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Due to the chiral anomaly, Weyl semimetals can exhibit a signature topological magnetoelectric response
known as an axion term which is determined by the microscopic band structure. In the presence of strong
interactions Weyl fermions may form a chiral condensate, with the intrinsic dynamics and fluctuations of the
associated condensate phase producing a dynamical contribution to the axion response. Here we show that
an imbalance in the density of right- and left-handed electrons drives an instability of the chiral condensate
towards finite momentum and leads to strong fluctuations in the axion response. We derive a long-wavelength
theory of Lifschitz type governing the dynamics of the Goldstone mode and use this to characterize its associated
spatial fluctuations, which manifest as an inhomogeneous anomalous Hall effect. We show that these fluctuations
produce signatures in inelastic light-scattering experiments across a broad spectrum of frequencies, and can be
used to determine the structure factor for the axionic collective mode.

DOLI: 10.1103/PhysRevB.107.205118

I. INTRODUCTION

One of the most fascinating developments in condensed
matter physics has been uncovering the fundamental role that
topology plays in quantum systems [1-7]. A key idea in this
framework is that of the chiral anomaly, which originally was
found in the context of high-energy physics [8,9], but is now
understood to have an important role in condensed-matter sys-
tems [10,11]. Qualitatively, the chiral anomaly occurs when
the classical action has symmetries which are not compati-
ble with the quantum partition function [12,13], leading to
a breakdown of the conservation laws typically guaranteed
by Noether’s theorem; in this case the symmetry is called
“anomalous.” This seemingly abstract idea has direct observ-
able consequences for Weyl semimetals [14-23].

Weyl semimetals feature a low-energy effective description
in terms of gapless spin-1/2 electrons which come in pairs of
opposite chirality. Chiral symmetry then leads to the conserva-
tion of particle number for each chirality separately, strongly
constraining their hydrodynamic responses and giving rise to
interesting topological effects. Hence, understanding the fate
of these systems in the face of strong interactions is critical
[24-29], especially due to their potential for technological
applications [30].

Of particular interest is when interactions lead to a sponta-
neous breaking of the chiral symmetry. This possibility was
originally proposed in the celebrated Nambu-Jona-Lasinio
(NJL) model [31], which describes the spontaneous genera-
tion of mass for quarks via the formation of a chiral conden-
sate. In a Weyl semimetal, this model can be used to describe
the transition into a charge-density wave phase, dubbed an
axionic insulator [32]. As in the NJL model, this similarly
gaps out fermionic quasiparticles and produces a collec-
tive soft Goldstone mode (analogous to the pion in particle
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physics). Due to the chiral anomaly, these Goldstone modes
become endowed with a dynamic response resembling a
fluctuating “6@ term” in analogy to high-energy physics
[21,33-46]. Such a response was even reported experimen-
tally [47,48] in the compound (TaSe4),I, which has both a
charge-density wave and Weyl fermions [49,50], although this
remains heavily debated [51,52].

While the mean-field phase diagram of the NJL model is
known well at zero temperature and density, it is still un-
certain what the fate of this system is at finite temperature,
finite density, and beyond mean field [53,54]. In particular,
it is believed that under certain conditions the NJL model
may exhibit inhomogeneous chiral condensate order [55,56].
In condensed matter physics, the corresponding parameter
regimes are much milder in comparison to their high-energy
analogs—temperature can easily be tuned to the scale of
“meson disassociation” (corresponding simply to melting the
charge-density wave), and finite particle density is achievable
through combinations of doping and magnetic field interac-
tion [46]. Therefore, examining the dynamical axion response
in such an inhomogeneous chiral condensate is readily within
reach.

Here we study a minimal model for a correlated Weyl
semimetal and show that it exhibits a finite-momentum in-
stability under simple conditions. We then derive an effective
long-wavelength model for the resulting finite-momentum
condensate and propose a characteristic optical signature in
light scattering due to the fluctuating axionic response. In
particular, we study a model of two isotropic Weyl points
interacting with a mean-field chiral condensate in the pres-
ence of both a chiral chemical potential x as well as a
regular chemical potential ;. We show that in certain tem-
perature and density regimes this model maps onto the
Fulde-Ferrell-Larkin-Ovchinikov phases of superconductiv-
ity in a large Zeeman field, which is known to result in
finite-momentum condensation [57]. We then propose an ap-
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FIG. 1. (a) Schematic depiction of Weyl fermions in the presence of x > 0, with u = 0. This has exactly compensated particle and hole
pockets with right (R) and left (L) chiralities, respectively, leading to equal-sized Fermi surfaces of fixed helicity o = P. (b) Schematic depiction
of Weyl fermions in the presence of ¥ > 0, with 4 = 1.27.9). This has uncompensated particle and hole pockets, leading to imbalanced Fermi
surfaces. (c) Chiral condensate collective-mode susceptibility .Z(q) in the compensated u = O case for different temperatures as a function
of q. The condensate forms at 7 = 7, and at q = 0. (d) Chiral condensate collective-mode susceptibility -#(q) in the uncompensated
n= 1.2TL,(0) case for different temperatures as a function of q. The condensate forms at much lower temperature 7, < TC(O), and occurs at finite

momentum.

propriate Lifschitz model to describe the axionic response of
such a strongly fluctuating phase and predict characteristic
signatures in inelastic light scattering.

This article is structured as follows. In Sec. II we outline
a simple model of Weyl fermions interacting with a charge-
density wave instability in the presence of uncompensated
electron and hole pockets. In Sec. III we then analyze the
saddle-point equations and demonstrate the instability to-
wards a finite-momentum chiral condensate. Then, in Sec. IV
we derive the collective mode action in the inhomogeneous
phase and find the correlation functions for the chiral phase
mode. In Sec. V we show how these fluctuations manifest as a
strongly inhomogeneous anomalous Hall effect response, and
how they appear in scattering experiments. Finally, in Sec. VI
we present concluding remarks.

II. MODEL

We consider an effective model for Weyl fermions, with
operator W(x) = (Wg(x), ¥, (x))7, interacting with a mean-
field chiral condensate A ~ (\IJ;,\IJL) [31,35,36,40,42]. In the
presence of both a chiral chemical potential « and a regular
chemical potential u the effective Matsubara Lagrangian is
(see Appendix A)

L= W[ai —u+ 10 (—iV—15Q/2)
T

A L,—iQr_+ iQr._— |A|2
— k173 + Ae T+ AT | ——.
8

ey

This model features two Weyl points located at +Q/2 in
reciprocal space (we take the right-handed fermions to reside
at +Q/2), separated by 2« in energy. This is illustrated in
Figs. 1(a) and 1(b) for the cases of u = 0 (compensated pock-
ets), and u > 0 (uncompensated pockets). Each Weyl spinor
carries spin 1/2 and is characterized by the Pauli matrices o,
while we reserve Pauli matrices t for the chirality quantum
number. For simplicity, we take the dispersion near each Weyl
cone to be isotropic with Fermi velocity vy = 1.

We note that time-reversal symmetry acts in this model
as 7 = tjio,, along with p — —p and the usual complex
conjugation, whereas inversion symmetry acts as Z = 7, and
P — —p- Therefore having only two Weyl points requires
that the Hamiltonian explicitly breaks time-reversal symme-
try, while the presence of the finite chiral chemical potential
requires the additional breaking of inversion symmetry. In
the following, we perform a chiral gauge transformation to
remove the fast-varying component ¢/Q*, absorbing it into the
spinors W, and obtaining a resulting theory for only the slowly
varying envelope, as originally done in Ref. [35].

III. MEAN FIELD

We now study the saddle-point equations, which govern
the mean-field chiral condensate phase diagram. The mean-
field solution to this model follows analogously to the case of
Bardeen-Cooper-Schrieffer (BCS) superconductivity; we first
integrate out the Weyl fermions and take the saddle point of
the resulting action for the order parameter A. Crucially, at
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finite chiral chemical potential « there is a finite density of

states at the Fermi level v(Er) = #22 that induces a weak-
coupling instability [58]. This is diagnosed by solving the gap
equation

é = —/trrG(p)
p

g
:—TZ/
i€y P

2. :
& Gen+ 1) = @Ipl = €2 — |AP
@)

where G(p) = [ie,, + n — (0 -p — k)13 — ATT — At ] lis
the mean-field electronic Green’s function in terms of the
fermionic Matsubara frequency €,, = 27T (m + %).

When p = 0 the origin of the weak-coupling instability
is clear: it arises from the gapless positive-helicity states,
which have a normal-state propagator of (i€, — &,)~', with
&p = |p| — «. As &, — 0O upon approaching the Fermi surface,
this generates the famous “Cooper logarithm” in the pairing
susceptibility which for sufficiently low temperature will al-
ways diverge, guaranteeing a condensate will develop. The
presence of the other helicity states introduces additional cor-
rections that are suppressed when the chiral chemical potential
k is much larger than the cutoff on the BCS-type interaction
(in superconductors this is usually the Debye frequency). In
this limit the pairing interaction can be safely projected onto
the Fermi surface and the minority helicity bands can be
projected out. We also comment here that, while the bare
Weyl fermions with x = u = 0 exhibit an effective Lorentz-
invariant dispersion, the presence of « or u produces a finite
Fermi surface which explicitly breaks this Lorentz invariance
by selecting a preferential frame of reference.

We now restore the finite chemical potential © and note
that the analogous term in the BCS superconductor (which
corresponds to a finite Zeeman field) is known to quench
spin-singlet superconductivity and ultimately suppress con-
densation. In our case, the role of the chemical potential is
to imbalance the two Fermi surfaces, leading to a difference
of 2 in their Fermi momenta. While for sufficiently large
imbalances the homogeneous condensate is suppressed, the
chiral pairing will in fact persist at finite momentum. This
is caused by the partial nesting of the Fermi surface which
typically forms a condensate of either a standing wave, known
as the Larkin-Ovchinnikov phase in space, or a plane wave,
known as the Fulde-Ferrell (FF) phase; such a mechanism was
originally found to occur in superconductors and is by now a
well understood phenomenon [57,59-63].

The instability towards finite momentum can be diagnosed
at the level of a Ginzburg-Landau theory for the chiral con-
densate as a function of chemical potential [59-61,64-66].
The resulting free energy F = Zq ZL(q)|Aq|* is determined
by the leading Gaussian, momentum-dependent susceptibility
[64,66], given in the random-phase approximation by (see
Appendix C for more details)

1
L=<+ / trGo()T Gop+ . ()
V4

The result of this calculation is shown for two different values
of 1 in Figs. 1(c) and 1(d). For sufficiently small p, the system

will still condense at zero momentum, though the critical
temperature 7, drops with increasing (. On the other hand, for
sufficiently large 1 the condensate at ¢ = 0 is suppressed and,
instead, a finite-momentum condensate develops at a critical
temperature 7, and momentum ¢, set by u.

In the quasiclassical approximation the leading order con-
tribution to the free energy is determined by (for details see
Appendix C)

Z(q) = v(Ep)lao + a2q” + asq’], 4)
where
€ 1
ap =In(T/T) — 27T ( ” ——), 5a
o =In(T/1) ;Oeiﬂﬂ =) ©w
1 3 2 _ 2
a) = —ZJTT Z gém—,u €m3 , (Sb)
€n>0 (6%"'“«2)
1 44 5ut — 102 pu?
ay = 21T Z —€m € +OH :"’M . (5¢)
s,,,>05 (6314_“2)

Similar expressions can also be found in, e.g., Ref. [64]. If
W < [, then a, is positive, hence, the condensate has the
regular parabolic dispersion about zero momentum with an
increased effective mass and reduced critical temperature.
On the other hand, if u is large enough the condensate has
negative effective mass, hence, Eq. (4) is minimized at finite
momentum.

IV. FLUCTUATING AXION RESPONSE

In general, the phase diagram of such an inhomogeneous
phase is quite complex [59-61,64-66]. Here we consider a
phenomenological analysis of this phase and assume a plane-
wave solution A = |A|e®@, ie., the FF ground state [57],
though the generalization to more complex liquid-crystalline
condensates would be interesting. Keeping the amplitude |A|
fixed, the minimal model describing the long-wavelength
dynamics of the soft phase 9,6(x) in the finite-momentum
condensate requires terms up to fourth order in the spatial
derivatives where the free energy is given by

F ~ /d3r[a0|A|2+a2|AVe”|2+a4|Av2e"9|2]

1 1
= 5J’(vzev)2 + 5J[(V@)2 — ¢*1* + const. (6)

The constants J and J are identified in terms of the parameters
a, and ay4 extracted above as

J' = 2v(Ep)as| A7, T =2v(Ep)ar| A (7)

while the ordering vector ¢, is given by

as
o~ —— 8
q as (8)

We note that the above expression may receive higher-order
corrections from powers of |A|? but these are more compli-
cated to assess away from the critical point, or if the transition
is driven first order (such that A is not small). However, we
expect the phenomenological model this motivates to be valid
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more broadly. The thermal fluctuations of the chiral phase
including quantum effects are hence modeled by

1 J J
L= 51«&9)2 + Z“VG)Z -1+ E(VW

2
+i5(+Q - E-B, ©)
8

where K describes the chiral compressibility [this is of order
v(Ep)|A|*], J and J' describe the compressional and bend-
ing moduli of the condensate, respectively (in analog with
the theory of liquid crystals [66]), ¢, is determined by the
minimum of the free energy [67], while E = 9;A + VA, and
B = V x A are the electric and magnetic fields in terms of the
gauge potentials.

The last term in Eq. (9) is due to the chiral anomaly and
results from the chiral gauge transformation in the presence
of gauge fields E - B (see Appendix B). This has contributions
from (i) the fluctuating phase 6, and (ii) the static part of the
band structure Q - r. While the latter yields a homogeneous
anomalous Hall effect (AHE), here we are more interested in
the phase mode 6, which is expected to fluctuate very strongly.
Due to the chiral anomaly, these fluctuations also couple to the
electromagnetic field and, in particular, contribute to the AHE.

To diagnose the effect of these fluctuations we perform a
Gaussian approximation where the ground state is obtained
by 6 = zq, [68] (without loss of generality, we choose e,
to put the momentum gradient on). In this case, the sys-
tem has spontaneously broken rotational symmetry, although
in a more realistic treatment rotational symmetry would be
broken by the crystal, e.g., to reduced uniaxial or planar
symemtry, which may impact the ordering of the phase. The
finite additional phase gradient due to g, offsets the effec-
tive momentum-space separation Q — Q + g,e, to a slightly
different nesting vector. This change can be detected in mag-
netoelectric transport whereby driving the system into the
finite-momentum condensate shifts the value of the Hall co-
efficient.

Finally, we turn our attention to the fluctuating part
0(x) = quz + 86,97 " and linearize in 86,. The phase
fluctuations exhibit a dispersion relation which is highly
anisotropic, with

Q(q) = /v +v"?|ql*/q2, (10)

where v = ,/2J¢%/K is the longitudinal sound velocity and

v = ,/J'q?/K is the higher-order transverse velocity. While
longitudinal oscillations with q || e, disperse linearly due to
the compressional modulus J, the transverse modes with
q L e, (which lead to fluctuations of the orientation of the
phase gradient) are very soft, dispersing quadratically with
the bending modulus J'. As a result we expect a very large
number of long-wavelength fluctuations which will reduce the
long-range correlations in the anomalous Hall response.

V. OPTICAL DETECTION

We now explore the fluctuating part of the Hall response
and, in particular, determine how these fluctuations can pro-
duce signatures in light-scattering experiments. Specifically,
we consider Brillouin light scattering, which describes the

scattering of light off of acoustic modes and involves an ex-
change of both energy and momentum. In the presence of a
fluctuating axion phase §6 the modified current in Ampere’s
law is given by
é? e?
J= —H(BtSG)B — H(V(SQ) x E, (11)

where we disregarded the mean value of 6 for simplicity.
These contributions can be measured using dynamic light
scattering [69], which is sensitive to the fluctuations of the
dielectric constant, and hence can be used to measure the
fluctuations of the Hall conductivity.

The linearized fluctuations §0 obey the highly anisotropic
dispersion relation (q) [see Eq. (10)], where v and v" are
generally expected to be proportional to the Fermi velocity
vr of the underlying Weyl cones [70]. As such, the excitation
frequency can be taken to be much smaller than the optical
probing frequency, hence, to lowest order in vp/c the scat-
tering is elastic. In this case contributions from 9,860 vanish
and scattering of light is dominated by the fluctuating Hall
conductivity

2
e
SGab(q) = mSnc(q)eabcv (12)

where €, is the three-dimensional Levi-Civita tensor and
dn = V6. In this limit, the light scattering is sensitive to the
static structure factor, calculated in linear response as

2 2

(80(@)801m(—q)) = T(e—> hainb

! " 472 ) 2242 + J'g?
(13)
In addition to the polarization dependence due to the Levi-
Civita symbols, the static structure factor has a characteristic
pinch-point singularity as q — 0, whereby it diverges dif-
ferently depending on the angle of q relative to the nematic

axis €;.

VI. CONCLUSION

We have explicitly verified that in a simple Weyl semimetal
with both broken 7 and P symmetries, where an imbalance
in the carrier density of the two chiralities can naturally arise,
an instability of the chiral condensate appears towards fi-
nite momentum, akin to the Fulde-Ferrell-Larkin-Ovchinikov
phase in a spin-polarized Fermi superfluid. Due to the chi-
ral anomaly, the spatial fluctuations of this phase lead to a
fluctuating Hall conductivity that gives rise to characteristic
signatures in light-scattering experiments.

In the future, it will be important to consider a more
detailed microscopic model in order to make contact with
experiments, as well as treat the non-Gaussian nature of the
fluctuations more quantitatively. In particular, studying the
role of anisostropy, multiple Weyl points, electron-electron
and electron-phonon interactions, and disorder will be impor-
tant for obtaining a more precise phase diagram and prediction
for light scattering. Our results show that solid-state systems
are ripe for studying the interplay of strong spatial fluctua-
tions and inhomogeneity, topology, and condensation [62,63].
This may offer insight into the complex phase diagrams in
nuclear and particle physics at finite temperature and density,
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or unveil new unconventional “topological” electronic liquid-
crystal phases.
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APPENDIX A: MAPPING TO WEYL EQUATION

Here we outline the mapping from the Euclidean path inte-
gral and Hamiltonian prescription to the more conventional
relativistic form for the Weyl equation. We do this for the
long-wavelength field W which we get after gauging away the
momentum-space separation. We also take vy = 1.

L=W[Dy—itz0 -D+ AT + At W, (A1)

We now define the Dirac spinors
Y=W= (‘éﬁ) (A2a)
¥ =V(in) = (Y. —¥p) (A2b)

We now see that the action becomes (explicitly writing out
the gauge field)

L =Y (—itp)[0; — ieAg + 130 - (—iV — eA)

+ At + AT Y. (A3)

We now introduce the four y* matrices as
v’ =, (Ada)
v =107, (Adb)

and y° = y%'y2y3 = 13. Since we are working in Euclidean
space-time, we have

", v =20, (A5)

which is the metric with standard Euclidean signature, and
)=y

We thus obtain the usual Dirac equation with chiral gauge
field coupled to the mass as

L=y (—id; —eAg)+y - (—iV —eA) — |Aly e® @7 1y,

(A6)
We define the Dirac slashed operator
D =y" (0, —ieA,), (AT)
such that
L=[=iD —|Aly " @1y (A8)
For future reference we have
{r’.py=0. (A9)

Finally, we note that in the absence of electromagnetic gauge
field we have

D’ =¥ = [(—ien)’ + (i0)]. (A10)
Upon continuation to real time we would then have
[(—ien)* + (iq)’] — &* — ¢, (A1)

the appropriate Lorentz-invariant dispersion relation.

APPENDIX B: ANOMALY VIA FUJIKAWA METHOD

We consider the attempted chiral gauge transformation and
its effect on the integration measure. We follow Ref. [13], and
in particular focus on the approach based on evaluation of the
Jacobian. To this end, we consider the transformation of the
integration measure D[/, /] under the transformation

Y (x) = e p(x),
P (x) = (),
To evaluate the Jacobian, we must regularize our integra-
tion measure, which we write in terms of Grassmann-valued

normal modes. Let us use as a set of basis functions the
gauge-invariant eigenspectrum of the operator —ilp, with

(Bla)
(B1b)

— iy (x) = hnpn(x), (B2)
and the corresponding fermionic field operator is
Y(x) = Z Ynthn (X). (B3)

We then may define the gauge-invariant functional integration
measure as

Dly, ¥1= (B4)

[ [dvudin.
n
Note that {ys, P} = 0.
The chiral gauge transformation acts to change the normal

mode eigenbasis. We may write it in terms of the same basis
functions as

NG =Y Nutpu(x). (BS)

The gauge transformation induces a linear transformation on
the Grassmann coefficients such that

Y = / d*x §,, ()™ b, (x) 1. (B6)

Emnla]

Due to standard Grassmann integration rules, the transforma-
tion on the integration measure induced by this change of
variables is the inverse of the determinant, such that (recall
both fields transform in the same way)

Dln, 7] = DIy, y1(DetE)’. (B7)
We evaluate the determinant as
DetZ =exp Tr In E. (B8)

This must be regularized in order to be evaluated. The most
straightforward way is via the heat-kernel method, where we
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impose a cutoff on modes which have a large eigenvalue of
the gauge-invariant derivative. We have

TrinE=Y ¢/ (na),. (B9)

The gauge transformation is commuting in the local eigenba-
sis so we can evaluate the matrix logarithm in real space. This
gives

TrinE = Ze‘*ﬁmz/d4x$m(x)ia(x))/5¢n(x)
~i / dxa) Y e NG, (x)ysgax).  (BIO)

This is expressed as the coupling between the phase and the
anomalous action via

TrinE = i/d4xa(x)A(x) (B11)
with
A@) = 1im 37 6,@yse” N g, () = trys(@ V), x).
! (B12)
We use
1,7)2 = V”VU(% - ieA,u.)(au - ieAv) = D/J.DM - %VMJ/VF;M)-
(B13)

We further have D,D" = 92 — ie{o", A} — ¢2A%, which
yields the gauge-invariant spectrum of an equivalent charged
boson.

We then find, using the standard Baker-Campbell-
Hausdorff (BCH) formula

A = Y 3, @yse” A g, (x)

2 /A2 —i—e)/M)/vF
— tryseD /A (1 + ZTW
i 2
1 (—%y*y'F, ie
+ 5% _ m)/“)/V[DZ,FW]>.

(B14)

The only term which has a nonzero trace against the chiral
gamma matrix is the middle term with F2. Also note that this
is still composed only of manifestly gauge-invariant terms. We
have

A(x) = tryse

ie 2
Dz/Az%(—zV"V”Fuv) . @15

A4
This simplifies to

&2 eDZ/AZ
A@) = =t (ysy"y vy Veubup| — 7= |- (BIO)

Here we have used the fact that for slowly varying field config-
urations, the field-strength tensor can be treated as a constant,
leaving only the heat-kernel itself as the remaining object to be
evaluated. We also have tr(ysy*y y%y#) = 4ev*# 5o that
we have

&2 eDz/AZ
Ax) = —36“"0"3FWF0,5 : (B17)

A4

Now, to evaluate the divergent term we expand in a plane-
wave basis. It can be seen that the corrections arising from the
gauge field in the plane-wave basis are of order 1/A and thus
vanish in the long-wavelength limit so that we can evaluate
using D> = —p? so that

eDz/Az 1 *PZ/AZ 5
e (x,x):F/pe +0(01/A)= 62 + O(1/A).
(B18)
We then obtain
2
Alx) = — 32ﬂze“ﬁﬂ”R,ﬁF,w. (B19)

Finally, we note that taking both copies into account, this
result is the additional contribution to the effective action
(strictly valid at zero temperature) of

2

e
Sanomaly =+i (B20)

1672
We express this in terms of the electric and magnetic fields
(recall the scalar potential enters with opposite sign relative to
usual relativistic convention) as

/d4x (Y(X)Faﬁﬁwéaﬁ“u.

FopF e = 4(3,A 4+ VAp) - V x A. (B21)
Thus, we get an imaginary-time axion term of
2
Saxion = d*xa(x)B- (3;A + VAg).  (B22)

T

Note to return to the real-time result, we take dt =
+idt, 9, = —io;, Ag = —i¢ so that we see this term becomes

o~ Saxion — e—i(ez/4rr2)fd“xa(x)B-(—E),A—ch)’

so that we may identify the real-time action in terms of electric
and magnetic fields as

2

£ d*x a(x)B-E.

1 (B23)

Saxion =
Finally, we must connect the infinitesimal gauge transforma-
tion with the complete transformation needed to remove the
axion phase from the mass terms. We can see that performing
an infinitesimal transformation is going to be additive in this
case, since it is linear in the transformation «(x). Therefore,
we can simply replace a(x) = %[0 (x) + Q - r] in the above to
obtain the final result

2

. e
Saxion =+i—

1
17 [ @5100) + Q- rIB - (3:A + VA).

(B24)

APPENDIX C: CHIRAL CONDENSATE COOPERON

Here we elaborate slightly on the calculation of the chi-
ral condensate “Cooperon” (i.e., collective-mode fluctuation
propagator) in the presence of the chiral and regular chemical
potentials. We expand the NJL action up to quadratic order in
the order parameter A(qg) in the random-phase approximation
to obtain

=) L@IA,l (C1)
q
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We find the standard expression

1
L=t f Go(p+ )T Golp),  (C2)
p

where

Go(p) = liew +pn —13(p- 0 — k)] (C3)

is the normal state Weyl-fermion propagator. We focus on the
momentum dependence of this, to wit, we set w,, = 0 in the
Cooperon and compute

1
.f(q,w=0>=g—/tr[(iemw—[a~<p+q>—x])—‘
V4

x (i€n+ 1 +1[o- () —kD7']. (C4)

For small q this can be diagonalized in terms of the helici-
ties 0 = o - p/|p| = =£1; there are two for each chiral Fermi
pocket.

On the one hand, for the positive helicity o = 41 the
electron propagator will exhibit a resonance upon approaching
the Fermi surface, whereupon the dispersion |p| — x crosses
through zero. This will therefore produce a strong contribution

|
1
Lao=0=+7 Yo [ae [ T
—1

€m

to the collective dynamics, yielding the Cooper logarithm in
the absence of . The other helicity o = —1 will always
remain gapped and buried below the Fermi surface, with a
quasiparticle excitation energy at least of order «.

On the other hand, the BCS-like interaction, which is char-
acterized by attraction g is not valid throughout the entirety of
momentum space, but rather result from projecting of a more
microscopically accurate interaction onto the Fermi surface.
This is only valid for momenta near the Fermi surface, imply-
ing the integral on p should be cut off at A. In the case where
A Z k we find that in general both helicities participate in
the interaction and the system is more complicated. We focus
on the simpler case where A < k, in which case only states
at the Fermi surface participate. We can therefore discard the
o = —1 helicity and project onto the 0 = +1 states, which
have ¢ — p = p/|p|. This yields

1 / 1

— + - —~ .

8 p(l€z71+M+P'Q)2—(|P|—K)2
(C5)

This can be evaluated in the usual quasiclassical approxima-
tion by writing q - p = qu where u = cos 6 is the scattering
cosine, and £ = |p| — «, producing

Z(Q0=0)=

1
2 (iem + 1+ qu)* — &

(Co)

Here we have the density of states at the Fermi level v(Ep) = K2 / (27%) enter. We can remove the dependence on g by
renormalizing the scattering length with reference to the transition temperature at © = 0, g = 0, defined by the equation

1 1
Ep)In(T/T®)=-+T /d— c7
with usual BCS result for 7.¥ ~ Ae~!/18"(Er)] 'We then find the UV convergent expression of
L(q,0=0)= v(Ep)|:1n (/1) +T2/d§fl d-”( ! - ! )} (C8)
’ ‘ p -1 2 \(ien + 1+ qu* — &2 (iey)* — &2
Utilizing
1 m
[ _ = Zsenten) ()
52 + (e + i2)? €m 112
and simplifying, we obtain the result
"du € 1
£(@q, ® =0)=v(Ep)| In(T/T?) - 2T f —(—”’——ﬂ. C10
(@ ) (F)[ (/1) Z 12\ + (u+quy? ey (C10)

€,>0Y "

This is easily evaluated as a function of q by numerically summing Matsubara frequencies and performing the solid-angle
integral on u numerically, since the integral is both IR and UV convergent. In fact, we can analytically evaluate the integral over

u as well to produce

1 +
d 1 1 [ d 1
/ _uﬁ__/ _xﬁ' (C11)
-1 2 €+ (n+qu) 2Ju—q q x*+e;,
Thus
() 1 n+q H—q 1
2(q, 0w =0) =v(Er)| In (T/TC ) — 2T Z — | arctan — arctan —-—— (C12)
€n>0 2q €m €m |6m |
For ¢ > 1 we see the expansion goes as arctan(g/€)/q — é ~_LlZ giving an overall positive phase stiffness.

B
3¢,
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We find for sufficiently large u that the transition (signified
by £ = 0) occurs at a finite momentum |q| = ¢,. The exact
form of .Z(q) near g, is not particularly clear, and furthermore
would require numerical evaluation in a real system. We can
generically conclude, however, that as @ passes through the
critical p., g, would soften at . and then smoothly rise
again, implying that the characteristic length scales may be

parametrically longer than the lattice scales. We may
also generically expect the compressibility coefficient
K in the nonlinear o model in the main text to
be of order v(Er)|A(0)]> where A(0Q) is the zero-
temperature chiral-condensate gap, and the phase stiffnesses
J/K,J' /K ~ vZ/q* though this should be investigated more
thoroughly.
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