
inability to reach reasonable accuracy with HF methods,
giving relative energy errors greater than 1% for all con-
sidered separations, which goes up to ~7.6% for an atomic
separation of 2.8 ag as the correlations become more signif-
icant. The optimization of the GPS model within the VMC
framework, on the other hand, consistently reaches an error
of slightly less than 0.1% for all geometries. This level of
accuracy is mostly in agreement with that achieved from
converged CCSD calculations at equilibrium and weaker cor-
relation regimes. Importantly, however, the GPS also reaches
this accuracy for the largest considered separation where the
CCSD calculation could not be converged, indicating a good
consistency of the GPS across different physical regimes.
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Interestingly, the relative energy error of the GPS matches that
of an MPS with bond dimension equal to the GPS support
dimension at 1 a, despite the significantly smaller number
of variational parameters in the GPS. Nevertheless, the rel-
ative energy error from the MPS decreases as the geometry
becomes more stretched, indicating a decay of entanglement
rank between the orbitals. While the GPS does not follow
this accuracy improvement, being able to reach a consistent
level of accuracy across different correlation regimes is a good
indication of the model’s general ability to compress the target
state efficiently.

While the MPS description explicitly builds on a one-
dimensional structure to define an exactly contractible repre-
sentation, the stochastically optimized GPS is not explicitly
tailored for one-dimensional systems, also enabling effi-
cient descriptions for higher-dimensional systems [18,20]. By
augmenting the pure GPS with an explicitly antisymmetric
reference state for fermionic systems, the description becomes
entirely independent of the imposed fermionic orbital order-
ing. Furthermore, it allows us to capture mean-field effects
efficiently, while allowing for systematic improvements of
the variational flexibility. To highlight the ability of the aug-
mented model to simulate systems for which no numerically
exact methods are available, we study a cubic array com-
prising 4x4x4 hydrogen atoms and simultaneously stretch
all bonds symmetrically, breaking all bonds simultaneously.
This constitutes a larger system size than was considered in
comparable NQS studies, and a careful implementation of the
methodology allows us to present state-of-the-art benchmarks
for this challenging system with long-range interactions and
tuneable correlation strength. While it is still somewhat con-
trived (especially due to the limited basis size), it is an
important first step towards realistic periodic and extended
systems with this methodology. We report results achieved
with a GPS of fixed support dimension, M = 96, optimized
together with a SD of fixed magnetization, in Fig. 5. Based on
our experience, we expect that such a support dimension of
the order of the number of orbitals allows us to reach a high
accuracy level beyond which diminishing returns are found
with additional increase in the support dimension.

In the main panel of the figure, we show the energy per
atom as the atomic separation is varied. The optimized GPS
Ansatz predicts a similar equilibrium geometry as obtained
from the HF baseline, also indicated in the figure, giving
an energy minimum for an atomic spacing of about 1.5 A.
Crucially, however, we are able to achieve results significantly
improving upon the HF level of accuracy, with an increasingly
large discrepancy between the augmented GPS and the HF
energies as the atomic separations get larger, resulting in a sig-
nificant reduction of the harmonic frequency of the symmetric
vibrations about equilibrium due to the correlation. With the
ability to model local correlation properties with the GPS, we
observe the expected asymptotic convergence of the energy as
the cluster is dissociated, which cannot be captured based on
mean-field considerations lacking the required charge fluctu-
ations.

To compare the accuracy of the obtained energy values,
the figure also includes the energy values obtained from a
variational two-body reduced density matrix approach with
approximate N-representability enforced via the “DQG” con-
ditions, as discussed in Ref. [80]. While the VMC framework
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FIG. 5. Results for a cubic system of 4x4x4 hydrogen atoms
(STO-6G atomic orbital basis) at different interatomic distances. The
main panel shows energies per atom obtained with GPS (M = 96)
multiplied by an unrestricted SD (blue circles), as well as HF results
(green triangles), a single CCSD(T) value (red cross), and DQG
results taken from Ref. [80] (orange squares). The inset shows the
electronic mobility coefficient y as defined in Eq. (7) from the VMC
optimized state and the HF wave function.

always produces an upper bound to the exact ground-state en-
ergy, the DQG energies represent a lower bound to this value.
Both methods give good agreement in the limit of large atomic
separation, predicting an energy per atom of approximately
—0.471 E;, at 3 A spacing between the atoms, confirming this
as an accurate approximation of the energy. For less stretched
geometries, however, we obtain an increasing discrepancy
between the two approaches. While it was not possible to
converge coupled-cluster calculations for larger separations,
at a distance of 1 A, we obtained an energetic comparison
value from CCSD with perturbative inclusion of triple ex-
citations [CCSD(T)] of approximately —0.447 E;, per atom.
Although this is marginally smaller than the one suggested by
our VMC calculation, its agreement with our VMC value is
significantly better than its agreement with the DQG result,
which increases our confidence that we obtained a highly
accurate approximation with the GPS.

Going beyond the evaluation of the energy expectation
values, we also confirm that the system undergoes a phase
transition from a metal to a Mott insulator as we increase the
separation between hydrogen atoms. In keeping with the anal-
ysis of Ref. [80], we characterize this transition by quantifying
the instantaneous electronic mobility from the coherences of
the one-body reduced density matrix. More specifically, we
evaluate the root mean square of its off-diagonal in a local
(atomic) orbital basis, given by

X L Cai Gyl e e W) P
V= 2Lx(2L—1) ’

(N

where the coefficients C,; represent the change from the
molecular basis with orbitals labeled by i to the atomic basis
labeled by index a, and the expectation values (\If|éjé i)
are again evaluated via stochastic sampling. We report the
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electronic mobility coefficient for the dissociation of the cu-
bic hydrogen material from our simulations in the inset of
Fig. 5. We observe a decay of the electronic mobility to zero,
not captured on the mean-field level of accuracy. Being able
to predict this breakdown of instantaneous electron transfers
induced through quantum many-body interactions underlines
the applicability of the method to understand and describe
quantum phenomena with realistic interactions driving tech-
nologically relevant material properties in which few, if any,
reliable alternative approaches exist.

V. CONCLUSIONS AND OUTLOOK

With the unparalleled progress of artificial intelligence
(AD) technology in recent years, the exploitation of duali-
ties and synergies with quantum many-body problems will
likely provide an increasingly important research area in the
near future. This work provides further exemplification of
how powerful ML frameworks can provide tools to extract
quantum physical properties from fundamental principles.
We have highlighted the general applicability of modern
ML-inspired functional forms in a second-quantized VMC
framework for chemical predictions from ab initio principles.
In particular, we considered the choice of a local basis for
alleviation of practical difficulties in the VMC optimization
driven by stochastic sampling from the computational basis.
While mean-field characteristics are implicitly incorporated
in a canonical molecular orbital basis, if required, we in-
corporate these by inclusion of appropriate reference states
within a local basis representation. We have exemplified the
methodology utilizing the recently developed GPS Amnsatz,
corresponding to a particularly simple functional form in-
spired by kernel models and Bayesian regression, controlled
by a single hyperparameter to describe the expressiveness
in the constructed chosen computational basis. Providing a
benchmark level of accuracy, and with a larger system size
than was used in comparable approaches, we describe a metal-
to-insulator transition driven by quantum correlations in a
three-dimensional hydrogen material comprising 64 atoms.
The description in a local basis, for which a natural sparsity
of the Hamiltonian emerges, also provides natural extensions
of the approach to enable larger-scale simulations.

Based on a variety of recent benchmarks for prototypical
lattice models, we expect the presented results to be largely
independent of the chosen ML-inspired functional form to
define the Ansatz. The discussed framework is, amongst oth-
ers, equivalently applicable to similarly motivated Ansdtze
constructed from neural network representations, such as the
RBM, which we anticipate to reach comparable results. While
the definite confirmation of this assumption requires further
benchmarks, there is increasing evidence that results achiev-
able with highly expressive variational functional forms in
a VMC context are often limited by shortcomings of the
optimization procedures rather than the model’s expressivity
[76,82]. Indeed, we were practically not able to observe a gen-
eral improvability of the model to arbitrary target accuracies
for fermionic systems. While the theoretical expressivity of
the GPS can be improved by increasing its support dimen-
sion, even for a relatively simple testing system we observed
a saturation to an accuracy limit beyond which no further

improvements materialized. We therefore particularly con-
sider further developments of techniques to overcome such
limitations to be of major importance in order to extend
the abilities of ML-inspired formalisms to study chemical
properties from ab initio simulations in a second-quantized
framework. This might be achieved through modifications
to the optimization strategies [17,83—85] or by considering
different paradigms to construct the electronic state, e.g., by
following the construction of fully flexible, explicitly anti-
symmetrized representations [39,40] as these are commonly
applied with great success in the real-space picture [27-37].

The code used in this paper is provided [86], with the input
and scripts to generate all results available [87].
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APPENDIX A: FAST EVALUATION OF LOCAL
ENERGY TERMS FOR GPS

In order to evaluate the local energy for a configuration
|x) from the Hamiltonian in Eq. (2), amplitudes arising from
the model due to one-electron (two-electron) operators of the
form

(xlef@jepe;|w)

Al
{x[W) (A1

Ei =

need to be evaluated. The indices i, j, k, [ label different spin-
orbitals, and the additional operators 6;61 are only present for
two-electron terms.

For a model associating amplitudes to basis states from
the Fock basis, the evaluation of the terms generally in-
volves two steps. Firstly, the connected Fock state, |x') =
Py €5(¢]&)¢i |x), needs to be identified. This involves the
evaluation of a parity prefactor P, ,, emerging through the
fermionic commutation relations. The value of P, . is zero
if the final electronic occupancy in every degree of freedom
does not agree with that of |x). Otherwise, it is £1, depending
on the number of electrons which are passed by the (double)
electron move according to the chosen ordering of orbitals
[70]. The identification of the connected configuration and
the evaluation of the parity prefactor are equivalent to the
evaluation of Pauli operator strings in a Jordan-Wigner trans-
formation from fermionic degrees of freedom to spin or qubit
systems [71]. With the identification of a connected Fock
state, the local energy contribution is given as

(x| W)
Eijwn="Poy——r

A2
{x[w) (A
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and therefore also requires the evaluation of the amplitude
ratio <{i\‘$>> defined from the Ansatz.

Due to the large number of terms which contribute to the
local energy, it is often helpful to consider more efficient
local updates to evaluate each term. This commonly involves
appropriate setup for the sample configuration |x) to enable
a more efficient calculation for the connected configurations.
By storing the cumulative electron counts in the different
orbitals in the setup, the parity prefactor, directly obtained
through counting the number of passed electrons, can be eval-
uated in constant time for each connected configuration.

Similar to the fast update of Slater-Jastrow models [21], we
can also utilize update equations for the GPS Ansdtze consid-
ered in this paper. These exploit the fact that each connected
configuration |x’) gives an electronic occupancy which differs
by at most the occupancy of four orbitals compared with
the sampled configuration |x). To evaluate the corresponding
amplitude update for the GPS as specified in Eq. (1) of the
main text, its amplitude, evaluated for configuration |x), can
be represented as

M
W(x) = exp (Z Pu (x)>. (A3)

a=1

Here, ¢, (x) denote un-normalized product state amplitudes
defined via the variational parameters of the GPS, ¢, as a prod-
uct over the spatial orbitals according to ¢, (x) = ]_[f‘zl €,
Using precomputed product state amplitudes, ¢, (x), the am-
plitude for the connected configuration evaluates to

M
€aix,
vy =exp D wa)x ] (e) . (A
o=l (SO

where the set {i, j, (k,/)} contains (at most) four indices,
labeling the orbitals with changed occupancy. Using the pre-
computed amplitude of the central configuration, W(x), as
well as the M product state amplitudes, ¢, (x), each term in
the local energy can therefore be evaluated in O[M] time. This
scaling, independent of the number of orbitals, is generally
unaffected by the inclusion of a mean-field-type reference
state, for which similar low-rank updates can be performed
[21].

APPENDIX B: ORBITAL REORDERING
INVARIANCE OF GPS

While the span of representable amplitudes (including
sign) is independent of the imposed ordering of the orbitals
for a GPS, the quality of results (in the absence of a reference
state) will still depend on this chosen ordering for fermionic
systems. This is due to the fact that the sign structure of the
modeled target amplitudes in the Fock basis changes under
a change of the ordering, due to the different parity pref-
actors P, in Eq. (A2). We show in this Appendix that we
can construct a GPS with support dimension scaling at most
quadratically with the system size which is able to express all
changes induced in the sign structure of a fermionic state due
to a different normal ordering.

For two different choices to define the normal ordering, ba-
sis states from the original computational basis can be related

to basis states from a basis with changed orbital ordering via
a sign transformation. Assuming a particular choice of molec-
ular orbitals and letting |x) be the states from the associated
computational basis, we express the basis states as

%) = o)ty oy 10D (B1)

Here, r(i) labels the spin-orbital which is occupied by the
electron with index i, and we choose the electron labels such
that the indices satisfy r(0) < r(1) < --- < r(N) (we make
the choice of sorting the electrons such that all the spin-up
electrons are followed by all the spin-down electrons). While
there might be a natural choice of this ordering for some sys-
tems and molecular orbital choices (e.g., by energy level in the
canonical basis or by position in space for one-dimensional
systems in a local basis), ambiguities emerge in other cases,
e.g., for larger basis sets, or local degrees of freedom in more
than one dimension.

To compare the sign structure emerging through a reorder-
ing of the orbitals, we consider a relabeling of the orbitals to
give a different set of Fock basis states,

) = oy Cl0)- (B2)

The electron labels are again chosen to fulfill a normal or-
dering, #(0) < #(1) < - - - < F(IN), however, now defined with
respect to a different linear order. This is specified by a per-
mutation P defining a one-to-one mapping P(r) = 7 from an
index r to a new index 7 labeling the same physical orbital.
Each new basis state can be associated with one from the
original basis multiplied by a configuration-dependent sign
according to

) = (=15 ). (B3)

The sign relating the two basis states is simply the parity of
the permutation exchanging the creation operators in the defi-
nition of the basis states from one order into the other. It can be
expressed as (—I)NX*, where N, ; is the number of pairwise
electron exchanges required to reassign the electron labels so
that the list of orbital indices (#(0), 7#(1), ..., F(IN)) satisfies
the order PV(#(0)) < PCV(F()) < - -+ < PEDFEMN)).

The additional sign structure, (—I)N—“Y, in the wave func-
tion amplitudes, solely emerging through a reordering of the
orbitals, can be represented as a GPS with support dimension
M scaling at most quadratically in the number of molecular
orbitals. To show this, we decompose the number of pairwise
exchanges, /\/x % as a sum over all pairwise next-element
exchanges in the permutation P, according to

Nez= D Y Nag(mq (). (B4)
oe{t. i} {(a,b)}

Here, the (a, b) sum runs over all index pairs which need to be
exchanged so that the original list of orbital indices (1, ..., L)
is iteratively brought into the order (P(1), ..., P(L)) by only
exchanging indices which are directly adjacent. The occupa-
tion number #; , (x) gives the number of electrons occupying
spin channel o of spatial orbital i in the many-electron config-
uration |x), thus either evaluating to 1 or zero. If (and only if)
the configuration |x) has an electron with the same spin in both
of the orbitals labeled by a and b, then two creation operators
in the construction of Eq. (B1) are exchanged, resulting in
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an additional (—1) prefactor from the commutation relations.
Iteratively applying the pairwise exchanges of adjacent cre-
ation operators according to the permutation of orbitals P then
yields the desired representation together with the induced
sign transformation.

The representation of the sign transformation as a GPS
follows directly from the representation of N, ; according
to Eq. (B4). Specifically, we can represent the sign structure
(—1)Nes as a GPS by associating each support point index, «,
with a term from Eq. (B4), i.e., a unique pair of orbital indices
from the set {(a, b)} and associated spin value o € {1, |}.
Based on the definition of the GPS amplitudes according to
Eq. (1), the representation is, e.g., obtained with the parameter
choice

€a.a,0 = €a,a,t] = iﬂs

€a,b,0 = €abt| — 17

€u,a6 = €a,b6 — €a,a,, — €a,b,, = 0’
€a,iglab)l = 1,

where & denotes the inversion of spin o and index / runs over
all possible local occupancies, [ € {1, |, 1, -}.

With this construction, the GPS representation of the
sign structure relating two different orbital orderings there-
fore requires a support dimension of M = 2|{(a, b)}|, where
[{(a, b)}| corresponds to the number of pairwise index ex-
changes in the permutation of indices specified by P.
Any such permutation comprises at most O(L?) pairwise
exchanges, consequently limiting the required support dimen-
sion (and therefore the total number of variational parameters)
of the constructed GPS to scale at most quadratically with the
number of orbitals. This also means that we can always define
a GPS with a support dimension M increased by at most O(L?)
so that it exactly spans any other GPS with support dimension
M with a changed ordering of the molecular orbitals in the
definition of the basis states. Though the span of a GPS with
given support dimension is therefore not fully invariant under
changes to the orbital ordering, it always contains a subset
of states which can be represented independent of the or-
bital ordering if the support dimension is scaled quadratically
with the system size. Nonetheless, an exact invariance of the
state, independent of the support dimension, is also obtained
through the inclusion of an explicitly antisymmetrized refer-
ence state acting in a first-quantized picture, such as a single
Slater determinant.
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