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Signatures of topological phase transition on a quantum critical line
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Recently topological states of matter have witnessed a new physical phenomenon where both edge modes and
gapless bulk coexist at topological quantum criticality. The presence and absence of edge modes on a critical line
can lead to an unusual class of topological phase transition between the topological and nontopological critical
phases. We explore the existence of this new class of topological phase transitions in a generic model representing
the topological insulators and superconductors and we show that such transition occurs at a multicritical point,
i.e., at the intersection of two critical lines. To characterize these transitions we reconstruct the theoretical
frameworks, which include bound state solution of the Dirac equation, winding number, correlation factors,
and scaling theory of the curvature function to work for the criticality. Critical exponents and scaling laws
are discussed to distinguish between the multicritical points, which separate the critical phases. Entanglement
entropy and its scaling in the real space provide further insights into the unique transition at criticality revealing
the interplay between fixed point and critical point at the multicriticalities.

DOI: 10.1103/PhysRevB.107.205114

I. INTRODUCTION

In the quest of classifying novel phases of quantum matter
in the absence of local order parameters, the topology of
electronic band structure plays a prime role [1–4]. It enables
the distinction between gapped phases in terms of a quantized
invariant number, which counts the number of localized edge
modes present [5]. The transition between the distinct topo-
logical phases involves a bulk band gap closing at the point of
topological phase transition. Across the transition the number
of edge modes, protected by the bulk gap, changes [6]. In
the gapped phases, the localization length of the edge modes
diverges as the system drives towards the transition point or
criticality [7].

Interestingly, this conventional knowledge is revised re-
cently, realizing even criticalities can host the stable localized
edge modes despite the vanishing bulk gap [8–19]. This re-
sults in the emergence of nontrivial criticalities with unique
topological properties even in the presence of gapless bulk
excitations. The nontrivial criticalities can be effectively char-
acterized in terms of the zeros and poles of complex function
associated with the Hamiltonian [8]. The localized edge
modes at criticality are protected by novel phenomena such
as kinetic inversion [11] (in fermionic models) and finite
high-energy charge gap [16] (in bosonic models). It has been
shown that they also remain robust against interactions and
disorders [8,9]. This intriguing interplay between topology
and criticality causes an unconventional topological transition
between critical phases [11,20].

In this work, we report the possibility of a new kind of
topological phase transition between critical phases, happen-
ing at a multicritical point where two critical lines intersect.
Considering a two-band model as a prototype representing
gapless (critical) topological insulators and superconductors,
in Sec. II we find the critical lines in the model and existence

of two species of multicritical points with quadratic and linear
dispersions, both corresponding to the topological transition
between distinct critical phases. In support of our finding, in
Sec. III, we solve the Dirac equation for criticality to obtain
the localized edge mode solutions in the nontrivial critical
phases. This is further supported by our proposal of obtaining
the nonzero integer winding number for nontrivial critical
phases, which we discuss in Sec. IV A. This proposal is sup-
ported in Sec. IV B by calculating the winding number using
zeros and poles of a complex function. The curvature function
diverges on approaching the multicritical points from critical
phases indicating the existence of a transition between critical
phases. The critical exponents (γ , ν, z), discussed in Sec. V A,
unravel the different universality classes of two multicritical
points. Using the divergence of curvature function we develop
a renormalization group (RG) scheme to distinguish the dif-
ferent critical phases in Sec. V B. In Sec. V C we show that
a correlation length, extracted from the Fourier-transformed
curvature function, diverges at the multicritical points indi-
cating phase transitions between critical phases. Further, in
Sec. VI we study the spatial scaling of entanglement entropy,
especially to characterize and distinguish the multicritical
points. The scaling reveals an interplay between the fixed
points and multicritical points. The entanglement entropy is
minimum where the fixed point and multicritical point overlap
reflecting the dominance of the former over the latter. Finally,
we conclude in Sec. VII.

II. MODEL

We consider a one-dimensional (1D) lattice chain of spin-
less fermions in momentum space [21,22] represented by a
generic two-band Bloch Hamiltonian of the form

H(k,�) = χ.σ = χxσx + χyσy, (1)
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where � = {�0, �1, �2}, χx = �0 + �1 cos k + �2 cos 2k,

and χy = �1 sin k + �2 sin 2k and σ = (σx, σy) are
the Pauli matrices. The model represents extended
Su-Schrieffer-Heeger (SSH) [23] and extended Kitaev
models [24] by uniquely defining the parameters (see
Appendix A for detailed discussion on the physical
relevance of the model). The parameters �0, �1, and �2

describe the on-site potential, the nearest-neighbor (NN)
couplings, and the next-nearest-neighbor (NNN) couplings,
respectively.

In general, the model can support three distinct gapped
phases distinguished by the number of edge modes they pos-
sess. These phases can be identified with the winding numbers
w = 0, 1, and 2, which quantify the edge modes. The model
undergoes transition between these phases with necessarily
involving the gap closing, Ek = ±√

χ2
x +χ2

y =0, at the phase
boundaries. The criticalities, where the bulk gap closes, occurs
for the momentum k0 = 0,±π, cos−1(−�1/2�2), which, re-
spectively, gives the critical surfaces �1 = −(�0 + �2), �1 =
(�0 + �2), and �0 = �2. The model possesses three multicrit-
ical lines at which two critical surfaces intersect. Two of them
(MC1) share identical properties and show quadratic disper-
sion around the gap closing point and the other one (MC2)
is identified with the linear dispersion. Uniquely, the model
supports the edge modes and topological transition at crit-
ical surfaces �1 = ±(�0 + �2) corresponding to k0 = π, 0,
respectively (see Appendix B for the numerical results).

To further explore these unique phenomena we propose
a framework that works out for criticality without refer-
ring to any of the gapped phases of the model. Ideally
driving the system to criticality involves k → k0 and � →
�c, where �c is the critical point in the parameter space.
To avoid the singularities involving the exact critical point,
one can define the Hamiltonian critical only in the param-
eter space as H(k,�c) with k = k0 + �k, where �k � 2π .
This situation is hereafter referred to as criticality in this
work.

The model at criticality can be obtained by using
the critical surface relation, which modifies the compo-
nents into χx = �0(1 + cos k) + �2(cos 2k + cos k) and
χy = �2(sin 2k + sin k) + �0 sin k for �1 = (�0 + �2)
and χx = �0(1 − cos k) + �2(cos 2k − cos k) and χy =
�2(sin 2k − sin k) − �0 sin k for �1 = −(�0 + �2). The
possible topological trivial and nontrivial critical phases are
separated by the phase boundaries at the multicritical lines
�2 = �0 (MC1) and �2 = −�0 (MC2). Without loss of any
generality, we assume �0 = 1. Hence hereafter the critical
surfaces and the multicritical lines will be called as the critical
lines and the multicritical points, respectively, as shown in
Fig. 1(a). The multicriticalities, MC1,2, are identified with
quadratic and linear dispersion, respectively, as shown in
Fig. 1(b). They can be obtained for the following kmc

0 . For
�2 = �0 (MC1):

kmc
0 = cos−1

(
−�2 + �0

2�2

)
at �1 = (�0 + �2), (2)

kmc
0 = cos−1

(
�2 + �0

2�2

)
at �1 = −(�0 + �2). (3)

FIG. 1. (a) Schematic representation of both the criticalities
�1 = ±(�0 + �2) with �0 = 1. Nontrivial critical phases: 1 < �2

and �2 < −1 (solid lines), trivial critical phase: 1 > �2 > −1
(dashed line) are separated by the multicriticalities MC1,2. The en-
tanglement entropy (S) minimizes at MC1, which is also an RG fixed
point, and maximizes at MC2. The MC1,2 belongs to the univer-
sality classes obtained from the exponents (γ , ν, z) = (1, 1, 2) and
(γ , ν, z) = (1, 1, 1) respectively. (b) Dispersion at different critical
phases and multicritical points. Top: on the critical line for k0 = ±π .
Bottom: on the critical line for k0 = 0.

For �2 = −�0 (MC2):

kmc
0 = 0 at �1 = (�0 + �2), (4)

kmc
0 = π at �1 = −(�0 + �2). (5)

Interestingly, MC2 exhibits swapping of the values of kmc
0 .

At MC2, one can observe that kmc
0 = 0 for �1 = (�0 + �2),

which was obtained for k0 = π and kmc
0 = π for �1 = −(�0 +

�2), which was obtained for k0 = 0. This property emerge
as a result of intersection of both the critical lines at MC2.
We will show in the following that our proposed framework
based on the near-critical Hamiltonian H(k,�c) can capture
the essential physics of topological transition at criticality.

III. BOUND STATE SOLUTION OF THE DIRAC EQUATION

The presence of edge modes in topological insulators and
superconductors is lucid from the bound state solution of
Dirac equation [25–27]. We solve the model in Eq. (1) for
the bound state solution at criticality (see Appendix C for
the bound state solution at gapped phases). Interestingly, as
a consequence of the near-critical approach adopted here, the
Dirac Hamiltonian at criticality naturally fixes the interface
at a multicritical point. Dirac Hamiltonian at criticality up to
third-order expansion around kmc

0 for MC1 is

H(k) ≈ ε1k2σx + (ε2k − ε3k3)σy. (6)

where ε1 = (�0 − 3�2)/2, ε2 = (�2 − �0), and ε3 = (7�2 −
�0)/6. We look for zero-energy solution in real space (we set
h̄ = 1 throughout the discussion), Hψ (x) = 0. Identifying the
spinor of the wave function ψ (x) = ρηφ(x) is an eigenstate
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FIG. 2. Bound state solutions of the edge modes at the non-trivial
critical phases. (a) Plotted for �2 = 3�0 (with �0 = 1) at the critical
phase �2 > �0. (b) Plotted for �2 = −3�0 (with �0 = 1) at the
critical phase �2 < −�0.

of σz and using φ(x) ∝ e−x/ξ , inverse of the nonzero decay
length can be obtained as ξ−1

± = (−ηε1 ±√
ε2

1 −4ε2ε3 )/(−2ε3 ). For
both roots to be positive, it requires ξ−1

+ + ξ−1
− > 0, which

implies η = sign(ε1/ε3). The edge mode decay length (longer
one of two) is ξ+ ≈ |ε1|/ε2 remains finite and positive for
ε2 > 0, i.e., �2 > �0, which means the criticality in this re-
gion possesses edge modes and is the topological nontrivial
phase. Note that the term ε2 is the gap term at criticality,
which mimics the role of mass. As ε2 → 0 the decay length
ξ+ → ∞ indicating the edge mode delocalize into the bulk
and topological transition takes place at MC1, i.e., at �2 =
�0. To visualize this phenomenon we write the bound state
solution ψ (x) ∝ (η 0)T (e−x/ξ+ − e−x/ξ− ), which distributes
dominantly near the boundary and decay exponentially as
x → ∞, as shown in Fig. 2(a).

To identify the topological transition at MC2 and the cor-
responding topological nontrivial phase one has to consider
the swapping property of kmc

0 , which emerge as a result of
intersection of critical lines at MC2. In this case, after expand-
ing around kmc

0 and using the swapping property, the Dirac
Hamiltonian can be obtained up to second order as

H(k) ≈ (ε1 − ε3k2)σx + (−iε2k)σy, (7)

where ε1 = 2(�0 + �2), ε2 = (�0 + 3�2), and ε3 = (5�2 +
�0)/2. With η = sign(ε2/ε3), the edge mode decay length
ξ+ ≈ −(|ε2|/ε1) is obtained using φ(x) ∝ ex/ξ and is positive
if ε1 < 0. Therefore, in this case, the gap term is ε1, which
vanishes at the multicritical point MC2, i.e., at �2 = −�0. This
implies that the criticality �2 < −�0 is topological nontrivial
phase and the topological transition occur at MC2, i.e., �2 =
−�0 as a consequence of the delocalization of edge mode
into the bulk as ε1 → 0. In this case the bound state solution
ψ (x) ∝ (0 η)T (ex/ξ+ − ex/ξ− ), distributes near the boundary
and decay as x → −∞ as shown in Fig. 2(b).

IV. WINDING NUMBER

The topological character of a gapped phase is quantified
using topological invariant numbers [5]. The quantized values
of these invariant numbers represents the number of local-
ized stable edge modes at each end of the open chain. For
one-dimensional systems winding number is a good invariant
number, which represents the winding of pseudospin vector
in the Brillouin zone [28]. Therefore, the edge excitations
of the gapped phases can be quantified in terms of winding

FIG. 3. Winding number at criticality. (a) Fractional values of
winding number (wc). Trivial critical phases are identified with wc =
0.5 and nontrivial critical phases are identified with wc = 1.5. The
topological transition occurs at the multicritical points MC1,2, i.e„
�2 = ±�0 with �0 = 1. (b) Winding of unit vector χ̂ at nontrivial
critical phases with both integer (wI

c) and fractional parts (wF
c ).

(c) Winding of χ̂ at the trivial critical phase with only fractional
part (wF

c ).

number [6]

w = 1

2π

∮
BZ

F (k,�)dk, (8)

where F (k,�) = i〈uk|∂k|uk〉 is the Berry connection or curva-
ture function of Bloch wave function ψk (r) = uk (r)eikr .

In order to quantify the edge modes at criticality one has
to define the winding number at criticality [11]. The conven-
tional definition of winding number fails at criticalities. This is
due to the nonanalyticity of the curvature function [integrand
in Eq. (8)] at criticalities. This constraint is naturally avoided
in the near-critical approach and allows one to calculate the
winding number in its usual integral form even at criticality.

wc = 1

2π
lim
δ→0

∮
|k−k0|>δ

F (k,�c)dk. (9)

However, it yields fractional values, as shown in Fig. 3(a),
which does not account correctly for the number of edge
modes present at criticalities.

Alternatively, one can refer to the auxiliary space and dif-
ferentiate between NN and NNN loops and consider only one
among them, which gives integer contribution and accounts
for the edge modes at criticality [12]. However, this method
is not efficient as the auxiliary space loops gets complicated
with the increasing NN couplings [28].

A. Winding number at criticality

The fractional values at criticality imply the presence of
fractional winding of unit vector χ̂ = χ/|χ|, in the auxiliary
space over the Brillouin zone [11,12,28]. For nontrivial criti-
cal phases, one can identify integer winding (wI

c) of the unit
vector along with an extended fractional winding (wF

c ) in the
Brillouin zone, as shown in Fig. 3(b). For trivial criticalities,
only fractional winding can be observed as in Fig. 3(c). Based
on this, we propose that the winding number at criticality
should be approximated to only the integer values, which
effectively captures the number of edge modes at criticality.

Proposition. Winding number at criticality (wc), which
acquires fractional values (wc = wI

c + wF
c ), can be effectively

approximated only to its integer part, i.e., wc � wI
c, to quan-

tify the number of edge modes present at criticality.
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FIG. 4. Zeros (ζ1,2) of the complex function in Eq. (12), i.e., ζ1 = 1, ζ2 = �0/�2 for �1 = −(�0 + �2) and ζ1 = −1, ζ2 = −�0/�2 for
�1 = (�0 + �2), represented as red dots. (a), (b) Winding number w = Nz − Np = 1 at nontrivial critical phase with �0 = 1 and �2 = −1.5.
(c), (d) Winding number w = 1 at nontrivial critical phase with �0 = 1 and �2 = 1.5. (e), (f) Winding number w = 0 at trivial critical phase
with �0 = 1 and �2 = 0.5. (g), (h), (i), (j) Degenerate zeros on the unit circle at MC1, for (g), (h) the critical line �1 = −(�0 + �2) and (i), (j)
the critical line �1 = (�0 + �2). (g), (h), (i), (j) indicate the multicritical point MC1 has multiplicity m = 2 and dynamical exponent z = 2 [8].
(k), (l) Zeros at MC2. Both the zeros lie on the unit circle and are nondegenerate. The top and bottom panels are for �1 = ∓(�0 + �2),
respectively.

The proposal roots in the fact that the momentum zones
can be divided into integer and fractional windings as −π <

kI < π/λ and π/λ < kF < π , respectively. The cutoff λ dif-
ferentiates the momentum zones responsible for integer and
fractional windings of the unit vector, as shown in Fig. 3(b).
Therefore, we write

wc = 1

2π
lim
δ→0

⎛
⎝∫ π/λ

−π
|k−k0|>δ

F (k,�c)dk +
∫ π

π/λ
|k−k0|>δ

F (k,�c)dk

⎞
⎠

= wI
c + wF

c � wI
c. (10)

The fractional winding can be found to have wF
c = 1/2 since

the critical phases have one gap closing point in the Brillouin
zone. The interger winding wI

c ∈ Z counts the number of
edge modes in the corresponding critical phase. The winding
number in the nontrivial critical phases of the model can be
found to have wc = 1.5, for which the corresponding wI

c = 1.
Hence wI

c correctly accounts for one edge mode living at the
criticalities, which we also find from the solution of the Dirac
equation. For the trivial critical phase wc = 0.5 and wI

c = 0
implying no localized edge modes. The transition between the
critical phases with wI

c = 0 and wI
c = 1 occur at the multicriti-

cal points. This clearly demonstrates the topological transition
at criticality through multicritical points.

The proposal can be found viable for the critical systems
that support nontrivial critical phases having the winding
number wc > 2 and characterized with a single gap closing
point. The models with couplings beyond the second neigh-
bor [29] support the nontrivial critical phases with winding
numbers wc = 2.5, 3.5, . . ., etc. In the case of wc = 2.5, the
unit vector χ̂ winds twice with an extended fractional winding
in the Brillouin zone. The approximation to only the inte-
ger value yields wI

c = 2, which counts the two edge modes
localized in the corresponding critical phase. Therefore, we
expect that the proposition will be useful in characterizing the
nontrivial critical phases with higher winding numbers and a
single gap closing point. For more than one gap closing point
in the Brillouin zone, such as the non-high-symmetry points

discussed in Ref. [29], the proposition might need further
modification.

B. Winding number using zeros and poles

The proposal and the integer winding number wI
c can be

found consistent with the method used in Ref. [8], where
the winding number is defined using number of zeros (Nz)
and order of poles (Np), w = Nz − Np. The zeros and poles
of a complex function is obtained by writing the fermionic
creation and annihilation operators in terms of Majorana op-
erators and followed by a Fourier transformation. With the
substitution eik = ζ , (where ζ is a complex number) where
eik goes around the unit circle in the complex plane as k varies
over the Brillouin zone, we get the complex function f (ζ )
living on the unit circle in the complex plane

f (ζ ) =
∞∑

μ=−∞
tμζμ. (11)

For extended Kitaev model it reads f (ζ ) = ∑2
μ=0 tμζμ [with

no poles) where t0,1,2 are, respectively, −β0, β1, β2 (parame-
ters of Kitaev model in Eq. (A2)]. Using the mapping 2β0 =
�0, −2β1 = �1, and −2β2 = �2 one can write the complex
function for the generic model

f (ζ ) = −�0

2
− �1

2
ζ − �2

2
ζ 2. (12)

The solutions are ζ1,2 = (�1 ±√
�2

1−4�0�2 )/−2�2. To character-
ize the topological trivial and nontrivial critical phases we
write the solution at criticalities. For �1 = −(�0 + �2) we get
ζ1 = 1, ζ2 = �0/�2 and for �1 = (�0 + �2) we get ζ1 = −1,
ζ2 = −�0/�2.

It is evident that one of the zeros lies on the unit circle since
the system is critical and the other zero falls inside (outside)
the unit circle for topological nontrivial (trivial) critical phase,
as shown in Fig. 4. Winding number is determined by the
number of zeros falling inside the unit circle, whose value can
be found consistent with wI

c. For nontrivial critical phases as
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shown in Figs. 4(a)–4(d) (where top and bottom panels rep-
resent �1 = ∓(�0 + �2), respectively), w = wI

c = 1 and for
trivial critical phases as shown in Figs. 4(e), 4(f) w = wI

c = 0.
At MC1, the zeros can be obtained to be degenerate (with

multiplicity m), i.e., ζ1,2 = 1 in Figs. 4(g), 4(h) and ζ1,2 = −1
in Figs. 4(i), 4(j) on the critical lines �1 = −(�0 + �2) and
�1 = (�0 + �2), respectively. At MC2, we get nondegenerate
zeros with ζ1,2 = ±1 for both the criticalities, as shown in
Figs. 4(k), 4(l).

V. CURVATURE FUNCTION

Topological phase transition can be induced by changing
the underlying topology of the system upon tuning the pa-
rameters � appropriately. The information of the topological
property of the system is embedded in the curvature function
F (k,�) defined at momentum k [30–41]. The topological
quantum phase transition can be identified from the quantized
jump of topological invariant number as the parameter tuned
across the critical point �c. As the system approaches critical
point to undergo topological phase transition, i.e„ � → �c,
curvature function diverges at k0, with the diverging curve
satisfying F (k0 + δk,�) = F (k0 − δk,�). The sign of the di-
verging peak flips across the critical point as

lim
�→�+

c

F (k0,�) = − lim
�→�−

c

F (k0,�) = ±∞. (13)

Interestingly, even at criticality, the qualitative behavior of
the curvature function remains the same with the fact that
now the critical point is a multicriticality, which governs the
topological transition between critical phases. As one tunes
the parameters at criticality �c towards a multicritical point
�mc, the curvature function diverges at kmc

0 with the symmet-
ric nature F (kmc

0 + δk,�c) = F (kmc
0 − δk,�c), as shown in

Fig. 5(a).
Topological transition is signaled as the sign of the diverg-

ing peak flips if the parameters tuned across the multicritical
point.

lim
�c→�+

mc

F
(
kmc

0 ,�c
) = − lim

�c→�−
mc

F
(
kmc

0 ,�c
) = ±∞. (14)

This is the characteristic feature of topological transition at
criticality through both the multicritical points MC1,2. The
curvature function of the generic model at criticality can be
written using the critical line relations of the parameters. The
pseudo-spin-vectors on the two critical lines, �1 = ±(�0 +
�2), of the model are χx(k) = �0(1 ± cos k) + �2(cos 2k ±
cos k), and χy(k) = �2(sin 2k ± sin k) ± �0 sin k. This de-
fines curvature function on the critical lines F (k,�c) =
F (k,��1=±(�0+�2 ) ),

F
(
k,��1=±(�0+�2 )

) = χx∂kχy − χy∂kχx

χ2
x + χ2

y

= �2
0 + 3�2

2 ± 4�0�2 cos k

2
(
�2

0 + �2
2 ± 2�0�2 cos k

) . (15)

The property in Eq. (14) can be observed to be obeyed by
F (k,��1=±(�0+�2 ) ) as shown in the Figs. 5(b)–5(e). They
show the critical behavior of curvature function around the
multicritical points MC1,2, which distinguish between distinct
critical phases. The peak of the curvature function tends to

FIG. 5. Curvature function at criticality. (a) Illustration of sym-
metric nature of curvature function around kmc

0 , i.e., F (kmc
0 +

δk, �c ) = F (kmc
0 − δk, �c ). (b)–(e) Show the diverging peaks of cur-

vature function as the parameter �2 tend towards the multicritical
values �2 = ±�0 (with �0 = 1). (b) For MC1 at �1 = −(�0 + �2).
(c) For MC1 at �1 = (�0 + �2). (d) For MC2 at �1 = −(�0 + �2).
(e) For MC2 at �1 = (�0 + �2). Flip in the sign of diverging peak
is clearly observed as �2 tuned across the multicritical points. The
swapping of kmc

0 for MC2 is also evident from (d) and (e). (f) Shows
the fitting of Ornstein-Zernike form in Eq. (18) with the data points
of curvature function at criticality.

diverge as the parameters approach MC1,2 from both sides at
criticality. Both the criticalities exhibit the universal nature of
curvature function around the multicritical points.

The scenario around MC1 on the critical line �1 = −(�0 +
�2) shows the divergence in curvature function at the kmc

0 = 0,
as shown in Fig. 5(b). As the parameter �2 is tuned towards
its multicritical value (i.e., MC1) on both sides, the diverging
peak of curvature function increases leading to a complete
divergence at MC1 and flips sign as the critical value is
crossed. This signals the topological transition across MC1

at criticality. Similar behavior of curvature function can be
observed around MC1 on the critical line �1 = (�0 + �2), for
which the divergence occurs at kmc

0 = π , as shown in Fig. 5(c).
The nature of curvature function around MC2 at both the

criticalities share the same property of divergence and flipping
of sign as shown in Figs. 5(d) and 5(e). Note that the kmc

0 at
which the diverging peak increases on approaching the multi-
critical value is kmc

0 = π instead of kmc
0 = 0 for �1 = −(�0 +

�2) (and kmc
0 = 0 instead of kmc

0 = π for �1 = (�0 + �2)).
This swapping of kmc

0 occurs as a consequence of the inter-
section of critical lines. Typically the multicritical point MC2

is the same point for both the critical lines �1 = ±(�0 + �2)
in parameter space. These critical lines intersect each other at
MC2, which results in the swapping of respective kmc

0 values.
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A. Critical exponents

The condition in Eq. (13) for curvature function allows one
to choose the proper gauge for which F (k,�) can be written
in Ornstein-Zernike form around the k0 [30],

F (k0 + δk,�) = F (k0,�)

1 + ξ 2δk2
, (16)

where δk is small deviation from k0, F (k0,�) is the height
of the peak and ξ is characteristic length scale or the width
of the peak. As we approach critical point, one can also find
the divergence in the characteristic length ξ along with the
curvature function. The divergences in both F (k0,�) and ξ

give rise to the critical exponents

F (k0,�) ∝ |� − �c|−γ , ξ ∝ |� − �c|−ν, (17)

where γ and ν are the critical exponents, which define the
universality class of the undergoing topological phase tran-
sition. These exponents obeys a scaling law, imposed by the
conservation of topological invariant, which reads γ = ν for
1D systems [41].

Surprisingly, these scaling behaviors of curvature function
also appear at multicriticality by approaching it along the crit-
ical lines. Approaching multicritical points MC1,2, curvature
function acquires Ornstein-Zernike form around kmc

0 .

F
(
kmc

0 + δk,�c
) = F

(
kmc

0 ,�c
)

1 + ξ 2
c δk2

, (18)

where δk = |k − kmc
0 |, ξc is the characteristic length scale at

criticality and it represents the width of the curvature function
that develops around kmc

0 as the parameters �c → �mc. The
critical behavior of curvature function around the multicritical
points MC1,2 can be captured by the same exponents γ and ν

defined by

F
(
kmc

0 ,�c
) ∝ |�c − �mc|−γ , ξc ∝ |�c − �mc|−ν . (19)

One can calculate these critical exponents and quantify the
scaling properties, numerically, through fitting the diverging
peak of curvature function with the Ornstein-Zernike form in
Eq. (18), as shown in Fig. 5(f). The data points collected for
F (kmc

0 ,�c) and ξc can then be fitted again with the equation of
the form in Eq. (19), to extract the exponents γ and ν at the
multicritical points. Figures 6(a) and 6(b) show the acquired
values of exponents for MC1 and MC2, respectively, on ap-
proaching from either side. The critical exponents are found
to be, γ+/− = γ ≈ 1 and ν+/− = ν ≈ 1 for both multicritical
points MC1,2, where γ+(−) and ν+(−) represents the scaling
behavior of curvature function with positive (negative) peaks
around the multicritical points on both the criticalities.

The exponents can also be estimated analytically by writ-
ing the curvature function in Ornstein-Zernike form (see
Appendix D for details). It yields the same values of critical
exponents for both MC1,2. The exponents calculated obey
certain scaling laws and define universality class of the multi-
criticalities. For topological transition occurring through both
the multicritical point MC1,2 the exponents are found to have
γ = ν = 1 both numerically and analytically. The scaling law
γ = ν for 1D systems [41] is thus true for the critical behavior
of the multicritical points governing the topological transition
at criticality.

FIG. 6. Critical exponents. (a) and (b) represent exponents of
curvature function (γ and ν) for MC1 and MC2, respectively. The
notation γ+/− and ν+/− represent the exponents on approaching
the multicritical points from either sides. Dynamical exponent for
(c) MC1: represents quadratic dispersion and (d) MC2: represents lin-
ear dispersion. Red and blue in (c), (d) correspond to the criticalities
�1 = ∓(�0 + �2), respectively.

In addition, the dynamical exponent z dictates the nature
of the spectra near the gap closing momenta kmc

0 , i.e., Ek ∝
kz [8]. It can be calculated numerically as shown in Figs. 6(c)
and 6(d), where the data points around gap closing momenta
kmc

0 at the multicritical points MC1,2 are shown. The spectra is
quadratic at MC1 and linear at MC2. The quadratic spectra
results in the dynamical critical exponent z ≈ 2, while for
linear spectra z ≈ 1. This behavior is true for both the criti-
calities. Therefore, the multicriticalities with both z = 1 and
z = 2 favor the topological transition at criticality.

The universality class for the topological transition at criti-
cality through both MC1,2 can now be obtained using the set of
three critical exponents (γ , ν, z), which captures the scaling
behavior around the multicritical points with distinct nature.
The universality class of the multicriticality at MC1 is (1,1,2)
and for MC2 it reads (1,1,1). Therefore, it is clear that the
topological transition at quantum criticality occurs through
two distinct multicriticalitie,s which belong to different uni-
versality classes.

B. Scaling theory

Based on the divergence of the curvature function, a scaling
theory has been developed [20,30,30–38]. This is achieved by
the deviation reduction mechanism where the deviation of the
curvature function from its fixed point configuration can be
reduced gradually. In the curvature function F (k,�), for a
given � in the parameter space, one can find a new �′, which
satisfies

F (k0,�
′) = F (k0 + δk,�), (20)

where δk is small deviation away from the k0, satisfy-
ing F (k0 + δk,�) = F (k0 − δk,�). As a consequence of the
same topology of the system at � and at fixed point � f , the
curvature function can be written as F (k,�) = Ff (k,� f ) +
Fd (k,�d ), where Ff (k,� f ) is curvature function at fixed
point and Fd (k,�d ) is deviation from the fixed point. The
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scaling procedure drives the deviation part of curvature
function |Fd (k0,�d )| → 0. The fixed point configuration is in-
variant under the scaling operation, i.e., Ff (k0,� f ) = Ff (k0 +
δk,� f ).

Performing the scaling procedure in Eq. (20) iteratively
and solving � for every deviation δk, one can obtain a renor-
malization group (RG) equation for the coupling parameters.
Expanding Eq. (20) in leading order and writing �′ − � = d�

and (δk)2 = dl , one can obtain a generic RG equation

d�

dl
= 1

2

∂2
k F (k,�)|k=k0

∂�F (k0,�)
. (21)

Since the curvature function diverges at �c, the scaling pro-
cedure gradually drives the system away from �c towards � f

without changing the topological invariant. Thus, eventually,
the RG flow distinguishes between distinct gapped phases and
correctly captures the topological phase transitions between
the gapped phases in the system.

In order to capture the topological transition at criticality
one can modify the same scaling scheme to incorporate the
multicriticality. This is possible since the qualitative behav-
ior of the curvature function defined at criticality exhibits
the same diverging nature near multicritical points with the
property F (kmc

0 ,�′
c) = F (kmc

0 + δk,�c) (here δk is small de-
viation from kmc

0 ). As the parameters at criticality �c → �mc,
the topology of the critical phase changes implying a topolog-
ical transition at multicritical point.

Based on the divergence of the curvature function at crit-
icality, the scaling theory can be achieved by performing
the deviation reduction mechanism at criticality. As a conse-
quence of the same topology of the system at �c and at fixed
point �

f
c , the curvature function can be written as F (k,�c) =

Ff (k,�
f
c ) + Fd (k,�d

c ), where Ff (k,�
f
c ) is the curvature func-

tion at fixed point and Fd (k,�d
c ) is deviation from the fixed

point. For a given �c, one can find a new �′
c, which

satisfies F (kmc
0 ,�′

c) = F (kmc
0 + δk,�c). Iteratively perform-

ing this scaling procedure and solving �c for every δk,
deviation of curvature function decreases and eventually
F (k,�c) → Ff (k,�

f
c ).

One can obtain a renormalization group (RG) equation for
the coupling parameters using the scaling parameter δk2 = dl
and �′

c − �c = d�c as

d�c

dl
= 1

2

∂2
k F (k,�c)|k=kmc

0

∂�c F
(
kmc

0 ,�c
) . (22)

The distinct critical phases with different topological charac-
ters can be distinguished from the RG flow of Eq. (22). The
multicritical points and fixed points are then easily captured
by analyzing the RG flow lines.

Multicritical point:

∣∣∣∣d�c

dl

∣∣∣∣ → ∞, flow directs away.

Stable fixed point:

∣∣∣∣d�c

dl

∣∣∣∣ → 0, flow directs into.

Unstable fixed point:

∣∣∣∣d�c

dl

∣∣∣∣ → 0, flow directs away. (23)

FIG. 7. RG flow diagrams. The multicritical and fixed lines are
represented as solid and dashed lines, respectively. (a) For MC1,
where MC2 appears as unstable fixed line. (b) For MC2, where MC1

appears as unstable fixed line. The RG flow lines clearly demon-
strates the topological transition at criticality.

Performing the RG scheme to the model at criticality, we
obtain the RG equations for MC1 as

d�0

dl
= �0(�0 + �2)

2(�0 − �2)
and

d�2

dl
= −�2(�0 + �2)

2(�0 − �2)
. (24)

Both the critical lines �1 = ±(�0 + �2), yield the same RG
equations. The multicritical point MC1 is manifested as a
line �0 = �2 with all flow lines flowing away, as shown in
Fig. 7(a). The condition in Eq. (23) for multicritical points is
satisfied as the flow rate diverges at MC1, which also indicates
that it is the topological phase transition point between critical
phases. Surprisingly, �0 = −�2 (MC2) is obtained as a line of
unstable fixed points at which flow rate vanishes with all the
flow lines are flowing away.

In order to realize the topological transition at criticality
through MC2 one has to consider the swapping of kmc

0 . The
RG equation for the critical line �1 = (�0 + �2), has to be
derived with kmc

0 = 0 and vice versa. This procedure yields
the RG equations of the form

d�0

dl
= �0(�0 − �2)

2(�0 + �2)
and

d�2

dl
= −�2(�0 − �2)

2(�0 + �2)
. (25)

In this case, �0 = −�2 (MC2) is obtained to be the topological
transition point between critical phases, with the diverging
flow rate and flow lines directing away, as shown in Fig. 7(b).
The unstable fixed point appear at �0 = �2 (MC1) with van-
ishing flow rate and flow lines flowing away.

C. Wannier state correlation function

Along with the RG scheme, a correlation function in terms
of Wannier-state representation is proposed to characterize
the topological phase transition [41]. This quantity may be
measured in higher dimensions [33,42,43]. It is the filled-band
contribution to the charge-polarization correlation between
Wannier states at different positions, and can be obtained
after the Fourier transform of the curvature function. For the
two-band model considered here with only the lower band
occupied the Wannier state at a distance R,

|R〉 =
∫

dkeik(r̂−R) |uk〉 (26)
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FIG. 8. Wannier-state correlation function at criticality. (a) For
MC1. (b) For MC2. Approaching the multicritical points �2 = ±�0

(with �0 = 1), the decay in the correlation function gets slower on
either side of MC1,2.

with position operator r̂, defines Wannier-state correlation
function as the overlap of the states |0〉 at the origin and at
a distance |R〉, as [41]

λR = 〈R|r̂|0〉 =
∫

dkeikR〈uk|i∂k|uk〉. (27)

Meanwhile, the substitution of the Ornstein-Zernike form of
curvature function [Eq. (16)] yields the Wannier-state correla-
tion function λR, to be

λR =
∫

dk

2π
eikRF (k,�) = eik0R F (k0,�)

2ξ
e− R

ξ . (28)

where ξ can be treated as correlation length of topological
phase transition. The correlation function λR decays expo-
nentially on either sides of the critical point. The decay gets
slower as the parameter is tuned towards criticality.

Surprisingly, this notion of correlation function holds true
even at criticality and identify the unique topological phase
transition at criticality. The behavior of correlation function
evidently show that the topological phase transition occurs
at the multicritical points MC1,2 at both the criticalities. The
Wannier-state correlation function can be calculated at criti-
cality as

λRc = eikmc
0 R F

(
kmc

0 ,�c
)

2ξc
e−R/ξc . (29)

where ξc = F (kmc
0 ,�c) = (�0 − 3�2)/2(�2 − �0) for MC1.

The correlation function decays faster away from the the
multicritical point MC1 and the decay slow down as one
approaches MC1 with the correlation length ξc → ∞, as
shown in Fig. 8(a). Both the criticalities shows same behavior
of correlation function near this multicritical point on both
sides indicating that the multicriticality is indeed a topolog-
ical phase transition point at criticality. Note that the only
difference between the criticalities for k0 = 0 and π is the
oscillatory behavior of λRc originating from the term eik0R.

To obtain the critical nature of MC2 one has to con-
sider the swapping of kmc

0 [Eqs. (4) and (5)], which yields
ξc = F (kmc

0 ,�c) = (�0 + 3�2)/2(�0 + �2). This captures the
critical nature of MC2, where the decay gets slower as one
approaches this point from both sides, as shown in Fig. 8(b).
Therefore, the behavior of the correlation function evidently
shows that the topological phase transition occurs at the multi-
critical points. For both the criticalities, the correlation length
ξc coincides with the decay length of the edge modes at
criticality studied earlier.

FIG. 9. Entanglement entropy at criticality (with �0 = 1). Topo-
logical transitions are identified with (a) minima at MC1 (�2 = 1)
and (b) maxima at MC2 (�2 = −1). Inset shows scaling of S at MC2

with central charge c = 1.

VI. ENTANGLEMENT ENTROPY

The characteristics of a criticality can be effectively quan-
tified from the entanglement entropy (EE) of the ground state
by arbitrarily dividing a system into two subsystems [44–46].
Taking the advantage of Wick’s theorem, the eigenvalues of
the reduced density matrix can be extracted from the two point
correlation matrix, which in the thermodynamic limit can be
written as [46]

Ci, j =
∫ π

−π

dk

2π
eik(i− j)G(k), where G(k) = χ.σ

Ek
, (30)

with 1 � i, j � L (where L is the subsystem size). The EE (S)
can be computed as [46]

S = −1

2

∑
κ=±,�i

1 − κ�i

2
ln

(
1 − κ�i

2

)
, (31)

where �i are the eigenvalues of correlation matrix. The EE
signals the topological transition at the multicritical points, as
shown in Fig. 9. The profile of EE shows, maxima at MC2

[Fig. 9(b)] and surprisingly minima at MC1 [Fig. 9(a)].
For the generic model in Eq. (1), the MC1 is the intersec-

tion point of fixed and critical lines. Remarkably, at MC1,
we observe that the fixed point characteristic is more domi-
nant, which results in the minima of entanglement entropy, in
oppose to the critical point behavior where entanglement is
supposed to maximize due to the enhanced correlations (see
Appendix E for more details). Besides, at MC1, the bulk is
not a CFT. This can be seen from the multiplicity factor (m),
i.e., the degenerate zeros on the unit circle of the complex
function associated with the Hamiltonian. The multiplicity at
MC1 is m = 2 [see Figs. 4(g)–4(j)]. As shown in Ref. [8], if
the complex function has degenerate zeros with multiplicity
m, the bulk is not CFT and implies the dynamical exponent
z = m. This is consistent with z value obtained for MC1 [see
Fig. 6(c)].

At MC2, the EE is S = S0 + (c/3) log L [46] where con-
stant S0 = 0.72 and the central charge c = 1 as shown in the
inset of Fig. 9(b). The value of c at MC2 is consistent with
Ref. [46], where c was found to be the sum of the central
charges of intersecting criticalities. As MC2 is the intersecting
point of the two Ising criticalities (c = 1/2), we get c = 1.

VII. CONCLUSION

In this work, we reconstruct various tools to characterize
the unusual topological phase transitions between distinct crit-
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ical phases of an extended model that represents topological
insulators and superconductors at criticality. Bound state so-
lutions of the Dirac equation and winding number defined
for criticality show that the transitions between the critical
phases occur through multicritical points MC1,2 of different
universality classes as captured through the critical expo-
nents obtained from the divergence of the curvature function.
There exists an interesting swapping behavior of the critical
momenta kmc

0 at MC2, which manifests in the behavior of
curvature function. A scaling theory based on the curvature
function unravels that the transitions at MC1,2 can be effi-
ciently identified from the RG flow in the parameter space and
also shows that, MC2 manifests as unstable fixed line of RG
flow for MC1 and vice versa. A diverging correlation length
obtained from the Wannier-state correlation function, which
essentially is the Fourier transform of the curvature function,
indicates the occurrences of topological phase transitions at
MC1,2. Moreover, the unique transitions at MC1,2 are charac-
terized with the minima and maxima of entanglement entropy,
respectively, revealing an intriguing dominance of the fixed
point over the criticality at MC1.

Our proposed framework, in general, can be applied to
the driven systems and higher-dimensional systems. A unique
advantage of having topological nontrivial criticalities is that
the quantum information remains robust upon tuning the sys-
tem towards it [9]. By identifying the multicritical points
one can choose a proper criticality to tune into and avoid
the decoherence due to bulk gap closing and opening. Our
topological model at criticality can be simulated with a good
control over the tunable parameters in the suitable experimen-
tal platforms, which include the superconducting circuit with
a single qubit [47,48] and the ultracold atoms mimicking the
topological models [49–53], especially the Kitaev model with
controlled NN and NNN couplings [51,54,55].
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APPENDIX A: PHYSICAL RELEVANCE
OF MODEL HAMILTONIAN

The model considered in Eq. (1) is a generic two-band
model for spinless fermions in 1D lattice with nearest-
neighbor (NN) and next-nearest-neighbor (NNN) coupling
amplitudes of electrons. It maps into extended Su-Schrieffer–
Heeger (SSH) [21,23] and Kitaev chains [22,24] in mo-
mentum space, which are the simplest 1D models for

topological insulators and superconductors, respectively. The
tight-binding Hamiltonians can be written as

HSSH = α0

∑
i

c†
i,aci,b + α1

∑
〈i j〉

(c†
i,ac j,b + H.c.)

+ α2

∑
〈〈i j〉〉

(c†
i,ac j,b + H.c.), (A1)

HKitaev = β0

∑
i

(2c†
i ci − 1) − β1

∑
〈i j〉

(c†
i c j + c†

i c†
j + H.c.)

− β2

∑
〈〈i j〉〉

(c†
i c j + c†

i c†
j + H.c.), (A2)

where c†
i, j and ci, j are the fermionic creation and annihilation

operators. In HSSH , the subscripts a, b denote the sublattices,
with on-site potential α0 and NN (NNN) hopping amplitude
α1(2). In HKitaev , β0 is on-site potential and β1(2) is NN (NNN)
pairing and hopping amplitudes.

The Hamiltonians can be readily diagonalized by Fourier
transformation to obtain a generalized Bloch Hamiltonian in
the basis of spinor ψk

HSSH =
∑

k

ψ
†
k HSSHψk with ψk = (ca,k cb,k )T (A3)

The Hamiltonian HSSH (k) = χx.σx + χy.σy, where χx =
α0 + α1 cos k + α2 cos 2k and χy = α1 sin k + α2 sin 2k. The
excitation spectra can be obtained as Ek = ±√

χ2
x +χ2

y . The
gap closing points (i.e., Ek = 0) for a specific k0 defines
critical surfaces or phase boundaries, which separate topolog-
ically distinct gapped phases. The gapless edge excitations
of these gapped phases are quantified in terms of winding
number w, which counts the number of edge modes present
in the corresponding gapped phases. There are three critical
surfaces for extended SSH model. Two of them are with
high-symmetry nature (i.e., k0 = −k0), α1 = −(α0 + α2) and
α1 = (α0 + α2), respectively, for k0 = 0 and π . One with
non-high-symmetry nature (i.e., k0 
= −k0), α0 = α2 for k0 =
cos−1(−α1/2α2). Without loss of generality, we assume α0 =
1, hence critical surfaces and multicritical lines will be critical
lines and multicritical points, respectively, on the α1 − α2

plane, as shown in Fig. 10(a). The three critical lines distin-
guish the gapped phases with invariant number w = 0, 1, 2.
There are three multicritical points named MC1 (two of them)
and MC2, with distinct nature, at which the critical lines
meet [56].

The edge mode remains localized at the criticalities (crit-
ical lines) between the topological nontrivial gapped phases
(w = 1 and w = 2), which give rise to the topological char-
acteristics to the criticality. The same does not occur at the
criticality between trivial and nontrivial gapped phases (w =
0 and w = 1). This results in the criticality to get separated
into two distinct critical phases with trivial and nontrivial
topological properties. The multicritical points MC1,2, with
quadratic (i.e., Ek ∝ k2) and linear dispersions (i.e., Ek ∝ k),
respectively, facilitates the topological transition at criticality
between trivial and nontrivial critical phases.

Similar qualitative behavior can also be observed in the
extended Kitaev model due to the striking similarity in the
phase diagram with SSH model. For the Kitaev model one
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FIG. 10. Topological phase diagrams of (a) extended SSH model
(for α0 = 1.) and (b) extended Kitaev model (for β0 = 0.5). High
symmetry critical lines for k0 = 0 and π are represented in red
and blue, respectively, while non-high-symmetry critical lines are
in orange. The topological trivial and nontrivial critical phases are
represented in dashed and solid lines, respectively. The wI

c are the
winding numbers at criticality [Eq. (10)]. The critical phases are sep-
arated by multicritical points MC1 (magenta dots) and MC2 (purple
dots). Each high symmetry criticality allows topological transition
between distinct critical phases through multicritical points.

can obtain

HKitaev =
∑

k

ψ
†
k HKitaevψk with ψk = (ck c†

−k )T .

(A4)
The Hamiltonian HKitaev (k) = χx.σx + χy.σy, where
χx = 2β0 − 2β1 cos k − 2β2 cos 2k and χy = 2β1 sin k +
2β2 sin 2k, after a rotation along σy. The gap closing critical
surfaces for this case are β1 = −(β0 − β2), β1 = (β0 − β2)
and β0 = −β2, respectively, for k0 = 0, k0 = π , and
k0 = cos−1(−β1/2β2). These phase boundaries separate
the gapped phases with invariant numbers w = 0, 1, 2 as
shown in Fig. 10(b) (for β0 = 0.5). Localized edge modes
living at the criticalities between the nontrivial topological
gapped phases can be observed here as well, which define
trivial and nontrivial critical phases with distinct topological
properties. The multicritical points MC1,2 mediate the
topological transition at criticality between critical phases
with distinct topological nature and share the same properties
as in the case of SSH model.

To study the unusual topological transition at criticalities
we consider a generic model, which essentially summarize
both SSH and Kitaev model, thereby giving one platform to
study both topological insulator and superconductor models
in one dimension. We define a generalized Bloch Hamiltonian
for two-band model by setting α0 = 2β0 = �0, α1 = −2β1 =
�1, and α2 = −2β2 = �2. This model captures the physics of
both SSH and Kitaev models, especially the phenomenon of
multicriticality and the corresponding topological transition.

APPENDIX B: NUMERICAL RESULTS OF EDGE MODES
AND TOPOLOGICAL TRANSITION AT CRITICALITY

We begin by discussing the behavior of the pseudo-spin-
vectors to identify the trivial and nontrivial criticalities. The
characteristic feature of the parameter space curve at critical-
ity is that it passes through the origin while tracing closed
curve. Nontrivial critical phases can be identified with the
emergence of secondary loops, which encircle the origin in-
dicating a finite winding number or edge modes at criticality,

FIG. 11. Pseudo-spin-vector at criticality. (a) Nontrivial critical
phase. (b) Trivial critical phase.

as shown in Fig. 11(a). In trivial critical phase parameter space
curves always passes through the origin without encircling
loops, thus there is no edge modes at criticality, as shown in
Fig. 11(b).

Numerical diagonalization of the Hamiltonians in Eq. (A1)
and Eq. (A2) (the results shown in this section summarizes
both SSH and Kitaev model in open boundary condition)
reveals that for the nontrivial critical phases the probabil-
ity of wave function significantly distributes at the edge of
the finite open chain representing the stable localized edge
modes, as shown in Fig. 12(a). The corresponding eigenvalue
distribution shows two of the eigenvalues trapped at zero

FIG. 12. Numerical results for edge mode and topological phase
transition at criticality. Probability distribution at (a) nontrivial crit-
ical phase and (b) trivial critical phase. Eigenvalue distribution at
(c) nontrivial critical phase and (d) trivial critical phase. Energy spec-
tra at criticalities with respect to the parameters: (e) β2 (for critical
Kitaev model) and (f) α2 (for critical SSH model). The multicritical
points are represented as magenta and purple dots. Zero-energy states
are present at nontrivial critical phases and absent at trivial critical
phase. The multicritical points differentiate the trivial and nontrivial
phases.
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energy even if there is no bulk gap, as shown in Fig. 12(c).
In case of the trivial critical phase, probability distribution
can be found delocalized over the entire system, as shown in
Fig. 12(b). Correspondingly, there are no eigenvalues living
at zero energy, as shown in Fig. 12(d). The localization and
delocalization of the edge modes change across the multicrit-
ical points MC1,2, which thus differentiate between trivial and
nontrivial critical phases.

The topological transition among the nontrivial and trivial
critical phases can be identified in the energy spectrum with
the system parameter. The presence (absence) of zero-energy
states dictates the nontriviality (triviality) with respect to the
system parameter, as shown in Figs. 12(e) and 12(f). Note
that there is no bulk gap in the spectrum since the system is
at criticality. The zero-energy states represent localized stable
edge modes living at the critical phases. The transition among
the trivial and nontrivial phases can be seen at the multicritical
points.

APPENDIX C: BOUND STATE SOLUTION OF DIRAC
EQUATION FOR GAPPED PHASES

The model Hamiltonian in Eq. (1) can be recast in the form
of Dirac Hamiltonian in one dimension, which represents the
topological insulator and superconductor models. The Dirac
Hamiltonian of the model can be obtained by the second-order
expansion of χ around the gap closing momenta k0

H(k) ≈ (m − ε1k2)σx + ε2kσy. (C1)

For k0 = 0 we have m = (�0 + �1 + �2), ε1 = (�1 +
4�2)/2, and ε2 = (�1 + 2�2). For k0 = π , m = (�0 − �1 +
�2), ε1 = (4�2 − �1)/2, and ε2 = (2�2 − �1). The contin-
uum version of the model reads (with h̄ = 1)

H(−i∂x ) ≈ (
m + ε1∂

2
x

)
σx + (−iε2∂x )σy. (C2)

To obtain zero-energy solution Hψ (x) = 0, we multiply σy

from right-hand side. This implies the wave function ψ (x) =
ρηφ(x), is an eigenstate of σzρη = ηρη. The resulting second-
order differential equation can be written as

∂2
x φ(x) = −(ε2∂x + ηm)φ(x)

ηε1
. (C3)

FIG. 13. Bound state solution of Dirac equation for gapped
phases. (a) Represents the gapped phase with one edge mode w = 1.
(b) Represents the gapped phase with two edge modes w = 2. Edge
modes solutions are localized at the boundary with the localization
length ξ±.

We set the trial wave function φ(x) ∝ ex/ξ to obtain the secular
equation, which yields the inverse of the decay length

ξ−1
+ ≈ − m

|ε2| . (C4)

The decay length is positive if m < 0, which identifies the
gapped topological nontrivial phase with w = 1. Similarly,
topological phase with w = 2 can also be identified by using
the ansatz φ(x) ∝ e−x/ξ , which under the condition mε1 > 0
yields the decay length ξ− ≈ |ε2|/m. The decay length is
positive if m > 0. Even though, the topological trivial phase
with w = 0 is also identified with m > 0, it does not host any
zero-energy solution since the region m > 0 for trivial phase
satisfies the relation mε1 < 0. If the parameter mε1 < 0, spin
distribution of the ground state does not show antiparallel spin
orientation in momentum space [27]. If mε1 > 0 is satisfied,
spin orientation aligns in the opposite directions with the in-
creasing momentum. Thus the gapped phases w = 2 and w =
0 are identified with the condition mε1 ≶ 0, respectively. The
wave function for zero-energy solution can be derived to be

ψ (x) ∝ ψ (0)(e±x/ξ+ − e±x/ξ− ), (C5)

up to normalization constant. The solution is exponentially
localized near the boundary, as shown in Fig. 13.

APPENDIX D: ANALYTICAL EVALUATION
OF CRITICAL EXPONENTS

The critical exponents in Sec. V A can also be estimated
analytically by writing the curvature function [Eq. (15)] in
Ornstein-Zernike form. It can be achieved by expanding the
pseudo-spin-vector χ(k) around kmc

0 up to third order.

χ(k)|k=kmc
0

≈ χ
(
kmc

0

) + ∂kχ
(
kmc

0

)
δk + ∂2

k χ
(
kmc

0

)
2

δk2.

+ ∂3
k χ

(
kmc

0

)
6

δk3, (D1)

Expansion of the individual components of the vec-
tors χx(k)|k=kmc

0
= �0(1 ± cos k) + �2(cos 2k ± cos k) and

χy(k)|k=kmc
0

= �2(sin 2k ± sin k) ± �0 sin k for both the crit-
icalities of the model yields

For MC1 : χx(k)|k=kmc
0

≈ (�0 − 3�2)

2
δk2. (D2)

χy(k)|k=kmc
0

≈ (�2 − �0)δk + �0 − 7�2

6
δk3. (D3)

For MC2 : χx(k)|k=kmc
0

≈ (�0 + 3�2)δk. (D4)

χy(k)|k=kmc
0

≈ 2(�2 + �0) + �0 + 5�2

2
δk2. (D5)

The expression for MC2 is obtained after considering the
swapping of kmc

0 . The Ornstein-Zernike form of the curvature

205114-11



KUMAR, ROY, KARTIK, RAHUL, AND SARKAR PHYSICAL REVIEW B 107, 205114 (2023)

function for MC1 can be obtained as

F (k, δ�c) = χy∂kχx − χx∂kχy

χ2
x + χ2

y

=
(Aδ�cδk2−ABδk4

δ�2
cδk2

)
1 + (A2+2δ�cB

δ�2
c

)
δk2 + (

B2

δ�2
c

)
δk4

= F
(
kmc

0 , δ�c
)

1 + ξ 2
c δk2 + ξ 4

c δk4
, (D6)

where δ�c = |�c − �mc| = (�2 − �0), A = (�0 − 3�2)/2,
and B = (�0 − 7�2)/6. Similarly, for MC2 it reads

F (k, δ�c) = χy∂kχx − χx∂kχy

χ2
x + χ2

y

=
(Aδ�c−ABδk2

δ�2
c

)
1 + (A2+2δ�cB

δ�2
c

)
δk2 + (

B2

δ�2
c

)
δk4

= F
(
kmc

0 , δ�c
)

1 + ξ 2
c δk2 + ξ 4

c δk4
, (D7)

where δ�c = 2(�2 + �0), A = (�0 + 3�2), and B = (�0 +
5�2)/2. Now the critical exponents can be obtained using
Eq. (19). The exponent γ is given by

F
(
kmc

0 , δ�c
) = Aδ�−1

c ⇒ γ = 1. (D8)

Exponent ν can be obtained by identifying the dominant term
among the coefficients of δk2 and δk4. It can be easily seen
that approaching multicritical points MC1,2 on both the criti-
calities yields A >

√
2B,

√
B. This implies

ξc = Aδ�−1
c ⇒ ν = 1. (D9)

Thus both the numerical and analytical methods yield the
same values of critical exponents for topological transition
through multicritical points at criticality.

APPENDIX E: ENTANGLEMENT ENTROPY AT CRITICAL
AND FIXED POINTS

In order to understand the behavior of EE at the multicriti-
cal point MC1, at first, we show MC1 is the intersection point
of fixed and critical lines in the parameter space. The fixed
lines can be obtained by performing the curvature function
renormalization group method [30], to capture the topolog-
ical transition between gapped phases of the generic model
in Eq. (1), in �1 − �2 plane with �0 = 1. There are two
high-symmetry critical lines �2 = (−�0 ∓ �1) for k0 = 0, π ,
respectively. The CRG equations can be obtained as

d�1

dl
= −�1(�2 ∓ �1) + �0(�1 ± 8�2)

�0 ± �1 + �2
, (E1)

d�2

dl
= ∓ (�0 − �2)[�1(�2 ∓ �1) + �0(�1 ± 8�2)]

(2�0 ± �1)(�0 ± �1 + �2)
, (E2)

where the upper and lower signs are for k0 = 0, π , re-
spectively. The critical and fixed lines can be obtained
from the CRG equations using the conditions |d�/dl| →
∞ and |d�/dl| → 0, respectively [32], and are depicted in
Fig. 14(a). From the CRG equations for k0 = 0, the fixed

FIG. 14. EE at critical and fixed points. (a) Phase diagram of the
model in Eq. (1) [same as in Fig. 10(a)]. It is plotted in �1 − �2

plane with �0 = 1. The critical lines are represented as blue, red, and
orange lines. The multicritical points MC1 are the magenta dots at
(�1, �2) = (±2, 1). These points are the intersection points of the
fixed lines (represented in green and purple) and high-symmetry
critical lines (red and blue lines). To see the EE profile at fixed
and critical points, we choose two paths at �1 = ±4 (black dashed
lines). The points C1,C2 and F1, F2 are the critical and fixed points,
respectively, along the two paths. The behavior of critical (fixed)
points C1 (F1) and C2 (F2) are identical, therefore only the plots for
C1 and F1 are shown. (b) Variation EE with parameter in the vicinity
of F1 (�1 = −4, �2 = 1) for different subsystem sizes. (c) Scaling
of EE at the fixed point F1 the subsystem size L. (d) EE in the
vicinity of the point C1 i.e. (�1 = −4, �2 = 3). (e) Scaling of EE
at the critical point C1. The EE increases with the subsystem size
as S = S0 + (c/3) log(L) where the constant S0 = 1.01 and central
charge c = 1/2 representing Ising criticalities.

line can be obatined as �2 = (�2
1 − �0�1)/(8�0 + �1) (pur-

ple line), which intersects the critical line �2 = −(�0 + �1)
(red line) at the multicritical point (�1, �2) = (−2, 1). Sim-
ilarly, from the CRG equations for k0 = π , the fixed line
�2 = (�2

1 + �0�1)/(8�0 − �1) (green line) is obtained and
it intersects the critical line �2 = (−�0 + �1) (blue line) at
the multicritical point (�1, �2) = (2, 1). Both the multicritical
points (�1, �2) = (±2, 1) are of type MC1 as explained in
Fig. 10. Therefore, it is clear that the MC1 is the intersection
point of fixed and critical lines.
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The EE shows minima at a fixed point in contrast to
a critical point (where the EE is maximum), as shown in
Figs. 14(b)–14(e). We choose two vertical paths in the pa-
rameter space at �1 = ±4, as shown in Fig. 14(a). The paths
intersect the critical points at C1,C2 (i.e., at �2 = 3) and fixed
points at F1, F2 (i.e., at �2 = 1). The EE shows minima as a
consequence of minimal correlations at the fixed points, as
shown in Fig. 14(b) and subsytem-size independence at the
fixed points, Fig. 14(c). Similarly, the maximum correlations

yield the maxima at the critical points, as shown in Fig. 14(d).
Moreover, at the critical points the EE is S = S0 + (c/3) log L
where ‘c’ is the central charge of the CFT and S0 is a con-
stant. Figure 14(e) shows the scaling of EE at C1 and C2

with c = 1/2, representing Ising criticality [9]. In contrast,
the fixed points F1 and F2 are in the gapped phase and the EE
remains constant with subsystem size L representing the area
law, as shown in Fig. 14(c). This demonstrates the distinction
between fixed and critical points in terms of EE and its scaling.
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