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Among the quasi-one-dimensional transition metal tetrachalcogenides (MSe4)nI (M = Nb,Ta), the n = 3
compounds are the only ones not displaying charge density waves. Instead, they show structural transitions
with puzzling transport behavior. They are semiconductors at the lowest temperatures, but their transport
gaps are significantly smaller than those inferred from angle-resolved photoemission spectroscopy (ARPES)
and optical conductivity. Recently, a metallic polytype of (TaSe4)3I has been found with ferromagnetism and
superconductivity coexisting at low temperature, in contrast to previous reports. In this work we present detailed
ab initio and tight-binding band-structure calculations for the different (MSe4)3I reported structures. We obtain
good agreement with the observed transport gaps, and explain how ARPES and optics experiments effectively
probe a gap between different bands due to an approximate translation symmetry, solving the controversy.
Finally, we show how small extrinsic hole doping can tune the Fermi level through a Van Hove singularity in
(TaSe4)3I and discuss the implications for magnetism and superconductivity.
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I. INTRODUCTION

The series of transition metal tetrachalcogenides (MSe4)nI
with metals M = Nb,Ta have been long recognized as ideal
quasi-one-dimensional (quasi-1D) materials to study charge
density wave (CDW) transitions [1–3]. These compounds are
made of weakly coupled MSe4 chains, each of them hosting a
single one-dimensional band with fractional filling δ = (n −
1)/2n, with reported structures occurring at n = 2, 3, 10

3 , i.e.,
δ = 0.25, 0.33, 0.35, respectively. These fractionally filled
quasi-1D bands are prone to CDW instabilities which have
been extensively studied [1–14].

In the better known Nb compounds, the n = 2 and n = 10
3

variants show clear incommensurate CDW transitions aris-
ing from a metallic parent state. On the other hand, n = 3
compounds stand out as the only ones without a CDW. In-
stead, they display a structural transition and the activated
transport of a semiconductor. While such behavior is believed
to originate from the commensurability of the unit cell and
filling for n = 3, several puzzles have precluded a consistent
understanding of these materials in terms of band theory:
Often more than one structural transition is observed [2,8–10],
and the measured transport gaps are quite variable [4,6,15–
17]. In addition, angle-resolved photoemission spectroscopy
(ARPES) [18,19] and optical conductivity [18] experiments
reported a gap that was much larger than any of those mea-
sured in transport.

For the isoelectronic Ta compounds, only n = 2, 3 variants
are reported in the literature [15,20,21]. While (TaSe4)2I has
seen a renewed interest [22] in the context of axionic CDW

in Weyl semimetals [23–25], knowledge about (TaSe4)3I is
rather scarce, as it was assumed to behave mostly like its
Nb counterpart [15,20,21]. In a recent development, however,
a noncentrosymmetric polytype of (TaSe4)3I has been found
to be metallic at room temperature, with a ferromagnetic
transition at 8 K, and superconductivity coexisting with fer-
romagnetism at Tc = 3 K [26]. This coexistence is unusual
on its own [27,28], but it is even more surprising given the
isoelectronic Nb compound semiconducting behavior.

The conflicting transport and ARPES results for (NbSe4)3I,
along with the unexpected low-temperature behavior of
(TaSe4)3I reveal that an understanding of these materials by
means of band theory is currently lacking. In this work, we
combine ab initio calculations of all known structures for
both compounds with a tight-binding analysis to explain the
fundamental electronic properties of these systems. All phases
are found to be semiconducting, with structures showing a
trimerization distortion of the MSe4 units and with gaps that
can be directly correlated with the amount of trimerization.
We discuss how these gaps compare with transport observa-
tions and find in general good agreement (except for the new
metallic polytype, which is probably unintentionally doped).
However, we also show that while the gap is formally direct
and located at �, there is an approximate in-plane translational
symmetry leading to a negligible spectral weight for the va-
lence band edge, so ARPES and optical conductivity actually
probe higher bands and lead to a misidentification of the true
gap. Finally, we identify a Van Hove singularity in the valence
band edge in the new (TaSe4)3I polytype which crosses
the Fermi level for a very small amount of hole doping, and we
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argue that this might be relevant for the observed magnetism
and superconductivity.

II. PHENOMENOLOGY OVERVIEW

For the n = 3 compounds, (NbSe4)3I is the best studied
one. Its high-temperature phase has a tetragonal, centrosym-
metric crystal structure with space group (SG) P4/mnc (No.
128, point group D4h). As temperature is lowered, it undergoes
a structural phase transition at Tc1 ∼ 274–280 K with the
resulting space group P4̄21c (No. 114, point group D2d ). A
second structural transition to a phase with SG P4̄ (No. 81,
point group S4) at Tc2 ∼ 90 K has also been reported [2,8–10],
but not in all experiments. In this work, we will refer to these
structures only by their point group. The pattern of symmetry
breaking is thus D4h → D2d → S4.

Resistivity measurements are generally consistent with
semiconducting behavior with activated resistivity ρ ∝
eEg/2kBT and a gap Eg that appears to change through the
phase transitions. Above Tc1, values of Eg = 190–220 meV
[14,15] were reported. A resistivity kink was always observed
at Tc1, and below it two types of samples were reported to
exist [15], initially indistinguishable by structural measure-
ments [6,15]. In type-I samples Eg is reduced to values in
the range 20–70 meV [4,6,15,16] all the way to the lowest
temperatures measured. In type-II samples, a broader kink
is observed which leads to low-temperature gaps of 110–
130 meV [14,15]. However, in some samples ∂ ln ρ/∂T −1

never flattens to a constant Eg value, but rather continuously
decreases after a maximum [6,17], challenging the view of
standard activated transport. Differing observations also in-
clude a report of Eg = 97 meV for T > Tc1 and 222 meV
for T � Tc1 [10], or even an abrupt change at 180 K from
345 to 22 meV [7]. Another characteristic feature of type-II
samples is that switching to a state of lower resistance can
be induced at high currents and low temperatures [17]. This
behavior disappears at 140 K, and is completely absent in
type-I crystals.

A partial solution to these transport puzzles was offered in
Ref. [14] which reported that the second structural transition
was only observed in samples assigned to type II in transport.
The overall suggested picture would then be that all three
structures are semiconductors: the initial gap of 190–220 meV
for the D4h structure is reduced to 20–70 for the D2d structure,
and for samples with the second transition it increases again in
the S4 structure to 110–130. While outliers to this picture do
exist, we consider this to be the average behavior to compare
with our calculations.

Early ARPES experiments at 300 K also attempted to de-
termine the spectral gap [18,19]. The valence band maximum
was found to be at 750 meV below EF , providing a lower
bound on the gap which is much larger than the one obtained
from every transport experiment. Optical conductivity also
showed a raising edge at ω ∼ 500 meV [18], again too large
compared to transport gaps. The fact that the gap derived
from ARPES and optical conductivity is much larger than the
ones obtained from transport remains an unsolved problem to
date, precluding any consistent band-structure understanding
of these materials.

FIG. 1. (a) Atomic structure of (TaSe4)3I in the D4h phase and
(b) Brillouin zones for the atomic structure of (a) shown in blue, and
for the approximate effective structure described in the text which
contains one formula unit.

Finally, much less is known about (TaSe4)3I [15,20,21],
which has generally been assumed to behave like its Nb
counterpart. The D4h → D2d structural phase transition was
measured at at 200 K [20], but the S4 phase has not been
reported. Very recently, the D2d was reported to be metallic
with a resistance kink plateau at 150 K, a ferromagnetic tran-
sition at 8 K, and a superconducting one at Tc = 3 K [26],
in stark contrast to previous observations. The coexistence
of ferromagnetism and superconductivity is a rarely reported
phenomenon [27,28], and it is often taken as a hint that pair-
ing could be in an unconventional odd-parity triplet channel.
While experiments on superconductivity are at a very early
stage, a band-structure understanding of the basic properties
of (TaSe4)3I is clearly needed as a starting point to understand
these unusual behaviors.

III. METHODS

With the aim of explaining the previously discussed
phenomenology, first-principles density functional theory
(DFT) band-structure calculations for the different reported
structures were performed using VASP [29,30] v.6.2.1 with
projector-augmented wave pseudopotentials using two ap-
proximations: the generalized gradient approximation with
Perdew Burke Ernzerhof (PBE) parametrization [31] and
the modified Becke-Johnson (mBJ) method [32]. The mBJ
method was chosen in order to obtain a more accurate descrip-
tion of the band gaps of the studied structures, in the interest
of unraveling the possible metallic behavior of (TaSe4)3I in
the D2d phase. All considered compounds are nonmagnetic.

Figure 1 shows the crystal structure of (MSe4)3I com-
pounds in the D4h phase. The MSe4 units form one-
dimensional chains, where each M atom is sandwiched
between Se4 rectangular units and separated by I− ions. Each
Se4 adjacent rectangular unit is rotated around 45◦ and modu-
lated by small distortions on Se positions. The typical unit cell
for these compounds is tetragonal (a = b �= c) and contains
two metallic chains. The particular case of Fig. 1 is (TaSe4)3I
in D4h phase, with a = b = 9.719 Å and c = 19.363 Å. The
difference between phases i.e D4h, D2d and S4; is given by the
relative distance between M atoms and small modulations in
the Se positions.

For (NbSe4)3I, a detailed structural characterization is
available for the three considered phases D4h [1], D2d

[2], and S4 [8]. Therefore, all DFT calculations for these
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FIG. 2. Ab initio band structures for the (MSe4)3I compounds in the three different structures D4h, D2d , and S4 from left to right. Top row
(a)–(c) shows (NbSe4)3I, bottom row (d)–(f) shows (TaSe4)3I. Solid black lines were obtained using PBE pseudopotentials and dashed blue
lines were obtained using mBJ hybrid potentials.

compounds were performed using the experimentally mea-
sured lattice parameters. Self-consistent calculations consid-
ering spin-orbit coupling were found to be well converged for
a kinetic energy cutoff of 520 eV and a 9 × 9 × 5 k-mesh
sampling. Conversely, in the case of (TaSe4)3I, no detailed
characterization exists. Given the similarity with the Nb com-
pounds [2], we obtained the structures of the Ta compounds
performing a structural relaxation starting with the positions
of the experimentally measured Nb-based compounds [4,33].
The relaxation calculations were performed using a conjugate
gradient algorithm [34] and were found to be well converged
for a kinetic energy cutoff of 520 eV and an 11 × 11 × 5
k-mesh sampling. For phases D4h and D2d , the starting point
was the prerelaxed structures in Ref. [33] while, for phase
S4, a direct relaxation with the conjugate gradient algorithm
was performed from the original positions of the isoelectronic
Nb compound in the same phase since no prerelaxed data
was available. This strategy prioritizes the conservation of the
space-group symmetries from the original Nb structures. Self-
consistent calculations considering spin-orbit coupling were
found to be well converged for a 520 eV kinetic energy cutoff
and an 11 × 11 × 5 k mesh. Density of states calculations
were performed using a 15 × 15 × 9 k mesh and an energy
resolution of 0.7 meV.

IV. DFT BAND STRUCTURES

The electronic band structures for (NbSe4)3I and (TaSe4)3I
are presented in Fig. 2 in both PBE and mBJ approximations.
The band structures for both Nb and Ta compounds are overall
similar for all phases. A set of eight low-energy bands is
observed in the energy window E ∈ [−0.5, 0.5] eV. This set
is found closer to the valence bands in the Nb compounds
compared to the Ta compounds. These bands have a dominant
orbital weight coming from dz2 orbitals of the Ta atoms, as
shown in the density of states in Fig. 3 and as explained
originally by Gressier et al. [3,21]. The fact that these bands
have dominant weight in a single Ta orbital suggests a simple
tight-binding model should describe these bands correctly, as
shown in the following section.

Regarding the band gaps, in the case of (NbSe4)3I, the mBJ
method shows a greater band gap than the PBE parametriza-
tion for the three phases. In PBE, the band gap is slightly
indirect, with the valence band maximum slightly off � in
the M-� direction and the conduction band minimum at �.
In mBJ, the band gap is also indirect for the D2d and S4

phases, but it is direct for D4h. Similarly, for (TaSe4)3I the
mBJ method also shows a greater band gap than PBE for all
phases. In both mBJ and PBE approximations the band gaps
are direct between �-� for the inversion conserving phase
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FIG. 3. Orbital-resolved density of states for (TaSe4)3I in the D2d

phase computed within the PBE parametrization. This density of
states corresponds to the bands shown in Fig. 2(e). The bands near
the Fermi level have dominant dz2 orbital character on the Ta sites.
This is true for all computed band structures (not shown).

D4h and slightly indirect for the inversion-broken phases D2d

and S4.
In order to understand the different values obtained from

DFT calculations we recall that the relative distances between
Nb atoms were reported to be related to the electronic band
gap in the past. In the interest of gaining insight into this
statement for (MSe4)3I compounds, we introduce the concept
of distortion �d ,

�d =
√√√√ 6∑

i=1

(
1

6
− dMi−Mi+1

c

)2

, (1)

where dMi−Mi+1 = d̂i is the distance between neighboring M
atoms along the 	c direction, c = |	c| and the sum runs over
the six M atoms in the (MSe4)3I compounds. The quantity
�d measures how far a six-atom chain is from being evenly
spaced, and vanishes when all distances between M atoms are
equal, i.e., d̂i = d̂ j for all i, j. A summary of relevant struc-
tural data and distortions, along with the band gaps obtained
both in the PBE parametrization and the mBJ method are
presented in Table I. The results in the table suggest a relation
between distortion, cell volume, and electronic band gap. In
general terms, a greater distortion leads to wider electronic
band gaps. Even so, the cell volume also seems to play a
role in enhancing or reducing the band gap, since smaller cell

volumes lead to smaller band gaps. The data recollected in
Sec. II for transport band gaps in Nb compounds, shows
the following trend: �ED4h > �ES4 > �ED2d , while our
data suggests that �ES4 > �ED2d > �ED4h. Even though the
trends are dissimilar, the magnitudes for the DFT electronic
gaps are comparable to those obtained with transport measure-
ments.

V. TIGHT-BINDING MODELS

Since the orbital-resolved density of states in Fig. 3 shows
that the bands near the Fermi level are dominated by M dz2

orbitals, we can gain a deeper understanding of the struc-
tural dependence of the band gap from a simple tight-binding
model containing only such orbitals in Ta sites. The model
will be constrained by the symmetries of each phase: D4h

is generated by inversion I , the glide {m110| 1
2

1
2

1
2 }, the ro-

toinversion S4, and the twofold screw {2100| 1
2

1
2

1
2 }. Breaking

of inversion then leads to the point group D2d and further
breaking the glide and twofold axis leads finally to point
group S4.

In the phase of higher symmetry, D4h, there are only two
nonequivalent M atoms, as shown in Figs. 4(a) and 4(b). The
simplest model therefore only contains two different on-site
potentials �1 and �2, two intrachain hoppings t1 and t2,
and a single interchain hopping t⊥. As the figure shows, this
model actually has an accidental translation symmetry, with
a reduced unit cell with three M sites, representing a single
formula unit (MSe4)3I (the true unit cell would have four
formula units). The lattice parameters of this reduced unit cell
are c∗ = c/2 and a∗ = a/

√
2, and the corresponding enlarged

Brillouin zone BZ∗ is shown in Fig. 1, with high-symmetry
points denoted as A∗, Z∗, and so on. The Hamiltonian for this
model is

H = −

⎛
⎜⎜⎝

�1 + t⊥ f (k‖) t1eikzc/6 t3e−ikzc/6

t1e−ikzc/6 �2 + t⊥ f (k‖) t2eikzc/6

t3eikzc/6 t2e−ikzc/6 �3 + t⊥ f (k‖)

⎞
⎟⎟⎠,

(2)

where t1 = t2 and

f (k‖) = 2

[
cos

(
(kx + ky)a

2
√

2

)
+ cos

(
(kx − ky)a

2
√

2

)]
.

To account for the trimerization distortion, we set t2 = t − δ/2
and t3 = t + δ so that the average hopping is t and δ

TABLE I. Lattice parameters, metal-metal distances, distortion �d , and band gaps for PBE and mBJ approximations and hybrid potential
for the different structures considered in the text.

Structure a (Å) c (Å)
(

1
6 − dMi−Mi+1

c

)2
(×10−4) �d Gap PBE (eV) Gap mBJ (eV)

Nb D4h 9.4891 19.1323 0.11 - 0.11 - 0.46 - 0.11 - 0.11 - 0.43 1.15 0.09 0.26
D2d 9.4500 19.0799 0.00 - 0.47 - 0.39 - 0.00 - 0.47 - 0.39 1.32 0.18 0.31
S4 9.4365 19.0461 1.07 - 0.17 - 0.12 - 0.58 - 0.00 - 1.01 1.71 0.28 0.40

Ta D4h 9.7192 19.3626 0.09 - 0.09 - 0.37 - 0.09 - .09 - 0.37 1.05 0.11 0.27
D2d 9.4365 19.4365 0.23 - 0.00 - 0.26 - 0.23 - 0.00 - 0.28 1.00 0.06 0.19
S4 9.4365 19.0461 0.00 - 0.39 - 0.26 - 0.01 - 0.33 - 0.30 1.13 0.12 0.24
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(a)

(b) (c) (d)

FIG. 4. Minimal tight-binding models for the three different space groups. Inequivalent M sites are drawn with different colors, and reduced
unit cells due to approximate translation symmetries are depicted with dashed lines. (a) View from the top and (b) from the side for the D4h

phase. (c) D2d phase. (d) S4 phase.

parametrizes the trimerization assuming that the hoppings
change linearly with the distance between orbitals.

The presence of the extra translation symmetries in this
model is accidental, as the inclusion of further neighbor intra-
and interchain hoppings would indeed require the use of the
full 12-site unit cell. These further neighbor hoppings are,
however, expected to be smaller, so that the model in Eq. (2)
serves as a good first approximation for the band structure.
Physically, this means that the actual positions of the Se4 units
and I− ions have little effect on the low-energy M-derived
bands.

Figure 5(a) shows the bands obtained from Eq. (2) for
�i = 0, t = 1 eV, δ = 0.3 eV, and t⊥ = 0.05 eV. For compar-
ison, we also show the same plot for δ = 0, and we see that
a finite distortion δ opens a gap at the Fermi level. A finite
value of �i would further contribute to the opening of the
gap and is not considered for simplicity. We also observe that
the presence of small interchain hopping leads to an indirect
gap, with the valence band maximum at A∗ and the conduction
band minimum at Z∗.

To compare the tight-binding model with the computed ab
initio band structures, in Fig. 5(b) we also plot the bands in the
physical 12-site unit cell. Doing so we observe a backfolding
of the bands, so that below the Fermi level we now have
four bands at �, originating from A∗, R∗, M∗, and �. The
general agreement of the folded bands with the ab initio band
structures in Fig. 2 suggests that this reduced model is indeed
a very good approximation.

Another prediction of this simple model is the irreducible
representations (irreps) of the different bands near the Fermi
level at �. Depending on the signs of the hoppings, we get
different irreps that we can directly compare with the irreps
computed from ab initio wave functions. Figure 5(b) shows
the irreps for the natural choice ti > 0, t⊥ > 0, for the four
nearest bands to the Fermi level (two occupied and two un-
occupied), which have symmetries (A2g, B1g, A1u, B2u) from
the lowest to the highest energy band, respectively. Using the
software VASP2TRACE [35,36] we have computed the irreps
of the same bands ab initio and found exact agreement, thus
confirming the correct sign of the hoppings. We note that

FIG. 5. (a) Band structure from the simplified tight-binding model in Eq. (2). Gray dashed bands represent the hypothetical structure
without trimerization (δ = 0). (b) Close-up near the Fermi level for the band structure for the physical 12-Ta unit cell, where the four occupied
states at � fold from A∗, R∗, M∗, and � in the BZ∗, in order of decreasing energy.
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our computed irreps differ from the assignment proposed in
Ref. [10] which would require t⊥ < 0 and would lead to the
conduction and valence bands locating at different momenta
in the unfolded model.

The conclusion of this analysis is that, to a very good
approximation, (MSe4)3I in the D4h phase behaves as if its
band structure was given by the three-site model, i.e., as a
semiconductor with an indirect gap, where the valence band
maximum occurs at A∗ while the conduction band minimum
occurs at Z∗. It is only due to very small perturbations induced
by further neighbor hoppings (or physically, by the structure
of the Se cages and I atoms), that the backfolding is induced.

Finally, Figs. 4(c) and 4(d) show the corresponding models
for the D2d and S4 phases, respectively. The D2d structure
requires a six-M atom unit cell, which induces a folding of
the unit cell only in the plane, now requiring two chains per
unit cell, while the effective c∗ translation is preserved. When
the phase transition from D4h to D2d occurs, a folding of
A∗ to Z∗ occurs, so that the band gap now becomes direct
even in the simplified model. Finally, in the S4 structure no
effective translation remains, as all six M sites within a chain
are inequivalent.

VI. UNFOLDING AB INITIO AND ARPES

In order to ascertain to which extent the picture presented
in Sec. V is quantitatively correct, we now consider an ab
initio calculation of the unfolded spectral function, following
the method of Popescu and Zunger [37] as implemented in
VASPBANDUNFOLDING [38]. When a crystal with a given unit
cell is perturbed by a superlattice modulation, this method
can be used to compute the spectral function corresponding
to the original unit cell in terms of an effective band structure.
In our case, the modulated structure is actually the physical
crystal structure with 12 M atoms, but we interpret it as a
periodically modulated crystal with an original unit cell with
three M atoms. The unfolded band structures of the D4h and
D2d phases of the Ta compound are shown in Fig. 6.

In Fig. 6(a) only two bands show a significant spectral
weight near the Fermi energy (EF ± 0.5 eV). To a great extent,
this energy dispersion matches that obtained from the three-
site tight binding shown in Fig. 5 and the previously identified
band edges: indeed, while the band edge formally occurs at �

in the full calculation, it is actually backfolded from A∗ due
to a minuscule perturbation caused by the Se atoms. Another
further confirmation to our picture is the matching sign of the
interchain hopping. In our model, this sign and thus the order
of the irreps under which the eigenstates transform is opposite
to that presented in Ref. [10], where the roles of A∗ and
Z∗ would have been reversed in the discussion. Figure 6(b)
shows the bands for the D2d structure, which are remarkably
similar to those in Fig. 6(a), except for the fact that the faint
replica of the A∗ at Z∗ is now stronger, as expected from the
folding pattern discussed in the previous section. This increase
in spectral weight can be taken as a measure of the extra
distortion that makes three inequivalent Ta sites.

This unfolded band structure can now be compared with
the one measured in ARPES experiments. It is well known
that in the presence of a very weak periodic modulation,
the ARPES spectral weight remains brightest in the origi-

FIG. 6. Unfolded band structure for the unit cell with one for-
mula unit in (a) D4h and (b) D2d phase [37]. Compare with the
corresponding tight-binding model in the same unit cell in Fig. 5(a).

nal Brillouinzone (BZ) before the perturbation [39,40], with
backfolded features proportional to the weak modulation. Ref-
erences [18,19] measured the band structure dispersion of
(NbSe4)3I in the out-of-plane direction, identifying a bright
band edge around −0.7 eV at the Z∗ = 2π

c point. References
[18,19] also identified that this bright spectral feature, which
is found only on the second BZ of the original lattice structure,
appears because of the approximate translation symmetry of
c/2. However, it is clear from our calculation that this feature
does not represent a true band edge, as it further disperses
upward in the in-plane direction. Following this band to the A∗
point we find the true valence band edge, which is also weakly
folded at �. The reason why it appears at A∗ is the presence
of the approximate in-plane translation a( 1

2 , 1
2 , 0). An ARPES

experiment probing the A∗ point should therefore identify the
true band edge and provide a reliable bound for the gap.

VII. OPTICAL CONDUCTIVITY

The second implication of the unfolded model applies to
the optical conductivity, which measures optical transitions at
zero momentum. To a very good approximation, these optical
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FIG. 7. Optical conductivity of (TaSe4)3I for phases D4h (black)
and D2d (blue). The locations of the peaks are marked with vertical
dotted lines. The inset zooms in on the low-frequency part, where the
true ab initio gap is marked with vertical dotted lines as well.

transitions should be considered in the unfolded band struc-
ture, where the gap is indirect. The true direct gap has very low
spectral weight and should contribute little to the conductivity.
The optical conductivity will only be finite for energies above
the direct gap, which connects the conduction and valence
bands at Z∗ (in the true unit cell, it connects the second highest
valence band to the conduction band). In fact, to a very good
approximation, there are optical transitions at around 0.5 eV
for all momenta in the plane kz = π , which should give rise to
a very strong peak in the optical conductivity at that energy.

To confirm these predictions, we have performed an ab
initio calculation of the optical conductivity given by the
following equation [37,39–42]:

σ ab(ω) = πe2

h̄ωV

∑
k,n,m

Re
[
va

nmvb
mn

]
δ(Ek,mn − ω), (3)

where ω is the frequency of the incident electric field, e is the
electron charge, and va

nm = 〈n|∂aH |m〉. The calculations were
performed on the physical unit cell, on a 91 × 91 × 71 k mesh
employing a Wannier-interpolated Hamiltonian obtained us-
ing WANNIER90 [43]. The results for both D4h and D2d phases
are presented in Fig. 7. We observe a very large peak in
σzz for both D4h (at 0.39 eV) and D2d (at 0.46 eV) phases,
consistent with the large peak observed in experiments [18].
As explained before, the location of this peak is no indication
of the true gap of the system. We also observe that the peak is
absent in σxx as observed in experiments, and that σxx � σzz in
general because the dispersion is much weaker in the in-plane
direction.

To ascertain whether the true gap can be detected in optics,
the inset of Fig. 7 shows a zoom of the low-energy conductiv-
ity, showing that a small rise of about 75 S/cm is observed
for the σzz component for both phases at the predicted ab
initio gap. Nonetheless, this small increase will hardly be ap-
preciable on experiments, especially because the high-energy
peak is actually broader due to lifetime effects (which are not
included in our calculation), and these low-energy features

FIG. 8. Ab initio low-energy band structure (left) and total DOS
(right) obtained using PBE approximation for (a) Ta D4h phase and
(b) Ta D2d phase. Note a Van Hove singularity for holes marked with
a dotted line in both cases.

have to be detected on the rising tail of this high-energy peak.
It is also interesting to note that the low-energy rise is actually
stronger for the D2h phase. This occurs because the folding
perturbation is stronger in this phase, so there is more spectral
weight for the transitions near � which results in a stronger
response.

VIII. DOPING HOLES VS ELECTRONS

The recent experiment in Ref. [26] synthesized a D2d

structure of (TaSe4)3I, which is metallic for a wide range
of temperatures, and displays coexisting ferromagnetism and
superconductivity a low T . This is inconsistent with the
insulating band structure obtained for this compound. Inter-
estingly, D2d (TaSe4)3I shows the smallest of all band gaps
with the PBE functional, so a first possibility to explain this
could be that samples in Ref. [26] have somehow closed the
gap via some unknown distortion. Nevertheless, the gap is
larger with the more reliable mBJ functional, and our own
calculations suggest that the gap is robust to small changes
in lattice constant or structure, so we believe a more plausible
explanation is simply extrinsic, unintentional doping of the
samples. This could have occurred because the samples did
show some nonstoichiometry [26]. If this is the case, one
might ask whether there is any difference between doping
electrons or holes, in particular regarding the ferromagnetic
and superconducting instabilities.

To answer these questions, we have computed the density
of states (DOS) for the (TaSe4)3I D4h and D2d structures,
shown in Fig. 8. This reveals that while doping with electrons
leads to a rather smooth increase of the carriers, doping with
holes leads to a faster raise up to a Van Hove singularity at
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FIG. 9. (a) Fermi surface for phase D4h at E = −0.16 eV. The
plane kz = 0 is shown in blue. (b) kz = 0 section of the Fermi surface
for phase D4h at different energies with respect to the Van Hove
singularity: slightly below (dashed), at the singularity (dot-dashed),
and slightly above (straight).

ED2d
V H ≈ −0.07 eV and ED4h

V H ≈ −0.09 eV for the two phases.
This singularity emerges due to a change of shape of the Fermi
surface from convex to concave [44] as the energy is lowered,
as shown in Fig. 9.

The presence of this Van Hove singularity in the valence
band suggests that a ferromagnetic instability could be trig-
gered by a small amount of hole doping, as is predicted to
occur in GaSe [45] and similar monochalcogenides [46–48].
Van Hove singularities in general display different types of in-
stabilities due to the enhanced density of states [49], and their
generic phase diagrams include both ferromagnetic states
and unconventional pairing [50,51] mediated by the repul-
sive Coulomb interactions [52]. While more work is needed
to measure the amount and type of doping, as well as the
Fermi surface shape, we believe the existence of this Van
Hove singularity is a unique feature of the hole doped system
which we conjecture will play a role in the low-temperature
instabilities.

IX. DISCUSSION

By providing the first detailed band-structure characteri-
zation of the (MSe4)3I compounds, our analysis has revealed
that despite having a very complex lattice structure with 64
atoms in the unit cell, their low-energy electronic structure
is actually very simple. It can be understood in terms of a
quasi-1D effective model of dz2 orbitals in a chain with a
three-site unit cell, and a trimerization that gives rise to a gap
[3,21]. Our detailed characterization has explained a number
of puzzles in the literature, and will serve to properly interpret
future experiments in this class of materials.

First, we have provided a quantitative prediction for the
transport gaps of the different structures, which are broadly

consistent with experimental observations. Our results show
that the gap magnitude is not only correlated with the amount
of trimerization in the different structures, but also with the
unit cell volume. In the future, our predictions will also be
relevant to confirm the proposed distinction between type-I
and type-II samples in transport experiments, and to clarify
the transport properties of the S4 low-temperature phase.

Second, our work provides a clear resolution to the dis-
crepancy between the gaps reported in transport vs those in
ARPES and optical conductivity. These experiments were
carried out in the high-temperature D4h phase, whose band
structure is essentially that of an indirect gap semiconductor
with valence band at A∗ and conduction bands at Z∗. A very
weak modulation folds both bands to �, but observing them
in ARPES or probing an optical transition between them is
extremely hard due to the very low spectral weight, pro-
portional to the weak modulation. The large gaps quoted in
ARPES and optical conductivity actually correspond to the
direct gap in the unfolded bands, which is much larger than
the true gap. Our predictions can be readily tested in new
ARPES experiments probing the A∗ point. In addition, future
low-temperature measurements in the D2d phase might be
more sensitive to detect the true gap in optical conductivity
and ARPES, as we have shown.

Finally, our work calls for more studies to understand
the origin of the metallic behavior of D2d (TaSe4)3I studied
in Ref. [26]. Both ARPES and optical conductivity will be
useful to quantify the existence of any extrinsic doping. In
addition, if the doping is holelike, ARPES experiments can
directly map the Fermi surface and confirm the existence of
a low-energy Van Hove singularity, which will be relevant
to understand the magnetic and superconducting instabilities.
We hope our work will motivate further studies on the subject
to explain this unusual coexistence.

ACKNOWLEDGMENTS

We acknowledge N. Schroeter for clarifying discussions on
ARPES experiments and J. Ibañez-Azpiroz for useful discus-
sions and computational resources. F.J. acknowledges funding
from the Spanish MCI/AEI/FEDER (Grant No. PGC2018-
101988-B-C21). F.J. and M.G.V. acknowledge funding from
the Diputacion de Gipuzkoa through Gipuzkoa Next (Grant
No. 2021-CIEN-000070-01). M.G.V. thanks support from
the Spanish Ministerio de Ciencia e Innovacion (Grant No.
PID2019-109905GB-C21) and the partial support from Grant
Agreement No. 101020833. M.G.V. and C.F. are thankful
to the Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation), FOR 5249 (QUAST).

[1] A. Meerschaut, P. Palvadeau, and J. Rouxel, J. Solid State
Chem. 20, 21 (1977).

[2] P. Gressier, L. Guemas, and A. Meerschaut, Mater. Res. Bull.
20, 539 (1985).

[3] P. Gressier, A. Meerschaut, J. Rouxel, and M. Whangbo,
Charge Density Waves in Solids (Springer, New York, 1985),
pp. 43–54.

[4] M. Izumi, T. Iwazumi, T. Seino, K. Uchinokura, R.
Yoshizaki, and E. Matsuura, Solid State Commun. 49, 423
(1984).

[5] M. Izumi, T. Iwazumi, K. Uchinokura, R. Yoshizaki, and E.
Matsuura, Solid State Commun. 51, 191 (1984).

[6] I. Taguchi, F. Levy, and H. Berger, Physica B+C 143, 258
(1986).

205109-8

https://doi.org/10.1016/0022-4596(77)90047-0
https://doi.org/10.1016/0025-5408(85)90109-6
https://doi.org/10.1016/0038-1098(84)90655-0
https://doi.org/10.1016/0038-1098(84)90993-1
https://doi.org/10.1016/0378-4363(86)90111-7


BAND STRUCTURES OF (NbSe4)3I AND … PHYSICAL REVIEW B 107, 205109 (2023)
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