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Nonlinear responses and three-particle correlators in correlated electron systems exemplified
by the Anderson impurity model
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Three-particle correlators are relevant for, among others, Raman, Hall, and nonlinear responses. They are
also required for the next order of approximations extending dynamical mean-field theory diagrammatically.
We present a general formalism on how to treat these three-particle correlators and susceptibilities, and we
calculate the local three-particle response of the Anderson impurity model numerically. We find that genuine
three-particle vertex corrections are sizable. In particular, it is not sufficient to just take the bare bubble terms or
corrections based on the two-particle vertex. The full three-particle vertex must be considered.
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I. INTRODUCTION

Our physical understanding is very much based on one-
particle and two-particle Green’s functions, upon which books
on quantum field theory generally focus [1]. On the one-
particle level, we understand quasiparticle renormalizations
and lifetimes, metal-insulator transitions, as well as magnetic
ordering in the symmetry-broken phase. The one-particle
Green’s function and self-energy are also at the heart of dy-
namical mean field theory (DMFT) [2–5], which calculates
the self-energy by (self-consistently) summing up the local
contribution of all Feynman diagrams [2]. Hence, it is maybe
not surprising that the success of DMFT had a focus on
describing the aforementioned one-particle properties such as
quasiparticle renormalizations and the Mott-Hubbard metal-
insulator transition.

On the two-particle level, we have the two-particle Green’s
function from which we can calculate physical responses
such as the magnetic or charge susceptibility. Here, the two-
particle vertex plays the role of the self-energy. It describes
all physics beyond a rather trivial bare bubble susceptibil-
ity that is akin to the noninteracting case, only now with
renormalized one-particle Green’s function lines. On this
two-particle level there has been some recent progress to
describe electronic correlations—brought about through di-
agrammatic extensions of DMFT [6–12]; for a review, see
Ref. [13]. These start from a local vertex that encodes
all DMFT correlations and subsequently generates nonlocal
correlations through the Bethe-Salpeter equation or parquet
equations. Quite naturally these extensions allow for a better
description of two-particle quantities such as the (quantum)
critical behavior in the vicinity of a phase transition [14–17],
spin-fluctuation-induced pseudogaps [18–20], and supercon-
ducting instabilities [21,22].

The next level, the three-particle Green’s function and
vertices, are hitherto by-and-large a blank spot in our un-
derstanding of strongly correlated electron systems. First
results for the diagrammatic extensions of DMFT [23] show
that three-particle vertices are, at least in some parameter
regimes of the Hubbard model, relevant. While our physical

understanding and intuition is presently much more based
on the one- and two-particle physics, there are also physical
processes that are generically connected to three-particle cor-
relators:

Take for example Raman scattering, with an incoming and
outgoing light frequency and a transferred phonon frequency.
These three bosonic frequencies are connected to three elec-
trons (particles), each with one creation and one annihilation
operator. The same applies to the Hall response, i.e., the off-
diagonal conductivity in a magnetic field. The conductivity
by itself is a two-particle correlator in the Kubo formalism
of linear response [24]. Considering small magnetic fields,
these can be treated in linear response as well, making the Hall
coefficient a three-particle correlator altogether. In principle,
calculating these observables requires the calculation of the
full three-particle correlator. But hitherto either only a bare
bubblelike diagram is taken, or corrections based on the two-
particle vertex are included; see, e.g., [25–27].

Another research area that is the domain of correlators
with more than two particles is nonlinear response [24,28].
These responses are in general weaker than linear responses
and often the most relevant correction is thus the second-
order response that is connected to a three-particle correlator.
Interestingly, Refs. [29,30] found that correlation effects can
enhance nonlinear responses in strongly correlated electron
systems, but again they only took into account one-particle
renormalizations; full vertex corrections were still neglected.

Three-particle correlators are also employed for calcu-
lating two-particle correlators reliably using the so-called
improved estimators based on the equation of motion [31–35].

Against this background, it is the aim of the present paper
to do some first steps in computing, analyzing, and un-
derstanding these three-particle correlators. Specifically, we
consider correlators of three bosonic operators and thus three
time arguments (or two time differences or frequencies). For
the sake of simplicity, and to keep the numerical effort man-
ageable, we concentrate on local correlators of an Anderson
impurity model (including one at DMFT self-consistency for
the two-dimensional Hubbard model). Since the Raman and
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Hall response couple to light through nonlocal fermionic op-
erators, we focus here on the nonlinear response described by
local operators only. There are just three local nonvanishing
three-particle correlators (and symmetrically related ones):
a second-order density susceptibility (nnn) with three den-
sity operators, a mixed density-magnetic susceptibility (nzz)
describing the second-order response of the density to a mag-
netic field in the z direction, and a chiral susceptibility (xyz).
The latter corresponds to a correlator with one spin in all
three directions. These are arranged like the thumb, index, and
middle finger of the right hand and hence chiral according to
the definition introduced by Kelvin in 1884 [36] (not invariant
under any mirror transformation). Such a chiral susceptibility
arises in the continuity equation of the t-J model or in the
presence of the direct exchange interaction [37].

The outline of the paper is as follows: In Sec. II we give
a very brief introduction to response theory and define all
necessary two- and three-particle quantities as well as the
relationships between them and the response functions. Sec-
tion III describes the models we use in our calculations and
why we chose them. The numerical results are then presented
and analyzed in Sec. IV. Finally, in Secs. V and VI we give a
conclusion and outlook.

II. THEORY

In general, response theory describes the relation between
cause and effect. For our purposes, this boils down to quan-
tifying how the expectation value of an arbitrary, bosonic
operator 〈Âi〉 depends on some external “force” Fj . As shown
in detail in Appendix A, this can be studied by expanding 〈Âi〉
in a functional Taylor series:

〈Âi(τ )〉F = 〈Âi(τ )〉F=0 +
∑

j

∫ β

0
dτ ′Fj (τ

′)χ (1)
ji (τ ′, τ )

+ 1

2

∑
jk

∫ β

0

∫ β

0
dτ ′dτ ′′Fj (τ

′)Fk (τ ′′)

× χ
(2)
jki (τ ′, τ ′′, τ ) + · · · . (1)

Here, we express everything in imaginary time τ , which runs
from zero to β = 1/T , the inverse temperature. We call the ex-
pansion coefficients χ (1) and χ (2) the first-order or linear, and
the second-order or nonlinear response function, respectively.
They are simply functional derivatives of 〈Âi〉 with respect to
Fj , and according to Eqs. (A15) and (A16) they read

χ
(1)
i j (τ, τ ′) = δ

δFi(τ )
〈Â j (τ

′)〉
∣∣∣
F=0

=〈TÂi(τ )Â j (τ
′)〉 − 〈Âi〉〈Â j〉 (2)

for the first order, and

χ
(2)
i jk (τ, τ ′, τ ′′) = δ

δFi(τ )

δ

δFj (τ ′)
〈Âk (τ ′′)〉

∣∣∣
F=0

= 〈T Âi(τ )Â j (τ
′)Âk (τ ′′)〉

− 〈Âi〉χ jk (τ ′, τ ′′) − 〈Â j〉χik (τ, τ ′′)

− 〈Âk〉χi j (τ, τ
′) − 〈Âi〉〈Â j〉〈Âk〉 (3)

for the second order. Here, T is the time ordering operator and
Âi are the bosonic operators that the external fields Fi couple
to, i.e., the Hamiltonian contains a perturbation term of the
form −∑

i ÂiFi. If not indicated otherwise, the expectation
values are computed with respect to the unperturbed Hamil-
tonian. From now on, we also drop the superscript denoting
the order of the response function whenever the (number of)
arguments allow us to infer it.

In Matsubara space, the linear response function reads

χω
i j =

∫ β

0
χi j (τ )eiωτ dτ

= 〈T Âi(τ )Â j〉ω − δω0β〈Âi〉〈Â j〉, (4)

while the nonlinear response function is given by

χ
ω1ω2
i jk =

∫ β

0

∫ β

0
χi jk (τ1, τ2)ei(ω1τ1+ω2τ2 )dτ1dτ2

= 〈T Âi(τ1)Â j (τ2)Âk〉ω1ω2 − δω10β〈Âi〉χω2
jk

− δω20β〈Â j〉χω3
ik − δω30β〈Âk〉χω1

i j

− δω10δω20β
2〈Âi〉〈Â j〉〈Âk〉. (5)

Here, we use time-translation invariance to effectively get
rid of one imaginary-time argument, ω3 = −ω1 − ω2, and
the frequency superscript for the expectation values indicates
the Fourier transform of the corresponding imaginary-time
expressions defined in Eqs. (2) and (3).

We see that the response functions are nothing but two- and
three-particle correlators minus their disconnected terms.

So far everything is formulated with general, bosonic op-
erators Âi. For the rest of this paper, however, we are only
interested in the cases in which those are density and spin
operators:

n̂ = n̂↑ + n̂↓ = ĉ†
↑ĉ↑ + ĉ†

↓ĉ↓, (6)

σ̂i = (
ĉ†
↑ ĉ†

↓
)
σ

i

(
ĉ↑
ĉ↓

)
(7)

with fermionic creation and annihilation operators ĉ† and ĉ as
well as Pauli matrices σ

i
. In the Hamiltonian they couple as

εn̂ and −hσ̂ to (the change of) the one-particle energy ε and
magnetic field h.

Let us further introduce the following compact notation for
the full, bosonic, two-particle, density, and spin correlators:

Xσ1,...,σ4 (τ ) = 〈T ĉ†
σ1

(τ+)ĉσ2
(τ )ĉ†

σ3
(0+)ĉσ4

(0)〉, (8)

Xαβ =
∑

σ1,...,σ4

sσ1σ2
α sσ3σ4

β Xσ1,...,σ4 , (9)

s
α

=
{
1, α = n,

σ
α
, α ∈ {x, y, z}, (10)

where τ+ = limε→0 τ + ε and 0+ = limε→0 0 + ε. Analo-
gously, on the three-particle level we define

Xσ1,...,σ6 (τ1, τ2)

= 〈T ĉ†
σ1

(τ+
1 )ĉσ2

(τ1)ĉ†
σ3

(τ+
2 )ĉσ4

(τ2)ĉ†
σ5

(0+)ĉσ6
(0)〉, (11)

Xαβγ =
∑

σ1,...,σ6

sσ1σ2
α sσ3σ4

β sσ5σ6
γ Xσ1,...,σ6 . (12)
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In this notation, the response functions read

χαβ = conn Xαβ, χαβγ = conn Xαβγ , (13)

where conn denotes only fully connected terms.
On the two-particle level, only the response of the density

to changes of the one-particle energy, χd , and the response of
the magnetization to changes of the magnetic field in the same
direction, χm, do not vanish:1

χd (τ ) = − δ〈n̂〉
δε(τ )

= χnn(τ ), (14)

χm(τ ) = δ〈σ̂i〉
δhi(τ )

= χii(τ ) with i = x, y, z. (15)

Using Eqs. (2), (8), and (9), we can derive well-known rela-
tions for the linear response functions:

χnn(τ ) = Xnn(τ ) −〈n̂〉2 = 2[χ↑↑(τ ) + χ↑↓(τ )], (16)

χzz(τ ) = Xzz(τ ) = 2[χ↑↑(τ ) − χ↑↓(τ )], (17)

where the spin susceptibilities are χσσ ′ = −δ〈n̂σ ′ 〉/δεσ with
εσ denoting the (change of) the one-particle energy for spin σ

only, and we assume SU(2) symmetry.
On the three-particle level, only the following response

functions do not vanish:2

χnnn(τ1, τ2) = δ

δε(τ1)

δ〈n̂〉
δε(τ2)

= δχd (τ2)

δε(τ1)
, (18)

χnzz(τ1, τ2) = χnxx(τ1, τ2) = χnyy(τ1, τ2)

= − δ

δε(τ1)

δ〈σ̂i〉
δhi(τ2)

= −δχm(τ2)

δε(τ1)
, (19)

χxyz(τ1, τ2) = δ

δhx(τ1)

δ〈σ̂z〉
δhy(τ2)

. (20)

We call them the second-order density, density-magnetic, and
chiral response functions, respectively. In Appendix B we
derive relations similar to Eqs. (16) and (17) for them. They
show, e.g., that Xxyz contains no disconnected terms that need
to be subtracted—just like Xzz on the two-particle level. Fur-
thermore, in the special case of half-filling, i.e., nσ = 1/2 =
1 − nσ , we show that χnnn and χnzz vanish.

Remembering the usual definition of an n-particle Green’s
function,

Gn
σ1σ2...σ2n

(τ1, τ2, . . . , τ2n)

= (−1)n〈T ĉσ1
(τ1)ĉ†

σ2
(τ2) · · · ĉ†

σ2n
(τ2n)〉, (21)

and looking at Eqs. (8)–(13), we see that the response func-
tions are basically given by the connected parts of equal-time
Green’s functions. We only have to take care of the different
order of creation and annihilation operators,

Xσ1,...,σ4 (τ ) = G2
σ2σ1σ4σ3

(τ, τ+, 0, 0+), (22)

1The extra minus in Eq. (14) is necessary because the density
couples with +εn̂, and a derivative with respect to ε brings down −n̂
(see Appendix A), but according to Eq. (13) we want χd = χnn =
+conn〈 Tn̂n̂〉.

2The extra minus in Eq. (19) is there for the same reason as in
Eq. (14).

FIG. 1. Diagrammatic representation of the full two- and three-
particle correlators. For brevity, the time and frequency labels are
given in the same diagrams.

Xσ1,...,σ6 (τ1, τ2) = G3
σ2σ1σ6σ5σ4σ3

(τ1, τ
+
1 , 0, 0+, τ2, τ

+
2 ). (23)

Let us finally also define the Fourier transform,

X ω1ω2
σ1,...,σ6

=
∫ β

0

∫ β

0
Xσ1,...,σ6 (τ1, τ2)eiω1τ1+iω2τ2 dτ1dτ2, (24)

where ω1 and ω2 are bosonic Matsubara frequencies.
With this we can give a diagrammatic representation of

the correlators and response functions. Figure 1 shows the
diagrams for the full two- and three-particle correlators with
time and frequency labels. A particle-hole notation is chosen
for the latter. (See Appendix C for a detailed look at all 15
frequency notations of the three-particle Green’s function.)

To get a diagrammatic representation of the response func-
tions, we do a decomposition of the full correlators and
therefore Green’s functions. Details for the three-particle case
can be found in Appendix D. The diagrammatic results are
shown in Fig. 2. Here we see that the terms in Eqs. (2)–(5),
which we already called disconnected, are in fact represented
by disjoint diagrams. Figure 2 further decomposes the con-
nected diagrams of χ (1) and χ (2) and introduces the bare
or bubble terms χ0, which only contain Green’s functions,
the first-order terms χ

(2)
1 , which are three-particle diagrams

with a single two-particle vertex F , and χvertex, which contains
corrections from the “largest” possible vertex. When studying
the results in Sec. IV, we are especially interested in χ

(2)
vertex

since it contains diagrams where all three particles interact
with each other.

III. MODELS

For simplicity, we mainly employ the Anderson impurity
model, but some results for the Hubbard model as well as
for the atomic limit, which is the same for both, are also
shown. The results for these three cases are presented in the
corresponding subsections of Sec. IV.

A. Atomic limit

As a simple toy model, we consider the atomic limit
with Hamiltonian ĤAL = ε(n̂↑ + n̂↓) − h(n̂↑ − n̂↓) + Un̂↑n̂↓,
where ε = −U/2 and h is a magnetic field. This model can be
solved exactly using the Lehmann representation.

B. Anderson impurity model

We use the Anderson impurity model (AIM) with (i) a
single bath site and (ii) a constant density of states (DOS).
The former is chosen because it can easily be solved with
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FIG. 2. Diagrammatic representation of the decomposition of the full, two-, and three-particle correlators X into disconnected terms dc X ,
bare or bubble terms χ0, first-order terms χ1, and full vertex terms χvertex. Time and frequency labels are omitted to avoid clutter. They can
easily be inferred from Fig. 1.

exact diagonalization and therefore serves as a test for the
implementation of the three-particle calculations. The latter
is used for most other results because, while still relatively
simple and therefore fast to solve on modern computers, it
already shows the effects of strong electronic correlation. The
low computational complexity of the model, is important be-
cause of two things: First, we expect that the search for regions
where three-particle effects are relevant involves sampling
a potentially large amount of points in the phase diagram.
Second, we solve the AIM by means of a quantum Monte
Carlo (QMC) solver. Once the interesting points are found,
getting accurate, low-noise results for χ (2) can require a lot
of QMC samples since the disconnected parts that have to be
subtracted first (see Sec. II) potentially make up most of the
correlation function.

The Hamiltonian for the AIM is in general given by

ĤAIM = εn̂ + Un̂↑n̂↓ +
∑
k,σ

εk ĉ†
kσ

ĉkσ

+
∑
k,σ

(Vk f̂ †
σ

ĉkσ
+ V ∗

k ĉ†
kσ

f̂
σ

), (25)

where ε, f̂ †
σ , and f̂σ are the energy level as well as the creation

and annihilation operator of the impurity, n̂σ = f̂ †
σ f̂σ is the

impurity density operator for spin σ , n̂ = n̂↑ + n̂↓ is the total
density operator for the impurity, U is the on-site Coulomb
interaction, εk , ĉ†

k,σ
, and ĉkσ

are the energy levels as well as
creation and annihilation operators for the bath, and V is the
hybridization.

In the simplest case of only a single bath site, we have
εk=1 = ε1. The second case we consider has a constant DOS,

ρ(ε) =
{
ρ0, −D � ε � D,

0 otherwise (26)

and a real hybridization Vk ≡ V . This means that there is a
continuous set of bath sites with energies between −D and D.

C. Hubbard model

The Hubbard model is one of the standard models when it
comes to investigating strong electronic correlations, but it is
more difficult to solve than the AIM. For our calculations, we
choose the single-band square-lattice Hubbard model, which
is defined by the following Hamiltonian:

ĤHM = −t
∑
〈i j〉,σ

(ĉ†
iσ ĉ jσ + ĉ†

jσ ĉiσ ) + U
∑

i

n̂i↑n̂i↓. (27)

As usual, t is the hopping integral,
∑

〈i j〉 denotes the sum over

nearest neighbors, ĉ†
iσ and ĉiσ are the creation and annihilation

operators for electrons with spin σ at site i, U is the on-site
interaction strength, and n̂iσ = ĉ†

iσ ĉiσ is the density operator
for electrons with spin σ at site i.

Since the Hubbard model cannot be solved, also not nu-
merically, except for very small clusters, we employ DMFT
[2–5] for an approximate solution. DMFT actually maps the
Hubbard model onto a self-consistent solution of the AIM.
The susceptibilities that we calculate here are local impurity
susceptibilities only. This means that these susceptibilities
are actually also obtained from the AIM, but now at DMFT
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self-consistency. They differ from the lattice susceptibilities,
also the local ones, since the applied fields can also affect the
DMFT bath of the auxiliary Anderson model. This effect is
not taken into account here.

IV. RESULTS

The numerical results in this section are obtained with
w2dynamics [38], a continuous-time quantum Monte Carlo
(CT-QMC) solver using the hybridization expansion [39].
Only for the AIM with one bath site do we also employ exact
diagonalization (ED). Furthermore, let us mention that a nu-
merical renormalization group (NRG) has been successfully
employed recently for calculating multipoint correlators of
the AIM [40]. Postprocessing of the CT-QMC results is done
with the Python package w2diag [41] written to, among other
things, implement the equations in Sec. II and compute the
first- and second-order susceptibilities χ (1) and χ (2) , involv-
ing two- and three-particle correlators, respectively.

The results for the atomic limit are computed analytically
through the Lehmann representation.

A dataset containing all numerical data and plot scripts
used to generate the figures in this section is publicly available
on the TU Wien Research Data repository [42]. The dataset
also contains auxiliary data files, parameter files, and submis-
sion scripts for better reproducibility.

A. Atomic limit

In the atomic limit, we only have four states: empty site,
single occupation with spin σ ↑ or ↓, and double occupa-
tion with energies zero, ε ∓ h, and 2ε + U , respectively. We
calculate the three-particle correlators of the atomic limit, as
defined in Eqs. (11), (12), and (24), employing the Lehmann
representation in Appendix F. As shown in Appendix G,
with SU(2) symmetry and swapping relations we only obtain
three independent flavor combinations, αβγ = nnn, nzz, xyz,
for the second-order (three-operator) susceptibility. Moreover,
the first two flavor combinations correspond, in the atomic
limit, to conserved and mutually commuting operators. As
a result, these three-particle correlators are purely thermal:
X ω1ω2

nnn = Xnnnδω10δω20, X ω1ω2
nzz = Xnzzδω10δω20. Only X ω1ω2

xyz has
a frequency structure.

Let us first consider the noninteracting case (U = 0) at
half-filling (ε = 0), without a magnetic field (h = 0). We eval-
uate the three-particle correlator using Wick’s theorem:

X ω1ω2
σ1,...,σ6

= β2〈n̂σ1〉〈n̂σ2〉〈n̂σ3〉 δσ1σ
′
1
δσ2σ

′
2
δσ3σ

′
3
δω10δω20

− β〈n̂σ1〉
1

β

∑
ν

Gν
σ2

Gν+ω
σ3

δσ1σ
′
1
δσ2σ

′
3
δσ3σ

′
2
δω10

− β〈n̂σ2〉
1

β

∑
ν

Gν
σ1

Gν+ω
σ3

δσ1σ
′
3
δσ2σ

′
2
δσ3σ

′
1
δω20

− β〈n̂σ3〉
1

β

∑
ν

Gν
σ1

Gν+ω
σ2

δσ1σ
′
2
δσ2σ

′
1
δσ3σ

′
3
δω1,−ω2

+ 1

β

∑
ν

Gν
σ1

Gν+ω1
σ2

Gν+ω1+ω2
σ3

+ 1

β

∑
ν

Gν
σ2

Gν+ω2
σ1

Gν+ω1+ω2
σ3

. (28)

FIG. 3. Density 〈n̂〉 as a function of the energy ε (purple) in the
atomic limit (β = 5, h = 0). Orange and green curves show the first
and second derivative, respectively; a black dashed line shows the
three-particle bubble. Top panel: noninteracting limit. Bottom panel:
U = 1.

The first term with three densities n corresponds to the fully
disconnected, first diagram for X 3 in Fig. 2. The terms two
to four have one density and a bare bubble susceptibility
(for U = 0: χd = χm = − 1

β

∑
ν GνGν+ω), as the next three

diagrams for X 3 in Fig. 2. All of these terms are disconnected
and do not contribute to the second-order, three-particle sus-
ceptibility.

The last two terms in Eq. (28) are the bare bubble second-
order susceptibility χ

(2)
0 , represented diagrammatically in the

second line of diagrams for X 3 in Fig. 2 [cf. Eqs. (18)–(20)].
This connected part contains the essential three-particle in-
formation. While for U = 0 it is given through the (two)
bare bubble diagrams, vertex corrections become important
for U �= 0. Namely, there are corrections with the two-particle
vertex F connecting two Green’s function lines as well as
more complicated three-particle vertex corrections with F 3.
The latter connects all three Green’s function lines of the
bubble through interactions.

As a technical note: In Eq. (28) the connected part ap-
pears next to the disconnected term of order β2. Therefore,
a stochastic measurement of the three-particle susceptibility
has a less favorable signal-to-noise ratio at low temperatures
than the two-particle one, whose disconnected term is only of
order β.

The upper panel of Fig. 3 shows the density 〈n̂〉 of the
noninteracting system as a function of the energy ε (β = 5),
together with its first and second derivatives with respect to
ε. The latter is computed from Eq. (5), but with partial in-
stead of functional derivatives and therefore static correlators,
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FIG. 4. Full three-particle correlator with flavors x, y, z drawn
as a function of the two indices mi=1,2 of the bosonic Matsubara
frequencies ωi = mi2πT ; U = ε = 0, β = 5. In the atomic limit,
only this flavor combination retains a frequency structure due to
noncommutativity of the spin operators. Left: no magnetic field.
Right: magnetic field in the z-direction, h = 0.5.

yielding

∂2〈n̂〉
∂ε2

= X 00
nnn + 3β〈n̂〉∂〈n̂〉

∂ε
− β2〈n̂〉〈n̂〉〈n̂〉, (29)

where ∂〈n̂〉/∂ε = −X 0
nn + β〈n̂〉〈n̂〉 [cf. Eq. (14)] and 〈n̂〉 are

computed in the usual way; see, e.g., Ref. [43]. We verified
that Eq. (29) coincides with the analytical and numerical sec-
ond derivative of 〈n̂〉. Also drawn is the three-particle bubble
(dashed), which coincides exactly with the second derivative,
as expected (U = 0). For negative (positive) ε, double occupa-
tions (empty sites) are favorable. Hence, the density 〈n̂〉 shows
a crossover of width 1/β, and the other quantities follow as
derivatives.

Next, we turn on the interaction (U = 1), which lifts the
degeneracy of the empty, singly, and doubly occupied states at
ε = 0. As a result, the derivatives of 〈n̂〉 in the lower panel of
Fig. 3 acquire additional minima and maxima. It is interesting
to compare ∂2〈n̂〉/∂ε2 to the three-particle bubble, which lacks
vertex corrections. For large dopings, the two curves coincide,
which can be considered as a perturbative regime where inter-
action effects are small. However, in the correlated regime,
near half-filling the three-particle bubble fails qualitatively. In
particular, it is unable to describe the curvature of 〈n̂〉 for ε in
between the Hubbard bands.

Finally, we consider the only three-particle correlation
function that retains a nontrivial frequency structure in the
atomic limit: the chiral susceptibility X ω1ω2

xyz = χω1ω2
xyz . The left

panel of Fig. 4 shows this function for U = 0, ε = 0, h = 0,
β = 5. This picture does not change qualitatively when U is
turned on (not shown), which underlines that the frequency
structure of Xxyz is a result of the noncommutativity of the
spin operators among each other, rather than due to a specific
interaction regime. Notice also that the function is singular,
that is, it vanishes exactly away from the cross and diagonal
structures, since each component of the spin operator is con-
served. This property does not persist for a finite magnetic
field h = 0.5 in the z direction (right panel), which softens the
cross structure, since it does not commute with the x and y
components of the spin operator.

FIG. 5. Comparison of exact (ED) and stochastic (QMC) re-
sults for the AIM at U = 1, β = 20, hybridizing with V = 0.2 to
a single bath site with energy ε1 = 0.25. The top plot shows the
static, second-order, density response function χ00

nnn, while the bot-
tom one shows the static, second-order, density-magnetic response
function χ 00

nzz.

B. AIM with one bath site

To test the correctness of the implementation of the second-
order response functions in w2diag, the results are compared
against solutions of an AIM with a single bath site obtained
via exact diagonalization (ED). More precisely the density n
and the linear, magnetic response function χm are computed
with ED and then numerically differentiated. This yields the
right-hand side of the following two formulas:

χ00
nnn = ∂2

∂ε2
〈n̂〉, (30)

χ00
nzz = − ∂

∂ε
χm, (31)

which are basically Eqs. (18) and (19) but with partial instead
of functional derivatives for denoting static response functions
χ00

nnn and χ00
nzz. The left-hand side is computed with w2diag

from QMC results obtained with w2dynamics.
The results for U = 1, β = 20, V = 0.2, and ε1 = 0.25 are

shown as a function of ε in Fig. 5; those for V = 0.05 and
ε1 = 0 with the same U and β are plotted in Fig. 6. We see
that the agreement between stochastic and exact results is very
good except for χnnn in Fig. 5 where the large noise prevents
precise statements.

This trend of higher noise in the data for χnnn is something
we observe in almost every computation, and it can be ex-
plained as follows: First, we measure the full three-particle
correlators with similar relative noise, but since at least the
static component X 00 is usually larger in the nnn channel
than in the nzz channel, the absolute error is also larger there.
Second, and more importantly, when looking at Eq. (5) we
see that for χnnn we have to subtract all four disconnected
terms from Xnnn, while for χnzz three of the four terms vanish
because 〈σ̂z〉 = 0. Therefore, the magnitude of χ00

nnn is often
smaller than that of χ00

nzz. Together this explains why the results
for χ00

nnn can have significantly higher relative noise than those
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FIG. 6. Comparison of exact (ED) and stochastic (QMC) results
for the AIM with a single bath site. Same as Fig. 5, but now at U = 1,
β = 20, V = 0.05, and ε1 = 0.

for χ00
nzz. Figure 7 in the next subsection shows this most

dramatically.

C. AIM with constant DOS

To find an area with potentially large, second-order effects,
we do calculations at two to five times the Kondo temperature
and make an ε-scan starting from −U/2 going to smaller
values. The idea behind this is to find larger nonlinear dynam-
ics; and, going away from particle-hole symmetry ε = −U/2
reduces the Kondo temperature so that the derivative with
respect to ε should be sizable.

The chosen parameters are D = 10, U = 6, V = 2, and
β = 18. They satisfy D > U � V , so according to Ref. [44]

FIG. 7. Scan of ∂2〈n̂〉/∂ε2, −∂χm/∂ε, χnnn, and χnzz vs ε for an
AIM with constant DOS at D = 10, U = 6, V = 2, and β = 18. The
noise of χnnn is even larger than depicted. Its data points are actually
outside the plotted region and between −1.5 and 1.5. However, with
that range on the y-axis the extrema of ∂2〈n̂〉/∂ε2 would hardly be
noticeable.

FIG. 8. Full correlation functions X (left column) and second-
order response functions χ (2) (right column) vs the two indices mi=1,2

of the bosonic Matsubara frequencies ωi = mi2πT in the density
(nnn; top row), density-magnetic (nzz; center row), and chiral (xyz;
bottom row) channel for an AIM with constant DOS at D = 10,
U = 6, V = 2, β = 18 and half-filling, i.e., ε = −3 and n = 1. The
color bars for Xnnn and Xnzz exclude the largest value at the center
because it would dominate the plots. These values are X 00

nnn ≈ 327
and X 00

nzz ≈ 171.

(p. 165ff) we can estimate the Kondo temperature to be
1/TK = βK ≈ 64, which means that β/βK ≈ 3.6.

Figure 7 shows the second derivative of the density
∂2〈n̂〉/∂ε2, the first derivative of the linear, magnetic response
function ∂χm/∂ε as well as the static, second-order, density,
and density-magnetic response functions χ00

nnn and χ00
nzz plotted

over ε. This time χ00
nnn is so noisy that no useful information

can be extracted (see the discussion at the end of Sec. IV B for
an explanation). Nevertheless, we clearly observe the largest,
second-order effects around ε = −5 and also ε = −6.6, so we
choose those points for closer, frequency-resolved investiga-
tion.

First, however, we take a look at half-filling, i.e., ε =
−U/2 = −3 and n = 1. Figure 8 shows the full correla-
tion functions X ω1ω2 (left column) and the second-order
response functions χω1ω2 (right column) in the density,
density-magnetic, and chiral channel. The color bars for
Xnnn and Xnzz exclude the largest value at the center because
it would dominate the plots with values of X 00

nnn ≈ 327 and
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FIG. 9. Second-order response functions χ (2) and their decomposition into the bubble terms χ
(2)
0 , first-order terms χ

(2)
1 , and vertex terms

χ
(2)
vertex in the density (nnn), density-magnetic (nzz), and chiral (xyz) channel for an AIM with constant DOS at D = 10, U = 6, V = 2, β = 18,

and ε = −5 corresponding to n ≈ 1.22.

X 00
nzz ≈ 171. As expected from the discussion at the end of

Sec. II, we see that, in this case, χnnn and χnzz vanish (the
higher absolute noise at the center of χnnn comes from the
large value of X 00

nnn). There is also no difference between the
full correlator and the connected parts in the chiral channel.
Xnnn and Xnzz clearly show the structure of the disconnected
parts with their δωi0 terms [see Eqs. (B12)–(B15)]. The lat-
ter are also responsible for the large values at ω1 = ω2 = 0
that are clipped from the color bar. Although there are no
disconnected terms for Xxyz, it shows similar “cross” -like but
antisymmetric structures. Additionally, note that in Fig. 8 we
see the following order when comparing the magnitudes of the
nonstatic parts: Xxyz > Xnzz > Xnnn. For the static components,
this order is exactly reversed.

As discussed above, the results for the largest, second-
order effects in the density and density-magnetic channel are
found approximately at ε = −5 in Fig. 7, corresponding to
n ≈ 1.22. They are shown in Fig. 9 where we plot the full,
second-order response function χ (2) , as well as its decompo-
sition into the bubble terms χ

(2)
0 , first-order terms χ

(2)
1 , and

vertex terms χ
(2)
vertex in all three channels. For the density-like

response functions, i.e., χnnn and χnzz, even after subtract-
ing the disconnected terms we still see the maximum at the
center point and “cross” -like structures along the ωi = 0

lines. Those features are, however, much less pronounced and
more washed out when compared to those of X in Fig. 8.
Since there are generally no disconnected terms in the chiral
channel (χxyz = Xxyz), the plot of χxyz looks almost exactly
the same as before. Compared to Fig. 8, only the magnitude
is reduced because of the different doping. When looking at
the decomposition, the density-like channels all look rather
similar and soft while the features in the chiral channel are
much more pronounced and long-ranged. Regardless of that,
the bubble terms χ

(2)
0 are of similar magnitude for all channels

but never a good approximation for the whole second-order
response functions. They are too small and in the density
channel the bubble even has the wrong sign. The first-order
terms χ

(2)
1 are larger (sometimes too large) and always have

the right sign, but that is still not enough. Across all three
channels the corrections from the three-particle vertex χ

(2)
vertex

have sizable contributions that cannot be neglected. Especially
χxyz is dominated by these terms. When comparing maximum
magnitudes of the second-order response functions, we see the
same ordering as for the nonstatic parts of X in the half-filled
case: χxyz > χnzz > χnnn.

Figure 10 shows the same plots as Fig. 9 but for ε = −6.6,
corresponding to n ≈ 1.68, where the second-largest, second-
order effects in the density channel are found. We see in all
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FIG. 10. Same as Fig. 9 except now ε = −6.6 corresponding to n ≈ 1.68.

plots that the features are much less pronounced. Especially
the plots of the chiral channel are more washed out and,
since the magnitude of χxyz is much lower than when closer
to half-filling, noise becomes a problem, particularly for the
three-particle vertex corrections. The sign change of χnnn is
expected when looking at Fig. 7, and it means that the bubble
now has the correct sign across all channels. In general, we
see that at this higher doping the bubble becomes a better
approximation while χ

(2)
1 and χ

(2)
vertex become smaller.

Finally, we take a look at the asymptotic behavior of the
second-order response functions in the limit of large Mat-
subara frequencies ω. More precisely we look at 1D cuts
along ω1 = 0 and ω2 = ω. From the detailed derivation in
Appendix E, we get

χ0ω
nnn ≈ − 1

ω2

∂〈HV 〉
∂ε

, (32)

χ0ω
nzz ≈ − 1

ω2

∂〈HV 〉
∂ε

, (33)

χ0ω
xyz ≈ − 2

ω
χ0

m, (34)

where χ0
m is the static, linear magnetic response function, and

HV is the hybridization term in the Hamiltonian of the AIM

[last term in Eq. (25)]. Its derivative reads

− ∂

∂ε
〈HV 〉 = 4

β

∑
ν

�ν
↑(Pν0

↑↑ + Pν0
↑↓ + β(2 − 〈n̂〉)Gν

↑), (35)

where � is the hybridization function, P is the partially
contracted two-particle Green’s function Pν ′ω = 1

β

∑
ν Gνν ′ω,

Gν is the one-particle Green’s function, and we use SU(2)
symmetry. Note that the 1/ω terms for the density and density-
magnetic channel vanish because they are proportional to
[n̂, n̂] and [σ̂z, σ̂z], respectively.

Figure 11 compares the analytical results of Eqs. (32)–(34)
with the numerical data for χ0ω at ε = −5. The equations are
multiplied with ω2 and ω, respectively, because the tails drop
so fast that a good comparison at medium to high frequencies
would hardly be possible otherwise. This, however, also am-
plifies the noise of the numerical results. Nevertheless, we see
a good agreement starting at frequencies as low as ω ≈ 4.

D. Hubbard model

Figure 12 shows the same plots as Figs. 9 and 10, namely
the full, second-order response function χ (2) , the bubble terms
χ

(2)
0 , the first-order terms χ

(2)
1 , and the vertex terms χ

(2)
vertex

in the density, density-magnetic, and chiral channel. This
time, however, they were computed for the two-dimensional
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FIG. 11. Analysis of the asymptotic behavior of the second-order
response functions at ω1 = 0, ω2 = ω. The top plot shows the density
and density-magnetic channel multiplied by ω2, while in the bottom
one the chiral channel is multiplied by ω. The dots and pluses rep-
resent the numerical data computed for an AIM with constant DOS
at D = 10, U = 6, V = 2, β = 18, and ε = −5. These are the same
parameters as in Fig. 9. The solid lines are the analytically calculated
asymptotic behavior taken from Eqs. (32)–(34).

Hubbard model on a square lattice with n = 1.1, t = 1 (i.e.,
D = 4), U = 12, and β = 20.3 We see that for the most part
the results look similar to those for the AIM with constant
DOS at ε = −5 (Fig. 9). χnnn seems even more washed out,
but the biggest differences show the bubble terms of the
density and density-magnetic channel, which are qualitatively
different and no longer completely negative. They have a
rather steep positive hill centered around ω1 = ω2 = 0 and a
slowly decaying negative background at higher frequencies.
The main takeaway that χ

(2)
0 and χ

(2)
1 are bad approximations

is, however, still valid.

V. CONCLUSION

We have derived the equations for the frequency-resolved,
nonlinear response from three-particle correlators. These are
made up from three bosonic operators with three time argu-
ments (or two time differences or frequencies). We focused
here on the local correlator, the three-particle Green’s func-
tion, and susceptibility (χ (2) ) on an impurity site. However,
the equations derived can be straightforwardly extended to
nonlocal correlators adding a site index for each time index.
We further showed how the three-particle quantities are de-
composed: This involves disconnected diagrams that do not
contribute to χ (2) as well as two bubble diagrams χ

(2)
0 without

vertex corrections, very similar to the two-particle correlators.
Then there are diagrams χ

(2)
1 consisting of a single-particle

propagator and two propagators connected by a two-particle

3Note that in this case χ (2) is only the local, second-order response,
as discussed above. The total one would have to include the change
in the hybridization function as well.

vertex as well as genuine three-particle vertex diagrams χ
(2)
vertex

that connect all incoming and outgoing lines (cf. Fig. 2). The
asymptotic behavior of the correlators is given by a 1/ω2

or 1/ω term, depending on whether the bosonic operators
commute or not.

We have computed the correlators numerically using
continuous-time QMC for the atomic limit as well as for
the AIM with a single-site, a flat DOS, and at DMFT self-
consistency for the two-dimensional Hubbard model. We find
a sizable nonlinear density and density-magnetic response
functions at high doping. At half-filling, these two nonlin-
ear responses vanish by symmetry. The pure density (nnn)
response function suffers from the fact that there are large con-
tributions from disconnected terms that need to be subtracted.
This leads to a rather high level of numerical noise for the
actual response function. The chiral (xyz) response function
is also sizable. It contributes at half-filling and decreases with
doping. It has the largest three-particle vertex contributions.
For all three nonvanishing local response functions (nnn, nzz,
and xyz), the three-particle vertex cannot be neglected for
relevant ranges of the local one-particle potential ε.

VI. OUTLOOK

Physically the nnn and nzz response functions can, in the
case of a static third bosonic n operator, be related to the
change of the charge susceptibility and magnetic susceptibil-
ity with respect to a change of the local one-particle potential.
If the third bosonic operator becomes time- or frequency-
dependent, we have the corresponding changes against a
dynamic one-particle potential. The nnn susceptibility is
therefore the second-order charge response, and nzz de-
scribes the nonlinear charge response to an applied magnetic
field.

The chiral xyz susceptibility is arguably the most exotic
response as there is no correspondence on the two-particle
level; the xy, xz, and yz susceptibilities all vanish in the
paramagnetic phase with SU(2) symmetry. The chiral xyz
susceptibility describes a nonlinear response of the spin in
the x-direction if (time-dependent) magnetic fields in both the
y- and z-directions are applied. If one of the magnetic fields,
say the one in the z-direction, is large and static, it is akin to
a nuclear magnetic resonance experiment. However, here we
are in second-order response, i.e., we only have a weak field
in the z-direction. Nonetheless, there are ideas and efforts to
actually measure this response function [45].

We have seen that the contribution of the three-particle ver-
tex F 3 to the second-order susceptibility χ (2) is in general not
small, but comparable to (or even larger than) the bare bubble
contribution χ

(2)
0 and contributions χ

(2)
1 from two-particle

vertices plus a disconnected propagator. This means that pre-
vious approaches to calculate nonlinear responses, such as
the Hall and Raman response, which only included χ

(2)
0 or

at most χ
(2)
1 , need to be reassessed for strongly correlated

electron systems. Numerical approaches, as we have em-
ployed here for the local susceptibilities, become prohibitively
expensive for the full lattice. This calls for developing ap-
proaches such as a three-particle Bethe-Salpeter equation for
calculating the three-particle vertex F 3 also in the nonlocal
case.

205108-10



NONLINEAR RESPONSES AND THREE-PARTICLE … PHYSICAL REVIEW B 107, 205108 (2023)

FIG. 12. Second-order response functions χ (2) and their decomposition into the bubble terms χ
(2)
0 , first-order terms χ

(2)
1 , and vertex terms

χ
(2)
vertex in the density (nnn), density-magnetic (nzz), and chiral (xyz) channel for a single-band, square-lattice Hubbard model at n = 1.1, U = 12,

and β = 20.
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APPENDIX A: NONLINEAR RESPONSE THEORY

1. Nonlinear response theory in real time and frequency

We assume that the system is coupled to external classical
fields Fj (t ) ∈ R and Â†

j = Â j as

Ĥ(t ) = Ĥ −
∑

j

Â jFj (t ). (A1)

One example discussed in the main text is a spin Â j = Ŝ j

coupled to a magnetic field Fj = Bj , where j = x, y, z. We
furthermore assume that the dynamics of the density matrix ρ̂

are governed by the von Neumann equation:

d

dt
ρ̂(t ) = −i[Ĥ(t ), ρ̂(t )], (A2)

with ρ̂(t0) = 1
Z e−βĤ =: ρ̂0. In the interaction picture (with

respect to Ĥ ) the solution to the von Neumann equation can
be written as an infinite series of the following form:

ρ̂(t ) = ρ̂0 + i
∑

j

∫ t

t0

dt ′ [Â j (t
′), ρ̂(t ′)]Fj (t

′)

= ρ̂0 +
∞∑

�=1

∑
j1, j2,..., j�

∫ t

t0

dt1

∫ t1

t0

dt2 · · ·
∫ t�−1

t0

dt�

× [Â j1 (t1), [Â j2 (t2), . . . , [Â j� (t�), ρ̂0]] . . . ]

× Fj1 (t1)Fj2 (t2) · · · Fj� (t�). (A3)

The expectation value of a generic operator 〈Âi(t )〉F =
Tr[ρ̂(t )Âi(t )] can now be evaluated in a straightforward way.
It is convenient to use a matrix identity:

Tr([Â1, [Â2, . . . , [Â�, ρ̂0] · · · ]] Âi )

= Tr([[ · · · [Âi, Â1], Â2], . . . , Â�] ρ̂0). (A4)
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This allows us to express the expectation value 〈Âi(t )〉 as

〈Âi(t )〉F =〈Â〉F=0 +
∞∑

�=1

〈�Âi(t )〉(�)

:=〈Â〉F=0 +
∞∑

�=1

∑
j1 j2,..., j�

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 · · ·

∫ ∞

−∞
dt�

×Fj1 (t1)Fj2 (t2) · · · Fj� (t�)χR
j1 j2,..., j�i(t1, t2, . . . , t�, t ),

(A5)

where the (generalized) Kubo susceptibility is

χR
j1 j2,..., j�i(t1, t2, . . . , t�, t )

= i� θt>t1>t2>...>t�>t0

× 〈[[ · · · [Âi(t ), Â j1 (t1)], Â j2 (t2)], . . . , Â j� (t�)]〉. (A6)

Kubo already remarked in [24] [Eqs. (2.28) and (2.29)]
that his formalism is not limited to linear response theory.
Nonetheless, we call the quantity in Eq. (A6) generalized
Kubo susceptibility (although the generalization was done
already by Kubo himself in the original work).

For the Fourier transform, it is convenient to assume Fi(t <

t0)=0, i.e., that the field is only switched on for positive
times. The Fourier transform of a contribution of order � in the
external field F enjoys the representation given in Eq. (A7),

〈�Âi(ω)〉(�) = 1

(2π )�−1

∫ ∞

−∞
dω1

∫ ∞

−∞
dω2 · · ·

∫ ∞

−∞
dω�

× δ

(
ω −

�∑
i=1

ωi

)
Fj1 (ω1)Fj2 (ω2) · · · Fj� (ω�)

× χR
j1 j2,..., j�i(−ω1,−ω2, . . . ,−ω�, t = 0),

(A7)

which predicts higher-order harmonics generation for � > 1.
In the following, we give the equivalent expressions of

Eqs. (A1)–(A6) in imaginary times and frequencies.

2. Nonlinear response theory in imaginary time and frequency

Similar derivations are found in standard textbooks such as
Ref. [46] (Chap. 7.2). In fact, we follow [46] for the most part,
but keep the terms of higher order.

In imaginary time, the Hamiltonian is given as

Ĥ(τ ) = Ĥ −
∑

j

Â jFj (τ ). (A8)

The analogous action is

S[c+, c, F] = S[c+, c] −
∑
jaa′

∫ β

0
dτ Fj (τ )c+

a (τ )Aaa′
j ca′ (τ ),

(A9)
where c+(τ ) and c(τ ) are Grassmann-valued fields corre-
sponding to the eigenvalues of ĉ†(τ ) and ĉ(τ ) with respect
to coherent states. Aaa′

j are matrix elements of Â j : Â j =∑
aa′ ĉ†

aAaa′
j ĉa′ . The derivation does not hinge on Â j being

a one-particle operator; one can equally well assume Â j to
be an arbitrary (Hermitian) n-particle operator. The expec-
tation value 〈Âi(τ )〉 is best expressed in the path-integral

formalism:

〈· · · 〉F = Z−1
∫

Dc+Dce−S[c+,c,F] · · · (A10)

Z =
∫

Dc+Dce−S[c+,c,F], (A11)

〈Âi(τ )〉F = δ

δFi(τ )
lnZ. (A12)

This allows us to express 〈Âi(τ )〉F as a functional Taylor
series:

〈Âi(τ )〉F =
∞∑

�=0

〈�Âi(τ )〉(�)
F ,

〈�Âi(τ )〉(�)
F = 1

�!

∫ β

0
dτ1

∫ β

0
dτ2 · · ·

∫ β

0
dτ�

×
∑

j1, j2,..., j�

Fj1 (τ1)Fj2 (τ2) · · · Fj� (τ�)

× χ j1 j2,..., j�i(τ1, τ2, . . . , τ�, τ ), (A13)

where the (� + 1)-point susceptibility reads

χ j1 j2,..., j�i(τ1, τ2, . . . , τ�, τ ) = δ

δFj1 (τ1)

δ

δFj2 (τ2)
· · ·

× δ

δFj� (τ�)
〈Âi(τ )〉F

∣∣∣
F=0

.

(A14)

All functional derivatives can be exchanged with one another.
Calculating a susceptibility of order � is a simple exercise
in differentiation. The first-order term is the usual linear re-
sponse function,

χi j (τ, τ
′) = δ

δFi(τ )

δ

δFj (τ ′)
lnZ

∣∣∣∣
F=0

= −Z−2

[
δ

δFi(τ )
Z

][
δ

δFj (τ ′)
Z

]∣∣∣∣
F=0

+ Z−1

[
δ

δFi(τ )

δ

δFj (τ ′)
Z

]∣∣∣∣
F=0

= −〈Âi〉〈Â j〉 + 〈T Âi(τ )Â j (τ
′)〉. (A15)

The second-order term reads

χi j1 j2 (τ, τ1, τ2)

= δ

δFi(τ )

δ

δFj1 (τ1)

δ

δFj2 (τ2)
lnZ

∣∣∣∣
F=0

= 2Z−3

[
δ

δFi(τ )
Z

][
δ

δFj1 (τ1)
Z

][
δ

δFj2 (τ2)
Z

]∣∣∣∣
F=0

− Z−2

[
δ

δFi(τ )
Z

][
δ

δFj1 (τ1)

δ

δFj2 (τ2)
Z

]∣∣∣∣
F=0

− Z−2

[
δ

δFj1 (τ1)
Z

][
δ

δFi(τ )

δ

δFj2 (τ2)
Z

]∣∣∣∣
F=0

− Z−2

[
δ

δFj2 (τ2)
Z

][
δ

δFi(τ )

δ

δFj1 (τ1)
Z

]∣∣∣∣
F=0

+ Z−1

[
δ

δFi(τ )

δ

δFj1 (τ1)

δ

δFj2 (τ2)
Z

]∣∣∣∣
F=0
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= +2〈Âi〉〈Â j1〉〈Â j2〉
− 〈Âi〉〈T Â j1 (τ1)Â j2 (τ2)〉
− 〈Â j1〉〈T Âi(τ )Â j2 (τ2)〉
− 〈Â j2〉〈T Âi(τ )Â j1 (τ1)〉
+ 〈T Âi(τ )Â j1 (τ1)Â j2 (τ2)〉, (A16)

which after some reordering and plugging into Eq. (A15) can
be written as

χi j1 j2 (τ, τ1, τ2) =〈T Âi(τ )Â j1 (τ1)Â j2 (τ2)〉
− 〈Âi〉χ j1 j2 (τ1, τ2) − 〈Â j1〉χi j2 (τ, τ2)

− 〈Â j2〉χi j1 (τ, τ1) − 〈Âi〉〈Â j1〉〈Â j2〉.
(A17)

Equations (A15)–(A17) conclude the derivation of Eqs. (2)
and (3) in the main text.

APPENDIX B: IMPLEMENTATION DETAILS FOR
THREE-PARTICLE CORRELATORS AND

SECOND-ORDER RESPONSE FUNCTIONS

In this Appendix, we present all the details and explicit
equations, purposefully omitted for brevity in Sec. II, to get
from two- and three-particle correlators to the second-order
density, density-magnetic, and chiral response functions. This
is interesting if one actually wants to implement the com-
putations since, in our case, w2dynamics can only directly
measure the spin correlators.

We start by giving explicit formulas for Eq. (12),

χnnn = 2(χ↑↑↑ + χ↑↑↓ + χ↑↓↑ + χ↓↑↑), (B1)

χnzz =2(χ↑↑↑ − χ↑↑↓ − χ↑↓↑ + χ↓↑↑)

=2(χ↑↑↓ + χ↓↑↓), (B2)

χxyz = 2i(χ↑↓↑ − χ↑↓↓), (B3)

where we use SU(2) symmetry, introduce the second-order
spin susceptibilities

χσ1,...,σ6 = conn Xσ1,...,σ6 , (B4)

and generalize the compact spin notation from the two- to the
three-particle level:

σ1σ2σ3 = σ1σ1σ2σ2σ3σ3, (B5)

σ1σ2σ3 = σ1σ1σ2σ3σ3σ2, (B6)

σ1σ2σ3 = σ1σ3σ2σ2σ3σ1, (B7)

σ1σ2σ3 = σ1σ2σ2σ1σ3σ3. (B8)

Since subtracting the disconnected parts of the full correlators
is a linear operation, Eqs. (B1)–(B3) also hold when replacing
χ with X .

Appendix G shows that the 20 nonvanishing spin compo-
nents of the three-particle quantities can be reduced to just
three independent ones, namely ↑↑↑, ↑↑↓, and ↑↑↓. All

other components can be calculated from these by apply-
ing SU(2), swapping, or time-reversal symmetry. This makes
numerical computations much cheaper. Exploiting this, we
rewrite Eqs. (B1)–(B3) in Matsubara space as

χω1ω2
nnn = 2

(
χ

ω1ω2
↑↑↑ + χ

ω1ω2
↑↑↓ + χ

ω1ω3
↑↑↓ + χ

ω3ω2
↑↑↓

)
, (B9)

χω1ω2
nzz = 2(χω1ω2

↑↑↑ − χ
ω1ω2
↑↑↓ − χ

ω1ω3
↑↑↓ + χ

ω3ω2
↑↑↓ )

= 2(χω1ω2

↑↑↓ + χ
ω1ω3

↑↑↓ ), (B10)

χω1ω2
xyz = 2i(χω3ω1

↑↑↓ − χ
ω3ω2

↑↑↓ ), (B11)

where ω3 = −ω1 − ω2.
For the second-order spin susceptibilities, the explicit form

of Eq. (5) reads

χω1ω2
σ1σ2σ3

= X ω1ω2
σ1σ2σ3

− δω10δω20β
2〈n̂σ1〉〈n̂σ2〉〈n̂σ3〉

− δω20β〈n̂σ2〉χω3
σ3σ1

− δω30β〈n̂σ3〉χω1
σ1σ2

− δω10β〈n̂σ1〉χω2
σ2σ3

, (B12)

χ
ω1ω2
σ1σ2σ3

= X ω1ω2
σ1σ2σ3

− δω10β〈n̂σ1〉χω2
σ3σ2

, (B13)

χ
ω1ω2
σ1σ2σ3

= X ω1ω2
σ1σ2σ3

− δω20β〈n̂σ2〉χω3
σ1σ3

, (B14)

χ
ω1ω2
σ1σ2σ3

= X ω1ω2
σ1σ2σ3

− δω30β〈n̂σ3〉χω1
σ2σ1

. (B15)

Similarly, using Eq. (4) yields

χω
σ1σ2

= 〈T n̂σ1 n̂σ2〉ω − δω0β〈n̂σ1〉〈n̂σ2〉, (B16)

χω
σ1σ2

= 〈T ĉ†
σ1

ĉσ2
ĉ†
σ2

ĉσ1
〉ω (B17)

for the linear spin susceptibilities. Together these equa-
tions complete the set of explicit formulas necessary to
compute the second-order density, density-magnetic, and chi-
ral response functions from two- and three-particle spin
correlators.

Combining Eqs. (B3) and (B15) shows that the discon-
nected terms for χxyz cancel, which means that it is directly
given by Xxyz. This is similar to the two-particle case in which
the magnetic response function χzz equals the full correlator
Xzz = 〈Tσ̂zσ̂z〉 [see Eq. (17)] because there are no discon-
nected terms either.

FIG. 13. Frequency notations for the two-particle Green’s
function.
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TABLE I. The 15 different frequency notations of three-particle diagrams.

Channel ν1 ν2 ν3 ν4 ν5 ν6

ph νa − ωa νa νb − ωb νb νc − ωc νc

ph′ νc − ω′
c νa νa − ω′

a νb νb − ω′
b νc

ph νb − ωb νa νc − ωc νb νa − ωa νc

pha νc − ω′
c νa νb − ωb νb νa − ωa νc

phb νb − ωb νa νa − ω′
a νb νc − ωc νc

phc νa − ωa νa νc − ωc νb νb − ω′
b νc

pp24−13 νc νa νb − ωb νb ωc − νc ωa − νa

pp26−13 νa ωc − νc ωa − νa νb νb − ω′
b νc

pp26−15 ωa − νa ωb − νb νa νb νc − ωc νc

pp46−15 νc − ω′
c νa νb ωa − νa ωb − νb νc

pp46−35 νa − ωa νa ωb − νb ωc − νc νb νc

pp24−35 ωc − νc νa νa − ω′
a νb νc ωb − νb

pp26−35 νc νa ωc − νc νb νa − ωa ωb − νb

pp46−13 νb − ωb ωc − νc νa νb ωa − νa νc

pp24−15 ωb − νb νa νc − ωc ωa − νa νb νc

In the special case of half-filling, i.e., 〈n̂σ 〉 = 1/2 = 1 −
〈n̂σ 〉, we can further compute

Xσ1σ2σ3 = 〈T (1 − n̂σ1 )(1 − n̂σ2 )(1 − n̂σ3 )〉 (B18)

= 〈1 − n̂σ1 − n̂σ2 − n̂σ3〉
+ 〈T (n̂σ1 n̂σ2 + n̂σ1 n̂σ3 + n̂σ2 n̂σ3 )〉
− 〈T n̂σ1 n̂σ2 n̂σ3〉, (B19)

2Xσ1σ2σ3 =
∑
i< j

〈T n̂σi n̂σ j 〉 − 1

2
. (B20)

This shows that the full, density-like, three-particle spin
correlators only consist of disconnected terms for half-
filling, or equivalently χσ1σ2σ3 vanishes. Looking at Eqs. (B1)
and (B2), this also implies that the second-order density
and density-magnetic response functions vanish at half-
filling.

FIG. 14. Diagrammatic representation of the six ph notations of
three-particle diagrams.

APPENDIX C: FREQUENCY NOTATIONS OF
THREE-PARTICLE DIAGRAMS

In the two-particle case, there are three channels each
with its own frequency notation. It is chosen such that
the in- and outgoing particle-particle (pp) or particle-hole
(ph) pairs have a total energy of ω. The corresponding di-
agrams for the two-particle Green’s function are shown in
Fig. 13.

Making similar pairwise connections as in Fig. 13, the
number of different frequency notations for an n-particle func-
tion is equal to the number of different ways that the 2n points
can be connected into pairs. This number of possibilities p is

FIG. 15. Diagrammatic representation of the nine pp notations of
three-particle diagrams.
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FIG. 16. Diagrammatic representation of the decomposition of
the two-particle Green’s function G2, as given in Eq. (D2). The last
term introduces the full two-particle vertex F .

given by the double factorial

p(n) = (2n − 1)!! =
n∏

k=1

(2k − 1), (C1)

because with 2k remaining points there are 2k − 1 possibili-
ties to connect an arbitrarily chosen point to one of the 2k − 1
other ones. The number of pure ph channels is n! since in this
case each of the n creation operators must be paired with one
of the n annihilation operators and there are n! unique ways to
do that.

For the three-particle case, this results in 15 different fre-
quency notations, which are shown in Table I.They can be
divided into six ph channels and nine pp channels. A diagram-
matic representation is given in Figs. 14 and 15, depicting the
ph and pp channels, respectively.

APPENDIX D: DECOMPOSITION OF THE
THREE-PARTICLE GREEN’S FUNCTION

The general idea is to decompose the expectation value
of an n-particle Green’s function into all possible sets of
connected tuples of creation and annihilation operators. If we
denote the connected tuples by underlined expectation values,
the one-particle case is trivially written as

G1
12 = −〈T ĉ1ĉ†

2〉 = −〈T ĉ1ĉ†
2〉, (D1)

where we condensed all arguments and indices of each opera-
tor into a single numeric index. On the two-particle level, we
get

G2
1234 = 〈T ĉ1ĉ†

2ĉ3ĉ†
4〉

= 〈T ĉ1ĉ†
2ĉ3ĉ†

4〉 + 〈T ĉ1ĉ†
2〉〈T ĉ3ĉ†

4〉 − 〈T ĉ1ĉ†
4〉〈T ĉ3ĉ†

2〉,
(D2)

where the first term on the right-hand side contains the full
two-particle vertex F . The diagrammatic representation of this
equation is given in Fig. 16, which also shows that we choose
the following convention for the sign of F :

〈T ĉĉ†ĉĉ†〉 = −GGFGG. (D3)

So far this is nothing new for people who are well-versed in di-
agrammatics. The decomposition of the three-particle Green’s
function, however, is less well known and simple, which is
why we explicitly present it in this Appendix. Applying the
same method as before, we get

−〈T ĉ1ĉ†
2ĉ3ĉ†

4ĉ5ĉ†
6〉 = − 〈T ĉ1ĉ†

2〉〈T ĉ3ĉ†
4〉〈T ĉ5ĉ†

6〉 − 〈T ĉ1ĉ†
6〉〈T ĉ3ĉ†

2〉〈T ĉ5ĉ†
4〉 − 〈T ĉ1ĉ†

4〉〈T ĉ3ĉ†
6〉〈T ĉ5ĉ†

2〉
+ 〈T ĉ1ĉ†

2〉〈T ĉ3ĉ†
6〉〈T ĉ5ĉ†

4〉 + 〈T ĉ1ĉ†
6〉〈T ĉ3ĉ†

4〉〈T ĉ5ĉ†
2〉 + 〈T ĉ1ĉ†

4〉〈T ĉ3ĉ†
2〉〈T ĉ5ĉ†

6〉
− 〈T ĉ1ĉ†

2〉〈T ĉ3ĉ†
4ĉ5ĉ†

6〉 − 〈T ĉ3ĉ†
4〉〈T ĉ5ĉ†

6ĉ1ĉ†
2〉 − 〈T ĉ5ĉ†

6〉〈T ĉ1ĉ†
2ĉ3ĉ†

4〉
+ 〈T ĉ1ĉ†

4〉〈T ĉ3ĉ†
2ĉ5ĉ†

6〉 + 〈T ĉ3ĉ†
6〉〈T ĉ5ĉ†

4ĉ1ĉ†
2〉 + 〈T ĉ5ĉ†

2〉〈T ĉ1ĉ†
6ĉ3ĉ†

4〉
+ 〈T ĉ1ĉ†

6〉〈T ĉ3ĉ†
4ĉ5ĉ†

2〉 + 〈T ĉ3ĉ†
2〉〈T ĉ5ĉ†

6ĉ1ĉ†
4〉 + 〈T ĉ5ĉ†

4〉〈T ĉ1ĉ†
2ĉ3ĉ†

6〉
− 〈T ĉ1ĉ†

2ĉ3ĉ†
4ĉ5ĉ†

6〉. (D4)

The corresponding diagrams are depicted in Fig. 17, where we
introduce the full three-particle vertex F 3. Its sign is chosen
as

−〈T ĉ1ĉ†
2ĉ3ĉ†

4ĉ5ĉ†
6〉 = GGGF 3GGG. (D5)

Looking at Fig. 17, it might seem that some diagrams are
“obviously” missing, but they are in fact just topologically
equivalent to some of the already present ones. Examples for
this are shown in Fig. 18.

APPENDIX E: ASYMPTOTIC BEHAVIOR OF χ(2)

Using the Lehmann representation, one can show that
bosonic, two-particle correlation functions can be expanded
in the following series:

〈ÂiÂ j〉z = −1

z
〈[Âi, Â j]〉 + 1

z2
〈[[Âi, Ĥ ], Â j]〉 + · · · , (E1)

where z is a complex frequency, Ĥ is the Hamiltonian, and
[·, ·] denotes the commutator (see also Ref. [37], Appendix C).
Since

χ0ω
nnn = − ∂

∂ε
χω

nn = ∂

∂ε

(
X ω

nn − δω0β〈n̂〉2) (E2)

= ∂

∂ε
X ω

nn, (E3)

χ0ω
nzz = ∂

∂ε
χω

zz = ∂

∂ε
X ω

zz , (E4)

χ0ω
xyz = ∂

∂hx
χω

yz = ∂

∂hx
X ω

yz, (E5)

with Matsubara frequencies ω, evaluating the expansion at
z = iω can be used to obtain the asymptotic behavior of slices
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FIG. 17. Diagrammatic representation of the decomposition of the three-particle Green’s function as given in Eq. (D4). The last term
introduces the full three-particle vertex F 3.

of the second-order response functions:

χ0ω
nnn ≈ − 1

(iω)2

∂

∂ε
〈[[n̂, Ĥ ], n̂]〉, (E6)

χ0ω
nzz ≈ − 1

(iω)2

∂

∂ε
〈[[σ̂z, Ĥ ], σ̂z]〉, (E7)

χ0ω
xyz ≈ − 1

iω

∂

∂hx
〈[σ̂y, σ̂z]〉. (E8)

The density and density-magnetic channels do not have a
1/(iω) term since [n̂, n̂] and [σ̂z, σ̂z] vanish. According to [37],
for an AIM the commutators in Eqs. (E6) and (E7) are given
by

〈[[n̂, ĤAIM], n̂]〉 = 〈[[σ̂z, ĤAIM], σ̂z]〉
= −〈ĤV 〉 = − 2

β

∑
σν

�ν
σ Gν

σ , (E9)

where ĤV is the hybridization term in the Hamiltonian of the
AIM [last term in Eq. (25)], �ν

σ is the hybridization function,
and Gν

σ is the one-particle Green’s function of the impurity.

FIG. 18. Some topologically equivalent diagrams that appear in
the decomposition of the three-particle Green’s function shown in
Fig. 17. In the second line, we use the crossing symmetry of F for
the first identity.

Differentiating the latter with respect to ε yields

∂

∂ε
Gν

σ = − ∂

∂ε
〈T ĉσ (τ )ĉ†

σ 〉ν (E10)

= β〈n̂〉Gν
σ (E11)

+
∑
σ ′

〈T n̂σ ′ (τ ′)ĉσ (τ )ĉ†
σ 〉ν0 (E12)

= β〈n̂〉Gν
σ (E13)

+
∑
σ ′

〈T [1 − ĉσ ′ (τ ′)ĉ†
σ ′ (τ ′)]ĉσ (τ )ĉ†

σ 〉ν0 (E14)

= β(〈n̂〉 − 2)Gν
σ −

∑
σ ′

Pν0
σ ′σ , (E15)

where P is the partially contracted two-particle Green’s func-
tion

Pν ′ω =
∫ β

0

∫ β

0
G(τ, τ, τ ′)ei[ωτ+(ν ′−ω)τ ′]dτdτ ′

= 1

β

∑
ν

Gνν ′ω. (E16)

With
∂

∂hx
〈[σ̂y, σ̂z]〉 = 2i

∂

∂hx
〈σ̂x〉 = 2iχ0

m (E17)

we can finally write

χ0ω
nnn ≈ − 1

ω2

∂

∂ε
〈HV 〉, (E18)

χ0ω
nzz ≈ − 1

ω2

∂

∂ε
〈HV 〉, (E19)

χ0ω
xyz ≈ − 2

ω
χ0

m, (E20)

where

− ∂

∂ε
〈HV 〉 = 4

β

∑
ν

�ν
↑(Pν0

↑↑ + Pν0
↑↓ + β(2 −〈n̂〉)Gν

↑), (E21)

and we use SU(2) symmetry.
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APPENDIX F: LEHMANN FORMULA FOR THE THREE-PARTICLE CORRELATOR

In the atomic limit, ĤAL = ε(n̂↑ + n̂↓) − h(n̂↑ − n̂↓) + Un̂↑n̂↓, where ε = −U/2, we use the following Lehmann formula for
the three-particle correlation function:

X (τ1, τ2) = 〈T ρ̂1(τ1)ρ̂2(τ2)ρ̂3(0)〉 = θ (τ1 − τ2)
∑
i, j,k

wie
τ1Ei j+τ2Ejk ρ

i j
1 ρ

jk
2 ρki

3 + θ (τ2 − τ1)
∑
i, j,k

wie
τ2Ei j+τ1Ejk ρ

i j
2 ρ

jk
1 ρki

3 . (F1)

Here, ρ̂1,2,3 are bosonic operators, θ is the Heaviside step function, Ei j = Ei − Ej , wi = e−βEi/Z , Z = ∑
i e−βEi , and ρ i j =

〈i|ρ̂| j〉. The eigenstates of ĤAL are |0〉, |↓〉, |↑〉, and |�〉 with eigenenergies E0 = 0, E↓ = ε + h, E↑ = ε − h, and E� = U + 2ε.
We transform X (τ1, τ2) via Eq. (24) to frequencies, taking care of degeneracies:

X ω1ω2 = X (ω1, ω2, ρ̂1, ρ̂2) + X (ω2, ω1, ρ̂2, ρ̂1), (F2)

X (ωx, ωy, ρ̂x, ρ̂y) =
∑
i, j,k

wiρ
i j
x ρ jk

y ρki
3

{
1 − δ(iωy + Ejk )

iωy + Ejk

[
− eβEi j − 1

iωx + Ei j
[1 − δ(iωx + Ei j )] − βδ(iωx + Ei j )

+ eβEik − 1

iωx + iωy + Eik
[1 − δ(iωx + iωy + Eik )] + βδ(iωx + iωy + Eik )

]

+
[

βeβEi j

iωx + Ei j
− eβEi j − 1

(iωx + Ei j )2

]
δ(iωy + Ejk )[1 − δ(iωx + Ei j )] + β2

2
δ(iωy + Ejk )δ(iωx + Ei j )

}
. (F3)

Note that Eqs. (F1)–(F3) are not restricted to the atomic limit.

APPENDIX G: SYMMETRIES OF THE THREE-PARTICLE
SPIN CORRELATOR

There are
(6

3

) = 20 nonvanishing spin combinations for the
full, three-particle correlator. With the compact spin notation
introduced in Eqs. (B5)–(B8), they read

↑↑↑, ↑↑↓, ↑↓↑, ↓↑↑,

↑↑↓, ↑↑↓, ↑↓↑, ↑↓↑, ↓↑↑, ↓↑↑,

↓↓↑, ↓↓↑, ↓↑↓, ↓↑↓, ↑↓↓, ↑↓↓,

↓↓↓, ↓↓↑, ↓↑↓, ↑↓↓ .

(G1)

By using SU(2), swapping (SW) and time reversal (TR) sym-
metry,

X ω1ω2
σ1,...,σ6

SU(2)= X ω1ω2−σ1,...,−σ6
, (G2)

X ω1ω2
σ1,...,σ6

SW12= X ω2ω1
σ3σ4σ1σ2σ5σ6

, (G3)

X ω1ω2
σ1,...,σ6

SW13= X ω3ω1
σ5σ6σ3σ4σ1σ2

, (G4)

X ω1ω2
σ1,...,σ6

SW23= X ω1ω3
σ1σ2σ5σ6σ3σ4

, (G5)

X ω1ω2
σ1,...,σ6

TR= X ω3ω2
σ6,...,σ1

, (G6)

where − ↑=↓, − ↓=↑, and ω3 = −ω1 − ω2, they can be
mapped to only three spin components, namely, ↑↑↑, ↑↑↓,

and ↑↑↓. For seven of the first ten spin components, the
necessary transformations look like

X ω1ω2
↑↓↑

SW23= X ω1ω3
↑↑↓ , (G7)

X ω1ω2
↓↑↑

SW13= X ω3ω2
↑↑↓ , (G8)

X ω1ω2

↑↑↓
SW12= X ω2ω1

↑↑↓ , (G9)

X ω1ω2

↑↓↑
SW23= X ω1ω3

↑↑↓ , (G10)

X ω1ω2

↑↓↑
SW23= X ω1ω3

↑↑↓
SW12= X ω3ω1

↑↑↓ , (G11)

X ω1ω2

↓↑↑
SW13= X ω3ω2

↑↑↓ , (G12)

X ω1ω2

↓↑↑
SW12= X ω2ω1

↑↓↑
SW23= X ω2ω3

↑↑↓ . (G13)

Note that they are not unique. X↑↓↑, e.g., can also be calcu-
lated from X↑↑↓ by applying time-reversal symmetry. These
seven equations relate seven of the 20 spin components to
the ↑↑↓ and ↑↑↓ components, and additionally we have the
↑↑↑ component. The second half of the 20 nonvanishing
components can be mapped to the first 10 by using SU(2)
symmetry.
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